
this print for content only—size & color not accurate spine = 1.857" 992 page count

Books for professionals By professionals®

Beginning ASP.NET 3.5 in C# 2008:
From Novice to Professional, SECoNd EdiTioN

Dear Reader,

Welcome to the most up to date and comprehensive beginning ASP.NET book
you’ll find on any shelf. As you probably already know, ASP.NET is a framework
for developing modern web applications. In the right hands, ASP.NET produces
web applications that are secure, blisteringly fast, and highly scalable. Best of
all, ASP.NET includes a huge set of ready-to-use features like website navigation,
data binding, themes, and user management. ASP.NET allows you to create any-
thing from a dynamic personal website to a full-scale e-commerce storefront.

In this book, I assume that you have only basic knowledge of C#, although
those coming from a more experienced background will find that the basics are
reviewed quickly and efficiently. As you explore ASP.NET, you’ll learn the key
database, security, and performance principles you need to know in order to
design a solid web application. My book will also teach you to use techniques
such as object-oriented programming and code-behind development from the
beginning, rather than fake it with simplified techniques that won’t work well
in real life.

Once you’ve reached the end of the book, you’ll have mastered the core
techniques of website programming, and you’ll have the knowledge necessary
to begin work as a professional ASP.NET developer.

Welcome aboard!

Matthew MacDonald (Microsoft MVP, MCSD)

Author of

Pro ASP.NET 3.5 in C# 2008
(Apress)

Beginning ASP.NET 3.5
in VB 2008 (Apress)

Pro WPF: Windows
Presentation Foundation
in .NET 3.0 (Apress)

Beginning ASP.NET 2.0
in C# 2005 (Apress)

ASP.NET: The Complete
Reference

US $49.99

Shelve in
.NET

User level:
Beginner–Intermediate

MacDonald

SECoNd EdiTioN

ASP.NET 3.5

The eXperT’s Voice® in .neT

Beginning

ASP.NET 3.5
in C# 2008
From Novice to Professional

SECoND EDiTioN

 cyan
 MaGenTa

 yelloW
 Black
 panTone 123 c

Matthew MacDonald

Companion eBook Available

THE APRESS ROADMAP

Beginning ASP.NET 3.5
in C# 2008

Beginning Silverlight 1.1

Pro Silverlight 1.1

Beginning ASP.NET 3.5
Data Access with LINQ,
C# 2008, and ADO.NET

Pro ASP.NET 3.5
Server Controls with
AJAX Components

Pro C# 2008 and
the .NET 3.5 Platform

Pro LINQ:
Language Integrated Query

in C# 2008

Pro WPF:
Windows Presentation
Foundation in .NET 3.0

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-891-7
ISBN-10: 1-59059-891-1

9 781590 598917

54999

Start your journey into ASP.NET with a renowned author

Beginning

in C#
2008

netbooks.wordpress.com

Codered @ Updatesofts.com

Matthew MacDonald

Beginning ASP.NET 3.5
in C# 2008
From Novice to Professional,
Second Edition

8911FM.qxd 10/18/07 4:12 PM Page i

Beginning ASP.NET 3.5 in C# 2008: From Novice to Professional, Second Edition

Copyright © 2007 by Matthew MacDonald

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-891-7

ISBN-10 (pbk): 1-59059-891-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Hassell
Technical Reviewer: Andy Olsen
Editorial Board: Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick,

Jason Gilmore, Kevin Goff, Jonathan Hassell, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager | Production Editor: Laura Esterman
Copy Editor: Liz Welch
Associate Production Director: Kari Brooks-Copony
Compositor: Dina Quan
Proofreaders: April Eddy, Nancy Sixsmith
Indexer: John Collin
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com.

8911FM.qxd 10/18/07 4:12 PM Page ii

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com

For my wonderful family,
Faria and Maya

8911FM.qxd 10/18/07 4:12 PM Page iii

Contents at a Glance

About the Author . xxv

About the Technical Reviewer . xxvii

Acknowledgments . xxix

Introduction . xxxi

PART 1 ■ ■ ■ Introducing .NET
■CHAPTER 1 The .NET Framework . 3

■CHAPTER 2 The C# Language . 19

■CHAPTER 3 Types, Objects, and Namespaces . 53

PART 2 ■ ■ ■ Developing ASP.NET Applications
■CHAPTER 4 Visual Studio . 87

■CHAPTER 5 Web Form Fundamentals . 129

■CHAPTER 6 Web Controls . 171

■CHAPTER 7 State Management . 211

■CHAPTER 8 Error Handling, Logging, and Tracing . 249

■CHAPTER 9 Deploying ASP.NET Applications . 295

PART 3 ■ ■ ■ Building Better Web Forms
■CHAPTER 10 Validation . 333

■CHAPTER 11 Rich Controls . 355

■CHAPTER 12 User Controls and Graphics . 381

■CHAPTER 13 Styles, Themes, and Master Pages . 405

■CHAPTER 14 Website Navigation . 445

iv

8911FM.qxd 10/18/07 4:12 PM Page iv

PART 4 ■ ■ ■ Working with Data
■CHAPTER 15 ADO.NET Fundamentals . 483

■CHAPTER 16 Data Binding . 537

■CHAPTER 17 The Data Controls . 577

■CHAPTER 18 Files and Streams . 617

■CHAPTER 19 XML . 647

PART 5 ■ ■ ■ Website Security
■CHAPTER 20 Security Fundamentals . 691

■CHAPTER 21 Membership . 725

■CHAPTER 22 Profiles. 763

PART 6 ■ ■ ■ Advanced ASP.NET
■CHAPTER 23 Component-Based Programming . 789

■CHAPTER 24 Caching . 821

■CHAPTER 25 ASP.NET AJAX . 855

■INDEX . 891

v

8911FM.qxd 10/18/07 4:12 PM Page v

8911FM.qxd 10/18/07 4:12 PM Page vi

Contents

About the Author . xxv

About the Technical Reviewer . xxvii

Acknowledgments . xxix

Introduction . xxxi

PART 1 ■ ■ ■ Introducing .NET

■CHAPTER 1 The .NET Framework. 3

The Evolution of Web Development . 3

HTML and HTML Forms . 3

Server-Side Programming . 6

Client-Side Programming . 7

The .NET Framework . 9

C#, VB, and the .NET Languages. 11

The Common Language Runtime . 14

The .NET Class Library . 16

Visual Studio . 16

The Last Word . 17

■CHAPTER 2 The C# Language. 19

The .NET Languages. 19

C# Language Basics . 20

Case Sensitivity . 20

Commenting . 21

Statement Termination . 21

Blocks . 22

Variables and Data Types. 22

Assignment and Initializers . 24

Strings and Escaped Characters . 26

Arrays. 26

Enumerations . 29
vii

8911FM.qxd 10/18/07 4:12 PM Page vii

Variable Operations . 30

Advanced Math . 31

Type Conversions. 32

Object-Based Manipulation . 34

The String Type . 34

The DateTime and TimeSpan Types. 36

The Array Type . 39

Conditional Logic . 40

The if Statement. 41

The switch Statement . 41

Loops . 42

The for Loop . 43

The foreach Loop . 44

The while loop . 45

Methods . 46

Parameters . 47

Method Overloading . 48

Delegates . 49

The Last Word . 51

■CHAPTER 3 Types, Objects, and Namespaces . 53

The Basics About Classes . 53

Static Members . 55

A Simple Class . 55

Building a Basic Class . 56

Creating an Object . 57

Adding Properties . 58

Adding a Method . 61

Adding a Constructor. 61

Adding an Event . 62

Testing the Product Class. 64

Value Types and Reference Types . 66

Assignment Operations. 67

Equality Testing . 67

Passing Parameters by Reference and by Value 68

Reviewing .NET Types. 69

Understanding Namespaces and Assemblies. 71

Using Namespaces . 72

Importing Namespaces. 73

Assemblies . 74

■CONTENTSviii

8911FM.qxd 10/18/07 4:12 PM Page viii

Advanced Class Programming . 75

Inheritance . 75

Static Members . 76

Casting Objects . 77

Partial Classes . 80

Generics . 81

The Last Word . 82

PART 2 ■ ■ ■ Developing ASP.NET Applications

■CHAPTER 4 Visual Studio . 87

The Promise of Visual Studio. 87

Creating Websites . 88

Creating a New Web Application. 89

Websites and Web Projects . 91

The Hidden Solution Files. 92

The Solution Explorer . 93

Adding Web Forms . 94

Migrating a Website from a Previous Version of Visual Studio 96

Designing a Web Page . 97

Adding Web Controls. 98

The Properties Window. 100

The Anatomy of a Web Form . 102

The Web Form Markup . 102

The Page Directive. 103

The Doctype . 104

The Essentials of XHTML . 106

Writing Code. 112

The Code-Behind Class . 112

Adding Event Handlers . 113

IntelliSense and Outlining. 115

Visual Studio Debugging . 120

The Visual Studio Web Server . 121

Single-Step Debugging. 122

Variable Watches . 126

The Last Word . 127

■CONTENTS ix

8911FM.qxd 10/18/07 4:12 PM Page ix

■CHAPTER 5 Web Form Fundamentals . 129

The Anatomy of an ASP.NET Application. 129

ASP.NET File Types . 130

ASP.NET Application Directories . 131

Introducing Server Controls . 132

HTML Server Controls . 133

Converting an HTML Page to an ASP.NET Page 134

View State . 137

The HTML Control Classes . 138

Adding the Currency Converter Code . 140

Event Handling . 142

Behind the Scenes with the Currency Converter 144

Error Handling. 146

Improving the Currency Converter . 147

Adding Multiple Currencies . 147

Storing Information in the List . 148

Adding Linked Images. 150

Setting Styles . 152

A Deeper Look at HTML Control Classes. 153

HTML Control Events. 153

Advanced Events with the HtmlInputImage Control 154

The HtmlControl Base Class. 156

The HtmlContainerControl Class . 157

The HtmlInputControl Class . 157

The Page Class . 158

Sending the User to a New Page . 159

HTML Encoding . 160

Application Events . 161

The Global.asax File . 162

Additional Application Events. 163

ASP.NET Configuration . 163

The web.config File . 164

Nested Configuration. 165

Storing Custom Settings in the web.config File 166

The Website Administration Tool (WAT). 168

The Last Word . 170

■CONTENTSx

8911FM.qxd 10/18/07 4:12 PM Page x

■CHAPTER 6 Web Controls . 171

Stepping Up to Web Controls. 171

Basic Web Control Classes. 172

The Web Control Tags. 173

Web Control Classes . 174

The WebControl Base Class . 175

Units . 176

Enumerations . 177

Colors. 178

Fonts . 179

Focus . 181

The Default Button. 181

List Controls . 182

Multiple-Select List Controls . 183

The BulletedList Control . 185

Table Controls . 186

Web Control Events and AutoPostBack . 191

How Postback Events Work . 195

The Page Life Cycle. 196

A Simple Web Page. 199

Improving the Greeting Card Generator . 204

Generating the Cards Automatically . 206

The Last Word . 209

■CHAPTER 7 State Management . 211

The Problem of State . 211

View State. 212

The ViewState Collection . 212

A View State Example . 213

Making View State Secure . 214

Retaining Member Variables . 215

Storing Custom Objects . 217

Transferring Information Between Pages . 218

Cross-Page Posting . 219

The Query String . 224

Cookies . 228

A Cookie Example . 230

■CONTENTS xi

8911FM.qxd 10/18/07 4:12 PM Page xi

Session State . 231

Session Tracking . 231

Using Session State. 232

A Session State Example . 233

Session State Configuration. 236

Cookieless. 237

Timeout . 240

Mode . 241

Application State . 245

An Overview of State Management Choices. 247

The Last Word . 248

■CHAPTER 8 Error Handling, Logging, and Tracing . 249

Common Errors . 249

Exception Handling . 251

The Exception Class . 252

The Exception Chain . 253

Handling Exceptions . 254

Catching Specific Exceptions. 255

Nested Exception Handlers . 257

Exception Handling in Action . 258

Mastering Exceptions . 260

Throwing Your Own Exceptions . 260

Logging Exceptions . 264

Viewing the Windows Event Logs . 265

Writing to the Event Log . 268

Custom Logs. 270

A Custom Logging Class. 271

Retrieving Log Information . 273

Error Pages . 275

Error Modes . 277

Custom Error Pages. 278

Page Tracing . 280

Enabling Tracing . 280

Tracing Information . 281

Writing Trace Information. 287

Application-Level Tracing. 291

The Last Word . 293

■CONTENTSxii

8911FM.qxd 10/18/07 4:12 PM Page xii

■CHAPTER 9 Deploying ASP.NET Applications . 295

ASP.NET Applications and the Web Server . 295

How Web Servers Work . 295

The Virtual Directory . 297

Web Application URLs . 297

Web Farms . 299

Internet Information Services (IIS) . 300

The Many Faces of IIS. 300

Installing IIS 5 (in Windows XP) . 301

Installing IIS 6 (in Windows Server 2003) . 302

Installing IIS 7 (in Windows Vista) . 304

Installing IIS 7 (in Windows Server 2008) . 305

Registering the ASP.NET File Mappings. 305

Verifying That ASP.NET Is Correctly Installed 306

Managing Websites with IIS Manager . 308

Creating a Virtual Directory . 310

Configuring a Virtual Directory. 312

Deploying a Simple Site . 316

Web Applications and Components . 317

Other Configuration Steps . 317

Code Compilation. 318

The ASP.NET Account . 319

Deploying with Visual Studio . 323

Creating a Virtual Directory for a New Project 324

Copying a Website . 326

Publishing a Website . 328

The Last Word . 330

PART 3 ■ ■ ■ Building Better Web Forms

■CHAPTER 10 Validation . 333

Understanding Validation . 333

The Validator Controls. 334

Server-Side Validation. 335

Client-Side Validation . 335

■CONTENTS xiii

8911FM.qxd 10/18/07 4:12 PM Page xiii

The Validation Controls. 336

A Simple Validation Example . 337

Other Display Options . 339

Manual Validation . 341

Validating with Regular Expressions. 343

A Validated Customer Form . 347

Validation Groups. 352

The Last Word . 354

■CHAPTER 11 Rich Controls . 355

The Calendar . 355

Formatting the Calendar . 357

Restricting Dates . 358

The AdRotator . 363

The Advertisement File . 363

The AdRotator Class . 364

Pages with Multiple Views . 366

The MultiView Control . 367

The Wizard Control . 372

The Last Word . 379

■CHAPTER 12 User Controls and Graphics . 381

User Controls . 381

Creating a Simple User Control . 382

Independent User Controls . 384

Integrated User Controls . 387

User Control Events . 389

Passing Information with Events . 391

Dynamic Graphics . 394

Basic Drawing . 394

Drawing a Custom Image . 397

Placing Custom Images Inside Web Pages . 398

Image Format and Quality . 400

The Last Word . 403

■CONTENTSxiv

8911FM.qxd 10/18/07 4:12 PM Page xiv

c1f7fa939e14ed6480dade2089a967cf

■CHAPTER 13 Styles, Themes, and Master Pages . 405

Styles . 405

Style Types . 406

Creating a Basic Inline Style . 406

Creating a Style Sheet. 414

Applying Style Sheet Rules. 417

Themes . 419

How Themes Work . 419

Applying a Simple Theme. 421

Handling Theme Conflicts . 422

Creating Multiple Skins for the Same Control 424

More Advanced Skins . 425

Master Page Basics. 427

A Simple Master Page and Content Page . 428

How Master Pages and Content Pages Are Connected. 431

A Master Page with Multiple Content Regions 433

Default Content . 436

Master Pages and Relative Paths . 437

Advanced Master Pages. 438

Table-Based Layouts. 438

Code in a Master Page . 442

Interacting with a Master Page Programmatically 442

The Last Word . 444

■CHAPTER 14 Website Navigation . 445

Site Maps . 445

Defining a Site Map . 446

Seeing a Simple Site Map in Action . 450

Binding an Ordinary Page to a Site Map . 451

Binding a Master Page to a Site Map . 452

Binding Portions of a Site Map . 454

The SiteMap Class . 459

Mapping URLs . 461

The SiteMapPath Control . 462

Customizing the SiteMapPath . 463

Using SiteMapPath Styles and Templates . 464

Adding Custom Site Map Information. 466

■CONTENTS xv

8911FM.qxd 10/18/07 4:12 PM Page xv

The TreeView Control . 467

TreeView Properties . 467

TreeView Styles . 470

The Menu Control . 474

Menu Styles . 476

Menu Templates . 477

The Last Word . 480

PART 4 ■ ■ ■ Working with Data

■CHAPTER 15 ADO.NET Fundamentals . 483

Understanding Data Management . 483

The Role of the Database . 483

Database Access in the Web World . 485

Configuring Your Database . 486

SQL Server Express . 486

Browsing and Modifying Databases in Visual Studio. 487

The sqlcmd Command-Line Tool . 489

SQL Basics . 490

Running Queries in Visual Studio . 491

The Select Statement . 493

The SQL Update Statement . 495

The SQL Insert Statement . 497

The SQL Delete Statement . 498

ADO.NET Basics. 498

Data Namespaces . 500

The Data Provider Classes . 501

Direct Data Access . 503

Creating a Connection. 504

The Select Command . 511

The DataReader . 512

Putting It All Together . 513

Updating Data. 517

Disconnected Data Access . 527

Selecting Disconnected Data. 529

Selecting Multiple Tables . 531

Defining Relationships . 533

The Last Word . 536

■CONTENTSxvi

8911FM.qxd 10/18/07 4:12 PM Page xvi

■CHAPTER 16 Data Binding . 537

Introducing Data Binding . 537

Types of ASP.NET Data Binding . 538

How Data Binding Works . 538

Single-Value Data Binding . 539

A Simple Data Binding Example . 539

Simple Data Binding with Properties . 542

Problems with Single-Value Data Binding . 543

Using Code Instead of Simple Data Binding 544

Repeated-Value Data Binding . 544

Data Binding with Simple List Controls . 545

A Simple List Binding Example . 546

Strongly Typed Collections. 547

Multiple Binding . 548

Data Binding with a Dictionary Collection . 549

Using the DataValueField Property . 551

Data Binding with ADO.NET . 552

Creating a Record Editor. 554

Data Source Controls . 559

The Page Life Cycle with Data Binding . 561

The SqlDataSource . 561

Selecting Records . 563

Parameterized Commands. 565

Handling Errors. 570

Updating Records. 571

The Last Word . 576

■CHAPTER 17 The Data Controls . 577

The GridView . 577

Automatically Generating Columns. 578

Defining Columns. 579

Formatting the GridView. 583

Formatting Fields . 584

Using Styles . 585

Formatting-Specific Values . 588

Selecting a GridView Row . 589

Adding a Select Button . 590

Using Selection to Create Master-Details Pages 591

■CONTENTS xvii

8911FM.qxd 10/18/07 4:12 PM Page xvii

Editing with the GridView . 593

Sorting and Paging the GridView . 596

Sorting . 596

Paging . 599

Using GridView Templates . 601

Using Multiple Templates . 603

Editing Templates in Visual Studio . 604

Handling Events in a Template . 605

Editing with a Template . 606

The DetailsView and FormView. 610

The DetailsView . 610

The FormView. 613

The Last Word . 615

■CHAPTER 18 Files and Streams . 617

Files and Web Applications . 617

File System Information . 618

The Path Class . 619

The Directory and File Classes . 620

The DirectoryInfo and FileInfo Classes . 625

The DriveInfo Class . 627

A Sample File Browser . 628

Reading and Writing with Streams. 632

Text Files . 632

Binary Files . 635

Shortcuts for Reading and Writing Files. 636

A Simple Guest Book. 637

Allowing File Uploads . 642

The FileUpload Control . 643

The Last Word . 646

■CHAPTER 19 XML . 647

XML’s Hidden Role in .NET . 647

Configuration Files. 647

XHTML . 647

ADO.NET Data Access. 648

Anywhere Miscellaneous Data Is Stored . 648

■CONTENTSxviii

8911FM.qxd 10/18/07 4:12 PM Page xviii

XML Explained . 648

Improving the List with XML . 650

XML Basics . 651

Attributes. 652

Comments. 653

The XML Classes . 654

The XML TextWriter . 654

The XML Text Reader . 657

Working with XML Documents in Memory . 662

Reading an XML Document . 667

Searching an XML Document . 670

XML Validation . 671

XML Namespaces . 671

XML Schema Definition . 673

Validating an XML Document. 675

XML Display and Transforms . 678

The Xml Web Control. 681

XML Data Binding . 682

Nonhierarchical Binding . 683

Hierarchical Binding with the TreeView . 685

Binding to XML Content from Other Sources 687

The Last Word . 688

PART 5 ■ ■ ■ Website Security

■CHAPTER 20 Security Fundamentals . 691

Determining Security Requirements . 691

The ASP.NET Security Model. 692

The Visual Studio Web Server . 696

Authentication and Authorization . 696

Forms Authentication . 697

Web.config Settings . 699

Authorization Rules . 699

The WAT . 703

The Login Page. 706

Windows Authentication. 710

Web.config Settings . 711

IIS Settings . 713

A Windows Authentication Test . 716

■CONTENTS xix

8911FM.qxd 10/18/07 4:12 PM Page xix

Impersonation . 717

Understanding Impersonation . 718

Programmatic Impersonation . 718

Confidentiality with SSL . 719

Creating a Certificate Request. 719

Secure Sockets Layer . 721

The Last Word . 723

■CHAPTER 21 Membership . 725

The Membership Data Store . 725

Membership with SQL Server 2005 Express 727

Using the Full Version of SQL Server . 729

Configuring the Membership Provider . 731

Creating Users with the WAT . 735

The Membership and MembershipUser Classes 737

Authentication with Membership . 741

Disabled Accounts . 742

The Security Controls . 742

The Login Control. 743

The CreateUserWizard Control. 748

The PasswordRecovery Control. 752

Role-Based Security . 755

Creating and Assigning Roles . 755

Restricting Access Based on Roles. 758

The LoginView Control . 759

The Last Word . 761

■CHAPTER 22 Profiles . 763

Understanding Profiles . 763

Profile Performance. 764

How Profiles Store Data . 765

Using the SqlProfileProvider . 766

Enabling Authentication . 767

Using the Full Version of SQL Server . 767

The Profile Databases . 769

Defining Profile Properties . 770

Using Profile Properties . 771

■CONTENTSxx

8911FM.qxd 10/18/07 4:12 PM Page xx

Profile Serialization . 773

Profile Groups . 775

Profiles and Custom Data Types . 775

The Profile API . 779

Anonymous Profiles. 782

The Last Word . 785

PART 6 ■ ■ ■ Advanced ASP.NET

■CHAPTER 23 Component-Based Programming . 789

Why Use Components?. 789

Component Jargon . 790

Three-Tier Design . 790

Encapsulation . 792

Business Objects . 792

Data Objects . 792

Components and Classes . 793

Creating a Component . 793

Classes and Namespaces . 794

Class Members . 796

Adding a Reference to the Component . 797

Using the Component . 799

Properties and State . 801

A Stateful Account Class. 802

A Stateless AccountUtility Class . 803

Data-Access Components . 804

A Simple Data-Access Component . 804

Using the Data-Access Component . 809

Enhancing the Component with Error Handling 812

Enhancing the Component with Aggregate Information 813

The ObjectDataSource . 814

Making Classes the ObjectDataSource Can Understand. 815

Selecting Records . 815

Using Method Parameters . 816

Updating Records. 817

The Last Word . 820

■CONTENTS xxi

8911FM.qxd 10/18/07 4:12 PM Page xxi

■CHAPTER 24 Caching . 821

Understanding Caching . 821

When to Use Caching . 822

Caching in ASP.NET. 823

Output Caching . 824

Caching on the Client Side . 825

Caching and the Query String . 826

Caching with Specific Query String Parameters. 827

A Multiple Caching Example . 827

Custom Caching Control . 829

Fragment Caching . 830

Cache Profiles. 831

Data Caching . 832

Adding Items to the Cache . 832

A Simple Cache Test . 833

Caching to Provide Multiple Views . 835

Caching with the Data Source Controls . 839

Caching with Dependencies . 843

File Dependencies . 843

Cache Item Dependencies . 844

SQL Server 2000 Cache Dependencies . 844

SQL Server 2005 and 2008 Cache Dependencies. 849

The Last Word . 853

■CHAPTER 25 ASP.NET AJAX . 855

Understanding Ajax . 856

Ajax: The Good . 856

Ajax: The Bad . 856

The ASP.NET AJAX Toolkit . 857

The ScriptManager . 858

Partial Refreshes . 859

A Simple UpdatePanel Test . 861

Handling Errors. 864

Conditional Updates. 865

Triggers . 867

Progress Notification. 871

Showing a Simulated Progress Bar . 872

Cancellation . 874

■CONTENTSxxii

8911FM.qxd 10/18/07 4:12 PM Page xxii

Timed Refreshes . 876

The ASP.NET AJAX Control Toolkit . 878

Installing the ASP.NET AJAX Control Toolkit 878

The Accordion. 880

The AutoCompleteExtender . 884

Getting More Controls . 887

The Last Word . 888

■INDEX . 891

■CONTENTS xxiii

8911FM.qxd 10/18/07 4:12 PM Page xxiii

8911FM.qxd 10/18/07 4:12 PM Page xxiv

About the Author

■MATTHEW MACDONALD is an author, educator, and Microsoft MVP. He’s a
regular contributor to programming journals and the author of more than
a dozen books about .NET programming, including Pro ASP.NET 3.5 in
C# 2008 (Apress, 2007), Pro WPF: Windows Presentation Foundation in
.NET 3.0 (Apress, 2007), and Pro .NET 2.0 Windows Forms and Custom Con-
trols in C# (Apress, 2006). He lives in Toronto with his wife and daughter.

xxv

8911FM.qxd 10/18/07 4:12 PM Page xxv

8911FM.qxd 10/18/07 4:12 PM Page xxvi

About the Technical Reviewer

■ANDY OLSEN is a freelance developer and consultant based in the UK.
Andy has been working with .NET since Beta 1 days and has coauthored
and reviewed several books for Apress, covering C#, Visual Basic,
ASP.NET, and other topics. Andy is a keen football and rugby fan and
enjoys running and skiing (badly). Andy lives by the seaside in Swansea
with his wife Jayne and children Emily and Thomas, who have just dis-
covered the thrills of surfing and look much cooler than he ever will!

xxvii

8911FM.qxd 10/18/07 4:12 PM Page xxvii

8911FM.qxd 10/18/07 4:12 PM Page xxviii

Acknowledgments

No author could complete a book without a small army of helpful individuals. I’m deeply
indebted to the whole Apress team, including Laura Esterman, who helped everything move
swiftly and smoothly; Liz Welch, who performed the copy edit; Andy Olsen, who performed a
thorough technical review; and many other individuals who worked behind the scenes index-
ing pages, drawing figures, and proofreading the final copy. I also owe a special thanks to
Gary Cornell, who always offers invaluable advice about projects and the publishing world.

I’d also like to thank those who were involved with previous editions of this book. This
includes Emma Acker and Jane Brownlow at Osborne McGraw-Hill and previous tech reviewers
Ronald Landers, Gavin Smyth, Tim Verycruysse, and Julian Skinner. I also owe a hearty thanks
to all the readers who caught errors and took the time to report problems and ask good ques-
tions, including Rick Falck, who submitted detailed comments for virtually every chapter.
Keep sending in the feedback—it helps make better books!

Finally, I’d never write any book without the support of my wife and these special
individuals: Nora, Razia, Paul, and Hamid. Thanks, everyone!

xxix

8911FM.qxd 10/18/07 4:12 PM Page xxix

8911FM.qxd 10/18/07 4:12 PM Page xxx

Introduction

ASP.NET is Microsoft’s platform for developing web applications. Using ASP.NET, you can
create e-commerce shops, data-driven portal sites, and just about anything else you can find
on the Internet. Best of all, you don’t need to paste together a jumble of HTML and script code
in order to program the Web. Instead, you can create full-scale web applications using nothing
but code and a design tool such as Visual Studio 2008.

The cost of all this innovation is the learning curve. To master ASP.NET, you need to learn
how to use an advanced design tool (Visual Studio), a toolkit of objects (the .NET Framework),
and an object-oriented programming language (such as C# 2008). Taken together, these topics
provide more than enough to overwhelm any first-time web developer.

Beginning ASP.NET 3.5 in C# 2008 assumes you want to master ASP.NET, starting from the
basics. Using this book, you’ll build your knowledge until you understand the concepts, tech-
niques, and best practices for writing sophisticated web applications. The journey is long, but
it’s also satisfying. At the end of the day, you’ll find that ASP.NET allows you to tackle chal-
lenges that are simply out of reach on many other platforms.

About This Book
This book explores ASP.NET, which is a core part of Microsoft’s .NET Framework. The .NET
Framework is not a single application—it’s actually a collection of technologies bundled into
one marketing term. The .NET Framework includes languages such as C# 2008 and VB 2008,
an engine for hosting programmable web pages and web services (ASP.NET), a model for
interacting with databases (ADO.NET), and a class library stocked with tools for everything
from reading files to validating a password. To master ASP.NET, you need to learn about each
of these ingredients.

This book covers all these topics from the ground up. As a result, you’ll find yourself learn-
ing many techniques that will interest any .NET developer, even those who create Windows
applications. For example, you’ll learn about component-based programming, you’ll discover
structured error handling, and you’ll see how to access files, XML, and relational databases.
You’ll also learn the key topics you need for web programming, such as state management,
web controls, and caching. By the end of this book, you’ll be ready to create your own rich web
applications and make them available over the Internet.

xxxi

8911FM.qxd 10/18/07 4:12 PM Page xxxi

■Note This book has a single goal: to be as relentlessly practical as possible. I take special care not to
leave you hanging in the places where other ASP.NET books abandon their readers. For example, when
encountering a new technology, you’ll learn not only how it works but also why (and when) you should use it.
I also highlight common questions and best practices with tip boxes and sidebars at every step of the way.
Finally, if a topic is covered in this book, it’s covered right. This means you won’t learn how to perform a task
without learning about potential drawbacks and the problems you might run into—and how you can safe-
guard yourself with real-world code.

Who Should Read This Book
This book is aimed at anyone who wants to create dynamic websites with ASP.NET. Ideally,
you’ll have experience with a previous version of a programming language such as C or Java. If
not, you should be familiar with basic programming concepts (loops, conditional structures,
arrays, and so on), whether you’ve learned them in Visual Basic, Pascal, Turing, or a com-
pletely different programming language. This is the only requirement for reading this book.

Understanding HTML and XHTML (the markup languages used to write web pages) will
help you, but it’s not required. ASP.NET works at a higher level, allowing you to deal with full-
featured web controls instead of raw web page markup. However, you’ll get a quick overview
of XHTML fundamentals in Chapter 4, and you’ll learn about CSS, the Cascading Style Sheet
standard, in Chapter 13.

This book will also appeal to programmers who have some experience with C# and .NET
but haven’t worked with ASP.NET in the past. However, if you’ve used a previous version of
ASP.NET, you’ll probably be more interested in a faster-paced book such as Pro ASP.NET 3.5 in
C# 2008 (Apress, 2007) instead.

■Note This book begins with the fundamentals: C# syntax, the basics of object-oriented programming, and
the philosophy of the .NET Framework. If you haven’t worked with C# before, you can spend a little more
time with the syntax review in Chapter 2 to pick up everything you need to know. If you aren’t familiar with
the ideas of object-oriented programming, Chapter 3 fills in the blanks with a quick, but comprehensive,
review of the subject. The rest of the book builds on this foundation, from ASP.NET basics to advanced exam-
ples that show the techniques you’ll use in real-world web applications.

What You Need to Use This Book
The main prerequisite for this book is a computer with Visual Studio 2008. You can use the
scaled-down Visual Studio Web Developer 2008 Express Edition (available at http://msdn.
microsoft.com/vstudio/express) with a few minor limitations. Most significantly, you can’t
use Visual Studio Web Developer to create separate components, a technique discussed in
Chapter 23. However, you can get around this limitation by using two express editions—Visual
Studio Web Developer Express Edition to create your websites and Visual C# 2008 Express

■INTRODUCTIONxxxii

8911FM.qxd 10/18/07 4:12 PM Page xxxii

http://msdn

Edition to create your components. Even if you don’t use this trick, you’ll still be able to run all
the sample code for this book.

To develop ASP.NET web pages, you need Windows XP, Windows Vista, Windows Server
2003, or Windows Server 2008. To use an ASP.NET web page (in other words, to surf to it over
the Internet), you simply need a web browser. ASP.NET fully supports Internet Explorer,
Firefox, Opera, Safari, Netscape, and any other browser that respects the HTML standard on
virtually any operating system. There are a few features that won’t work with extremely old
browsers (such as the ASP.NET AJAX techniques you’ll learn about in Chapter 25), and you’ll
consider these limitations when they crop up. You’ll also notice that this book features a vari-
ety of screen captures—some taken in Windows XP and others in Windows Vista. This should
make perfect sense. After all, your choice of operating system (and the operating system of the
people who are browsing your website) won’t change how your web pages work.

If you plan to host websites on your computer, you’ll also need to use IIS (Internet Infor-
mation Services), the web hosting software that’s part of the Windows operating system. You
might also use IIS if you want to test deployment strategies. You’ll learn how to use and config-
ure IIS in Chapter 9.

Finally, this book includes several examples that use SQL Server. You can use any version
of SQL Server to try these examples, including SQL Server 2005 Express Edition, which is
included with some versions of Visual Studio (and freely downloadable at http://msdn.
microsoft.com/sql/express). If you use other relational database engines, the same concepts
will apply; you will just need to modify the example code.

Code Samples
To master ASP.NET, you need to experiment with it. One of the best ways to learn ASP.NET is to
try the code samples for this book, examine them, and dive in with your own modifications.
To obtain the sample code, surf to http://www.prosetech.com or the publisher’s website at
http://www.apress.com. You’ll also find some links to additional resources and any updates
or errata that affect the book.

■Note Previous editions of this book tackled web services, a feature that allows you to create code rou-
tines that can be called by other applications over the Internet. Web services are more interesting when
considering rich client development (because they allow you to give web features to ordinary desktop
applications), and they’re in the process of being replaced by a new technology known as WCF (Windows
Communication Foundation). For those reasons, web services aren’t covered in this book. However, if you
want to branch out and explore the web service world, you can download the web service chapters from the
previous edition of this book from the book’s download page. The information in these chapters still applies
to ASP.NET 3.5, because the web service feature hasn’t changed.

■INTRODUCTION xxxiii

8911FM.qxd 10/18/07 4:12 PM Page xxxiii

http://msdn
http://www.prosetech.com
http://www.apress.com

Chapter Overview
This book is divided into six parts. Unless you’ve already had experience with the .NET Frame-
work, the most productive way to read this book is in order from start to finish. Chapters later
in the book sometimes incorporate features that were introduced earlier in order to create
more well-rounded and realistic examples. On the other hand, if you’re already familiar with
the .NET platform, C#, and object-oriented programming, you’ll make short work of the first
part of this book.

Part 1: Introducing .NET
You could start coding an ASP.NET application right away by following the examples in the
second part of this book. But to really master ASP.NET, you need to understand a few funda-
mental concepts about the .NET Framework.

Chapter 1 sorts through the Microsoft jargon and explains what the .NET Framework
really does and why you need it. Chapter 2 introduces you to C# 2008 with a comprehensive
language tour. Finally, Chapter 3 explains the basics of modern object-oriented programming.

Part 2: Developing ASP.NET Applications
The second part of this book delves into the heart of ASP.NET programming and introduces its
new event-based model. In Chapter 4, you’ll take a look around the Visual Studio design envi-
ronment and learn a few fundamentals about web forms, events, and XHTML. In Chapters 5
and 6, you learn how to program a web page’s user interface through a layer of objects called
server controls.

Next, you’ll explore a few more essentials of ASP.NET programming. Chapter 7 describes
different strategies for state management. Chapter 8 presents different techniques for han-
dling errors. Finally, Chapter 9 walks you through the steps for deploying your application to
a web server. Taken together, these chapters contain all the core concepts you need to design
web pages and create a basic ASP.NET website.

Part 3: Building Better Web Forms
The third part of this book explores several topics that can help you transform ordinary web
pages into polished web applications. In Chapter 10 you’ll learn to use the validation controls
to catch invalid data before the user submits it. In Chapter 11 you’ll move on to consider some
of ASP.NET’s more exotic controls, such as the Calendar and Wizard. In Chapter 12, you’ll learn
how to build your own reusable blocks of web page user interface and draw custom graphics
on the fly. Finally, Chapter 13 shows how you can standardize the appearance of an entire
website with themes and master pages, and Chapter 14 shows you how to add navigation to
a website.

Part 4: Working with Data
Almost all software needs to work with data, and web applications are no exception. In
Chapter 15, you begin exploring the world of data by considering ADO.NET—Microsoft’s .NET-
powered technology for interacting with relational databases. Chapters 16 and 17 explain how

■INTRODUCTIONxxxiv

8911FM.qxd 10/18/07 4:12 PM Page xxxiv

to use data binding and the advanced ASP.NET data controls to create web pages that inte-
grate attractive, customizable data displays with automatic support for paging, sorting, and
editing.

Chapter 18 moves out of the database world and considers how to interact with files.
Chapter 19 broadens the picture even further and describes how ASP.NET applications can
use the XML support that’s built into the .NET Framework.

Part 5: Website Security
Every public website needs to deal with security—making sure that sensitive data cannot be
accessed by the wrong users. In Chapter 20, you’ll start out learning how ASP.NET provides dif-
ferent authentication systems for dealing with users. You can write your own custom logic to
verify user names and passwords, or you can use existing Windows account information. In
Chapter 21, you’ll learn about the membership model, which extends the authentication sys-
tem with prebuilt security controls and handy objects that automate common tasks. If you
want, you can even get ASP.NET to create and manage a database with user information auto-
matically. Finally, Chapter 21 deals with another add-on—the profiles model that lets you
store information for each user automatically, without writing any database code.

Part 6: Advanced ASP.NET
This part includes the advanced topics you can use to take your web applications that extra
step. Chapter 23 covers how you can create reusable components for ASP.NET applications.
Chapter 24 demonstrates how careful use of caching can boost the performance of almost any
web application. Finally Chapter 25 introduces ASP.NET AJAX, one of the hottest new topics in
web development. Using ASP.NET AJAX, you can build web pages that feel more responsive
and add rich features that are usually limited to desktop applications, like text autocompletion
and drag-and-drop.

Feedback
This book has the ambitious goal of being the best tutorial and reference for ASP.NET. Toward
that end, your comments and suggestions are extremely helpful. You can send complaints,
adulation, and everything in between directly to apress@prosetech.com. I can’t solve your
ASP.NET problems or critique your code, but I do benefit from information about what this
book did right and wrong (and what it may have done in an utterly confusing way). You can
also send comments about the website support for this book.

■INTRODUCTION xxxv

8911FM.qxd 10/18/07 4:12 PM Page xxxv

mailto:apress@prosetech.com

8911FM.qxd 10/18/07 4:12 PM Page xxxvi

Introducing .NET

P A R T 1

8911CH01.qxd 10/23/07 12:16 PM Page 1

8911CH01.qxd 10/23/07 12:16 PM Page 2

The .NET Framework

Microsoft has a time-honored reputation for creating innovative technologies and wrapping
them in buzzwords that confuse everyone. The .NET Framework is the latest example—it’s
been described as a feeble Java clone, a meaningless marketing term, and an attempt to take
over the Internet with proprietary technology. But none of these descriptions is truly accurate.

.NET is actually a cluster of technologies—some revolutionary, some not—that are
designed to help developers build a variety of different types of applications. Developers can
use the .NET Framework to build rich Windows applications, long-running services, and even
command-line tools. Of course, if you’re reading this book you’re most interested in using
.NET to craft web applications. You’ll use a specific subset of the .NET Framework called
ASP.NET, and you’ll work with one of .NET’s core languages: C#.

In this chapter, you’ll examine the technologies that underlie .NET. First, you’ll take a
quick look at the history of web development and learn why the .NET Framework was created.
Next, you’ll get a high-level overview of the different parts of .NET and see how ASP.NET 3.5
fits into the picture.

The Evolution of Web Development
The Internet began in the late 1960s as an experiment. Its goal was to create a truly resilient
information network—one that could withstand the loss of several computers without pre-
venting the others from communicating. Driven by potential disaster scenarios (such as
nuclear attack), the U.S. Department of Defense provided the initial funding.

The early Internet was mostly limited to educational institutions and defense contractors.
It flourished as a tool for academic collaboration, allowing researchers across the globe to
share information. In the early 1990s, modems were created that could work over existing
phone lines, and the Internet began to open up to commercial users. In 1993, the first HTML
browser was created, and the Internet revolution began.

HTML and HTML Forms
It would be difficult to describe early websites as web applications. Instead, the first genera-
tion of websites often looked more like brochures, consisting mostly of fixed HTML pages that
needed to be updated by hand.

A basic HTML page is a little like a word-processing document—it contains formatted
content that can be displayed on your computer, but it doesn’t actually do anything. The

3

C H A P T E R 1

8911CH01.qxd 10/23/07 12:16 PM Page 3

following example shows HTML at its simplest, with a document that contains a heading and
single line of text:

<html>
<head>

<title>Sample Web Page</title>
</head>
<body>

<h1>Sample Web Page Heading</h1>
<p>This is a sample web page.</p>

</body>
</html>

An HTML document has two types of content: the text and the elements (or tags) that tell
the browser how to format it. The elements are easily recognizable, because they are desig-
nated with angled brackets (< >). HTML defines elements for different levels of headings,
paragraphs, hyperlinks, italic and bold formatting, horizontal lines, and so on. For example,
<h1>Some Text</h1> uses the <h1> element. This element tells the browser to display Some
Text in the Heading 1 style, which uses a large, bold font. Similarly, <p>This is a sample web
page.</p> creates a paragraph with one line of text. The <head> element groups the header
information together, including the title that appears in the browser window, while the
<body> element groups together the actual document content that’s displayed in the browser
window.

Figure 1-1 shows this simple HTML page in a browser. Right now, this is just a fixed file
(named sample_web_page_heading.htm) that contains HTML content. It has no interactivity,
doesn’t require a web server, and certainly can’t be considered a web application.

Figure 1-1. Ordinary HTML: the “brochure” site

CHAPTER 1 ■ THE .NET FRAMEWORK4

8911CH01.qxd 10/23/07 12:16 PM Page 4

■Tip You don’t need to master HTML to program ASP.NET web pages, although it’s often useful. For a quick
introduction to HTML, refer to one of the excellent HTML tutorials on the Internet, such as www.w3schools.
com/html. You’ll also get a mini-introduction in Chapter 4.

HTML 2.0 introduced the first seed of web programming with a technology called HTML
forms. HTML forms expand HTML so that it includes not only formatting tags but also tags for
graphical widgets, or controls. These controls include common ingredients such as drop-down
lists, text boxes, and buttons. Here’s a sample web page created with HTML form controls:

<html>
<head>

<title>Sample Web Page</title>
</head>
<body>

<form>
<input type="checkbox" />
This is choice #1

<input type="checkbox" />
This is choice #2

<input type="submit" value="Submit" />

</form>
</body>

</html>

In an HTML form, all controls are placed between the <form> and </form> tags. The
preceding example includes two check boxes (represented by the <input type="checkbox" />
element) and a button (represented by the <input type="submit" /> element). The
 ele-
ment adds a line break in between lines. In a browser, this page looks like Figure 1-2.

Figure 1-2. An HTML form

CHAPTER 1 ■ THE .NET FRAMEWORK 5

8911CH01.qxd 10/23/07 12:16 PM Page 5

http://www.w3schools

HTML forms allow web application developers to design standard input pages. When the
user clicks the Submit button on the page shown in Figure 1-2, all the data in the input con-
trols (in this case, the two check boxes) is patched together into one long string of text and
sent to the web server. On the server side, a custom application receives and processes the
data.

Amazingly enough, the controls that were created for HTML forms more than ten years
ago are still the basic foundation that you’ll use to build dynamic ASP.NET pages! The differ-
ence is the type of application that runs on the server side. In the past, when the user clicked a
button on a form page, the information might have been e-mailed to a set account or sent to
an application on the server that used the challenging Common Gateway Interface (CGI) stan-
dard. Today, you’ll work with the much more capable and elegant ASP.NET platform.

Server-Side Programming
To understand why ASP.NET was created, it helps to understand the problems of early web
development technologies. With the original CGI standard, for example, the web server must
launch a completely separate instance of the application for each web request. If the website
is popular, the web server struggles under the weight of hundreds of separate copies of the
application, eventually becoming a victim of its own success. Furthermore, technologies such
as CGI provide a bare-bones programming environment. If you want higher-level features, like
the ability to authenticate users, store personalized information, or display records you’ve
retrieved from a database, you need to write pages of code from scratch. Building a web appli-
cation this way is tedious and error-prone.

To counter these problems, Microsoft created higher-level development platforms, such
as ASP and ASP.NET. Both of these technologies allow developers to program dynamic web
pages without worrying about the low-level implementation details. For that reason, both
platforms have been incredibly successful.

The original ASP platform garnered a huge audience of nearly one million developers,
becoming far more popular than even Microsoft anticipated. It wasn’t long before it was being
wedged into all sorts of unusual places, including mission-critical business applications and
highly trafficked e-commerce sites. Because ASP wasn’t designed with these uses in mind, per-
formance, security, and configuration problems soon appeared.

That’s where ASP.NET comes into the picture. ASP.NET was developed as an industrial-
strength web application framework that could address the limitations of ASP. Compared to
classic ASP, ASP.NET offers better performance, better design tools, and a rich set of ready-
made features. ASP.NET was wildly popular from the moment it was released—in fact, it was
put to work in dozens of large-scale commercial websites while still in beta form.

■Note Despite having similar underpinnings, ASP and ASP.NET are radically different. ASP is a script-based
programming language that requires a thorough understanding of HTML and a good deal of painful coding.
ASP.NET, on the other hand, is an object-oriented programming model that lets you put together a web page
as easily as you would build a Windows application. The sidebar “The Many Faces of ASP.NET,” which
appears later in this chapter, describes a bit more about the different versions of ASP.NET.

CHAPTER 1 ■ THE .NET FRAMEWORK6

8911CH01.qxd 10/23/07 12:16 PM Page 6

Client-Side Programming
At the same time that server-side web development was moving through an alphabet soup of
technologies, a new type of programming was gaining popularity. Developers began to experi-
ment with the different ways they could enhance web pages by embedding miniature applets
built with JavaScript, ActiveX, Java, and Flash into web pages. These client-side technologies
don’t involve any server processing. Instead, the complete application is downloaded to the
client browser, which executes it locally.

The greatest problem with client-side technologies is that they aren’t supported equally
by all browsers and operating systems. One of the reasons that web development is so popular
in the first place is because web applications don’t require setup CDs, downloads, and other
tedious (and error-prone) deployment steps. Instead, a web application can be used on any
computer that has Internet access. But when developers use client-side technologies, they
encounter a few familiar headaches. Suddenly, cross-browser compatibility becomes a prob-
lem. Developers are forced to test their websites with different operating systems and
browsers, and they might even need to distribute browser updates to their clients. In other
words, the client-side model sacrifices some of the most important benefits of web develop-
ment.

For that reason, ASP.NET is designed as a server-side technology. All ASP.NET code exe-
cutes on the server. When the code is finished executing, the user receives an ordinary HTML
page, which can be viewed in any browser. Figure 1-3 shows the difference between the
server-side and the client-side model.

These are some other reasons for avoiding client-side programming:

Isolation: Client-side code can’t access server-side resources. For example, a client-side
application has no easy way to read a file or interact with a database on the server (at least
not without running into problems with security and browser compatibility).

Security: End users can view client-side code. And once malicious users understand how
an application works, they can often tamper with it.

Thin clients: As the Internet continues to evolve, web-enabled devices such as mobile
phones, palmtop computers, and PDAs (personal digital assistants) are appearing. These
devices can communicate with web servers, but they don’t support all the features of a
traditional browser. Thin clients can use server-based web applications, but they won’t
support client-side features such as JavaScript.

However, client-side programming isn’t truly dead. In many cases, ASP.NET allows you to
combine the best of client-side programming with server-side programming. For example, the
best ASP.NET controls can intelligently detect the features of the client browser. If the browser
supports JavaScript, these controls will return a web page that incorporates JavaScript for a
richer, more responsive user interface. And in Chapter 25, you’ll learn how you can super-
charge ordinary ASP.NET pages with Ajax features, which use even more client-side JavaScript.
However, no matter what the capabilities of the browser, your code is always executed on the
server. The client-side frills are just the icing on the cake.

CHAPTER 1 ■ THE .NET FRAMEWORK 7

8911CH01.qxd 10/23/07 12:16 PM Page 7

Figure 1-3. Server-side and client-side web applications

CHAPTER 1 ■ THE .NET FRAMEWORK8

8911CH01.qxd 10/23/07 12:16 PM Page 8

The .NET Framework
As you’ve already learned, the .NET Framework is really a cluster of several technologies.
These include the following:

The .NET languages: These include Visual Basic, C#, JScript .NET (a server-side version of
JavaScript), J# (a Java clone), and C++.

The Common Language Runtime (CLR): This is the engine that executes all .NET pro-
grams and provides automatic services for these applications, such as security checking,
memory management, and optimization.

The .NET Framework class library: The class library collects thousands of pieces of
prebuilt functionality that you can “snap in” to your applications. These features are
sometimes organized into technology sets, such as ADO.NET (the technology for creating
database applications) and Windows Forms (the technology for creating desktop user
interfaces).

ASP.NET: This is the engine that hosts the web applications you create with .NET, and
supports almost any feature from the .NET class library. ASP.NET also includes a set of
web-specific services, like secure authentication and data storage.

Visual Studio: This optional development tool contains a rich set of productivity and
debugging features. The Visual Studio setup DVD includes the complete .NET Framework,
so you won’t need to download it separately.

Sometimes the division between these components isn’t clear. For example, the term
ASP.NET is sometimes used in a narrow sense to refer to the portion of the .NET class library
used to design web pages. On the other hand, ASP.NET also refers to the whole topic of .NET
web applications, which includes .NET languages and many fundamental pieces of the class
library that aren’t web-specific. (That’s generally the way we use the term in this book. Our
exhaustive examination of ASP.NET includes .NET basics, the C# language, and topics that any
.NET developer could use, such as component-based programming and database access.)

Figure 1-4 shows the .NET class library and CLR—the two fundamental parts of .NET.

CHAPTER 1 ■ THE .NET FRAMEWORK 9

8911CH01.qxd 10/23/07 12:16 PM Page 9

Figure 1-4. The .NET Framework

In the remainder of this chapter, you’ll take a quick look at the different ingredients that
make up the .NET Framework.

CHAPTER 1 ■ THE .NET FRAMEWORK10

8911CH01.qxd 10/23/07 12:16 PM Page 10

THE MANY FACES OF ASP.NET

With ASP.NET 3.5, Microsoft aims to continue its success by refining and enhancing ASP.NET. The good news
is that Microsoft hasn’t removed features, replaced functionality, or reversed direction. Instead, almost all the
changes add higher-level features that can make your programming more productive.

All in all, there have been four major releases of ASP.NET:

• ASP.NET 1.0: This first release created the core ASP.NET platform and introduced a wide range of
essential features.

• ASP.NET 1.1: This second release added performance tune-ups and bug fixes, but no new features.

• ASP.NET 2.0: This third release piled on a huge set of new features, all of which were built on top of the
existing ASP.NET plumbing. The overall emphasis was to supply developers with prebuilt goodies that
they could use without writing much (if any) code. Some of the new features included built-in support
for website navigation, a theming feature for standardizing web page design, and an easier way to pull
information out of a database.

• ASP.NET 3.5: This fourth release keeps the same basic engine as ASP.NET 2.0, but adds a few frills and
two more dramatic changes. The most significant enhancement is the ASP.NET AJAX toolkit, which
gives web developers better tools for creating highly responsive web pages that incorporate rich
effects usually seen in desktop applications (such as drag-and-drop and autocomplete). The other
innovation is support for LINQ, a set of language enhancements included with .NET 3.5 that allows
you to search in-memory data in the same way that you query a database.

If you’re wondering what happened to ASP.NET 3.0—well, it doesn’t exist! Somewhat confusingly,
Microsoft used the .NET 3.0 name to release a set of new technologies, including Windows Presentation
Foundation (WPF), a platform for building slick Windows applications; Windows Workflow Foundation (WF), a
platform for modeling application logic using flowchart-style diagrams; and Windows Communication Foun-
dation (WCF), a platform for designing services that can be called from other computers. However, .NET 3.0
did not include an updated version of ASP.NET.

C#,VB, and the .NET Languages
This book uses C#, Microsoft’s .NET language of preference. C# is a new language that was
designed for .NET 1.0. It resembles Java and C++ in syntax, but no direct migration path exists
from Java or C++.

Interestingly, VB and C# are actually quite similar. Though the syntax is different, both VB
and C# use the .NET class library and are supported by the CLR. In fact, almost any block of C#
code can be translated, line by line, into an equivalent block of VB code (and vice versa). An
occasional language difference pops up (for example, VB supports a language feature called
optional parameters, while C# doesn’t), but for the most part, a developer who has learned one
.NET language can move quickly and efficiently to another.

In short, both VB and C# are elegant, modern languages that are ideal for creating the next
generation of web applications.

CHAPTER 1 ■ THE .NET FRAMEWORK 11

8911CH01.qxd 10/23/07 12:16 PM Page 11

■Note .NET 1.0 introduced completely new languages. However, the changes in subsequent versions of
.NET have been more subtle. Although the version of VB and C# in .NET 3.5 adds a few new features, most
parts of these languages remain unchanged. In Chapter 2 and Chapter 3, you’ll sort through the syntax of C#
and learn the basics of object-oriented programming.

Intermediate Language
All the .NET languages are compiled into another lower-level language before the code is exe-
cuted. This lower-level language is the Common Intermediate Language (CIL, or just IL). The
CLR, the engine of .NET, uses only IL code. Because all .NET languages are designed based on
IL, they all have profound similarities. This is the reason that the VB and C# languages provide
essentially the same features and performance. In fact, the languages are so compatible that a
web page written with C# can use a VB component in the same way it uses a C# component,
and vice versa.

The .NET Framework formalizes this compatibility with something called the Common
Language Specification (CLS). Essentially, the CLS is a contract that, if respected, guarantees
that a component written in one .NET language can be used in all the others. One part of the
CLS is the common type system (CTS), which defines the rules for data types such as strings,
numbers, and arrays that are shared in all .NET languages. The CLS also defines object-
oriented ingredients such as classes, methods, events, and quite a bit more. For the most part,
.NET developers don’t need to think about how the CLS works, even though they rely on it
every day.

Figure 1-5 shows how the .NET languages are compiled to IL. Every EXE or DLL file that
you build with a .NET language contains IL code. This is the file you deploy to other comput-
ers. In the case of a web application, you deploy your compiled code to a live web server.

CHAPTER 1 ■ THE .NET FRAMEWORK12

8911CH01.qxd 10/23/07 12:16 PM Page 12

Figure 1-5. Language compilation in .NET

CHAPTER 1 ■ THE .NET FRAMEWORK 13

8911CH01.qxd 10/23/07 12:16 PM Page 13

The CLR runs only IL code, which means it has no idea which .NET language you origi-
nally used. Notice, however, that the CLR actually performs another compilation step—it
takes the IL code and transforms it to native machine language code that’s appropriate for the
current platform. This step occurs when the application is launched, just before the code is
actually executed. In an ASP.NET application, these machine-specific files are cached while
the web application is running so they can be reused, ensuring optimum performance.

■Note You might wonder why .NET compilers don’t compile straight to machine code. The reason is that
the machine code depends on several factors, including the CPU. For example, if you create machine code
for a computer with an Intel processor, the compiler may be able to use Hyper-Threading to produce
enhanced code. This machine-specific version isn’t suitable for deployment to other computers, because
no guarantee exists that they’re using the same processor.

Other .NET Languages
VB and C# aren’t the only choices for ASP.NET development. Developers can also use J# (a
language with Java-like syntax). You can even use a .NET language provided by a third-party
developer, such as a .NET version of Eiffel or even COBOL. This increasing range of language
choices is possible thanks to the CLS and CTS, which define basic requirements and standards
that allow other companies to write languages that can be compiled to IL.

Although you can use any .NET language to create an ASP.NET web application, some
of them do not provide the same level of design support in Visual Studio, and virtually all
ASP.NET developers use VB and C#. For more information about third-party .NET languages,
check out the website www.dotnetlanguages.net.

The Common Language Runtime
The CLR is the engine that supports all the .NET languages. Many modern languages use run-
times. In VB 6, the runtime logic is contained in a DLL file named msvbvm60.dll. In C++, many
applications link to a file named mscrt40.dll to gain common functionality. These runtimes
may provide libraries used by the language, or they may have the additional responsibility of
executing the code (as with Java).

Runtimes are nothing new, but the CLR is Microsoft’s most ambitious runtime to date.
Not only does the CLR execute code, it also provides a whole set of related services such as
code verification, optimization, and object management.

■Note The CLR is the reason that some developers have accused .NET of being a Java clone. The claim is
fairly silly. It’s true that .NET is quite similar to Java in key respects (both use a special managed environ-
ment and provide features through a rich class library), but it’s also true that every programming language
“steals” from and improves on previous programming languages. This includes Java, which adopted parts of
the C/C++ language and syntax when it was created. Of course, in many other aspects .NET differs just as
radically from Java as it does from VBScript.

CHAPTER 1 ■ THE .NET FRAMEWORK14

8911CH01.qxd 10/23/07 12:16 PM Page 14

http://www.dotnetlanguages.net

All .NET code runs inside the CLR. This is true whether you’re running a Windows appli-
cation or a web service. For example, when a client requests an ASP.NET web page, the
ASP.NET service runs inside the CLR environment, executes your code, and creates a final
HTML page to send to the client.

The implications of the CLR are wide-ranging:

Deep language integration: VB and C#, like all .NET languages, compile to IL. In other
words, the CLR makes no distinction between different languages—in fact, it has no way
of knowing what language was used to create an executable. This is far more than mere
language compatibility; it’s language integration.

Side-by-side execution: The CLR also has the ability to load more than one version of a
component at a time. In other words, you can update a component many times, and the
correct version will be loaded and used for each application. As a side effect, multiple ver-
sions of the .NET Framework can be installed, meaning that you’re able to upgrade to new
versions of ASP.NET without replacing the current version or needing to rewrite your
applications.

Fewer errors: Whole categories of errors are impossible with the CLR. For example, the
CLR prevents many memory mistakes that are possible with lower-level languages such
as C++.

Along with these truly revolutionary benefits, the CLR has some potential drawbacks.
Here are three issues that are often raised by new developers but aren’t always answered:

Performance: A typical ASP.NET application is much faster than a comparable ASP appli-
cation, because ASP.NET code is compiled to machine code before it’s executed. However,
processor-crunching algorithms still can’t match the blinding speed of well-written C++
code, because the CLR imposes some additional overhead. Generally, this is a factor only
in a few performance-critical high-workload applications (such as real-time games). With
high-volume web applications, the potential bottlenecks are rarely processor-related but
are usually tied to the speed of an external resource such as a database or the web server’s
file system. With ASP.NET caching and some well-written database code, you can ensure
excellent performance for any web application.

Code transparency: IL is much easier to disassemble, meaning that if you distribute a
compiled application or component, other programmers may have an easier time deter-
mining how your code works. This isn’t much of an issue for ASP.NET applications, which
aren’t distributed but are hosted on a secure web server.

Questionable cross-platform support: No one is entirely sure whether .NET will ever be
adopted for use on other operating systems and platforms. Ambitious projects such as
Mono (a free implementation of .NET on Linux, Unix, and Windows) are currently under-
way (see www.mono-project.com). However, .NET will probably never have the wide reach
of a language such as Java because it incorporates too many different platform-specific
and operating system–specific technologies and features.

CHAPTER 1 ■ THE .NET FRAMEWORK 15

8911CH01.qxd 10/23/07 12:16 PM Page 15

http://www.mono-project.com

■Tip Although implementations of .NET are available for other platforms, they aren’t supported by
Microsoft, and they provide only a subset of the total range of features. The general consensus is that
these implementations aren’t ideal for mission-critical business systems.

The .NET Class Library
The .NET class library is a giant repository of classes that provide prefabricated functionality
for everything from reading an XML file to sending an e-mail message. If you’ve had any expo-
sure to Java, you may already be familiar with the idea of a class library. However, the .NET
class library is more ambitious and comprehensive than just about any other programming
framework. Any .NET language can use the .NET class library’s features by interacting with the
right objects. This helps encourage consistency among different .NET languages and removes
the need to install numerous components on your computer or web server.

Some parts of the class library include features you’ll never need to use in web applica-
tions (such as the classes used to create desktop applications with the Windows interface).
Other parts of the class library are targeted directly at web development. Still more classes can
be used in various programming scenarios and aren’t specific to web or Windows develop-
ment. These include the base set of classes that define common variable types and the classes
for data access, to name just a few. You’ll explore the .NET Framework throughout this book.

You can think of the class library as a well-stocked programmer’s toolkit. Microsoft’s phi-
losophy is that it will provide the tedious infrastructure so that application developers need
only to write business-specific code. For example, the .NET Framework deals with thorny
issues like database transactions and concurrency, making sure that hundreds or thousands of
simultaneous users can request the same web page at once. You just add the logic needed for
your specific application.

Visual Studio
The last part of .NET is the Visual Studio development tool, which provides a rich environ-
ment where you can rapidly create advanced applications. Although in theory you could
create an ASP.NET application without Visual Studio (for example, by writing all the source
code in a text editor and compiling it with .NET’s command-line compilers), this task would
be tedious, painful, and prone to error. For that reason, all professional ASP.NET developers
use a design tool like Visual Studio.

Some of the features of Visual Studio include the following:

Page design: You can create an attractive page with drag-and-drop ease using Visual Stu-
dio’s integrated web form designer. You don’t need to understand HTML.

Automatic error detection: You could save hours of work when Visual Studio detects and
reports an error before you run your application. Potential problems are underlined, just
like the “spell-as-you-go” feature found in many word processors.

CHAPTER 1 ■ THE .NET FRAMEWORK16

8911CH01.qxd 10/23/07 12:16 PM Page 16

Debugging tools: Visual Studio retains its legendary debugging tools, which allow you to
watch your code in action and track the contents of variables. And you can test web appli-
cations just as easily as any other application type, because Visual Studio has a built-in
web server that works just for debugging.

IntelliSense: Visual Studio provides statement completion for recognized objects and
automatically lists information such as function parameters in helpful tooltips.

You don’t need to use Visual Studio to create web applications. In fact, you might be
tempted to use the freely downloadable .NET Framework and a simple text editor to create
ASP.NET web pages and web services. However, in doing so you’ll multiply your work, and
you’ll have a much harder time debugging, organizing, and maintaining your code. Chapter 4
introduces the latest version of Visual Studio.

Visual Studio is available in several editions. The Standard Edition has all the features you
need to build any type of application (Windows or web). The Professional Edition and the
Team Edition increase the cost and pile on more tools and frills (which aren’t discussed in this
book). For example, they incorporate features for managing source code that’s edited by mul-
tiple people on a development team and running automated tests.

The scaled-down Visual Web Developer Express Edition is a completely free version of
Visual Studio that’s surprising capable, but it has a few significant limitations. Visual Web
Developer Express Edition gives you full support for developing web applications, but it
doesn’t support any other type of application. This means you can’t use it to develop separate
components for use in your applications or to develop Windows applications. However, rest
assured that Visual Web Developer Express Edition is still a bona fide version of Visual Studio,
with a similar set of features and development interface.

The Last Word
This chapter presented a high-level overview that gave you your first taste of ASP.NET and the
.NET Framework. You also looked at how web development has evolved, from the basic HTML
forms standard to the latest changes in .NET 3.5.

In the next chapter, you’ll get a comprehensive overview of the C# language.

CHAPTER 1 ■ THE .NET FRAMEWORK 17

8911CH01.qxd 10/23/07 12:16 PM Page 17

8911CH01.qxd 10/23/07 12:16 PM Page 18

The C# Language

Before you can create an ASP.NET application, you need to choose a .NET language in which
to program it. If you’re an ASP or VB developer, the natural choice is VB 2008. If you’re a long-
time Java programmer or old-hand C coder, or you just want to learn the official language of
.NET, C# will suit you best.

This chapter presents an overview of the C# language. You’ll learn about the data types
you can use, the operations you can perform, and the code you’ll need to define functions,
loops, and conditional logic. This chapter assumes you’ve programmed before and you’re
already familiar with most of these concepts—you just need to see how they’re implemented
in C#.

If you’ve programmed with a similar language such as Java, you might find that the most
beneficial way to use this chapter is to browse through it without reading every section. This
approach will give you a general overview of the C# language. You can then return to this
chapter later as a reference when needed. But remember, though you can program an
ASP.NET application without mastering all the language details, this deep knowledge is
often what separates the casual programmer from the legendary programming guru.

■Note The examples in this chapter show individual lines and code snippets. You won’t actually be able
to use these code snippets in an application until you’ve learned about objects and .NET types. But don’t
despair—the next chapter builds on this information, fills in the gaps, and presents an ASP.NET example for
you to try.

The .NET Languages
The .NET Framework ships with three core languages that are commonly used for building
ASP.NET applications: C#, VB, and J#. These languages are, to a large degree, functionally
equivalent. Microsoft has worked hard to eliminate language conflicts in the .NET Framework.
These battles slow down adoption, distract from the core framework features, and make it dif-
ficult for the developer community to solve problems together and share solutions. According
to Microsoft, choosing to program in C# instead of VB is just a lifestyle choice and won’t affect
the performance, interoperability, feature set, or development time of your applications.
Surprisingly, this ambitious claim is essentially true.

19

C H A P T E R 2

8911CH02.qxd 9/26/07 2:21 PM Page 19

.NET also allows other third-party developers to release languages that are just as feature
rich as C# or VB. These languages (which include Eiffel, Pascal, Python, and even COBOL)
“snap in” to the .NET Framework effortlessly. In fact, if you want to install another .NET lan-
guage, all you need to do is copy the compiler to your computer and add a line to register it in
the computer’s machine.config configuration file. Typically, a setup program would perform
these steps for you automatically. Once installed, the new compiler can transform your code
creations into a sequence of Intermediate Language (IL) instructions, just like the VB and C#
compilers do with VB and C# code.

IL is the only language that the Common Language Runtime (CLR) recognizes. When you
create the code for an ASP.NET web form, it’s changed into IL using the C# compiler (csc.exe),
the VB compiler (vbc.exe), or the J# compiler (vjc.exe). Although you can perform the compila-
tion manually, you’re more likely to let ASP.NET handle it automatically when a web page is
requested.

C# Language Basics
New C# programmers are sometimes intimidated by the quirky syntax of the language, which
includes special characters such as semicolons (;), curly braces {}, and backward slashes (\).
Fortunately, once you get accustomed to C#, these details will quickly melt into the back-
ground. In the following sections, you’ll learn about four general principles you need to know
about C# before you learn any other concepts.

Case Sensitivity
Some languages are case-sensitive, while others are not. Java, C, C++, and C# are all examples
of case-sensitive languages. VB is not. This difference can frustrate former VB programmers
who don’t realize that keywords, variables, and functions must be entered with the proper
case. For example, if you try to create a conditional statement in C# by entering If instead of if,
your code will not be recognized, and the compiler will flag it with an error when you try to
build your application.

C# also has a definite preference for lowercase words. Keywords—such as if, for, foreach,
while, typeof, and so on—are always written in lowercase letters. When you define your own
variables, it makes sense to follow the conventions used by other C# programmers and the
.NET Framework class library. That means you should give private variables names that start
with a lowercase letter and give public variables names that start with an initial capital letter.
For example, you might name a private variable MyNumber in VB and myNumber in C#. Of
course, you don’t need to follow this style as long as you make sure you use the same capital-
ization consistently.

■Note If you’re designing code that other developers might see (for example, you’re creating components
that you want to sell to other companies), coding standards are particularly important. The Visual Studio Help
has information about coding standards, and you can also get an excellent summary of best practices in the
“IDesign C# Coding Standard” white paper by Juval Lowy, which is available at www.idesign.net.

CHAPTER 2 ■ THE C# LANGUAGE20

8911CH02.qxd 9/26/07 2:21 PM Page 20

http://www.idesign.net

Commenting
Comments are descriptive text that is ignored by the compiler. C# provides two basic types of
comments. The first type is the single-line comment. In this case, the comment starts with two
forward slashes and continues for the entire current line. Optionally, C# programmers can also
use multiple-line comments using the /* and */ comment brackets. This trick is often used to
quickly comment out an entire block of code. This way the code won’t be executed, but it will
still remain in your source code file if you need to refer to it or use it later:

// A single-line C# comment.
/* A multiline

C# comment. */

C# also includes an XML-based commenting syntax that you can use to describe your
code in a standardized way. With XML comments, you use special tags that indicate whether
your comment applies to a class, method, parameter, and so on. Here’s an example of a com-
ment that provides a summary for an entire application:

/// <summary>
/// This application provides web pages
/// for my e-commerce site.
/// </summary>

XML comments always start with three slashes. The benefit of XML-based comments is
that automated tools (including Visual Studio) can extract the comments from your code and
use them to build help references and other types of documentation. For more information
about XML comments, you can refer to an excellent MSDN article at http://msdn.microsoft.
com/msdnmag/issues/02/06/XMLC. And if you’re new to XML syntax in general, you’ll learn
about it in detail in Chapter 19.

Statement Termination
C# uses a semicolon (;) as a statement-termination character. Every statement in C# code
must end with this semicolon, except when you’re defining a block structure such as a
method, a conditional statement, or a looping construct. By omitting this semicolon, you can
easily split a statement of code over multiple physical lines. You just need to remember to put
the semicolon at the end of the last line, to end the statement.

The following code snippet demonstrates four equivalent ways to perform the same oper-
ation (adding three numbers together):

// A code statement split over two lines.
myValue = myValue1 + myValue2 +

myValue3;

// A code statement split over three lines.
myValue = myValue1 +

myValue2 +
myValue3;

CHAPTER 2 ■ THE C# LANGUAGE 21

8911CH02.qxd 9/26/07 2:21 PM Page 21

http://msdn.microsoft

// A code statement on a single line.
myValue = myValue1 + myValue2 + myValue3;

// Two code statements in a row.
myValue = myValue1 + myValue2;
myValue = myValue + myValue3;

As you can see in this example, C# gives you a wide range of freedom to split your state-
ment in whatever way you want. The general rule of thumb is to make your code as readable
as possible. Thus, if you have a long statement, spread the statement over several lines so it’s
easier to read. On the other hand, if you have a complex code statement that performs several
operations at once, you can spread the statement over several lines or separate your logic into
multiple code statements to make it clearer.

Blocks
The C#, Java, and C languages all rely heavily on curly braces—parentheses with a little more
attitude: {}. You can find the curly braces to the right of most keyboards (next to the P key);
they share a key with the square brackets [].

Curly braces group multiple code statements together. Typically, the reason you’ll want to
group code statements together is because you want them to be repeated in a loop, executed
conditionally, or grouped into a function. You’ll see all these techniques in this chapter. But in
each case, the curly braces play the same role, which makes C# simpler and more concise than
other languages that need a different syntax for each type of block structure:

{
// Code statements go here.

}

Variables and Data Types
As with all programming languages, you keep track of data in C# using variables. Variables can
store numbers, text, dates, and times, and they can even point to full-fledged objects.

When you declare a variable, you give it a name, and you specify the type of data it will
store. To declare a local variable, you start the line with the data type, followed by the name
you want to use. A final semicolon ends the statement:

// Declare an integer variable named errorCode.
int errorCode;

// Declare a string variable named myName.
string myName;

CHAPTER 2 ■ THE C# LANGUAGE22

8911CH02.qxd 9/26/07 2:21 PM Page 22

■Note Remember, in C# the variables name and Name aren’t equivalent! To confuse matters even more,
C# programmers sometimes use this fact to their advantage—by using multiple variables that have the
same name but with different capitalization. This technique is sometimes useful when distinguishing
between private and public variables in a class (as demonstrated in Chapter 3), but you should avoid it if
there’s any possibility for confusion.

Every .NET language uses the same variable data types. Different languages may provide
slightly different names (for example, a VB Integer is the same as a C# int), but the CLR makes
no distinction—in fact, they are just two different names for the same base data type. This
design allows for deep language integration. Because languages share the same core data
types, you can easily use objects written in one .NET language in an application written in
another .NET language. No data type conversions are required.

■Note The reason all .NET languages have the same data types is because they all adhere to the common
type system (CTS), a Microsoft-designed ECMA standard that sets out the ground rules that all .NET
languages must follow when dealing with data.

To create this common data type system, Microsoft needed to iron out many of the incon-
sistencies that existed between VBScript, VB 6, C++, and other languages. The solution was to
create a set of basic data types, which are provided in the .NET class library. Table 2-1 lists the
most important core data types.

Table 2-1. Common Data Types

C# Name VB Name .NET Type Name Contains

byte Byte Byte An integer from 0 to 255.

short Short Int16 An integer from –32,768 to 32,767.

int Integer Int32 An integer from –2,147,483,648 to 2,147,483,647.

long Long Int64 An integer from about –9.2e18 to 9.2e18.

float Single Single A single-precision floating point number from
approximately –3.4e38 to 3.4e38 (for big
numbers) or –1.5e-45 to 1.5e-45 (for small
fractional numbers).

double Double Double A double-precision floating point number from
approximately –1.8e308 to 1.8e308 (for big
numbers) or –5.0e-324 to 5.0e-324 (for small
fractional numbers).

decimal Decimal Decimal A 128-bit fixed-point fractional number that
supports up to 28 significant digits.

char Char Char A single 16-bit Unicode character.

Continued

CHAPTER 2 ■ THE C# LANGUAGE 23

8911CH02.qxd 9/26/07 2:21 PM Page 23

Table 2-1. Continued

C# Name VB Name .NET Type Name Contains

string String String A variable-length series of Unicode characters.

bool Boolean Boolean A true or false value.

* Date DateTime Represents any date and time from 12:00:00 AM,
January 1 of the year 1 in the Gregorian calendar,
to 11:59:59 PM, December 31 of the year 9999.
Time values can resolve values to 100 nano-
second increments. Internally, this data type is
stored as a 64-bit integer.

* * TimeSpan Represents a period of time, as in ten seconds or
three days. The smallest possible interval is 1 tick
(100 nanoseconds).

object Object Object The ultimate base class of all .NET types.
Can contain any data type or object.

* If the language does not provide an alias for a given type, you can just use the .NET type name.

You can also declare a variable by using the type name from the .NET class library. This
approach produces identical variables. It’s also a requirement when the data type doesn’t have
an alias built into the language. For example, you can rewrite the earlier example that used C#
data type names with this code snippet that uses the class library names:

System.Int32 errorCode;
System.String myName;

This code snippet uses fully qualified type names that indicate that the Int32 type and the
String type are found in the System namespace (along with all the most fundamental types).
In Chapter 3, you’ll learn about types and namespaces in more detail.

WHAT’S IN A NAME? NOT THE DATA TYPE!

You’ll notice that the preceding examples don’t use variable prefixes. Many longtime C/C++ and VB program-
mers are in the habit of adding a few characters to the start of a variable name to indicate its data type. In
.NET, this practice is discouraged, because data types can be used in a much more flexible range of ways
without any problem, and most variables hold references to full objects anyway. In this book, variable prefixes
aren’t used, except for web controls, where it helps to distinguish among lists, text boxes, buttons, and other
common user interface elements. In your own programs, you should follow a consistent (typically company-
wide) standard that may or may not adopt a system of variable prefixes.

Assignment and Initializers
Once you’ve declared your variable, you can freely assign values to them, as long as these
values have the correct data type. Here’s the code that shows this two-step process:

CHAPTER 2 ■ THE C# LANGUAGE24

8911CH02.qxd 9/26/07 2:21 PM Page 24

// Declare variables.
int errorCode;
string myName;

// Assign values.
errorCode = 10;
myName = "Matthew";

You can also assign a value to a variable in the same line that you declare it. This example
compresses four lines of code into two:

int errorCode = 10;
string myName = "Matthew";

C# safeguards you from errors by restricting you from using uninitialized variables. This
means the following code will not succeed:

int number; // Number is uninitialized.
number = number + 1; // This causes a compile error.

The proper way to write this code is to explicitly initialize the number variable to an
appropriate value, such as 0, before using it:

int number = 0; // Number now contains 0.
number = number + 1; // Number now contains 1.

C# also deals strictly with data types. For example, the following code statement won’t
work as written:

decimal myDecimal = 14.5;

The problem is that the literal 14.5 is automatically interpreted as a double, and you can’t
convert a double to a decimal without using casting syntax, which is described later in this
chapter. To get around this problem, C# defines a few special characters that you can append
to literal values to indicate their data type so that no conversion will be required. These are as
follows:

• M (decimal)

• D (double)

• F (float)

• L (long)

For example, you can rewrite the earlier example using the decimal indicator as follows:

decimal myDecimal = 14.5M;

■Note In this example, an uppercase M is used, but you can actually substitute a lowercase m in its place.
Data type indicators are one of the few details that aren’t case sensitive in C#.

CHAPTER 2 ■ THE C# LANGUAGE 25

8911CH02.qxd 9/26/07 2:21 PM Page 25

Interestingly, if you’re using code like this to declare and initialize your variable in one
step, and if the C# compiler can determine the right data type based on the value you’re using,
you don’t need to specify the data type. Instead, you can use the all-purpose var keyword in
place of the data type. That means the previous line of code is equivalent to this:

var myDecimal = 14.5M;

Here, the compiler realizes that a decimal data type is the most appropriate choice for the
myDecimal variable, and uses that data type automatically. There is no performance differ-
ence. The myDecimal variable that you create using an inferred data type behaves in exactly
the same way as a myDecimal variable created with an explicit data type. In fact, the low-level
code that the compiler generates is identical. The only difference is that the var keyword saves
some typing.

Many C# programmers feel uneasy with the var keyword because it makes code less clear.
However, the var keyword is a more useful shortcut when creating objects, as you’ll see in the
next chapter.

Strings and Escaped Characters
C# treats text a little differently than other languages such as VB. It interprets any embedded
backslash (\) as the start of a special character escape sequence. For example, \n means add a
new line (carriage return). The most useful character literals are as follows:

• \" (double quote)

• \n (new line)

• \t (horizontal tab)

• \\ (backward slash)

You can also insert a special character based on its hex code using the syntax \x123. This
inserts a single character with hex value 123.

Note that in order to specify the actual backslash character (for example, in a directory
name), you require two slashes. Here’s an example:

// A C# variable holding the
// c:\MyApp\MyFiles path.
path = "c:\\MyApp\\MyFiles";

Alternatively, you can turn off C# escaping by preceding a string with an @ symbol, as
shown here:

path = @"c:\MyApp\MyFiles";

Arrays
Arrays allow you to store a series of values that have the same data type. Each individual value
in the array is accessed using one or more index numbers. It’s often convenient to picture
arrays as lists of data (if the array has one dimension) or grids of data (if the array has two
dimensions). Typically, arrays are laid out contiguously in memory.

CHAPTER 2 ■ THE C# LANGUAGE26

8911CH02.qxd 9/26/07 2:21 PM Page 26

All arrays start at a fixed lower bound of 0. This rule has no exceptions. When you create
an array in C#, you specify the number of elements. Because counting starts at 0, the highest
index is actually one fewer than the number of elements. (In other words, if you have three
elements, the highest index is 2.)

// Create an array with four strings (from index 0 to index 3).
// You need to initialize the array with the
// new keyword in order to use it.
string[] stringArray = new string[4];

// Create a 2x4 grid array (with a total of eight integers).
int[,] intArray = new int[2, 4];

By default, if your array includes simple data types, they are all initialized to default values
(0 or false), depending on whether you are using some type of number or a Boolean variable.
You can also fill an array with data at the same time that you create it. In this case, you don’t
need to explicitly specify the number of elements, because .NET can determine it automati-
cally:

// Create an array with four strings, one for each number from 1 to 4.
string[] stringArray = {"1", "2", "3", "4"};

The same technique works for multidimensional arrays, except that two sets of curly
brackets are required:

// Create a 4x2 array (a grid with four rows and two columns).
int[,] intArray = {{1, 2}, {3, 4}, {5, 6}, {7, 8}};

Figure 2-1 shows what this array looks like in memory.

Figure 2-1. A sample array of integers

CHAPTER 2 ■ THE C# LANGUAGE 27

8911CH02.qxd 9/26/07 2:21 PM Page 27

To access an element in an array, you specify the corresponding index number in square
brackets: []. Array indices are always zero-based. That means that myArray[0] accesses the first
cell in a one-dimensional array, myArray[1] accesses the second cell, and so on:

// Access the value in row 0 (first row), column 1 (second column).
int element;
element = intArray[0, 1]; // Element is now set to 2.

The ArrayList
C# arrays do not support redimensioning. This means that once you create an array, you can’t
change its size. Instead, you would need to create a new array with the new size and copy
values from the old array to the new, which would be a tedious process. However, if you need
a dynamic array-like list, you can use one of the collection classes provided to all .NET lan-
guages through the .NET class library. One of the simplest collection classes that .NET offers is
the ArrayList, which always allows dynamic resizing. Here’s a snippet of C# code that uses an
ArrayList:

// Create an ArrayList object. It's a collection, not an array,
// so the syntax is slightly different.
ArrayList dynamicList = new ArrayList();

// Add several strings to the list.
// The ArrayList is not strongly typed, so you can add any data type
// although it's simplest if you store just one type of object
// in any given collection.
dynamicList.Add("one");
dynamicList.Add("two");
dynamicList.Add("three");

// Retrieve the first string. Notice that the object must be converted to a
// string, because there's no way for .NET to be certain what it is.
string item = Convert.ToString(dynamicList[0]);

You’ll learn more about the ArrayList and other collections in Chapter 3.

■Tip In many cases, it’s easier to dodge counting issues and use a full-fledged collection rather than an
array. Collections are generally better suited to modern object-oriented programming and are used exten-
sively in ASP.NET. The .NET class library provides many types of collection classes, including simple
collections, sorted lists, key-indexed lists (dictionaries), and queues. You’ll see examples of collections
throughout this book.

CHAPTER 2 ■ THE C# LANGUAGE28

8911CH02.qxd 9/26/07 2:21 PM Page 28

Enumerations
An enumeration is a group of related constants, each of which is given a descriptive name.
Each value in an enumeration corresponds to a preset integer. In your code, however, you can
refer to an enumerated value by name, which makes your code clearer and helps prevent
errors. For example, it’s much more straightforward to set the border of a label to the enumer-
ated value BorderStyle.Dashed rather than the obscure numeric constant 3. In this case,
Dashed is a value in the BorderStyle enumeration, and it represents the number 3.

■Note Just to keep life interesting, the word enumeration actually has more than one meaning. As
described in this section, enumerations are sets of constant values. However, programmers often talk about
the process of enumerating, which means to loop, or iterate, over a collection. For example, it’s common to
talk about enumerating over all the characters of a string (which means looping through the string and
examining each character in a separate pass).

Here’s an example of an enumeration that defines different types of users:

// Define an enumeration type named UserType with three possible values.
enum UserType
{

Admin,
Guest,
Invalid

}

Now you can use the UserType enumeration as a special data type that is restricted to one
of three possible values. You assign or compare the enumerated value using the dot notation
shown in the following example:

// Create a new value and set it equal to the UserType.Admin constant.
UserType newUserType = UserType.Admin;

Internally, enumerations are maintained as numbers. In the preceding example, 0 is auto-
matically assigned to Admin, 1 to Guest, and 2 to Invalid. You can set a number directly in an
enumeration variable, although this can lead to an undetected error if you use a number that
doesn’t correspond to one of the defined values.

In some scenarios, you might want to control what numbers are used for various values in
an enumeration. This technique is typically used when the number has some specific mean-
ing or corresponds to some other piece of information. For example, the following code
defines an enumeration that represents the error code returned by a legacy component:

enum ErrorCode
{

NoResponse = 166,
TooBusy = 167,
Pass = 0

}

CHAPTER 2 ■ THE C# LANGUAGE 29

8911CH02.qxd 9/26/07 2:21 PM Page 29

Now you can use the ErrorCode enumeration with a function that returns an integer rep-
resenting an error condition, as shown here:

ErrorCode err;
err = DoSomething();
if (err == ErrorCode.Pass)
{

// Operation succeeded.
}

Clearly, enumerations create more readable code. They also simplify coding, because
once you type in the enumeration type name (ErrorCode) and add the dot (.), Visual Studio
will pop up a list of possible values using IntelliSense.

■Tip Enumerations are used widely in .NET. You won’t need to create your own enumerations to use in
ASP.NET applications, unless you’re designing your own components. However, the concept of enumerated
values is extremely important, because the .NET class library uses it extensively. For example, you set colors,
border styles, alignment, and various other web control styles using enumerations provided in the .NET class
library.

Variable Operations
You can use all the standard types of variable operations in C#. When working with numbers,
you can use various math symbols, as listed in Table 2-2. C# follows the conventional order of
operations, performing exponentiation first, followed by multiplication and division and then
addition and subtraction. You can also control order by grouping subexpressions with paren-
theses:

int number;

number = 4 + 2 * 3;
// number will be 10.

number = (4 + 2) * 3;
// number will be 18.

Table 2-2. Arithmetic Operations

Operator Description Example

+ Addition 1 + 1 = 2

- Subtraction (and to indicate negative numbers) 5 - 2 = 3

* Multiplication 2 * 5 = 10

/ Division 5.0 / 2 = 2.5

% Gets the remainder left after integer division 7 % 3 = 1

CHAPTER 2 ■ THE C# LANGUAGE30

8911CH02.qxd 9/26/07 2:21 PM Page 30

Division can sometimes cause confusion in C#. If you divide one integer by another inte-
ger, C# performs integer division. That means it automatically discards the fractional part of
the answer and returns the whole part as an integer. For example, if you divide 5 by 2, you’ll
end up with 2 instead of 2.5.

The solution is to explicitly indicate that one of your numbers is a fractional value. For
example, if you replace 5 with 5M, C# will treat the 5 as a decimal. If you replace 5 with 5.0, C#
will treat it as a double. Either way, the division will return the expected value of 2.5. Of course,
this problem doesn’t occur very often in real-world code, because then you’re usually dividing
one variable by another. As long as your variables aren’t integers, it doesn’t matter what num-
ber they contain.

The operators in Table 2-2 are designed for manipulating numbers. However, C# also
allows you to use the addition operator (+) to join two strings:

// Join three strings together.
myName = firstName + " " + lastName;

In addition, C# also provides special shorthand assignment operators. Here are a few
examples:

// Add 10 to myValue. This is the same as myValue = myValue + 10;
myValue += 10;

// Multiple myValue by 3. This is the same as myValue = myValue * 3;
myValue *= 3;

// Divide myValue by 12. This is the same as myValue = myValue / 12;
myValue /= 12;

Advanced Math
In the past, every language has had its own set of keywords for common math operations such
as rounding and trigonometry. In .NET languages, many of these keywords remain. However,
you can also use a centralized Math class that’s part of the .NET Framework. This has the
pleasant side effect of ensuring that the code you use to perform mathematical operations
can easily be translated into equivalent statements in any .NET language with minimal fuss.

To use the math operations, you invoke the methods of the System.Math class. These
methods are static, which means they are always available and ready to use. (The next chapter
explores the difference between static and instance members in more detail.)

The following code snippet shows some sample calculations that you can perform with
the Math class:

double myValue;
myValue = Math.Sqrt(81); // myValue = 9.0
myValue = Math.Round(42.889, 2); // myValue = 42.89
myValue = Math.Abs(-10); // myValue = 10.0
myValue = Math.Log(24.212); // myValue = 3.18.. (and so on)
myValue = Math.PI; // myValue = 3.14.. (and so on)

CHAPTER 2 ■ THE C# LANGUAGE 31

8911CH02.qxd 9/26/07 2:21 PM Page 31

The features of the Math class are too numerous to list here in their entirety. The preced-
ing examples show some common numeric operations. For more information about the
trigonometric and logarithmic functions that are available, refer to the Visual Studio Help
reference for the Math class.

Type Conversions
Converting information from one data type to another is a fairly common programming task.
For example, you might retrieve text input for a user that contains the number you want to use
for a calculation. Or, you might need to take a calculated value and transform it into text you
can display in a web page.

Conversions are of two types: widening and narrowing. Widening conversions always suc-
ceed. For example, you can always convert a 32-bit integer into a 64-bit integer. You won’t
need any special code:

int mySmallValue;
long myLargeValue;

// Get the largest possible value that can be stored as a 32-bit integer.
// .NET provides a constant named Int32.MaxValue that provides this number.
mySmallValue = Int32.MaxValue;

// This always succeeds. No matter how large mySmallValue is,
// it can be contained in myLargeValue.
myLargeValue = mySmallValue;

On the other hand, narrowing conversions may or may not succeed, depending on the
data. If you’re converting a 32-bit integer to a 16-bit integer, you could encounter an error if
the 32-bit number is larger than the maximum value that can be stored in the 16-bit data
type. All narrowing conversions must be performed explicitly. C# uses an elegant method for
explicit type conversion. To convert a variable, you simply need to specify the type in paren-
theses before the expression you’re converting.

The following code shows how to change a 32-bit integer to a 16-bit integer:

int count32 = 1000;
short count16;

// Convert the 32-bit integer to a 16-bit integer.
// If count32 is too large to fit, .NET will discard some of the
// information you need, and the resulting number will be incorrect.
count16 = (short)count32;

If you don’t use an explicit cast when you attempt to perform a narrowing conversion,
you’ll receive an error when you try to compile your code. However, even if you perform an
explicit conversion, you could still end up with a problem. For example, consider the code
shown here, which causes an overflow:

CHAPTER 2 ■ THE C# LANGUAGE32

8911CH02.qxd 9/26/07 2:21 PM Page 32

int mySmallValue;
long myLargeValue;

myLargeValue = Int32.MaxValue;
myLargeValue++;

// This will appear to succeed (there won't be an error at runtime),
// but your data will be incorrect because mySmallValue cannot
// hold a value this large.
mySmallValue = (int)myLargeValue;

The .NET languages differ in how they handle this problem. In VB, you’ll always receive a
runtime error that you must intercept and respond to. In C#, however, you’ll simply wind up
with incorrect data in mySmallValue. To avoid this problem, you should either check that your
data is not too large before you attempt a narrowing conversion (which is always a good idea)
or use a checked block. The checked block enables overflow checking for a portion of code. If
an overflow occurs, you’ll automatically receive an error, just like you would in VB:

checked
{

// This will cause an exception to be thrown.
mySmallValue = (int)myLargeValue;

}

■Tip Usually, you won’t use the checked block, because it’s inefficient. The checked blocked catches the
problem (preventing a data error), but it throws an exception, which you need to handle using error handling
code, as explained in Chapter 8. Overall, it’s easier just to perform your own checks with any potentially
invalid numbers before you attempt an operation. However, the checked block is handy in one situation—
debugging. That way, you can catch unexpected errors while you’re still testing your application and resolve
them immediately.

In C#, you can’t use casting to convert numbers to strings, or vice versa. In this case, the
data isn’t just being moved from one variable to another—it needs to be translated to a com-
pletely different format. Thankfully, .NET has a number of solutions for performing advanced
conversions. One option is to use the static methods of the Convert class, which support many
common data types such as strings, dates, and numbers:

string countString = "10";

// Convert the string "10" to the numeric value 10.
int count = Convert.ToInt32(countString);

// Convert the numeric value 10 into the string "10".
countString = Convert.ToString(count);

CHAPTER 2 ■ THE C# LANGUAGE 33

8911CH02.qxd 9/26/07 2:21 PM Page 33

The second step (turning a number into a string) will always work. The first step (turning
a string into a number) won’t work if the string contains letters or other non-numeric charac-
ters, in which case an error will occur. Chapter 8 describes how you can use error handling to
detect and neutralize this sort of problem.

The Convert class is a good all-purpose solution, but you’ll also find other static methods
that can do the work, if you dig around in the .NET class library. The following code uses the
static Int32.Parse() method to perform the same task:

int count;
string countString = "10";

// Convert the string "10" to the numeric value 10.
count = Int32.Parse(countString);

You’ll also find that you can use object methods to perform some conversions a little
more elegantly. The next section demonstrates this approach with the ToString() method.

Object-Based Manipulation
.NET is object-oriented to the core. In fact, even ordinary variables are really full-fledged
objects in disguise. This means that common data types have the built-in smarts to handle
basic operations (such as counting the number of characters in a string). Even better, it means
you can manipulate strings, dates, and numbers in the same way in C# and in VB. This wouldn’t
be true if developers used special keywords that were built into the C# or VB language.

As an example, every type in the .NET class library includes a ToString() method. The
default implementation of this method returns the class name. In simple variables, a more
useful result is returned: the string representation of the given variable. The following code
snippet demonstrates how to use the ToString() method with an integer:

string myString;
int myInteger = 100;

// Convert a number to a string. myString will have the contents "100".
myString = myInteger.ToString();

To understand this example, you need to remember that all int variables are based on the
Int32 type in the .NET class library. The ToString() method is built in to the Int32 class, so it’s
available when you use an integer in any language.

The next few sections explore the object-oriented underpinnings of the .NET data types
in more detail.

The String Type
One of the best examples of how class members can replace built-in functions is found with
strings. In the past, every language has defined its own specialized functions for string manip-
ulation. In .NET, however, you use the methods of the String class, which ensures consistency
between all .NET languages.

CHAPTER 2 ■ THE C# LANGUAGE34

8911CH02.qxd 9/26/07 2:21 PM Page 34

The following code snippet shows several ways to manipulate a string using its object
nature:

string myString = "This is a test string ";
myString = myString.Trim(); // = "This is a test string"
myString = myString.Substring(0, 4); // = "This"
myString = myString.ToUpper(); // = "THIS"
myString = myString.Replace("IS", "AT"); // = "THAT"

int length = myString.Length; // = 4

The first few statements use built-in methods, such as Trim(), Substring(), ToUpper(), and
Replace(). These methods generate new strings, and each of these statements replaces the
current myString with the new string object. The final statement uses a built-in Length prop-
erty, which returns an integer that represents the number of characters in the string.

■Tip A method is just a procedure that’s hardwired into an object. A property is similar to a variable—it’s a
way to access a piece of data that’s associated with an object. You’ll learn more about methods and proper-
ties in the next chapter.

Note that the Substring() method requires a starting offset and a character length. Strings
use zero-based counting. This means that the first letter is in position 0, the second letter is in
position 1, and so on. You’ll find this standard of zero-based counting throughout the .NET
Framework for the sake of consistency. You’ve already seen it at work with arrays.

You can even use the string methods in succession in a single (rather ugly) line:

myString = myString.Trim().Substring(0, 4).ToUpper().Replace("IS", "AT");

Or, to make life more interesting, you can use the string methods on string literals just as
easily as string variables:

myString = "hello".ToUpper(); // Sets myString to "HELLO"

Table 2-3 lists some useful members of the System.String class.

Table 2-3. Useful String Members*

Member Description

Length Returns the number of characters in the string (as an
integer).

ToUpper() and ToLower() Returns a copy of the string with all the characters changed
to uppercase or lowercase characters.

Continued

CHAPTER 2 ■ THE C# LANGUAGE 35

* Technically, strings can never be modified. All the string methods that appear to change a string actually
return a copy of the string that has the changes.

8911CH02.qxd 9/26/07 2:21 PM Page 35

Table 2-3. Continued

Member Description

Trim(), TrimEnd(), and TrimStart() Removes spaces or some other characters from either
(or both) ends of a string.

PadLeft() and PadRight() Adds the specified character to the appropriate side of a
string, as many times as necessary to make the total length
of the string equal to the number you specify. For example,
"Hi".PadLeft(5, '@') returns the string "@@@Hi".

Insert() Puts another string inside a string at a specified (zero-based)
index position. For example, Insert(1, "pre") adds the string
pre after the first character of the current string.

Remove() Removes a specified number of strings from a specified
position. For example, Remove(0, 1) removes the first
character.

Replace() Replaces a specified substring with another string. For
example, Replace("a", "b") changes all a characters in a
string into b characters.

Substring() Extracts a portion of a string of the specified length at
the specified location (as a new string). For example,
Substring(0, 2) retrieves the first two characters.

StartsWith() and EndsWith() Determines whether a string starts or ends with a specified
substring. For example, StartsWith("pre") will return either
true or false, depending on whether the string begins with
the letters pre in lowercase.

IndexOf() and LastIndexOf() Finds the zero-based position of a substring in a string. This
returns only the first match and can start at the end or
beginning. You can also use overloaded versions of these
methods that accept a parameter that specifies the position
to start the search.

Split() Divides a string into an array of substrings delimited by a
specific substring. For example, with Split(".") you could
chop a paragraph into an array of sentence strings.

Join() Fuses an array of strings into a new string. You can also
specify a separator that will be inserted between each
element.

The DateTime and TimeSpan Types
The DateTime and TimeSpan data types also have built-in methods and properties. These
class members allow you to perform three useful tasks:

• Extract a part of a DateTime (for example, just the year) or convert a TimeSpan to a spe-
cific representation (such as the total number of days or total number of minutes).

• Easily perform date calculations.

• Determine the current date and time and other information (such as the day of the
week or whether the date occurs in a leap year).

CHAPTER 2 ■ THE C# LANGUAGE36

8911CH02.qxd 9/26/07 2:21 PM Page 36

For example, the following block of code creates a DateTime object, sets it to the current
date and time, and adds a number of days. It then creates a string that indicates the year that
the new date falls in (for example, 2008):

DateTime myDate = DateTime.Now;
myDate = myDate.AddDays(100);
string dateString = myDate.Year.ToString();

The next example shows how you can use a TimeSpan object to find the total number of
minutes between two DateTime objects:

DateTime myDate1 = DateTime.Now;
DateTime myDate2 = DateTime.Now.AddHours(3000);

TimeSpan difference;
difference = myDate2.Subtract(myDate1);

double numberOfMinutes;
numberOfMinutes = difference.TotalMinutes;

The DateTime and TimeSpan classes also support the + and – arithmetic operators, which
do the same work as the built-in methods. That means you can rewrite the example shown
earlier like this:

// Adding a TimeSpan to a DateTime creates a new DateTime.
DateTime myDate1 = DateTime.Now;
TimeSpan interval = TimeSpan.FromHours(3000);
DateTime myDate2 = myDate1 + interval;

// Subtracting one DateTime object from another produces a TimeSpan.
TimeSpan difference;
difference = myDate2 - myDate1;

These examples give you an idea of the flexibility .NET provides for manipulating date
and time data. Tables 2-4 and 2-5 list some of the more useful built-in features of the Date-
Time and TimeSpan objects.

Table 2-4. Useful DateTime Members

Member Description

Now Gets the current date and time. You can also use the
UtcNow property to take the current computer’s time
zone into account. UtcNow gets the time as a
coordinated universal time (UTC). Assuming your
computer is correctly configured, this corresponds to
the current time in the Western European (UTC+0) time
zone.

Today Gets the current date and leaves time set to 00:00:00.

Continued

CHAPTER 2 ■ THE C# LANGUAGE 37

8911CH02.qxd 9/26/07 2:21 PM Page 37

Table 2-4. Continued

Member Description

Year, Date, Month, Day, Hour, Minute, Returns one part of the DateTime object as an integer.
Second, and Millisecond For example, Month will return 12 for any day in

December.

DayOfWeek Returns an enumerated value that indicates the day of
the week for this DateTime, using the DayOfWeek
enumeration. For example, if the date falls on Sunday,
this will return DayOfWeek.Sunday.

Add() and Subtract() Adds or subtracts a TimeSpan from the DateTime.

AddYears(), AddMonths(), AddDays(), Adds an integer that represents a number of years,
AddHours(), AddMinutes(), months, and so on, and returns a new DateTime.
AddSeconds(), AddMilliseconds() You can use a negative integer to perform a date

subtraction.

DaysInMonth() Returns the number of days in the specified month in
the specified year.

IsLeapYear() Returns true or false depending on whether the
specified year is a leap year.

ToString() Returns a string representation of the current DateTime
object. You can also use an overloaded version of this
method that allows you to specify a parameter with a
format string.

Table 2-5. Useful TimeSpan Members

Member Description

Days, Hours, Minutes, Seconds, Returns one component of the current TimeSpan. For
Milliseconds example, the Hours property can return an integer from

–23 to 23.

TotalDays, TotalHours, Returns the total value of the current TimeSpan as a
TotalMinutes, TotalSeconds, number of days, hours, minutes, and so on. The value
TotalMilliseconds is returned as a double, which may include a fractional

value. For example, the TotalDays property might return
a number like 234.342.

Add() and Subtract() Combines TimeSpan objects together.

FromDays(), FromHours(), Allows you to quickly create a new TimeSpan. For
FromMinutes(), FromSeconds(), example, you can use TimeSpan.FromHours(24) to
FromMilliseconds() create a TimeSpan object exactly 24 hours long.

ToString() Returns a string representation of the current TimeSpan
object. You can also use an overloaded version of this
method that allows you to specify a parameter with a
format string.

CHAPTER 2 ■ THE C# LANGUAGE38

8911CH02.qxd 9/26/07 2:21 PM Page 38

The Array Type
Arrays also behave like objects in the new world of .NET. For example, if you want to find out
the size of a one-dimensional array, you can use the Length property or the GetLength()
method, both of which return the total number of elements in an array:

int[] myArray = {1, 2, 3, 4, 5};
int numberOfElements;

numberOfElements = myArray.Length; // numberOfElements = 5

You can also use the GetUpperBound() method to find the highest index number in an
array. The following code snippet shows this technique in action:

int[] myArray = {1, 2, 3, 4, 5};
int bound;

// Zero represents the first dimension of an array.
bound = myArray.GetUpperBound(0); // bound = 4

On a one-dimensional array, GetUpperBound() always returns a number that’s one less
than the length. That’s because the first index number is 0, and the last index number is
always one less than the total number of items. However, in a two-dimensional array, you can
find the highest index number for a specific dimension in that array. For example, the follow-
ing code snippet uses GetUpperBound() to find the total number of rows and the total
number of columns in a two-dimensional array:

// Create a 4x2 array (a grid with four rows and two columns).
int[,] intArray = {{1, 2}, {3, 4}, {5, 6}, {7, 8}};

int rows = intArray.GetUpperBound(0); // rows = 4
int columns = intArray.GetUpperBound(1); // columns = 2

Having these values—the array length and indexes—is handy when looping through the
contents of an array, as you’ll see later in this chapter, in the “Loops” section.

Arrays also provide a few other useful methods, which allow you to sort them, reverse
them, and search them for a specified element. Table 2-6 lists some useful members of the
System.Array class.

Table 2-6. Useful Array Members

Member Description

Length Returns an integer that represents the total number of elements
in all dimensions of an array. For example, a 3✕3 array has a
length of 9.

GetLowerBound() and Determines the dimensions of an array. As with just about
GetUpperBound() everything in .NET, you start counting at zero (which represents

the first dimension).

Continued

CHAPTER 2 ■ THE C# LANGUAGE 39

8911CH02.qxd 9/26/07 2:21 PM Page 39

Table 2-6. Continued

Member Description

Clear() Empties part or all of an array’s contents, depending on the index
values that you supply. The elements revert to their initial empty
values (such as 0 for numbers).

IndexOf() and LastIndexOf() Searches a one-dimensional array for a specified value and
returns the index number. You cannot use this with
multidimensional arrays.

Sort() Sorts a one-dimensional array made up of comparable data such
as strings or numbers.

Reverse() Reverses a one-dimensional array so that its elements are back-
ward, from last to first.

Conditional Logic
In many ways, conditional logic—deciding which action to take based on user input, external
conditions, or other information—is the heart of programming.

All conditional logic starts with a condition: a simple expression that can be evaluated to
true or false. Your code can then make a decision to execute different logic depending on the
outcome of the condition. To build a condition, you can use any combination of literal values
or variables along with logical operators. Table 2-7 lists the basic logical operators.

Table 2-7. Logical Operators

Operator Description

== Equal to.

!= Not equal to.

< Less than.

> Greater than.

<= Less than or equal to.

>= Greater than or equal to.

&& Logical and (evaluates to true only if both expressions are true). If the first expression
is false, the second expression is not evaluated.

|| Logical or (evaluates to true if either expression is true). If the first expression is true,
the second expression is not evaluated.

You can use all the comparison operators with any numeric types. With string data types,
you can use only the equality operators (== and !=). C# doesn’t support other types of string
comparison operators—instead, you need to use the String.Compare() method. The
String.Compare() method deems that a string is “less than” another string if it occurs earlier in
an alphabetic sort. Thus, apple is less than attach. The return value from String.Compare is 0 if
the strings match, 1 if the first supplied string is greater than the second, and –1 if the first
string is less than the second. Here’s an example:

CHAPTER 2 ■ THE C# LANGUAGE40

8911CH02.qxd 9/26/07 2:21 PM Page 40

int result;
result = String.Compare("apple", "attach"); // result = -1
result = String.Compare("apple", "all"); // result = 1
result = String.Compare("apple", "apple"); // result = 0

// Another way to perform string comparisons.
string word = "apple";
result = word.CompareTo("attach"); // result = -1

The if Statement
The if statement is the powerhouse of conditional logic, able to evaluate any combination of
conditions and deal with multiple and different pieces of data. Here’s an example with an if
statement that features two conditions:

if (myNumber > 10)
{

// Do something.
}
else if (myString == "hello")
{

// Do something.
}
else
{

// Do something.
}

■Note In this example, each block is clearly identified with the { } characters. This is a requirement if you
want to write multiple lines of code in a conditional block. If your conditional block requires just a single
statement, you can omit the curly braces. However, it’s never a bad idea to keep them, because it makes
your code clear and unambiguous.

Keep in mind that the if construct matches one condition at most. For example, if
myNumber is greater than 10, the first condition will be met. That means the code in the first
conditional block will run, and no other conditions will be evaluated. Whether myString con-
tains the text hello becomes irrelevant, because that condition will not be evaluated. An if
block can have any number of conditions. If you test only a single condition, you don’t need
to include any else blocks.

The switch Statement
C# also provides a switch statement that you can use to evaluate a single variable or expres-
sion for multiple possible values. The only limitation is that the variable you’re evaluating

CHAPTER 2 ■ THE C# LANGUAGE 41

8911CH02.qxd 9/26/07 2:21 PM Page 41

must be an integer-based data type, a bool, a char, a string, or a value from an enumeration.
Other data types aren’t supported.

In the following code, each case examines the myNumber variable and tests whether it’s
equal to a specific integer:

switch (myNumber)
{

case 1:
// Do something.
break;

case 2:
// Do something.
break;

default:
// Do something.
break;

}

You’ll notice that the C# syntax inherits the convention of C/C++ programming, which
requires that every branch in a switch statement be ended by a special break keyword. If you
omit this keyword, the compiler will alert you and refuse to build your application. The only
exception is if you choose to stack multiple case statements directly on top of each other with
no intervening code. This allows you to write one segment of code that handles more than one
case. Here’s an example:

switch (myNumber)
{

case 1:
case 2:

// This code executes if myNumber is 1 or 2.
break;

default:
// Do something.
break;

}

Unlike the if statement, the switch statement is limited to evaluating a single piece of
information at a time. However, it provides a leaner, clearer syntax than the if statement for
situations in which you need to test a single variable.

Loops
Loops allow you to repeat a segment of code multiple times. C# has three basic types of loops.
You choose the type of loop based on the type of task you need to perform. Your choices are as
follows:

• You can loop a set number of times with a for loop.

• You can loop through all the items in a collection of data using a foreach loop.

• You can loop while a certain condition holds true, using a while loop.

CHAPTER 2 ■ THE C# LANGUAGE42

8911CH02.qxd 9/26/07 2:21 PM Page 42

The for and foreach loops are ideal for chewing through sets of data that have known,
fixed sizes. The while loop is a more flexible construct that allows you to continue processing
until a complex condition is met. The while loop is often used with repetitive tasks or calcula-
tions that don’t have a set number of iterations.

The for Loop
The for loop is a basic ingredient in many programs. It allows you to repeat a block of code a
set number of times, using a built-in counter. To create a for loop, you need to specify a start-
ing value, an ending value, and the amount to increment with each pass. Here’s one example:

for (int i = 0; i < 10; i++)
{

// This code executes ten times.
System.Diagnostics.Debug.Write(i);

}

You’ll notice that the for loop starts with brackets that indicate three important pieces
of information. The first portion, (int i = 0), creates the counter variable (i) and sets its initial
value (0). The third portion, (i++), increments the counter variable. In this example, the
counter is incremented by 1 after each pass. That means i will be equal to 0 for the first pass,
equal to 1 for the second pass, and so on. However, you could adjust this statement so that it
decrements the counter (or performs any other operation you want). The middle portion,
(i < 10), specifies the condition that must be met for the loop to continue. This condition is
tested at the start of every pass through the block. If i is greater than or equal to 10, the condi-
tion will evaluate to false, and the loop will end.

If you run this code using a tool such as Visual Studio, it will write the following numbers
in the Debug window:

0 1 2 3 4 5 6 7 8 9

It often makes sense to set the counter variable based on the number of items you’re pro-
cessing. For example, you can use a for loop to step through the elements in an array by
checking the size of the array before you begin. Here’s the code you would use:

string[] stringArray = {"one", "two", "three"};

for (int i = 0; i < stringArray.Length; i++)
{

System.Diagnostics.Debug.Write(stringArray[i] + " ");
}

This code produces the following output:

one two three

CHAPTER 2 ■ THE C# LANGUAGE 43

8911CH02.qxd 9/26/07 2:21 PM Page 43

The foreach Loop

BLOCK-LEVEL SCOPE

If you define a variable inside some sort of block structure (such as a loop or a conditional block), the variable
is automatically released when your code exits the block. That means you will no longer be able to access it.
The following code demonstrates this behavior:

int tempVariableA;
for (int i = 0; i < 10; i++)
{

int tempVariableB;
tempVariableA = 1;
tempVariableB = 1;

}
// You cannot access tempVariableB here.
// However, you can still access tempVariableA.

This change won’t affect many programs. It’s really designed to catch a few more accidental errors. If
you do need to access a variable inside and outside of some type of block structure, just define the variable
before the block starts.

C# also provides a foreach loop that allows you to loop through the items in a set of data.
With a foreach loop, you don’t need to create an explicit counter variable. Instead, you create
a variable that represents the type of data for which you’re looking. Your code will then loop
until you’ve had a chance to process each piece of data in the set.

The foreach loop is particularly useful for traversing the data in collections and arrays. For
example, the next code segment loops through the items in an array using foreach. This code
has exactly the same effect as the previous example but is a little simpler:

string[] stringArray = {"one", "two", "three"};

foreach (string element in stringArray)
{

// This code loops three times, with the element variable set to
// "one", then "two", and then "three".
System.Diagnostics.Debug.Write(element + " ");

}

In this case, the foreach loop examines each item in the array and tries to convert it to a
string. Thus, the foreach loop defines a string variable named element. If you used a different
data type, you’d receive an error.

The foreach loop has one key limitation: it’s read-only. For example, if you wanted to loop
through an array and change the values in that array at the same time, foreach code wouldn’t
work. Here’s an example of some flawed code:

CHAPTER 2 ■ THE C# LANGUAGE44

8911CH02.qxd 9/26/07 2:21 PM Page 44

int[] intArray = {1,2,3};
foreach (int num in intArray)
{

num += 1;
}

In this case, you would need to fall back on a basic for loop with a counter.

The while loop
Finally, C# supports a while loop that tests a specific condition before or after each pass
through the loop. When this condition evaluates to false, the loop is exited.

Here’s an example that loops ten times. At the beginning of each pass, the code evaluates
whether the counter (i) is less than some upper limit (in this case, 10). If it is, the loop per-
forms another iteration.

int i = 0;
while (i < 10)
{

i += 1;
// This code executes ten times.

}

You can also place the condition at the end of the loop using the do . . . while syntax. In
this case, the condition is tested at the end of each pass through the loop:

int i = 0;
do
{

i += 1;
// This code executes ten times.

}
while (i < 10);

Both of these examples are equivalent, unless the condition you’re testing is false to start.
In that case, the while loop will skip the code entirely. The do . . . while loop, on the other
hand, will always execute the code at least once, because it doesn’t test the condition until
the end.

■Tip Sometimes you need to exit a loop in a hurry. In C#, you can use the break statement to exit any type
of loop. You can also use the continue statement to skip the rest of the current pass, evaluate the condition,
and (if it returns true) start the next pass.

CHAPTER 2 ■ THE C# LANGUAGE 45

8911CH02.qxd 9/26/07 2:21 PM Page 45

Methods
Methods are the most basic building block you can use to organize your code. Essentially, a
method is a named grouping of one or more lines of code. Ideally, each method will perform a
distinct, logical task. By breaking your code down into methods, you not only simplify your
life, but you also make it easier to organize your code into classes and step into the world of
object-oriented programming.

The first decision you need to make when declaring a method is whether you want to
return any information. For example, a method named GetStartTime() might return a Date-
Time object that represents the time an application was first started. A method can return, at
most, one piece of data.

When you declare a method in C#, the first part of the declaration specifies the data type
of the return value, and the second part indicates the method name. If your method doesn’t
return any information, you should use the void keyword instead of a data type at the begin-
ning of the declaration.

Here are two examples—one method that doesn’t return anything, and one that does:

// This method doesn't return any information.
void MyMethodNoReturnedData()
{

// Code goes here.
}

// This method returns an integer.
int MyMethodReturnsData()
{

// As an example, return the number 10.
return 10;

}

Notice that the method name is always followed by parentheses. This allows the compiler
to recognize that it’s a method.

In this example, the methods don’t specify their accessibility. This is just a common C#
convention. You’re free to add an accessibility keyword (such as public or private) as shown
here:

private void MyMethodNoReturnedData()
{

// Code goes here.
}

The accessibility determines how different classes in your code can interact. Private
methods are hidden from view and are available only locally, whereas public methods can be
called by all the other classes in your application. To really understand what this means, you’ll
need to read the next chapter, which discusses accessibility in more detail.

CHAPTER 2 ■ THE C# LANGUAGE46

8911CH02.qxd 9/26/07 2:21 PM Page 46

■Tip If you don’t specify accessibility, the method is always private. The examples in this book always
include accessibility keywords, because they improve clarity. Most programmers agree that it’s a good
approach to explicitly spell out the accessibility of your code.

Invoking your methods is straightforward—you simply type the name of the method, fol-
lowed by parentheses. If your method returns data, you have the option of using the data it
returns or just ignoring it:

// This call is allowed.
MyMethodNoReturnedData();

// This call is allowed.
MyMethodReturnsData();

// This call is allowed.
int myNumber;
myNumber = MyMethodReturnsData();

// This call isn't allowed.
// MyMethodNoReturnedData() does not return any information.
myNumber = MyMethodNoReturnedData();

Parameters
Methods can also accept information through parameters. Parameters are declared in a simi-
lar way to variables. By convention, parameter names always begin with a lowercase letter in
any language.

Here’s how you might create a function that accepts two parameters and returns their
sum:

private int AddNumbers(int number1, int number2)
{

return number1 + number2;
}

When calling a method, you specify any required parameters in parentheses or use an
empty set of parentheses if no parameters are required:

// Call a method with no parameters.
MyMethodNoReturnedData();

// Call a method that requires two integer parameters.
MyMethodNoReturnedData2(10, 20);

// Call a method with two integer parameters and an integer return value.
int returnValue = AddNumbers(10, 10);

CHAPTER 2 ■ THE C# LANGUAGE 47

8911CH02.qxd 9/26/07 2:21 PM Page 47

Method Overloading
C# supports method overloading, which allows you to create more than one method with the
same name, but with a different set of parameters. When you call the method, the CLR auto-
matically chooses the correct version by examining the parameters you supply.

This technique allows you to collect different versions of several methods together. For
example, you might allow a database search that returns an array of Product objects repre-
senting records in the database. Rather than create three methods with different names
depending on the criteria, such as GetAllProducts(), GetProductsInCategory(), and
GetActiveProducts(), you could create three versions of the GetProducts() method. Each
method would have the same name but a different signature, meaning it would require differ-
ent parameters. This example provides two overloaded versions for the GetProductPrice()
method:

private decimal GetProductPrice(int ID)
{

// Code here.
}

private decimal GetProductPrice(string name)
{

// Code here.
}

// And so on...

Now you can look up product prices based on the unique product ID or the full product
name, depending on whether you supply an integer or string argument:

decimal price;

// Get price by product ID (the first version).
price = GetProductPrice(1001);

// Get price by product name (the second version).
price = GetProductPrice("DVD Player");

You cannot overload a method with versions that have the same signature—that is, the
same number of parameters and parameter data types—because the CLR will not be able to
distinguish them from each other. When you call an overloaded method, the version that
matches the parameter list you supply is used. If no version matches, an error occurs.

■Note .NET uses overloaded methods in most of its classes. This approach allows you to use a flexible
range of parameters while centralizing functionality under common names. Even the methods you’ve seen
so far (such as the String methods for padding or replacing text) have multiple versions that provide similar
features with various options.

CHAPTER 2 ■ THE C# LANGUAGE48

8911CH02.qxd 9/26/07 2:21 PM Page 48

Delegates
Delegates allow you to create a variable that “points” to a method. You can use this variable at
any time to invoke the method. Delegates help you write flexible code that can be reused in
many situations. They’re also the basis for events, an important .NET concept that you’ll con-
sider in the next chapter.

The first step when using a delegate is to define its signature. The signature is a com-
bination of several pieces of information about a method: its return type, the number of
parameters it has, and the data type of each parameter.

A delegate variable can point only to a method that matches its specific signature. In
other words, the method must have the same return type, the same number of parameters,
and the same data type for each parameter as the delegate. For example, if you have a method
that accepts a single string parameter and another method that accepts two string parame-
ters, you’ll need to use a separate delegate type for each method.

To consider how this works in practice, assume your program has the following method:

private string TranslateEnglishToFrench(string english)
{

// Code goes here.
}

This method accepts a single string argument and returns a string. With those two details
in mind, you can define a delegate that matches this signature. Here’s how you would do it:

private delegate string StringFunction(string inputString);

Notice that the name you choose for the parameters and the name of the delegate don’t
matter. The only requirement is that the data types for the return value and parameters match
exactly.

Once you’ve defined a type of delegate, you can create and assign a delegate variable at
any time. Using the StringFunction delegate type, you could create a delegate variable like
this:

StringFunction functionReference;

Once you have a delegate variable, the fun begins. Using your delegate variable, you can
point to any method that has the matching signature. In this example, the StringFunction
delegate type requires one string parameter and returns a string. Thus, you can use the
functionReference variable to store a reference to the TranslateEnglishToFrench() method
you saw earlier. Here’s how to do it:

functionReference = TranslateEnglishToFrench;

■Note When you assign a method to a delegate variable in C#, you don’t use brackets after the method
name. This indicates that you are referring to the method, not attempting to execute it. If you added the
brackets, the CLR would attempt to run your method and convert the return value to the delegate type,
which wouldn’t work (and therefore would generate a compile-time error).

CHAPTER 2 ■ THE C# LANGUAGE 49

8911CH02.qxd 9/26/07 2:21 PM Page 49

Now that you have a delegate variable that references a method, you can invoke the
method through the delegate. To do this, you just use the delegate name as though it were
the method name:

string frenchString;
frenchString = functionReference("Hello");

In the previous code example, the method that the functionReference delegate points to
will be invoked with the parameter value "Hello", and the return value will be stored in the
frenchString variable.

The following code shows all these steps—creating a delegate variable, assigning a
method, and calling the method—from start to finish:

// Create a delegate variable.
StringFunction functionReference;

// Store a reference to a matching method in the delegate.
functionReference = TranslateEnglishToFrench;

// Run the method that functionReference points to.
// In this case, it will be TranslateEnglishToFrench().
string frenchString = functionReference("Hello");

The value of delegates is in the extra layer of flexibility they add. It’s not apparent in
this example, because the same piece of code creates the delegate variable and uses it. How-
ever, in a more complex application one method would create the delegate variable, and
another method would use it. The benefit in this scenario is that the second method doesn’t
need to know where the delegate points. Instead, it’s flexible enough to use any method that
has the right signature. In the current example, imagine a translation library that could
translate between English and a variety of different languages, depending on whether the
delegate it uses points to TranslateEnglishToFrench(), TranslateEnglishToSpanish(),
TranslateEnglishToGerman(), and so on.

DELEGATES ARE THE BASIS OF EVENTS

Wouldn’t it be nice to have a delegate that could refer to more than one function at once and invoke them
simultaneously? This would allow the client application to have multiple “listeners” and notify the listeners all
at once when something happens.

In fact, delegates do have this functionality, but you’re more likely to see it in use with .NET events.
Events, which are described in the next chapter, are based on delegates but work at a slightly higher level.
In a typical ASP.NET program, you’ll use events extensively, but you’ll probably never work directly with
delegates.

CHAPTER 2 ■ THE C# LANGUAGE50

8911CH02.qxd 9/26/07 2:21 PM Page 50

The Last Word
It’s impossible to do justice to an entire language in a single chapter. However, if you’ve pro-
grammed before, you’ll find that this chapter provides all the information you need to get
started with the C# language. As you work through the full ASP.NET examples in the following
chapters, you can refer to this chapter to clear up any language issues.

In the next chapter, you’ll learn about more important language concepts and the object-
oriented nature of .NET.

CHAPTER 2 ■ THE C# LANGUAGE 51

8911CH02.qxd 9/26/07 2:21 PM Page 51

8911CH02.qxd 9/26/07 2:21 PM Page 52

Types, Objects, and
Namespaces

.NET is thoroughly object oriented. Not only does .NET allow you to use objects, it demands
it. Almost every ingredient you’ll need to use to create a web application is, on some level,
really a kind of object.

So how much do you need to know about object-oriented programming to write .NET
pages? It depends on whether you want to follow existing examples and cut and paste code
samples or have a deeper understanding of the way .NET works and gain more control. This
book assumes that if you’re willing to pick up a thousand-page book, then you’re the type of
programmer who excels by understanding how and why things work the way they do. It also
assumes you’re interested in some of the advanced ASP.NET programming tasks that will
require class-based design, such as creating your own database component (see Chapter 23).

This chapter explains objects from the point of view of the .NET Framework. It doesn’t
rehash the typical object-oriented theory, because countless excellent programming books
cover the subject. Instead, you’ll see the types of objects .NET allows, how they’re constructed,
and how they fit into the larger framework of namespaces and assemblies.

The Basics About Classes
As a developer you’ve probably already created classes or at least heard about them. Classes
are the code definitions for objects. The nice thing about a class is that you can use it to create
as many objects as you need. For example, you might have a class that represents an XML file,
which can be used to read some data. If you want to access multiple XML files at once, you
can create several instances of your class, as shown in Figure 3-1. These instances are called
objects.

53

C H A P T E R 3

8911CH03.qxd 10/23/07 12:19 PM Page 53

Figure 3-1. Classes are used to create objects.

Classes interact with each other with the help of three key ingredients:

• Properties: Properties allow you to access an object’s data. Some properties may be
read-only, so they cannot be modified, while others can be changed. For example, the
previous chapter demonstrated how you can use the read-only Length property of a
String object to find out how many letters are in a string.

• Methods: Methods allow you to perform an action on an object. Unlike properties,
methods are used for actions that perform a distinct task or may change the object’s
state significantly. For example, to open a connection to a database, you might call an
Open() method in a Connection object.

• Events: Events provide notification that something has happened. If you’ve ever pro-
grammed a modern Windows application, you know how controls can fire events to
trigger your code. For example, if a user clicks a button, the Button object fires a Click
event, which your code can react to. ASP.NET controls also provide events.

In addition, classes contain their own code and internal set of private data. Classes
behave like black boxes, which means that when you use an object, you shouldn’t waste any
time wondering how it works or what low-level information it’s using. Instead, you need to
worry only about the public interface of a class, which is the set of properties, methods, and
events that are available for you to use. Together, these elements are called class members.

In ASP.NET, you’ll create your own custom classes to represent individual web pages. In
addition, you’ll create custom classes if you design separate components. For the most part,
however, you’ll be using prebuilt classes from the .NET class library, rather than programming
your own.

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES54

8911CH03.qxd 10/23/07 12:19 PM Page 54

Static Members
One of the tricks about .NET classes is that you really use them in two ways. You can use some
class members without creating an object first. These are called static members, and they’re
accessed by class name. For example, you can use the static property DateTime.Now to
retrieve a DateTime object that represents the current date and time. You don’t need to
create a DateTime object first.

On the other hand, the majority of the DateTime members require a valid instance. For
example, you can’t use the AddDays() method or the Hour property without a valid object.
These instance members have no meaning without a live object and some valid data to
draw on.

The following code snippet uses static and instance members:

// Get the current date using a static property.
// Note that you need to use the class name DateTime.
DateTime myDate = DateTime.Now;

// Use an instance method to add a day.
// Note that you need to use the object name myDate.
myDate = myDate.AddDays(1);

// The following code makes no sense.
// It tries to use the instance method AddDays() with the class name DateTime!
myDate = DateTime.AddDays(1);

Both properties and methods can be designated as static. Static properties and methods
are a major part of the .NET Framework, and you will use them frequently in this book. Some
classes may consist entirely of static members (such as the Math class shown in the previous
chapter), and some may use only instance members. Other classes, like DateTime, provide a
combination of the two.

The next example, which introduces a basic class, will use only instance members. This is
the most common design and a good starting point.

A Simple Class
To create a class, you must define it using a special block structure:

public class MyClass
{

// Class code goes here.
}

You can define as many classes as you need in the same file. However, good coding prac-
tices suggest that in most cases you use a single file for each class.

Classes exist in many forms. They may represent an actual thing in the real world (as they
do in most programming textbooks), they may represent some programming abstraction
(such as a rectangle or color structure), or they may just be a convenient way to group related
functionality (like with the Math class). Deciding what a class should represent and breaking
down your code into a group of interrelated classes are part of the art of programming.

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES 55

8911CH03.qxd 10/23/07 12:19 PM Page 55

Building a Basic Class
In the next example, you’ll see how to construct a .NET class piece by piece. This class will rep-
resent a product from the catalog of an e-commerce company. The Product class will store
product data, and it will include the built-in functionality needed to generate a block of HTML
that displays the product on a web page. When this class is complete, you’ll be able to put it to
work with a sample ASP.NET test page.

Once you’ve defined a class, the first step is to add some basic data. The next example
defines three member variables that store information about the product, namely, its name,
price, and a URL that points to an image file:

public class Product
{

private string name;
private decimal price;
private string imageUrl;

}

A local variable exists only until the current method ends. On the other hand, a member
variable (or field) is declared as part of a class. It’s available to all the methods in the class, and
it lives as long as the containing object lives.

When you create a member variable, you set its accessibility. The accessibility determines
whether other parts of your code will be able to read and alter this variable. For example, if
ClassA contains a private variable, the code in ClassB will not be able to read or modify it. Only
the code in ClassA will have that ability. On the other hand, if ObjectA has a public variable,
any other object in your application is free to read and alter the information it contains. Local
variables don’t support any accessibility keywords, because they can never be made available
to any code beyond the current procedure. Generally, in a simple ASP.NET application, most
of your variables will be private because the majority of your code will be self-contained in a
single web page class. As you start creating separate components to reuse functionality, how-
ever, accessibility becomes much more important. Table 3-1 explains the access levels you
can use.

Table 3-1. Accessibility Keywords

Keyword Accessibility

public Can be accessed by any class

private Can be accessed only by members inside the current class

internal Can be accessed by members in any of the classes in the current assembly
(the compiled code file)

protected Can be accessed by members in the current class or in any class that inherits
from this class

protected internal Can be accessed by members in the current application (as with internal)
and by the members in any class that inherits from this class

The accessibility keywords don’t just apply to variables. They also apply to methods, prop-
erties, and events, all of which will be explored in this chapter.

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES56

8911CH03.qxd 10/23/07 12:19 PM Page 56

■Tip By convention, all the public pieces of your class (the class name, public events, properties and pro-
cedures, and so on) should use Pascal case. This means the name starts with an initial capital. (The function
name DoSomething() is one example of Pascal case.) On the other hand, private members can use any case
you want. Usually, private members will adopt camel case. This means the name starts with an initial lower-
case letter. (The variable name myInformation is one example of camel case.) Some developers begin all
private member names with _ or m_ (for member), although this is purely a matter of convention.

Creating an Object
When creating an object, you need to specify the new keyword. The new keyword instantiates
the object, which means it grabs on to a piece of memory and creates the object there. If you
declare a variable for your object but you don’t use the new keyword to actually instantiate it,
you’ll receive the infamous “null reference” error when you try to use your object. That’s
because the object you’re attempting to use doesn’t actually exist, and your variable doesn’t
point to anything at all.

The following code snippet creates an object based on the Product class and then
releases it:

Product saleProduct = new Product();

// Optionally you could do this in two steps:
// Product saleProduct;
// saleProduct = new Product();

// Now release the object from memory.
saleProduct = null;

In .NET, you almost never need to use the last line, which releases the object. That’s
because objects are automatically released when the appropriate variable goes out of scope.
Objects are also released when your application ends. In an ASP.NET web page, your appli-
cation is given only a few seconds to live. Once the web page is rendered to HTML, the
application ends, and all objects are automatically released.

■Tip Just because an object is released doesn’t mean the memory it uses is immediately reclaimed. The
CLR uses a long-running service (called garbage collection) that periodically scans for released objects and
reclaims the memory they hold.

In some cases, you will want to declare an object variable without using the new key-
word to create it. For example, you might want to assign an instance that already exists to your
object variable. Or you might receive a live object as a return value from a function. The fol-
lowing code shows one such example:

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES 57

8911CH03.qxd 10/23/07 12:19 PM Page 57

// Declare but don't create the product.
Product saleProduct;

// Call a function that accepts a numeric product ID parameter,
// and returns a product object.
saleProduct = FetchProduct(23);

Once you understand the concept, you can compress this code into one statement:

Product saleProduct = FetchProduct(23);

In these cases, when you aren’t actually creating an object, you shouldn’t use the new
keyword.

Adding Properties
The simple Product class is essentially useless because your code cannot manipulate it. All its
information is private and unreachable. Other classes won’t be able to set or read this infor-
mation.

To overcome this limitation, you could make the member variables public. Unfortunately,
that approach could lead to problems because it would give other objects free access to
change everything, even allowing them to apply invalid or inconsistent data. Instead, you
need to add a “control panel” through which your code can manipulate Product objects in a
safe way. You do this by adding property accessors.

Accessors usually have two parts. The get accessor allows your code to retrieve data from
the object. The set accessor allows your code to set the object’s data. In some cases, you might
omit one of these parts, such as when you want to create a property that can be examined but
not modified.

Accessors are similar to any other type of method in that you can write as much code as
you need. For example, your property set accessor could raise an error to alert the client code
of invalid data and prevent the change from being applied. Or, your property set accessor
could change multiple private variables at once, thereby making sure the object’s internal
state remains consistent. In the Product class example, this sophistication isn’t required.
Instead, the property accessors just provide straightforward access to the private variables.
For example, the Name property simply gets or sets the value of the name private member
variable.

Property accessors, like any other public piece of a class, should start with an initial capi-
tal. This allows you to give the same name to the property accessor and the underlying private
variable, because they will have different capitalization, and C# is a case-sensitive language.
(This is one of the rare cases where it’s acceptable to differentiate between two elements
based on capitalization.) Another option would be to precede the private variable name with
an underscore.

public class Product
{

private string name;
private decimal price;
private string imageUrl;

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES58

8911CH03.qxd 10/23/07 12:19 PM Page 58

public string Name
{

get
{ return name; }
set
{ name = value; }

}

public decimal Price
{

get
{ return price; }
set
{ price = value; }

}

public string ImageUrl
{

get
{ return imageUrl; }
set
{ imageUrl = value; }

}
}

■Note In your property setter, you access the value that’s being applied using the value keyword. Essen-
tially, value is a parameter that’s passed to your property setting code automatically.

The client can now create and configure the object by using its properties and the familiar
dot syntax. For example, if the object variable is named saleProduct, you can set the product
name using the saleProduct.Name property. Here’s an example:

Product saleProduct = new Product();
saleProduct.Name = "Kitchen Garbage";
saleProduct.Price = 49.99M;
saleProduct.ImageUrl = "http://mysite/garbage.png";

You’ll notice that the C# example uses an M to indicate that the literal number 49.99
should be interpreted as a decimal value, not a double.

Usually, property accessors come in pairs—that is, every property has both a get and a
set accessor. But this isn’t always the case. You can create properties that can be read but not
set (which are called read-only properties), and properties that can be set but not retrieved
(called write-only). All you need to do is leave out the accessor that you don’t need. Here’s an
example of a read-only property:

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES 59

8911CH03.qxd 10/23/07 12:19 PM Page 59

http://mysite/garbage.png

public decimal Price
{

get
{ return price; }

}

This technique is particularly handy if you want to create properties that don’t correspond
directly to a private member variable. For example, you might want to use properties that rep-
resent calculated values, or properties that are based on other properties.

AUTOMATIC PROPERTIES

If you have really simple properties—properties that do nothing except set or get the value of a private mem-
ber variable—you can simplify your code using a C# language feature called automatic properties.

Automatic properties are properties without any code. When you use an automatic property, you declare
it but you don’t supply the code for the get and set accessors, and you don’t declare the matching private
variable. Instead, the C# compiler adds these details for you.

Because the properties in the Product class simply get and set member variables, you can replace any
of them (or all of them) with automatic properties. Here’s an example:

public decimal Price
{

get;
set;

}

You don’t actually know what name the C# compiler will choose when it creates the corresponding pri-
vate member variable. However, it doesn’t matter, because you’ll never need to access the private member
variable directly. Instead, you’ll always use the public Price property.

For even more space savings, you can compress the declaration of an automatic property to a single
line. Here’s a complete, condensed Product class that uses this technique:

public class Product
{

public decimal Name { get; set; }
public decimal Price { get; set; }
public decimal ImageUrl { get; set; }

}

The only disadvantage to automatic properties is that you’ll need to switch them back to normal proper-
ties if you want to add some more specialized code after the fact. For example, you might want to add code
that performs validation or raises an event when a property is set.

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES60

8911CH03.qxd 10/23/07 12:19 PM Page 60

Adding a Method
The current Product class consists entirely of data, which is exposed by a small set of proper-
ties. This type of class is often useful in an application. For example, you might use it to send
information about a product from one function to another. However, it’s more common to add
functionality to your classes along with the data. This functionality takes the form of methods.

Methods are simply named procedures that are built into your class. When you call a
method on an object, the method does something useful, such as return some calculated data.
In this example, we’ll add a GetHtml() method to the Product class. This method will return a
string representing a formatted block of HTML based on the current data in the Product
object. This HTML includes a heading with the product name, the product price, and an
 element that shows the associated product picture. (You’ll explore HTML more closely
in Chapter 4.)

public class Product
{

// (Variables and properties omitted for clarity.)

public string GetHtml()
{

string htmlString;
htmlString = "<h1>" + name + "</h1>
";
htmlString += "<h3>Costs: " + price.ToString() + "</h3>
";
htmlString += "";
return htmlString;

}
}

All the GetHtml() method does is read the private data and format it in some attractive
way. You can take this block of HTML and place it on a web page to represent the product. This
really targets the class as a user interface class rather than as a pure data class or “business
object.”

Adding a Constructor
Currently, the Product class has a problem. Ideally, classes should ensure that they are always
in a valid state. However, unless you explicitly set all the appropriate properties, the Product
object won’t correspond to a valid product. This could cause an error if you try to use a
method that relies on some of the data that hasn’t been supplied. To solve this problem, you
need to equip your class with one or more constructors.

A constructor is a method that automatically runs when the class is first created. In C#,
the constructor always has the same name as the name of the class. Unlike a normal method,
the constructor doesn’t define any return type, not even void.

The next code example shows a new version of the Product class. It adds a constructor
that requires the product price and name as arguments:

public class Product
{

// (Additional class code omitted for clarity.)

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES 61

8911CH03.qxd 10/23/07 12:19 PM Page 61

public Product(string name, decimal price)
{

// Set the two properties in the class.
Name = name;
Price = price;

}
}

Here’s an example of the code you need to create an object based on the new Product
class, using its constructor:

Product saleProduct = new Product("Kitchen Garbage", 49.99M);

The preceding code is much leaner than the code that was required to create and initial-
ize the previous version of the Product class. With the help of the constructor, you can create a
Product object and configure it with the basic data it needs in a single line.

If you don’t create a constructor, .NET supplies a default public constructor that does
nothing. If you create at least one constructor, .NET will not supply a default constructor.
Thus, in the preceding example, the Product class has exactly one constructor, which is the
one that is explicitly defined in code. To create a Product object, you must use this constructor.
This restriction prevents a client from creating an object without specifying the bare mini-
mum amount of data that’s required:

// This will not be allowed, because there is
// no zero-argument constructor.
Product saleProduct = new Product();

■Note In order to create an instance of a class, you need to use a constructor. The preceding code fails
because it attempts to use a zero-argument constructor, which doesn’t exist in the Product class.

Most of the classes you use will have constructors that require parameters. As with ordi-
nary methods, constructors can be overloaded with multiple versions, each providing a
different set of parameters. When creating an object, you can choose the constructor that suits
you best based on the information that you have available. The .NET Framework classes use
overloaded constructors extensively.

Adding an Event
Classes can also use events to notify your code. To define an event in C#, you must first create
a delegate that defines the signature for the event you’re going to use. Then you can define an
event based on that delegate using the event keyword. As with properties and methods, events
can be declared with different accessibilities, although public events are the default. Usually,
this is what you want, because you’ll use the events to allow one object to notify another
object that’s an instance of a different class.

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES62

8911CH03.qxd 10/23/07 12:19 PM Page 62

As an illustration, the Product class example has been enhanced with a PriceChanged
event that occurs whenever the Name is modified through the property procedure. This event
won’t fire if code inside the class changes the underlying private name variable without going
through the property procedure:

// Define the delegate that represents the event.
public delegate void PriceChangedEventHandler();

public class Product
{

// (Additional class code omitted for clarity.)

// Define the event using the delegate.
public event PriceChangedEventHandler PriceChanged;

public decimal Price
{

get
{ return price; }
set
{

price = value;

// Fire the event, provided there is at least one listener.
if (PriceChanged != null)
{

PriceChanged();
}

}
}

}

To fire an event, you just call it by name. However, before firing an event, you must check
that at least one subscriber exists by testing whether the event reference is null. If it isn’t null,
it’s safe to fire the event.

It’s quite possible that you’ll create dozens of ASP.NET applications without once defining
a custom event. However, you’ll be hard-pressed to write a single ASP.NET web page without
handling an event. To handle an event, you first create a method called an event handler. The
event handler contains the code that should be executed when the event occurs. Then, you
connect the event handler to the event.

To handle the Product.PriceChanged event, you need to begin by creating an event han-
dler, which you’ll usually place in another class. The event handler needs to have the same
signature as the event it’s handling. In the Product example, the PriceChanged event has no
parameters, so the event handler would look like the simple method shown here:

public void ChangeDetected()
{

// This code executes in response to the PriceChanged event.
}

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES 63

8911CH03.qxd 10/23/07 12:19 PM Page 63

The next step is to hook up the event handler to the event. First, you create a delegate that
points to the event handler method. Then, you attach this delegate to the event using the +=
operation:

Product saleProduct = new Product("Kitchen Garbage", 49.99M);

// This connects the saleProduct.PriceChanged event to an event handling
// procedure called ChangeDetected.
// Note that ChangedDetected needs to match the NameChangedEventHandler
// delegate.
saleProduct.PriceChanged += ChangeDetected;

// Now the event will occur in response to this code:
saleProduct.Price = saleProduct.Price * 2;

This code attaches an event handler to a method named ChangeDetected. This method is
in the same class as the event hookup code shown here, and for that reason you don’t need to
specify the object name when you attach the event handler. If you want to connect an event to
a different object, you’d need to use the dot syntax when referring the event handler method,
as in myObject.ChangeDetected.

It’s worth noting that if you’re using Visual Studio, you won’t need to manually hook up
event handlers for web controls at all. Instead, Visual Studio can add the code you need to
connect all the event handlers you create.

ASP.NET uses an event-driven programming model, so you’ll soon become used to writing
code that reacts to events. But unless you’re creating your own components, you won’t need
to fire your own custom events. For an example where custom events make sense, refer to
Chapter 12, which discusses how you can add an event to a user control you’ve created.

■Tip You can also detach an event handler using the -= operator instead of +=.

Testing the Product Class
To learn a little more about how the Product class works, it helps to create a simple web page.
This web page will create a Product object, get its HTML representation, and then display it in
the web page. To try this example, you’ll need to use the three files that are provided with the
online samples in the Chapter03 directory:

• Product.cs: This file contains the code for the Product class. It’s in the App_Code sub-
directory, which allows ASP.NET to compile it automatically.

• Garbage.jpg: This is the image that the Product class will use.

• Default.aspx: This file contains the web page code that uses the Product class.

The easiest way to test this example is to use Visual Studio, because it includes an inte-
grated web server. Without Visual Studio, you would need to create a virtual directory for this
application using IIS, which is much more awkward.

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES64

8911CH03.qxd 10/23/07 12:19 PM Page 64

Here are the steps you need to perform the test:

1. Start Visual Studio.

2. Select File ➤ Open ➤ Web Site from the menu.

3. In the Open Web Site dialog box, browse to the Chapter03 directory, select it, and click
Open. This loads your project into Visual Studio.

4. Choose Debug ➤ Start Without Debugging to launch the website. Visual Studio will
open a new window with your default browser and navigate to the Default.aspx page.

When the Default.aspx page executes, it creates a new Product object, configures it, and
uses the GetHtml() method. The HTML is written to the web page using the Response.Write()
method. Here’s the code:

<%@ Page Language="C#" %>
<script runat="server">

private void Page_Load(object sender, EventArgs e)
{

Product saleProduct = new Product("Kitchen Garbage", 49.99M);
saleProduct.ImageUrl = "garbage.jpg";
Response.Write(saleProduct.GetHtml());

}
</script>

<html>
<head>

<title>Product Test</title>
</head>
<body></body>

</html>

The <script> block holds a subroutine named Page_Load. This subroutine is triggered
when the page is first created. Once this code is finished, the HTML is sent to the client.
Figure 3-2 shows the web page you’ll see.

Interestingly, the GetHtml() method is similar to how an ASP.NET web control works,
but on a much cruder level. To use an ASP.NET control, you create an object (explicitly or
implicitly) and configure some properties. Then ASP.NET automatically creates a web page
by examining all these objects and requesting their associated HTML (by calling a hidden
GetHtml() method or by doing something conceptually similar).1 It then sends the completed
page to the user. The end result is that you work with objects, instead of dealing directly with
raw HTML code.

When using a web control, you see only the public interface made up of properties,
methods, and events. However, understanding how class code actually works will help you
master advanced development.

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES 65

1. Actually, the ASP.NET engine calls a method named Render() in every web control.

8911CH03.qxd 10/23/07 12:19 PM Page 65

Figure 3-2. Output generated by a Product object

Now that you’ve seen the basics of classes and a demonstration of how you can use a
class, it’s time to introduce a little more theory about .NET objects and revisit the basic data
types introduced in the previous chapter.

Value Types and Reference Types
In Chapter 2, you learned how simple data types such as strings and integers are actually
objects created from the class library. This allows some impressive tricks, such as built-in
string handling and date calculation. However, simple data types differ from more complex
objects in one important way. Simple data types are value types, while classes are reference
types.

This means a variable for a simple data type contains the actual information you put in it
(such as the number 7). On the other hand, object variables actually store a reference that
points to a location in memory where the full object is stored. In most cases, .NET masks you
from this underlying reality, and in many programming tasks you won’t notice the difference.
However, in three cases you will notice that object variables act a little differently than ordi-
nary data types: in assignment operations, in comparison operations, and when passing
parameters.

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES66

8911CH03.qxd 10/23/07 12:19 PM Page 66

Assignment Operations
When you assign a simple data variable to another simple data variable, the contents of the
variable are copied:

integerA = integerB; // integerA now has a copy of the contents of integerB.
// There are two duplicate integers in memory.

Reference types work a little differently. Reference types tend to deal with larger amounts
of data. Copying the entire contents of a reference type object could slow down an applica-
tion, particularly if you are performing multiple assignments. For that reason, when you
assign a reference type you copy the reference that points to the object, not the full object
content:

// Create a new Product object.
Product productVariable1 = new Product();

// Declare a second variable.
Product productVariable2;
productVariable2 = productVariable1;

// productVariable1 and productVariable2 now both point to the same thing.
// There is one object and two ways to access it.

The consequences of this behavior are far ranging. This example modifies the Product
object using productVariable2:

productVariable2.Price = 25.99M;

You’ll find that productVariable1.Price is set to 25.99. Of course, this only makes sense
because productVariable1 and productVariable2 are two variables that point to the same
in-memory object.

If you really do want to copy an object (not a reference), you need to create a new object,
and then initialize its information to match the first object. Some objects provide a Clone()
method that allows you to easily copy the object. One example is the DataSet, which is used to
store information from a database.

Equality Testing
A similar distinction between reference types and value types appears when you compare two
variables. When you compare value types (such as integers), you’re comparing the contents:

if (integerA == integerB)
{

// This is true as long as the integers have the same content.
}

When you compare reference type variables, you’re actually testing whether they’re the
same instance. In other words, you’re testing whether the references are pointing to the same
object in memory, not if their contents match:

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES 67

8911CH03.qxd 10/23/07 12:19 PM Page 67

if (productVariable1 == productVariable2)
{

// This is true if both productVariable1 and productVariable2
// point to the same thing.
// This is false if they are separate, yet identical, objects.

}

■Note This rule has a special exception. When classes override the == operator, they can change what
type of comparison it performs. The only significant example of this technique in .NET is the String class. For
more information, read the sidebar “Would the Real Reference Types Please Stand Up?” later in this chapter.

Passing Parameters by Reference and by Value
You can create three types of method parameters. The standard type is pass-by-value. When
you use pass-by-value parameters, the method receives a copy of the parameter data. That
means that if the method modifies the parameter, this change won’t affect the calling code.
By default, all parameters are pass-by-value.

The second type of parameter is pass-by-reference. With pass-by-reference, the method
accesses the parameter value directly. If a method changes the value of a pass-by-reference
parameter, the original object is also modified.

To get a better understanding of the difference, consider the following code, which shows
a method that uses a parameter named number. This code uses the ref keyword to indicate
that number should be passed by reference. When the method modifies this parameter (multi-
plying it by 2), the calling code is also affected:

private void ProcessNumber(ref int number)
{

number *= 2;
}

The following code snippet shows the effect of calling the ProcessNumber method. Note
that you need to specify the ref keyword when you define the parameter in the method and
when you call the method. This indicates that you are aware that the parameter value may
change:

int num = 10;
ProcessNumber(ref num); // Once this call completes, Num will be 20.

The way that pass-by-value and pass-by-reference work when you’re using value types
(such as integers) is straightforward. However, if you use reference types, such as a Product
object or an array, you won’t see this behavior. The reason is because the entire object isn’t
passed in the parameter. Instead, it’s just the reference that’s transmitted. This is much more
efficient for large objects (it saves having to copy a large block of memory), but it doesn’t
always lead to the behavior you expect.

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES68

8911CH03.qxd 10/23/07 12:19 PM Page 68

One notable quirk occurs when you use the standard pass-by-value mechanism. In this
case, pass-by-value doesn’t create a copy of the object, but a copy of the reference. This refer-
ence still points to the same in-memory object. This means that if you pass a Product object to
a method, for example, the method will be able to alter your Product object, regardless of
whether you use pass-by-value or pass-by-reference.

OUTPUT PARAMETERS

C# also supports a third type of parameter: the output parameter. To use an output parameter, precede the
parameter declaration with the keyword out. Output parameters are commonly used as a way to return
multiple pieces of information from a single method.

When you use output parameters, the calling code can submit an uninitialized variable as a parameter,
which is otherwise forbidden. This approach wouldn’t be appropriate for the ProcessNumber() method,
because it reads the submitted parameter value (and then doubles it). If, on the other hand, the method used
the parameter just to return information, you could use the out keyword, as shown here:

private void ProcessNumber(int number, out int double, out int triple)
{

double = number * 2;
triple = number * 3;

}

Remember, output parameters are designed solely for the method to return information to your calling
code. In fact, the method won’t be allowed to retrieve the value of an out parameter, because it may be
uninitialized. The only action the method can take is to set the output parameter.

Here’s an example of how you can call the revamped ProcessNumber() method:

int num = 10;
int double, triple;
ProcessNumber(num, out double, out triple);

Reviewing .NET Types
So far, the discussion has focused on simple data types and classes. The .NET class library is
actually composed of types, which is a catchall term that includes several object-like relatives:

Classes: This is the most common type in .NET Framework. Strings and arrays are two
examples of .NET classes, although you can easily create your own.

Structures: Structures, like classes, can include fields, properties, methods, and events.
Unlike classes, they are value types, which alters the way they behave with assignment
and comparison operations. Structures also lack some of the more advanced class fea-
tures (such as inheritance) and are generally simpler and smaller. Integers, dates, and
chars are all structures.

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES 69

8911CH03.qxd 10/23/07 12:19 PM Page 69

Enumerations: An enumeration defines a set of integer constants with descriptive names.
Enumerations were introduced in the previous chapter.

Delegates: A delegate is a function pointer that allows you to invoke a procedure indi-
rectly. Delegates are the foundation for .NET event handling and were introduced in the
previous chapter.

Interfaces: They define contracts to which a class must adhere. Interfaces are an advanced
technique of object-oriented programming, and they’re useful when standardizing how
objects interact. Interfaces aren’t discussed in this book.

WOULD THE REAL REFERENCE TYPES PLEASE STAND UP?

Occasionally, a class can override its behavior to act more like a value type. For example, the String type is a
full-featured class, not a simple value type. (This is required to make strings efficient, because they can con-
tain a variable amount of data.) However, the String type overrides its equality and assignment operations so
that these operations work like those of a simple value type. This makes the String type work in the way that
programmers intuitively expect. Arrays, on the other hand, are reference types through and through. If you
assign one array variable to another, you copy the reference, not the array (although the Array class also pro-
vides a Clone() method that returns a duplicate array to allow true copying).

Table 3-2 sets the record straight and explains a few common types.

Table 3-2. Common Reference and Value Types

Data Type Nature Behavior

Int32, Decimal, Single, Double, and Value Type Equality and assignment operations work with the
all other basic numeric types variable contents, not a reference.

DateTime, TimeSpan Value Type Equality and assignment operations work with the
variable contents, not a reference.

Char, Byte, and Boolean Value Type Equality and assignment operations work with the
variable contents, not a reference.

String Reference Type Equality and assignment operations appear to work
with the variable contents, not a reference.

Array Reference Type Equality and assignment operations work with the
reference, not the contents.

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES70

8911CH03.qxd 10/23/07 12:19 PM Page 70

Understanding Namespaces and Assemblies
Whether you realize it at first, every piece of code in .NET exists inside a .NET type (typically a
class). In turn, every type exists inside a namespace. Figure 3-3 shows this arrangement for
your own code and the DateTime class. Keep in mind that this is an extreme simplification—
the System namespace alone is stocked with several hundred classes. This diagram is designed
only to show you the layers of organization.

Figure 3-3. A look at two namespaces

Namespaces can organize all the different types in the class library. Without name-
spaces, these types would all be grouped into a single long and messy list. This sort of organi-
zation is practical for a small set of information, but it would be impractical for the thousands
of types included with .NET.

Many of the chapters in this book introduce you to new .NET classes and namespaces.
For example, in the chapters on web controls, you’ll learn how to use the objects in the
System.Web.UI namespace. In the chapters about web services, you’ll study the types in the
System.Web.Services namespace. For databases, you’ll turn to the System.Data namespace.
In fact, you’ve already learned a little about one namespace: the basic System namespace that
contains all the simple data types explained in the previous chapter.

To continue your exploration after you’ve finished the book, you’ll need to turn to the
Visual Studio Help reference, which painstakingly documents the properties, methods, and
events of every class in every namespace (see Figure 3-4). If you have Visual Studio installed,
you can view the Visual Studio Help by selecting Start ➤ Programs ➤ Microsoft Visual
Studio 2008 ➤ Microsoft Visual Studio 2008 Documentation (the exact path depends on the
version of Visual Studio you’ve installed). You can find class reference information on the
Contents tab, grouped by namespace, under the .NET Development ➤ .NET Framework SDK
➤ .NET Framework ➤ .NET Framework Class Library node.

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES 71

8911CH03.qxd 10/23/07 12:19 PM Page 71

Figure 3-4. The Class Library reference in the Visual Studio Help

Using Namespaces
Often when you write ASP.NET code, you’ll just use the namespace that Visual Studio creates
automatically. If, however, you want to organize your code into multiple namespaces, you can
define the namespace using a simple block structure, as shown here:

namespace MyCompany
{

namespace MyApp
{

public class Product
{

// Code goes here.
}

}
}

In the preceding example, the Product class is in the namespace MyCompany.MyApp.
Code inside this namespace can access the Product class by name. Code outside it needs to
use the fully qualified name, as in MyCompany.MyApp.Product. This ensures that you can use

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES72

8911CH03.qxd 10/23/07 12:19 PM Page 72

the components from various third-party developers without worrying about a name colli-
sion. If those developers follow the recommended naming standards, their classes will always
be in a namespace that uses the name of their company and software product. The fully quali-
fied name of a class will then almost certainly be unique.

Namespaces don’t take an accessibility keyword and can be nested as many layers deep as
you need. Nesting is purely cosmetic—for example, in the previous example, no special rela-
tionship exists between the MyCompany namespace and the MyApp namespace. In fact,
you could create the namespace MyCompany.MyApp without using nesting at all using this
syntax:

namespace MyCompany.MyApp
{

public class Product
{

// Code goes here.
}

}

You can declare the same namespace in various code files. In fact, more than one project
can even use the same namespace. Namespaces are really nothing more than a convenient,
logical container that helps you organize your classes.

Importing Namespaces
Having to type long, fully qualified names is certain to tire your fingers and create overly ver-
bose code. To tighten code up, it’s standard practice to import the namespaces you want to
use. When you import a namespace, you don’t need to type the fully qualified name. Instead,
you can use the types in that namespace as though they were defined locally.

To import a namespace, you use the using statement. These statements must appear as
the first lines in your code file, outside of any namespaces or block structures:

using MyCompany.MyApp;

Consider the situation without importing a namespace:

MyCompany.MyApp.Product salesProduct = new MyCompany.MyApp.Product();

It’s much more manageable when you import the MyCompany.MyApp namespace. Once
you do, you can use this syntax instead:

Product salesProduct = new Product();

Importing namespaces is really just a convenience. It has no effect on the performance of
your application. In fact, whether you use namespace imports, the compiled IL code will look
the same. That’s because the language compiler will translate your relative class references
into fully qualified class names when it generates an EXE or a DLL file.

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES 73

8911CH03.qxd 10/23/07 12:19 PM Page 73

STREAMLINED OBJECT CREATION

Even if you choose not to import a namespace, you can compress any statement that declares an object vari-
able and instantiates it. The trick is to use the var keyword you learned about in Chapter 2.

For example, you can replace this statement:

MyCompany.MyApp.Product salesProduct = new MyCompany.MyApp.Product();

with this:

var salesProduct = new MyCompany.MyApp.Product();

This works because the compiler can determine the correct data type for the salesProduct variable
based on the object you’re creating with the new keyword. Best of all, this statement is just as readable as
the non-var approach, because it’s still clear what type of object you’re creating.

Of course, this technique won’t work if the compiler can’t determine the type of object you want. For
that reason, neither of these statements is allowed:

var salesProductInvalid1;
var salesProductInvalid2 = null;

Furthermore, the var trick is limited to local variables. You can’t use it when declaring the member
variables of a class.

Assemblies
You might wonder what gives you the ability to use the class library namespaces in a .NET
program. Are they hardwired directly into the language? The truth is that all .NET classes are
contained in assemblies. Assemblies are the physical files that contain compiled code. Typi-
cally, assembly files have the extension .exe if they are stand-alone applications or .dll if
they’re reusable components.

■Tip The .dll extension is also used for code that needs to be executed (or hosted) by another type of
program. When your web application is compiled, it’s turned into a DLL file, because your code doesn’t rep-
resent a stand-alone application. Instead, the ASP.NET engine executes it when a web request is received.

A strict relationship doesn’t exist between assemblies and namespaces. An assembly can
contain multiple namespaces. Conversely, more than one assembly file can contain classes in
the same namespace. Technically, namespaces are a logical way to group classes. Assemblies,
however, are a physical package for distributing code.

The .NET classes are actually contained in a number of assemblies. For example, the basic
types in the System namespace come from the mscorlib.dll assembly. Many ASP.NET types are
found in the System.Web.dll assembly. In addition, you might want to use other, third-party
assemblies. Often, assemblies and namespaces have the same names. For example, you’ll find

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES74

8911CH03.qxd 10/23/07 12:19 PM Page 74

the namespace System.Web in the assembly file System.Web.dll. However, this is a conven-
ience, not a requirement.

When compiling an application, you need to tell the language compiler what assemblies
the application uses. By default, a wide range of .NET assemblies is automatically made avail-
able to ASP.NET applications. If you need to use additional assemblies, you need to define
them in a configuration file for your website. Visual Studio makes this process seamless, let-
ting you add assembly references to the configuration file using the Website ➤ Add Reference
command. You’ll use the Add Reference command in Chapter 23.

Advanced Class Programming
Part of the art of object-oriented programming is determining object relations. For example,
you could create a Product object that contains a ProductFamily object or a Car object that
contains four Wheel objects. To create this sort of object relationship, all you need to do is
define the appropriate variable or properties in the class. This type of relationship is called
containment (or aggregation).

For example, the following code shows a ProductCatalog class, which holds an array of
Product objects:

public class ProductCatalog
{

private Product[] products;

// (Other class code goes here.)
}

In ASP.NET programming, you’ll find special classes called collections that have no pur-
pose other than to group various objects. Some collections also allow you to sort and retrieve
objects using a unique name. In the previous chapter, you saw an example with the ArrayList
from the System.Collections namespace, which provides a dynamically resizable array. Here’s
how you might use the ArrayList to modify the ProductCatalog class:

public class ProductCatalog
{

private ArrayList products = new ArrayList();

// (Other class code goes here.)
}

This approach has benefits and disadvantages. It makes it easier to add and remove items
from the list, but it also removes a useful level of error checking, because the ArrayList sup-
ports any type of object. You’ll learn more about this issue later in this chapter (in the
“Generics” section).

In addition, classes can have a different type of relationship known as inheritance.

Inheritance
Inheritance is a form of code reuse. It allows one class to acquire and extend the functionality
of another class. For example, you could create a class called TaxableProduct that inherits

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES 75

8911CH03.qxd 10/23/07 12:19 PM Page 75

from Product. The TaxableProduct class would gain all the same fields, methods, properties,
and events of the Product class. You could then add additional members that relate to taxation:

public class TaxableProduct : Product
{

private decimal taxRate = 1.15M;

public decimal TotalPrice
{

get
{

// The code can access the Price property because it's
// a public part of the base class Product.
// The code cannot access the private price variable, however.
return (Price * taxRate);

}
}

}

This technique is often less useful than you might expect. In an ordinary application,
most classes use containment and other relationships instead of inheritance, which can com-
plicate life needlessly without delivering many benefits. Dan Appleman, a renowned .NET
programmer, once described inheritance as “the coolest feature you’ll almost never use.”

However, you’ll see inheritance at work in ASP.NET in at least one place. Inheritance
allows you to create a custom class that inherits the features of a class in the .NET class library.
For example, when you create a custom web form, you actually inherit from a basic Page class
to gain the standard set of features. Similarly, when you create a custom web service, you
inherit from the WebService class. You’ll see this type of inheritance throughout the book.

There are many more subtleties of class-based programming with inheritance. For exam-
ple, you can override parts of a base class, prevent classes from being inherited, or create a
class that must be used for inheritance and can’t be directly created. However, these topics
aren’t covered in this book, and they aren’t required to build ASP.NET applications. For more
information about these language features, consult a more detailed book that covers the
C# language, like Andrew Troelsen’s Pro C# 3.0 and the .NET 3.5 Framework, Third Edition
(Apress, 2007).

Static Members
The beginning of this chapter introduced the idea of static properties and methods, which can
be used without a live object. Static members are often used to provide useful functionality
related to an object. The .NET class library uses this technique heavily (as with the
System.Math class explored in the previous chapter).

Static members have a wide variety of possible uses. Sometimes they provide basic con-
versions and utility functions that support a class. To create a static property or method, you
just need to use the static keyword right after the accessibility keyword.

The following example shows a TaxableProduct class that contains a static TaxRate prop-
erty and private variable. This means there is one copy of the tax rate information, and it
applies to all TaxableProduct objects:

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES76

8911CH03.qxd 10/23/07 12:19 PM Page 76

public class TaxableProduct : Product
{

// (Other class code omitted for clarity.)

private static decimal taxRate = 1.15M;

// Now you can call TaxableProduct.TaxRate, even without an object.
public static decimal TaxRate
{

get
{ return taxRate; }
set
{ taxRate = value; }

}
}

You can now retrieve the tax rate information directly from the class, without needing to
create an object first:

// Change the TaxRate. This will affect all TotalPrice calculations for any
// TaxableProduct object.
TaxableProduct.TaxRate = 1.24M;

Static data isn’t tied to the lifetime of an object. In fact, it’s available throughout the life of
the entire application. This means static members are the closest thing .NET programmers
have to global data.

A static member can’t access an instance member. To access a nonstatic member, it needs
an actual instance of your object.

■Tip You can create a class that’s entirely composed of static members. Just add the static keyword to the
declaration, as in the following:

public static class TaxableUtil

When you declare a class with the static keyword, you ensure that it can’t be instantiated. However, you
still need to use the static keyword when declaring static members in your static class.

Casting Objects
Object variables can be converted with the same syntax that’s used for simple data types. This
process is called casting. When you perform casting, you don’t actually change anything about
an object—in fact, it remains the exact same blob of binary data floating somewhere in mem-
ory. What you change is the variable that points to the object—in other words, the way your
code “sees” the object. This is important, because the way your code sees an object deter-
mines what you can do with that object.

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES 77

8911CH03.qxd 10/23/07 12:19 PM Page 77

An object variable can be cast into one of three things: itself, an interface that it supports,
or a base class from which it inherits. You can’t cast an object variable into a string or an inte-
ger. Instead, you need to call a conversion method, if it’s available, such as ToString() or
Parse().

As you’ve already seen, the TaxableProduct class derives from Product. That means you
cast a TaxableProduct reference to a Product reference, as shown here:

// Create a TaxableProduct.
TaxableProduct theTaxableProduct() = new TaxableProduct();

// Cast the TaxableProduct reference to a Product reference.
Product theProduct = theTaxableProduct;

You don’t lose any information when you perform this casting. There is still just one
object in memory (with two variables pointing to it), and this object really is a TaxableProduct.
However, when you use the variable theProduct to access your TaxableProduct object, you’ll
be limited to the properties and methods that are defined in the Product class. That means
code like this won’t work:

// This code generates a compile-time error.
decimal TotalPrice = theProduct.TotalPrice;

Even though theProduct actually holds a reference that points to a TaxableProduct,
and even though the TaxableProduct has a TotalPrice property, you can’t access it through
theProduct. That’s because theProduct treats the object it refers to as an ordinary Product.

You can also cast in the reverse direction—for example, cast a Product reference to a
TaxableProduct reference. The trick here is that this only works if the object that’s in memory
really is a TaxableProduct. This code is correct:

Product theProduct = new TaxableProduct();
TaxableProduct theTaxableProduct() = (TaxableProduct)theProduct;

But this code generates a runtime error:

Product theProduct = new Product();
TaxableProduct theTaxableProduct() = (TaxableProduct)theProduct;

■Note When casting an object from a base class to a derived class, as in this example, you must use the
explicit casting syntax that you learned about in Chapter 2. That means you place the data type in parenthe-
ses before the variable that you want to cast. This is a safeguard designed to highlight the fact that casting
is taking place. It’s required because this casting operation might fail.

Incidentally, you can check if you have the right type of object before you attempt to cast
with the help of the is keyword:

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES78

8911CH03.qxd 10/23/07 12:19 PM Page 78

if (theProduct is TaxableProduct)
{

// It's safe to cast the reference.
TaxableProduct theTaxableProduct = (TaxableProduct)theProduct;

}

■Note One of the reasons casting is used is to facilitate more reusable code. For example, you might
design an application that uses the Product object. That application is actually able to handle an instance of
any Product-derived class. Your application doesn’t need to distinguish between all the different derived
classes (TaxableProduct, NonTaxableProduct, PromoProduct, and so on); it can work seamlessly with all of
them.

At this point, it might seem that being able to convert objects is a fairly specialized tech-
nique that will be required only when you’re using inheritance. This isn’t always true. Object
conversions are also required when you use some particularly flexible classes.

One example is the ArrayList class introduced in the previous chapter. The ArrayList is
designed in such a way that it can store any type of object. To have this ability, it treats all
objects in the same way—as instances of the root System.Object class. (Remember, all classes
in .NET inherit from System.Object at some point, even if this relationship isn’t explicitly
defined in the class code.) The end result is that when you retrieve an object from an ArrayList
collection, you need to cast it from a System.Object to its real type, as shown here:

// Create the ArrayList.
ArrayList products = new ArrayList();

// Add several Product objects.
products.Add(product1);
products.Add(product2);
products.Add(product3);

// Retrieve the first item, with casting.
Product retrievedProduct = (Product)products[0];

// This works.
Respose.Write(retrievedProduct.GetHtml());

// Retrieve the first item, as an object. This doesn't require casting,
// but you won't be able to use any of the Product methods or properties.
Object retrievedObject = products[0];

// This generates a compile error. There is no Object.GetHtml() method.
Respose.Write(retrievedObject.GetHtml());

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES 79

8911CH03.qxd 10/23/07 12:19 PM Page 79

As you can see, if you don’t perform the casting, you won’t be able to use the methods and
properties of the object you retrieve. You’ll find many cases like this in .NET code, where your
code is handed one of several possible object types and it’s up to you to cast the object to the
correct type in order to use its full functionality.

Partial Classes
Partial classes give you the ability to split a single class into more than one source code (.cs)
file. For example, if the Product class became particularly long and intricate, you might decide
to break it into two pieces, as shown here:

// This part is stored in file Product1.cs.
public partial class Product
{

private string name;
private decimal price;
private string imageUrl;

public string Name
{

get
{ return name; }
set
{ name = value; }

}

public decimal Price
{

get
{ return price; }
set
{ price = value; }

}
public string ImageUrl
{

get
{ return imageUrl; }
set
{ imageUrl = value; }

}

public Product(string name, decimal price)
{

Name = name;
Price = price;

}
}

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES80

8911CH03.qxd 10/23/07 12:19 PM Page 80

// This part is stored in file Product2.cs.
public partial class Product
{

public string GetHtml()
{

string htmlString;
htmlString = "<h1>" + name + "</h1>
";
htmlString += "<h3>Costs: " + price.ToString() + "</h3>
";
htmlString += "";
return htmlString;

}
}

A partial class behaves the same as a normal class. This means every method, property,
and variable you’ve defined in the class is available everywhere, no matter which source file
contains it. When you compile the application, the compiler tracks down each piece of the
Product class and assembles it into a complete unit. It doesn’t matter what you name the
source code files, so long as you keep the class name consistent.

Partial classes don’t offer much in the way of solving programming problems, but they
can be useful if you have extremely large, unwieldy classes. The real purpose of partial classes
in .NET is to hide automatically generated designer code by placing it in a separate file from
your code. Visual Studio uses this technique when you create web pages for a web application
and forms for a Windows application.

■Note Every fragment of a partial class must use the partial keyword in the class declaration.

Generics
Generics are a more subtle and powerful feature than partial classes. Generics allow you to
create classes that are parameterized by type. In other words, you create a class template that
supports any type. When you instantiate that class, you specify the type you want to use, and
from that point on, your object is “locked in” to the type you chose.

To understand how this works, it’s easiest to consider some of the .NET classes that sup-
port generics. In the previous chapter (and earlier in this chapter), you saw how the ArrayList
class allows you to create a dynamically sized collection that expands as you add items and
shrinks as you remove them. The ArrayList has one weakness, however—it supports any type
of object. This makes it extremely flexible, but it also means you can inadvertently run into an
error. For example, imagine you use an ArrayList to track a catalog of products. You intend to
use the ArrayList to store Product objects, but there’s nothing to stop a piece of misbehaving
code from inserting strings, integers, or any arbitrary object in the ArrayList. Here’s an example:

// Create the ArrayList.
ArrayList products = new ArrayList();

// Add several Product objects.
products.Add(product1);

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES 81

8911CH03.qxd 10/23/07 12:19 PM Page 81

products.Add(product2);
products.Add(product3);

// Notice how you can still add other types to the ArrayList.
products.Add("This string doesn't belong here.");

The solution is a new List collection class. Like the ArrayList, the List class is flexible
enough to store different objects in different scenarios. But because it supports generics, you
can lock it into a specific type whenever you instantiate a List object. To do this, you specify
the class you want to use in angled brackets after the class name, as shown here:

// Create the List for storing Product objects.
List<Product> products = new List<Product>();

Now you can add only Product objects to the collection:

// Add several Product objects.
products.Add(product1);
products.Add(product2);
products.Add(product3);

// This line fails. In fact, it won't even compile.
products.Add("This string can't be inserted.");

To figure out whether a class uses generics, look for the angled brackets. For example,
the List class is listed as List<T> in the .NET Framework documentation to emphasize that it
takes one type parameter. You can find this class, and many more collections that use gener-
ics, in the System.Collections.Generic namespace. (The original ArrayList resides in the
System.Collections namespace.)

■Note Now that you’ve seen the advantage of the List class, you might wonder why .NET includes the
ArrayList at all. In truth, the ArrayList is still useful if you really do need to store different types of objects in
one place (which isn’t terribly common). However, the real answer is that generics weren’t implemented in
.NET until version 2.0, so many existing classes don’t use them because of backward compatibility.

You can also create your own classes that are parameterized by type, like the List collec-
tion. Creating classes that use generics is beyond the scope of this book, but you can find a
solid overview at http://www.ondotnet.com/pub/a/dotnet/2004/04/12/csharpwhidbeypt2.html
if you’re still curious.

The Last Word
At its simplest, object-oriented programming is the idea that your code should be organized
into separate classes. If followed carefully, this approach leads to code that’s easier to alter,
enhance, debug, and reuse. Now that you know the basics of object-oriented programming,
you can take a tour of the premier ASP.NET development tool: Visual Studio.

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES82

8911CH03.qxd 10/23/07 12:19 PM Page 82

http://www.ondotnet.com/pub/a/dotnet/2004/04/12/csharpwhidbeypt2.html

■Note In the previous two chapters, you learned the essentials about C# and object-oriented program-
ming. The C# language continues to evolve, and there are many more advanced language features that you
haven’t seen in these two chapters. If you want to continue your exploration of C# and become a language
guru, you can visit Microsoft’s C# Developer Center online at http://msdn2.microsoft.com/en-us/
vcsharp, or you can refer to a more in-depth book about C#, such as the excellent and very in-depth
Pro C# 2008 and the .NET 3.5 Framework (Apress, 2007).

CHAPTER 3 ■ TYPES, OBJECTS, AND NAMESPACES 83

8911CH03.qxd 10/23/07 12:19 PM Page 83

http://msdn2.microsoft.com/en-us

8911CH03.qxd 10/23/07 12:19 PM Page 84

Developing ASP.NET
Applications

P A R T 2

8911CH04.qxd 9/19/07 10:57 AM Page 85

8911CH04.qxd 9/19/07 10:58 AM Page 86

Visual Studio

In the ancient days of web programming, developers created web pages with simple text edi-
tors such as Notepad. Other choices were available, but each suffered from its own quirks and
limitations. The standard was a gloves-off approach of raw HTML with blocks of code inserted
wherever necessary.

Visual Studio changes all that. First, it’s extensible and can even work in tandem with
other straight HTML editors such as Microsoft Expression Web or Adobe Dreamweaver. In
other words, you can do the heavy-duty coding with Visual Studio, but use another web design
tool to make everything look pretty. Second, Visual Studio includes indispensable time-saving
features. For example, it gives you the ability to drag and drop web pages into existence and
troubleshoot misbehaving code. Visual Studio even includes a built-in test web server, which
allows you to create and test a complete ASP.NET website without worrying about web server
settings.

In this chapter, you’ll learn how to create a web application using Visual Studio. Along the
way, you’ll take a look at the anatomy of an ASP.NET web form, and review the essentials of
XHTML. You’ll also learn how IntelliSense can dramatically reduce the number of errors you’ll
make, and how to use Visual Studio’s legendary single-step debugger to look under the hood
and “watch” your program in action. By the end of this chapter, you’ll be well acquainted with
the most important tool in any ASP.NET developer’s toolkit (Visual Studio) and you’ll under-
stand the basic principles of web development with ASP.NET.

The Promise of Visual Studio
All .NET applications are built from plain-text source files. VB code is stored in .vb files and C#
code is stored in .cs files, regardless of whether this code is designed for a stand-alone Win-
dows application or the Web. Despite this fact, you’ll rarely find VB or C# developers creating
Windows applications by hand in a text editor. The process is not only tiring, but it also opens
the door to a host of possible errors that a design tool could catch easily. The same is true for
ASP.NET programmers. Although you can write your web page classes and code your web
page controls by hand, you’ll spend hours developing and testing your code. Instead, it makes
sense to use one of the many editions of Visual Studio.

Visual Studio is an indispensable tool for developers on any platform. It provides several
impressive benefits:

87

C H A P T E R 4

8911CH04.qxd 9/19/07 10:58 AM Page 87

Integrated error checking: Visual Studio can detect a wide range of problems, such as data
type conversion errors, missing namespaces or classes, and undefined variables. As you
type, errors are detected, underlined, and added to an error list for quick reference.

The web form designer: To create a web page in Visual Studio, you simply drag ASP.NET
controls to the appropriate location and configure their properties. Visual Studio does the
heavy lifting and automatically creates the actual web page markup.

An integrated web server: To host an ASP.NET web application, you need web server soft-
ware such as IIS (Internet Information Services), which waits for browser requests and
serves the appropriate pages. Setting up your web server isn’t difficult, but it is inconven-
ient. Thanks to the integrated development web server in Visual Studio, you can run a
website directly from the design environment. (Of course, you’ll still need to deploy your
application to a real web server when it’s finished, as you’ll see in Chapter 9.)

Developer productivity enhancements: Visual Studio makes coding quick and efficient,
with a collapsible code display, automatic statement completion, and color-coded syntax.
You can even create sophisticated macro programs that automate repetitive tasks.

Fine-grained debugging: Visual Studio’s integrated debugger allows you to watch code
execution, pause your program at any point, and inspect the contents of any variable.
These debugging tools can save endless headaches when writing complex code routines.

Complete extensibility: You can use macros, change project templates, and even add your
own custom add-ins to Visual Studio. And even if you don’t intend to use these features
yourself, you might still want to use handy third-party utilities that depend on them.

■Note Almost all the tips and techniques you learn in this chapter will work equally well with the Standard
Edition, Professional Edition, and Team Edition of Visual Studio 2008 as well as Visual Web Developer 2008
Express Edition.

Creating Websites
You start Visual Studio by selecting Start ➤ Programs ➤ Microsoft Visual Studio 2008 ➤
Microsoft Visual Studio 2008. When Visual Studio first loads, it shows the Start Page (Figure 4-1).

The Start Page includes a list of recently opened projects. You can click a link in this list to
quickly resume your work where you last left off. The Start Page also includes links to online
developer content from Microsoft’s MSDN website. Although you’re free to ignore this con-
tent, you might find an interesting article, a handy code example, or a nifty add-on that you’ll
want to try out. (If your surfing habits are a bit more traditional, you can find the same content
online. A good starting point is the ASP.NET Developer Center at http://msdn.microsoft.com/
asp.net.)

To do anything practical with Visual Studio, you need to create a web application. The fol-
lowing sections show you how.

CHAPTER 4 ■ VISUAL STUDIO88

8911CH04.qxd 9/19/07 10:58 AM Page 88

http://msdn.microsoft.com

Figure 4-1. The Visual Studio Start Page

Creating a New Web Application
To create your first Visual Studio application, follow these steps:

1. Select File ➤ New ➤ Web Site from the Visual Studio menu. The New Web Site dialog
box (shown in Figure 4-2) will appear.

Figure 4-2. The New Web Site dialog box

CHAPTER 4 ■ VISUAL STUDIO 89

8911CH04.qxd 9/19/07 10:58 AM Page 89

2. Choose the type of application. To build an ordinary ASP.NET application, select the
ASP.NET Web Site template. Other templates start you off with additional files or con-
figuration settings that help you build a more specialized type of website.

3. Choose the version of .NET that you want to use. Usually, you’ll pick .NET Framework 3.5
from the list in the top-right corner of the New Web Site dialog box. However, you can
also use Visual Studio to create web applications for older versions of .NET, as
described in the “Mutlitargeting” sidebar.

MULTITARGETING

Visual Studio 2008 supports multitargeting, which means you can build web applications that are intended
for .NET 2.0, .NET 3.0, or .NET 3.5. You pick the version you want to use in the top-right corner of the New
Web Site dialog box. Changing this option changes the configuration of your website.

Interestingly enough, all three versions of .NET share exactly the same ASP.NET engine, which hasn’t
changed since .NET 2.0. The difference is the extra features that are piled on. In a .NET 3.0 application,
you can use the new WCF (Windows Communication Foundation) features to build services. In a .NET 3.5
application, you can use a few new ASP.NET controls and the ASP.NET AJAX toolkit (which is discussed in
Chapter 25). In this book, we assume you’re using the latest and greatest version of .NET. However, most of
the features that you’ll learn about work in exactly the same way with .NET 2.0 or .NET 3.0 as they do with
.NET 3.5.

Incidentally, you can also change the version of .NET that you’re using after you’ve created your web-
site. To pull this off, choose Website ➤ Start Options from the menu. Then, choose the Build group of settings
and make a different selection in the Target Framework list.

4. Choose a location for the website. The location specifies where the website files will be
stored. Typically, you’ll choose File System and then use a folder on the local computer.
You can type in a directory by hand in the Location text box and skip straight to step 6.
Alternatively, you can click the Browse button, which shows the Choose Location dia-
log box (see Figure 4-3) that’s discussed in step 5.

5. Using the Choose Location dialog box, browse to the directory where you want to place
the website. Often, you’ll want to create a new directory for your web application. To
do this, select the directory where you want to place the subdirectory, and click the
Create New Folder icon (found just above the top-right corner of the directory tree).
Either way, once you’ve selected your directory, click Open. The Choose Location dia-
log box also has options (represented by the buttons on the left) for creating a web
application on an IIS virtual directory or a remote web server. You can ignore these
options for now. In general, it’s easiest to develop your web application locally and
upload the files once they’re perfect.

■Tip Remember, the location where you create your website probably isn’t where you’ll put it when you
deploy it. Don’t worry about this wrinkle—in Chapter 9 you’ll learn how to take your development website
and put it on a live web server so it can be accessible to others over a network or the Internet.

CHAPTER 4 ■ VISUAL STUDIO90

8911CH04.qxd 9/19/07 10:58 AM Page 90

Figure 4-3. The Choose Location dialog box

6. Click OK to create the website. At this point, Visual Studio generates a new website
with just three files. This website includes a blank web page named Default.aspx,
which is its home page and starting point, and a file named Default.aspx.cs, which
holds the code for that web page. The third file is a configuration file named
web.config, which you’ll explore in Chapter 5. You’ll also get a subfolder named
App_Data, which you can use to store data files that your application uses.

Now you have a plain vanilla new website, and you’re ready to begin designing your first
web page. But before you go ahead, you might want to know a bit more about how Visual Stu-
dio keeps track of your website files using projects (optionally) and solutions. The next two
sections have all the details.

Websites and Web Projects
Ordinarily, Visual Studio uses project files to store information about the applications you
create. Web applications are a little unusual because Visual Studio doesn’t necessarily create
project files for them. In fact, if you followed the steps in the previous section, you created a
new website with no project file.

This system, which is called projectless development, is different from the way Visual Studio
works with other types of applications, such as stand-alone components and Windows pro-
grams. It’s designed to keep your website directory clean and uncluttered, and thereby
simplify the deployment of your web application. This way, when it’s finally time to upload
your website to a live web server, you can copy the entire folder without worrying about

CHAPTER 4 ■ VISUAL STUDIO 91

8911CH04.qxd 9/19/07 10:58 AM Page 91

excluding files that are only used for development purposes. Projectless development is also
handy if you’re programming with a team of colleagues, because you can each work on sepa-
rate pages without needing to synchronize project and solution files.

For most web developers, this is all you need to know. However, there’s actually another
option: project-based development, or web projects. Web projects are the older way of creating
ASP.NET web applications, and they’re still supported in Visual Studio 2008 for use in specific
scenarios.

You can create a web project by choosing File ➤ New ➤ Project, and then choosing the
ASP.NET Web Application template. Web projects support all the same features as projectless
websites, but they use an extra project file (with the extension .csproj). The web project file
keeps track of the web pages, configuration files, and other resources that are considered part
of your web application. It’s stored in the same directory as all your web pages and code files.

Essentially, there are just a few reasons why you would consider using web projects:

• You have an old web project that was created in a version of Visual Studio before Visual
Studio 2005. When you open this project in Visual Studio 2008, it will be migrated as a
web project automatically to avoid strange compatibility quirks that might otherwise
crop up.

• You want to place two (or more) web projects in the same website folder. Technically,
ASP.NET will consider these two projects to be one web application. However, with web
projects, you have the flexibility to work on the files separately in Visual Studio. You
simply add the files that you want to group together to your project.

• You have a really huge website that has lots of resources files (for example, thousands of
images). Even though these files are a part of your website, you might not want them to
appear in the Solution Explorer window in Visual Studio because they can slow down
the development environment. If you use web projects, you can easily get around this
issue—just don’t add these resource files to your project.

• You are using the MSBuild utility to create an automated deployment process. The
MSBuild utility uses project files. For example, a large company might devise a build
strategy that automatically signs compiled web application files and deploys them to a
production web server. MSBuild isn’t discussed in this book, but you can find more
information by looking up the “MSBuild” entry (with that capitalization) in the index of
the Visual Studio Help.

All the examples that are shown in this book use the projectless website model. However,
you’re free to create web projects if you fit into one of the scenarios I just described. You still
write the same code to power your web pages. It’s really just a matter of taste.

The Hidden Solution Files
As you’ve learned, Visual Studio allows you to create ASP.NET applications without project
files. However, you might be surprised to learn that Visual Studio still creates one type of
resource file, called a solution file. Solutions are a similar concept to projects—the difference
is that a single solution can hold one or more projects. Whenever you’re working in Visual
Studio, you’re working with a solution. Often, that solution contains a single projectless web-
site, but in more advanced scenarios it might actually hold additional projects, such as a web
application and a component that you’re using with your website.

CHAPTER 4 ■ VISUAL STUDIO92

8911CH04.qxd 9/19/07 10:58 AM Page 92

At this point, you’re probably wondering where Visual Studio places solution files. It
depends, but in a typical projectless web application, Visual Studio quietly tucks the solution
files away into the user-specific document directory. In Windows Vista, you’ll find it in a direc-
tory that’s named in this form:

c:\Users\[UserName]\Documents\Visual Studio 2008\Projects\[WebsiteFolderName]

In earlier versions of Windows, the directory is named in this form:

c:\Documents and Settings\[UserName]\My Documents\Visual Studio 2008\
Projects\[WebsiteFolderName]

Either way, this system can get a bit confusing, because the rest of your website files will
be placed in a completely different directory.

Each solution has two solution files, with the file extensions .sln and .suo. In the previous
section, a new website was created named SampleSite. Behind the scenes, Visual Studio gen-
erates the following solution files for SampleSite:

SampleSite.sln
SampleSite.suo

When you open a previously created website, Visual Studio locates the matching solution
file automatically, and uses the settings in that solution.

The solution files store some Visual Studio–specific details that aren’t directly related to
ASP.NET, such as debugging and view settings. For example, Visual Studio tracks the files that
are currently open so it can reopen them when you resume your website development.

The solution files aren’t essential. In fact, if you move your website to another computer
(or just place them in another location on your computer), Visual Studio won’t be able to
locate the original solution files, and you’ll lose the information they store. You’ll can also run
into trouble if you create two websites with the same name in different locations, in which
case the newer solution files may overwrite the older ones. However, because the information
in the solution files isn’t really all that important, losing it isn’t a serious problem. The overall
benefits of a projectless system are usually worth the trade-off.

Usually, you can forget about solutions altogether, and let Visual Studio manage them
seamlessly. But in some cases, you might want to keep a closer eye on your solution files so
you can use them later. For example, you might want to use a solution file to open up a combi-
nation of projects that you’re working on at the same time. You’ll see this technique in action
in Chapter 23, when you develop your own components.

The Solution Explorer
To take a high-level look at your website, you can use the Solution Explorer—the window at
the top-right corner of the design environment that lists all the files in your web application
directory (see Figure 4-4).

CHAPTER 4 ■ VISUAL STUDIO 93

8911CH04.qxd 9/19/07 10:58 AM Page 93

Figure 4-4. The Solution Explorer

The Solution Explorer reflects everything that’s in the application directory of a projectless
website. No files are hidden. This means if you add a plain HTML file, a graphic, or a subdirec-
tory in Windows Explorer, the next time you fire up Visual Studio you’ll see the new contents in
the Solution Explorer. If you add these same ingredients while Visual Studio is open, you won’t
see them right away. Instead, you’ll need to refresh the display. To do so, right-click the website
folder in the Solution Explorer (which appears just under the Solution item at the top of the
tree) and choose Refresh Folder.

Of course, the whole point of the Solution Explorer is to save you from resorting to using
Windows Explorer. Instead, it allows you to perform a variety of file management tasks within
Visual Studio. You can rename, delete, or copy files by simply right-clicking the item and
choosing the appropriate command.

Adding Web Forms
As you build your website, you’ll need to add new web pages and other items. To add these
ingredients, choose Website ➤ Add New Item from the Visual Studio menu. When you do, the
Add New Item dialog box will appear.

You can add various types of files to your web application, including resources you want
to use (such as bitmaps), ordinary HTML files, code files with class definitions, style sheets,
data files, configuration files, and much more. Visual Studio even provides basic designers that
allow you to edit most of these types of files directly in the IDE. However, the most common
ingredients that you’ll add to any website are web forms—ASP.NET web pages that are fueled
with C# code. Your website begins with one (named Default.aspx), but you’re sure to need
many more before your application is complete.

To add a web form, choose Web Form in the Add New Item dialog box. You’ll see two new
options at the bottom of the Add New Item dialog box (as shown in Figure 4-5).

The Place Code in a Separate File option allows you to choose the coding model for your
web page. If you clear this check box, Visual Studio will create a single-file web page. You must
then place all the C# code for the file in the same file that holds the HTML markup. If you
select the Place Code in a Separate File option, Visual Studio will create two distinct files for
the web page, one with the markup and the other for your C# code. This is the more structured
approach that you’ll use in this book. The key advantage of splitting the web page into sepa-
rate files is that it’s more manageable when you need to work with complex pages. However,
both approaches give you the same performance and functionality.

CHAPTER 4 ■ VISUAL STUDIO94

8911CH04.qxd 9/19/07 10:58 AM Page 94

Figure 4-5. Adding an ASP.NET web form

You’ll also see another option named Select Master Page, which allows you to create a
page that uses the layout you’ve standardized in a separate file. For now, disregard this setting.
You’ll learn how to create master pages in Chapter 13.

Once you’ve chosen the coding model and typed in a suitable name for your web page,
click Add to create it. If you’ve chosen to use the Place Code in Separate File check box (which
is recommended), your project will end up with two files for each web page. One file includes
the web page markup (and has the file extension .aspx). The other file stores the source code
for the page (and uses the same file name, with the file extension .aspx.cs). To make the rela-
tionship clear, the Solution Explorer displays the code file underneath the .aspx file (see
Figure 4-6).

Figure 4-6. A code file for a web page

You can also add files that already exist by selecting Website ➤ Add Existing Item. You can
use this technique to copy files from one website to another. Visual Studio leaves the original
file alone and simply creates a copy in your web application directory. However, don’t use this

CHAPTER 4 ■ VISUAL STUDIO 95

8911CH04.qxd 9/19/07 10:58 AM Page 95

approach with a web page that has been created in an older version of Visual Studio. Instead,
refer to the following section to convert your old application and bring it into Visual
Studio 2008.

Migrating a Website from a Previous Version of Visual Studio
If you have an existing ASP.NET web application created with an earlier version of Visual
Studio, you can migrate it to the ASP.NET world with ease.

If you created a projectless website with Visual Studio 2005, you use the File ➤ Open ➤
Web Site command, just as you would with a website created in Visual Studio 2008. The first
time you open a Visual Studio 2005 website, you’ll be asked if you want to adjust it to use
ASP.NET 3.5 (see Figure 4-7). If you choose Yes, Visual Studio makes a few simple changes to
the web.config configuration file, so that the application can use .NET 3.5. If you choose No,
your website will stay as it is, and it will continue targeting ASP.NET 2.0. (You can modify this
detail at any time by choosing Website ➤ Start Options.) Either way, you won’t be asked again
the next time you open the website, because your preference will be recorded in the hidden
solution file that’s stored in a user-specific Visual Studio directory.

Figure 4-7. Opening a projectless website that was created with Visual Studio 2005

If you created a web project with Visual Studio 2005, Visual Studio 2003, or Visual Studio
.NET, you need to use the File ➤ Open ➤ Project/Solution command. When you do, Visual
Studio begins the Conversion Wizard. The Conversion Wizard is exceedingly simple. It
prompts you to choose whether to create a backup and, if so, where it should be placed (see
Figure 4-8). If this is your only copy of the application, a backup is a good idea in case some
aspects of your application can’t be converted successfully. Otherwise, you can skip this
option.

When you click Finish, Visual Studio performs an in-place conversion, which means it
overwrites your web page files with the new versions. Any errors and warnings are added to a
conversion log, which you can display when the conversion is complete.

CHAPTER 4 ■ VISUAL STUDIO96

8911CH04.qxd 9/19/07 10:58 AM Page 96

Figure 4-8. Importing a web project that was created with an older version of Visual Studio

Designing a Web Page
Now that you understand the basic organization of Visual Studio, you can begin designing a
simple web page. To start, in the Solution Explorer, double-click the web page you want to
design. (Start with Default.aspx if you haven’t added any additional pages.)

Visual Studio gives you three ways to look at an .aspx page:

Design view: Here you’ll see a graphical representation of what your page looks like.

Source view: Here you’ll see the underlying markup, with the HTML for the page and the
ASP.NET control tags.

Split view: This combined view allows you to see both the design view and source view at
once, stacked one on top of the other. This is the view that most ASP.NET developers pre-
fer, provided they have enough screen space.

You can switch between these three views freely by clicking the Design, Split, and Source
buttons at the bottom of the designer window.

You’ll spend some time in the source view a bit later in this chapter, when you dig into the
web page markup. But first, it’s easiest to start with the friendlier design view, and start adding
content to your page.

CHAPTER 4 ■ VISUAL STUDIO 97

8911CH04.qxd 9/19/07 10:58 AM Page 97

■Tip If you have a widescreen monitor, you’ll probably prefer to have the split view use two side-by-side
regions (rather than a top and bottom region). Fortunately, it’s easy to configure Visual Studio to do so. Just
select Tools ➤ Options, and then head to the HTML Designer ➤ General section in the tree of settings.
Finally, select the Split Views Vertically option and click OK.

Adding Web Controls
To add an ASP.NET web control, drag the control you want from the Toolbox on the left and
drop it onto your web page. Technically speaking, you can drop your controls onto a design
view window or onto a source view window. However, it’s usually easiest to position the con-
trol in the right place when you use design view. If you drop controls carelessly into the source
view, they might not end up in the <form> section, which means they won’t work in your page.

The controls in the Toolbox are grouped in numerous categories based on their functions,
but you’ll find basic ingredients such as buttons, labels, and text boxes in the Standard tab.

■Tip By default, the Toolbox is enabled to automatically hide itself when your mouse moves away from it,
somewhat like the AutoHide feature for the Windows taskbar. This behavior is often exasperating, so you
may want to click the pushpin in the top-right corner of the Toolbox to make it stop in its fully expanded
position.

In a web form, controls are positioned line by line, like in a word processor document. To
add a control, you need to drag and drop it to an appropriate place. To organize several con-
trols in design view, you’ll probably need to add spaces and hard returns (just hit Enter) to
position elements the way you want them. Figure 4-9 shows an example with a TextBox, a
Label, and a Button control.

Figure 4-9. The design view for a page

CHAPTER 4 ■ VISUAL STUDIO98

8911CH04.qxd 9/19/07 10:58 AM Page 98

You’ll find that some controls can’t be resized. Instead, they grow or shrink to fit the
amount of content in them. For example, the size of a Label control depends on how much
text you enter in it. On the other hand, you can adjust the size of a Button or a TextBox control
by clicking and dragging in the design environment.

As you add web controls to the design surface, Visual Studio automatically adds the corre-
sponding control tags to your .aspx file. To look at the markup it’s generated, you can click the
Source button to switch to source view (or click the Split button to see both at once). Figure 4-10
shows what you might see in the source view for the page displayed in Figure 4-9.

Figure 4-10. The source view for a page

Using the source view, you can manually add attributes or rearrange controls. In fact,
Visual Studio even provides IntelliSense features that automatically complete opening tags
and alert you if you use an invalid tag. Whether you use the design or source view is entirely
up to you—Visual Studio keeps them both synchronized.

■Note When you use split view, Visual Studio keeps the source and design area synchronized. However,
this synchronization process isn’t always instantaneous. Generally, if you make a change in the design
region, the source region is updated immediately. However, if you make a change in the source region, a
yellow message bar appears at the top of the design region to warn you that the content has changed. To
refresh the design region, simply click anywhere inside the design region. To refresh the design region with-
out taking your fingers off the keyboard, press Ctrl+S to save the web page.

CHAPTER 4 ■ VISUAL STUDIO 99

8911CH04.qxd 9/19/07 10:58 AM Page 99

THE MISSING GRID LAYOUT FEATURE

If you’ve used previous versions of Visual Studio, you may remember a feature called grid layout, which
allowed you to position elements with absolute coordinates by dragging them where you wanted them.
Although this model seems convenient, it really isn’t suited to most web pages because controls can’t adjust
their positioning when the web page content changes (or when text is resized based on user preferences).
This leads to inflexible layouts (such as controls that overwrite each other).

That said, Visual Studio 2008 has a back door way to use grid layout. All you need to do is to switch to
source view and add a style attribute that uses CSS to specify absolute positioning. This attribute will already
exist in any pages you’ve created with a previous version of Visual Studio .NET in grid layout mode.

Here’s an example:

<asp:Button ID="cmd" style="POSITION: absolute; left: 100px; top: 50px;"
runat="server" Text="Floating Button" ... />

Once you’ve made this change, you’re free to drag the button around the window at will. Of course, you
shouldn’t go this route just because it seems closer to the Windows model. Most great web pages use
absolute positioning rarely, if at all, because it’s just too awkward and inflexible.

If you do decide to use absolute positioning, the best idea is to apply it to a container, such as the <div>
element. The <div> element represents a box that is invisible by default but can optionally have borders, a
background fill, and other formatting. Using absolute positioning, you can then place your <div> container
precisely, but let the content inside use normal flow layout. This greatly simplifies the amount of layout you
need to do. For example, if you want to create a sidebar with a list of links, it’s much easier to position the
sidebar using absolute positioning than to try and place each link in the right place individually.

The Properties Window
Once you’ve added a web control to a web page, you’ll probably want to tweak it a bit. For
example, you might want to change the text in the button, the color of a label, and so on.
Although you can make all your changes by editing the source markup by hand, Visual Studio
provides an easier option. Just under the Solution Explorer, in the bottom-right corner of the
Visual Studio window, you’ll see the Properties window, which shows you the properties of the
currently selected web control—and lets you tweak them.

To configure a control in design view you must first select it on the page (either click it
once in the design view or click somewhere inside the tag for that control in the source view).
You’ll know the right control is selected when you see its name appear in the drop-down list at
the top of the Properties window. Alternatively, you can select your control by picking its name
from the Properties window list.

Once you’ve selected the control you want you can modify any of its properties. Good
ones to try include Text (the content of the control), ID (the name you use to interact with the
control in your code), and ForeColor (the color used for the control’s text).

■Note If the Properties window isn’t visible, you can pop it into view by choosing View ➤ Properties
Window.

CHAPTER 4 ■ VISUAL STUDIO100

8911CH04.qxd 9/19/07 10:58 AM Page 100

Every time you make a selection in the Properties window, Visual Studio adjusts the web
page markup accordingly. Visual Studio even provides special “choosers” that allow you to
select extended properties. For example, if you select a color property (such as ForeColor or
BackColor) in the Properties window, a button with three dots (...) will appear next to the
property, as shown in Figure 4-11.

Figure 4-11. The ForeColor property in the Properties window

If you click this button, Visual Studio will show a dialog box where you can pick a custom
color (Figure 4-12). Once you make your selection and click OK, Visual Studio will insert the
HTML color code into the Properties window and update your web page markup.

Figure 4-12. Choosing a color value

CHAPTER 4 ■ VISUAL STUDIO 101

8911CH04.qxd 9/19/07 10:58 AM Page 101

You’ll see a similar feature when configuring fonts. First, select the appropriate control on
the design surface (or in the list at the top of the Properties window). Next, expand the Font
property in the properties window and select the Name subproperty. A drop-down arrow will
appear next to the property. Click this to choose from a list of all the fonts that are installed on
your computer. (Don’t go too crazy here. If you choose a font that isn’t installed on the com-
puter of the person who is visiting your web page, the browser will revert to a standard font.
Chapter 6 has more about font choosing.)

Along with web controls, you can also select ordinary HTML tags in the Properties
window. However, there’s a lot less you can do with them. Ordinary HTML tags aren’t live pro-
gramming objects, so they don’t have nifty features that you can control. And ordinary HTML
tags don’t offer many options for formatting. If you want to change the appearance of a tag,
your best choice is to create a style for your control. If you’re a web guru, you can do this by
hand. If not, you can use Visual Studio’s style building features, which you’ll learn about in
Chapter 13.

Finally, you can select one object in the Properties window that needs some explanation—
the DOCUMENT object, which represents the web page itself. Using this object, you can set
various options for the entire page, including the title that will be displayed in the browser,
linked style sheets, and support for other features that are discussed later in this book (such
as tracing and session state).

The Anatomy of a Web Form
So far, you’ve spent most of your time working with the web page in design view. There’s noth-
ing wrong with that—after all, it makes it easy to quickly assemble a basic web page without
requiring any HTML knowledge.

However, it probably won’t be long before you dip into the source view. Some types of
changes are easier to make when you are working directly with your markup. Finding the con-
trol you want on the design surface, selecting it, and editing the properties one at a time in the
Properties window can be tedious.

The source view is often helpful when you want to add plain HTML content—after all, not
everything in your web page needs to be a full-fledged web control. You can add ordinary
HTML elements using design view (just drag the element you want from the HTML tab of the
Toolbox), but it’s often easier to type them in by hand, because you’ll usually need to use a
combination of elements to get the result you want.

The Web Form Markup
If you haven’t written HTML pages before, the web page source might look a little intimidat-
ing. And if you have written HTML pages before, the web page source might look a little odd.
That’s because the source for an ASP.NET web form isn’t 100 percent HTML. Instead, it’s an
HTML document with an extra ingredient—ASP.NET web controls.

Every ASP.NET web form includes the standard HTML tags, like <html>, <head>, and
<body>, which delineate the basic sections of your web page. You can insert additional HTML
tags, like paragraphs of text (use the <p> tag), headings (use <h1>, <h2>, <h3>), tables (use
<table>), and so on. Along with standard HTML, you can add ASP.NET-only elements to your
web pages. For example, <asp:Button> represents a clickable button that triggers a task on the

CHAPTER 4 ■ VISUAL STUDIO102

8911CH04.qxd 9/19/07 10:58 AM Page 102

web server. When you add an ASP.NET web control, you create an object that you can interact
with in your web page code, which is tremendously useful.

Here’s a look at the web page shown in Figure 4-7. The details that are not part of ordinary
HTML are highlighted, and the lines are numbered for easy reference:

1 <%@ Page Language="C#" AutoEventWireup="true"
2 CodeFile="Default.aspx.cs" Inherits="_Default" %>

3 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
4 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

5 <html xmlns="http://www.w3.org/1999/xhtml">
6 <head runat="server">
7 <title>Untitled Page</title>
8 </head>
9 <body>
10 <form ID="form1" runat="server">
11 <div>
12 <asp:Label ID="Label1" runat="server"
13 Text="Type something here:" />
14 <asp:TextBox ID="TextBox1" runat="server" />
15

16 <asp:Button ID="Button1" runat="server" Text="Button" />
17 </div>
18 </form>
19 </body>
20 </html>

Obviously, the ASP.NET-specific details (the highlighted bits) don’t mean anything to a
web browser because they aren’t valid HTML. This isn’t a problem, because the web browser
never sees these details. Instead, the ASP.NET engine creates an HTML “snapshot” of your
page after all your code has finished processing on the server. At this point, details like the
<asp:Button> are replaced with HTML tags that have the same appearance. The ASP.NET
engine sends this HTML snapshot to the browser.

This summary is just a quick introduction to the ASP.NET web control model. You’ll learn
much more about web controls and how web forms work behind the scenes in the following
two chapters. But before you go any further, it’s important to consider a few essential details
about ASP.NET web forms. In the following sections, you’ll learn about the page directive
(lines 1 and 2 in the previous code sample) and the doctype (lines 3 and 4). You’ll then take a
quick detour to review some of the essential rules of XHTML, the markup language used to
create modern web pages.

The Page Directive
The Default.aspx page, like all ASP.NET web forms, consists of three sections. The first section
is the page directive:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="Default.aspx.cs" Inherits="_Default" %>

CHAPTER 4 ■ VISUAL STUDIO 103

8911CH04.qxd 9/19/07 10:58 AM Page 103

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.w3.org/1999/xhtml

The page directive gives ASP.NET basic information about how to compile the page. It
indicates the language you’re using for your code and the way you connect your event han-
dlers. If you’re using the code-behind approach (which is recommended), the page directive
also indicates where the code file is located and the name of your custom page class. You won’t
need to modify the page directive by hand, because Visual Studio maintains it for you.

■Note The page directive is for ASP.NET’s eyes only. The page directive doesn’t appear in the HTML that’s
sent to the browser—instead, ASP.NET strips it out.

The Doctype
In an ordinary, non-ASP.NET web page, the doctype occupies the very first line. In an ASP.NET
web form, the doctype gets second place, and appears just underneath the page directive.

The doctype indicates the type of markup (for example, HTML or XHTML) that you’re
using to create your web page. Technically, the doctype is optional, but Visual Studio adds it
automatically. This is important, because depending on the type of markup you’re using there
may be certain tricks that aren’t allowed. For example, strict XHTML doesn’t let you use HTML
formatting features that are considered obsolete and have been replaced by CSS.

The doctype is also important because it influences how a browser interprets your web
page. For example, if you don’t include a doctype on your web page, Internet Explorer (IE)
switches itself into a legacy mode known as quirks mode. While IE is in quirks mode, certain
formatting details are processed in inconsistent, nonstandard ways, simply because this is his-
torically the way IE behaved. Later versions of IE don’t attempt to change this behavior, even
though it’s faulty, because some websites may depend on it. However, you can specify a more
standardized rendering that more closely matches the behavior of other browsers (like Firefox)
by adding a doctype.

■Tip If you have a web page that looks dramatically different in Internet Explorer than it does in Firefox, the
culprit may be a missing or invalid doctype. Common idiosyncrasies that appear in web pages that don’t
have doctypes include varying text sizes and varying margin space between elements.

There are a small set of allowable doctypes that you can use. By default, newly created
web pages in Visual Studio use the following doctype:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

This indicates that the web page uses XHTML 1.0 transitional. The word transitional
refers to the fact that this version of XHTML is designed to be a stepping stone between the
old-fashioned HTML world and the ultra-strict XHTML world. XHTML transitional enforces
all the structural rules of XHTML but allows some HTML formatting features that have been
replaced by Cascading Style Sheets (CSS) and are considered obsolete.

CHAPTER 4 ■ VISUAL STUDIO104

8911CH04.qxd 9/19/07 10:58 AM Page 104

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd

If you don’t need to use these details, you can step up to XHTML strict using this doctype:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

These are the two most common doctypes in use today.

XHTML VS. HTML

XHTML is a reformulation of HTML that tightens up its rules. Although XHTML looks quite similar to HTML
(and is identical in many cases), it doesn’t tolerate the same looseness as HTML. For example, HTML toler-
ates missing information and many minor mistakes. Unfortunately, this creates a problem with web browser
support, because different browsers may react differently to these minor glitches. XHTML doesn’t allow the
same sloppiness, so the final result is more consistent in different browsers.

The X at the beginning of XHTML stands for XML, because XHTML is technically a flavor of XML and
plays by its rules. (XML is an all-purpose standard for storing information in a flexible way that’s not tied to
any particular application, operating system, or programming environment. Although you may not know much
about XML right now, you’ll take a detailed look at it in Chapter 19.)

There is a deeply buried configuration setting that allows you to change the way ASP.NET works so that
it uses HTML instead of XHTML. But developers rarely use this option unless they have issues with old web
documents (for example, they want to take legacy HTML pages and transform them to ASP.NET web forms in
the fastest way possible). If you’re developing a new website, there’s no reason not to use XHTML. (And
avoiding XHTML can cause problems if you try to use ASP.NET’s new AJAX toolkit, which is described in
Chapter 25.) But if you really must know how to get back to the past, search the Visual Studio Help for the
xhtmlConformance configuration setting.

■Note Throughout this book, you’ll find many references to HTML. However, this is just a convenient short-
hand that includes HTML and XHTML. The web page examples that you’ll see in this book use valid XHTML.

There are still a few more doctypes that you can use. If you’re working with an existing
website that’s based on the somewhat out-of-date HTML standard, this is the doctype you
need:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

And if you want to use the slightly tweaked XHTML 1.1 standard (rather than XHTML 1.0),
you need the following doctype:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

XHTML 1.1 is mostly identical to XHTML 1.0 but streamlines a few more details and
removes a few more legacy details. It doesn’t provide a transitional option.

CHAPTER 4 ■ VISUAL STUDIO 105

8911CH04.qxd 9/19/07 10:58 AM Page 105

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/TR/html4/strict.dtd
http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd

■Note There are a few more doctypes that you can use to create frames pages, which allow you to split a
browser window into multiple panes, each of which shows a separate page. Frames pages are discouraged
in modern day web development, because they don’t work well with different window sizes and aren’t
always indexed correctly by search engines. You can see a more complete list of allowed doctypes, which
includes the doctype for a frames page, at www.w3.org/QA/2002/04/Web-Quality.

Remember, the ASP.NET server controls will work equally well with any doctype. It’s up to
you to choose the level of standards compliance and backward compatibility you want in your
web pages. If you’re still in doubt, it’s best to start out with XHTML 1.0 transitional, as it elimi-
nates the quirks in different browser versions without removing all the legacy features. If
you’re ready to make a clean break with HTML, even if it means a bit more pain, consider
switching to XHTML 1.0 strict or XHTML 1.1 (which is always strict) instead.

■Note In this book, the web page markup listings omit the doctype (because it’s just one more detail
chewing up extra pages). If you download the sample code, you’ll find that most pages use the XHTML 1.1
doctype.

The Essentials of XHTML
Part of the goal of ASP.NET is to allow you to build rich web pages without forcing you to slog
through the tedious details of XHTML (or HTML). ASP.NET delivers on this promise in many
ways—for example, in many situations you can get the result you want using a single slick web
control rather than writing a page full of XHTML markup.

However, ASP.NET doesn’t isolate you from XHTML altogether. In fact, a typical ASP.NET
web page mingles ASP.NET web controls with ordinary XHTML content. When that page is
processed by the web server, the ASP.NET web controls are converted to XHTML markup (a
process known as rendering) and inserted into the page. The final result is a standard XHTML
document that’s sent back to the browser.

This design gives you the best of both worlds—you can mix ordinary XHTML markup for
the parts of your page that don’t change, and use handy ASP.NET web controls for the parts
that need to be interactive (such as buttons, lists, text boxes, and so on) or the parts that you
need to update with new information (for example, a block of dynamic text). This design also
suggests that ASP.NET developers should have a solid understanding of XHTML basics before
they begin coding web forms. The following sections provide a brief overview that introduces
you to the XHTML standard (or refreshes your memory, if you’ve learned it before). If you
already know all you want to know about XHTML, feel free to skip ahead to the next section,
“Writing Code.”

CHAPTER 4 ■ VISUAL STUDIO106

8911CH04.qxd 9/19/07 10:58 AM Page 106

http://www.w3.org/QA/2002/04/Web-Quality

■Note The full XHTML standard is fairly straightforward, but it’s a bit beyond the scope of this book. If you
want to learn all the details, you can surf to www.w3schools.com/xhtml for a concise online tutorial.

Elements
The most important concept in the XHTML (and HTML) standard is the idea of elements. Ele-
ments are containers that contain bits of your web page content. For example, if you want to
add a paragraph of text to a web page, you stuff it inside a paragraph element. A typical web
page is actually composed of dozens (or hundreds) of elements. Taken together, these ele-
ments define the structure of the web page. They’re also the starting point for formatting the
web page. For example, headings usually look different than ordinary paragraphs, and tables
look different than bulleted lists.

The XHTML language defines a small set of elements that you can use—in fact, there are
fewer than you probably expect. XHTML also defines the syntax for using these elements. A
typical element consists of three pieces: a start tag, some content, and an end tag. Here’s an
example:

<p>This is a sentence in a paragraph.</p>

This example uses the paragraph element. The element starts with the <p> start tag, ends
with the </p> end tag, and contains some text inside. Tags are easy to recognize, because
they’re always enclosed in angled brackets. And here’s a combination that adds a heading to a
web page followed by a paragraph:

<h1>A Heading</h1>
<p>This is a sentence in a paragraph.</p>

Browsers have built-in rules about how to process and display different elements. When a
browser digests this markup, it always places the heading in a large, bold font, and adds a line
break and some extra space underneath it, before starting the paragraph. Of course, there are
ways to modify these formatting rules using the CSS standard, which you’ll consider in
Chapter 13.

Many XHTML elements can contain other elements. For example, you can use the
element inside the <p> element to apply bold formatting to a portion of a paragraph:

<p>This is a sentence in a paragraph.</p>

The <h1> and <p> elements usually hold content inside. As a result, they’re split into a
start tag and an end tag. For example, a heading begins with <h1> and ends with </h1>. How-
ever, some elements don’t need any content, and can be declared using a special empty tag
syntax that fuses the start and end tag together. For example, the
 element represents a
line break. Rather than writing
</br>, you can simply use
, as shown here:

<p>This is line one.

This is line two.

This is line three.</p>

CHAPTER 4 ■ VISUAL STUDIO 107

8911CH04.qxd 9/19/07 10:58 AM Page 107

http://www.w3schools.com/xhtml

Other elements that can be used in this fashion include (for showing an image),
<hr> (for creating a horizontal rule, or line), and most ASP.NET controls.

■Note Line breaks are important because XHTML collapses whitespace. That means you can add a series
of spaces, tabs, and hard returns in your element content, and the browser will simply render a single space
character. If you really do want line breaks, you need to use separate elements (for example, more than one
<p> paragraph) or line breaks. If you want extra spaces, you need to add the HTML character entity
instead (which stands for nonbreaking space). The browser converts this code into a single space character.

Table 4-1 lists some the most commonly used XHTML elements. The Type column distin-
guishes between two types of XHTML—those that typically hold content or other nested
elements (containers), and those that can be used on their own with the empty tag syntax you
just considered (standalone).

Table 4-1. Basic XHTML Elements

Tag Name Type Description

, <i>, <u> Bold, Italic, Container These elements are used to apply
Underline basic formatting, and make text bold,

italic, or underlined. Some web
designers prefer to use
instead of and <emphasis>
instead of <i>. Although these
elements have the same standard
rendering (bold and italic,
respectively), they make more sense if
you plan to use styles to change the
formatting sometime in the future.

<p> Paragraph Container The paragraph groups a block of free-
flowing text together. The browser
automatically adds a bit of space
between paragraphs and other
elements (like headings) or between
subsequent paragraphs.

<h1>, <h2>, <h3>, Heading Container These elements are headings, which
<h4>, <h5>, <h6> give text bold formatting and a large

font size. The lower the number, the
larger the text, so <h1> is for the
largest heading. The <h5> heading is
normal text size, and <h6> is actually a
bit smaller than ordinary text.

 Image Standalone The image element shows an external
image file (specified by the src
attribute) in a web page.

 Line Break Standalone This element adds a single line break,
with no extra space.

CHAPTER 4 ■ VISUAL STUDIO108

8911CH04.qxd 9/19/07 10:58 AM Page 108

Tag Name Type Description

<hr> Horizontal Line Standalone This element adds a horizontal line
(which gets the full width of the
containing element). You can use the
horizontal line to separate different
content regions.

<a> Anchor Container The anchor element wraps a piece of
text, and turns it into a link. You set the
link target using the href attribute.

, Unordered List, Container These elements allow you to build
List Item bulleted lists. The element

defines the list, while the element
defines an item in the list (you nest the
actual content for that item inside).

, Ordered List, Container These elements allow you to build
List Item numbered lists. The element

defines the list, while the element
defines an item in the list (you nest the
actual content for that item inside).

<table>, <tr>, <td> Table Container The <table> element allows you to
create a multicolumn, multirow table.
Each row is represented by a <tr>
element inside the <table>. Each cell
in a row is represented by a <td>
element inside a <tr>. You place the
actual content for the cell in the
individual <td> elements.

<div> Division Container This element is an all-purpose
container for other elements. It’s used
to separate different regions on the
page, so you can format them or
position them separately. For example,
you can use a <div> to create a shaded
box around a group of elements.

 Span Container This element is an all-purpose
container for bits of text content
inside other elements (like headings or
paragraphs). It’s most commonly used
to format those bits of text. For
example, you can use a to
change the color of a few words in a
sentence.

<form> Form Container This element is used to hold all the
controls on a web page. Controls are
HTML elements that can send infor-
mation back to the web server when
the page is submitted. For example,
text boxes submit their text, list boxes
submit the currently selected item in
the list, and so on.

CHAPTER 4 ■ VISUAL STUDIO 109

8911CH04.qxd 9/19/07 10:58 AM Page 109

Attributes
Every XHTML document fuses together two types of information: the document content, and
information about how that content should be presented. You control the presentation of your
content in just three ways: by using the right elements, by arranging these elements to get the
right structure, and by adding attributes to your elements.

Attributes are individual pieces of information that you attach to an element, inside the
start tag. Attributes have many uses—for example, they allow you to explicitly attach a style to
an element so that it gets the right formatting. Some elements require attributes. The most
obvious example is the element, which allows you to pull the content from an image
file and place it in your web page.

The tag requires two pieces of information—the image URL (the source), and the
alternate text that describes the picture (which is used for accessibility purposes, as with
screen reading software). These two pieces of information are specified using two attributes,
named src and alt:

The <a> anchor element is an example of an element that uses attributes and takes con-
tent. The content inside the <a> element is the blue, underline text of the hyperlink. The href
attribute defines the destination that the browser will navigate to when the link is clicked.

<p>
Click here to visit my website.
</p>

You’ll use attributes extensively with ASP.NET control tags. With ASP.NET controls, every
attribute maps to a property of the control class.

Formatting
Along with the tag for bold, XHTML also supports <i> for italics and <u> for underlining.
However, this is about as far its formatting goes.

XHTML elements are intended to indicate the structure of a document, not its formatting.
Although you can adjust colors, fonts, and some formatting characteristics using XHTML ele-
ments, a better approach is to define formatting using a CSS style sheet. For example, a style
sheet can tell the browser to use specific formatting for every <h1> element in a page. You can
even apply the styles in a style sheet to all the pages in your website.

■Tip In the downloadable samples, you’ll find that many of the web pages use a style sheet named
Styles.css. This style sheet applies the Verdana font to all elements of the web page.

In an ASP.NET web page, there are two ways you can use CSS. You can use it directly to
format elements. Chapter 13 outlines the basics of this approach. Or, you can configure the
properties of the ASP.NET controls you’re using, and they’ll generate the styles they need auto-
matically. This is the way you’ll use formatting for the first half of this book.

CHAPTER 4 ■ VISUAL STUDIO110

8911CH04.qxd 9/19/07 10:58 AM Page 110

http://www.prosetech.com

A Complete Web Page
You now know enough to put together a complete XHTML page.

Every XHTML document starts out with this basic structure (right after the doctype):

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
<title>Untitled Page</title>

</head>
<body>

</body>
</html>

When you create a new web form in Visual Studio, this is the structure you start with.
Here’s what you get:

• XHTML documents start with the <html> tag and end with the </html> tag. This
<html> element contains the complete content of the web page.

• Inside the <html> element, the web page is divided into two portions. The first portion
is the <head> element, which stores some information about the web page. You’ll use
this to store the title of your web page, which will appear in the title bar in your web
browser. (You can also add other details here like search keywords, although these are
mostly ignored by web browsers these days.) When you generate a web page in Visual
Studio, the <head> section has a runat="server" attribute. This gives you the ability to
manipulate it in your code (a topic you’ll explore in the next chapter).

• The second portion is the <body> element, which contains the actual page content that
appears in the web browser window.

In an ASP.NET web page, there’s at least one more element. Inside the <body> element is a
<form> element. The <form> element is required because it defines a portion of the page that
can send information back to the web server. This becomes important when you start adding
text boxes, lists, and other controls. As long as they’re in a form, information like the current
text in the text box and the current selection in the list will be sent to the web server using a
process known as a postback. Fortunately, you don’t need to worry about this detail yet—just
place all your web page content inside the <form> element.

Most of the time, when you’re working with a page you’ll focus on the markup inside the
<form> tag, because that’s the actual page content. When you create a new web page in Visual
Studio, there’s one more detail—the <div> element inside the <form> element:

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
<title>Untitled Page</title>

</head>
<body>
<form ID="form1" runat="server">
<div>
</div>

CHAPTER 4 ■ VISUAL STUDIO 111

8911CH04.qxd 9/19/07 10:58 AM Page 111

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

</form>
</body>

</html>

Strictly speaking, the <div> element is optional—it’s just a container. You can think of it as
an invisible box that has no built-in appearance or formatting. However, it’s useful to use a
<div> tag to group portions of your page that you want to format in a similar way (for example,
with the same font, background color, or border). That way, you can apply style settings to the
<div> tag, and they’ll cascade down into every tag it contains. You can also create a real box on
your page by giving the <div> a border. You’ll learn more about formatting and the <div> ele-
ment in Chapter 13.

■Note The <div> element is also useful because you can place text directly inside it, without needing a
container element (such as a paragraph). On the other hand, adding text directly inside the <form> element
violates the rules of XHTML.

Now you’re ready to pop the rest of your content in the <div> tag. If you add the Label and
TextBox web controls, you’ll end up with the same markup you created using the designer
earlier in this chapter—but now you’ll understand its markup underpinnings.

Writing Code
Many of Visual Studio’s most welcome enhancements appear when you start to write the code
that supports your user interface. To start coding, you need to switch to the code-behind view.
To switch back and forth, you can use two View Code or View Designer buttons, which appear
just above the Solution Explorer window. Another approach that works just as well is to double-
click either the .aspx page in the Solution Explorer (to get to the designer) or the .aspx.cs page
(to get to the code view). The “code” in question is the VB C# code, not the HTML markup in
the .aspx file.

The Code-Behind Class
When you switch to code view, you’ll see the page class for your web page. For example, if
you’ve created a web page named SimplePage.aspx, you’ll see a code-behind class that looks
like this:

using System;
using System.Data;
using System.Configuration;
using System.Linq;
using System.Web;
using System.Web.Security;
using System.Web.UI;

CHAPTER 4 ■ VISUAL STUDIO112

8911CH04.qxd 9/19/07 10:58 AM Page 112

using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class SimplePage: System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

}
}

Just before your page class, Visual Studio imports a number of core .NET namespaces.
These namespaces give you easy access to many commonly used ASP.NET classes.

Inside your page class you can place methods, which will respond to control events. For
example, you can add a method with code that reacts when the user clicks a button. The fol-
lowing section explains how you can create an event handler.

Adding Event Handlers
Most of the code in an ASP.NET web page is placed inside event handlers that react to web
control events. Using Visual Studio, you have three easy ways to add an event handler to your
code:

Type it in manually: In this case, you add the subroutine directly to the page class. You
must specify the appropriate parameters.

Double-click a control in Design view: In this case, Visual Studio will create an event
handler for that control’s default event, if it doesn’t already exist. For example, if you
double-click a Button control, it will create an event handler for the Button.Click event.
If you double-click a TextBox control, you’ll get an event handler for the
TextBox.TextChanged event.

Choose the event from the Properties window: Just select the control, and click the light-
ning bolt in the Properties window. You’ll see a list of all the events provided by that
control. Double-click next to the event you want to handle, and Visual Studio will auto-
matically generate the event handler in your page class. Alternatively, if you’ve already
created the event handler method, just select the event in the Properties window, and
click the drop-down arrow at the right. You’ll see a list that includes all the methods in
your class that match the signature this event requires. You can then choose a method
from the list to connect it. Figure 4-13 shows an example where the Button.Click event is
connected to the Button1_Click method in the page class.

CHAPTER 4 ■ VISUAL STUDIO 113

8911CH04.qxd 9/19/07 10:58 AM Page 113

Figure 4-13. Creating or attaching an event handler

No matter which approach you use, the event handler looks (and functions) the same.
For example, when you double-click a Button control, Visual Studio creates an event

handler like this:

protected void Button1_Click(object sender, EventArgs e)
{

// Your code for reacting to the button click goes here.
}

When you use Visual Studio to attach or create an event handler, it adjusts the control tag
so that it’s linked to the appropriate event:

<asp:Button ID="Button1" runat="server" Text="Button" OnClick="Button1_Click" />

Inside your event handler method, you can interact with any of the control objects on
your web page using their IDs. For example, if you’ve created a TextBox control named
TextBox1, you can set the text using the following line of code:

protected void Button1_Click(object sender, EventArgs e)
{

TextBox1.Text = "Here is some sample text.";
}

This is a simple event handler that reacts when Button1 is clicked and updates the text in
TextBox1.

■Note You might wonder why your code file includes the event handlers, but it doesn’t actually declare the
controls that you use (like the Button1 and TextBox1 objects in the previous example). The reason is that
ASP.NET generates the declarations for these controls automatically. You’ll never see these declarations, but
you can assume they’re a part of your class. That’s also why every page class you create is defined with the
partial keyword. This allows ASP.NET to merge your code with the portion it generates automatically. The end
result is that you can easily access all the controls on your page by name, but you don’t need to bother with
extra code to create and initialize these objects.

CHAPTER 4 ■ VISUAL STUDIO114

8911CH04.qxd 9/19/07 10:58 AM Page 114

You’ll learn much more about how the ASP.NET web form model works in the next two
chapters. But for the rest of the chapter, it’s time to take a small break and consider the fea-
tures that Visual Studio provides to make your life easier when writing code and testing a web
page. First you’ll tackle IntelliSense, which prompts you with valuable code suggestions (and
catches mistakes) as you type. Next, you’ll look at Visual Studio’s debugging tools, which allow
you to dissect the most complex code routines to find out what’s really taking place.

IntelliSense and Outlining
Visual Studio provides a number of automatic time-savers through its IntelliSense technology.
They are similar to features such as automatic spell checking and formatting in Microsoft
Office applications. This chapter introduces most of these features, but you’ll need many
hours of programming before you’ll become familiar with all of Visual Studio’s time-savers.
We don’t have enough space to describe advanced tricks such as the intelligent search-and-
replace features and Visual Studio’s programmable macros. These features could occupy an
entire book of their own!

Outlining
Outlining allows Visual Studio to “collapse” a method, class, structure, namespace, or region to
a single line. It allows you to see the code that interests you while hiding unimportant code. To
collapse a portion of code, click the minus (–) symbol next to the first line. To expand it, click
the box again, which will now have a plus (+) symbol (see Figure 4-14).

Figure 4-14. Collapsing code

CHAPTER 4 ■ VISUAL STUDIO 115

8911CH04.qxd 9/19/07 10:58 AM Page 115

You can hide every method at once by right-clicking anywhere in the code window and
choosing Outlining ➤ Collapse to Definitions.

Member List
Visual Studio makes it easy for you to interact with controls and classes. When you type a class
or object name, it pops up a list of available properties and methods (see Figure 4-15). It uses
a similar trick to provide a list of data types when you define a variable or to provide a list of
valid values when you assign a value to an enumeration.

Figure 4-15. IntelliSense at work

■Tip Forgotten the names of the controls in your web page? You can get IntelliSense to help you. Just type
the this keyword followed by the dot operator (.). Visual Studio will pop up a list with all the methods and
properties of the current form class, including the control variables.

Visual Studio also provides a list of parameters and their data types when you call a
method or invoke a constructor. This information is presented in a tooltip below the code
and appears as you type. Because the .NET class library uses method overloading a lot, these
methods may have multiple versions. When they do, Visual Studio indicates the number of
versions and allows you to see the method definitions for each one by clicking the small up
and down arrows in the tooltip. Each time you click the arrow, the tooltip displays a different
version of the overloaded method (see Figure 4-16).

CHAPTER 4 ■ VISUAL STUDIO116

8911CH04.qxd 9/19/07 10:58 AM Page 116

Figure 4-16. IntelliSense with overloaded methods

Error Underlining
One of the code editor’s most useful features is error underlining. Visual Studio is able to
detect a variety of error conditions, such as undefined variables, properties, or methods;
invalid data type conversions; and missing code elements. Rather than stopping you to alert
you that a problem exists, the Visual Studio editor underlines the offending code. You can
hover your mouse over an underlined error to see a brief tooltip description of the problem
(see Figure 4-17).

Visual Studio won’t necessarily flag your errors immediately. But when you try to run your
application (or just compile it), Visual Studio will quickly scan through the code, marking all
the errors it finds. If your code contains at least one error, Visual Studio will ask you whether it
should continue. At this point, you’ll almost always decide to cancel the operation and fix the
problems Visual Studio has discovered. (If you choose to continue, you’ll actually wind up
using the last compiled version of your application, because Visual Studio can’t build an appli-
cation that has errors.)

CHAPTER 4 ■ VISUAL STUDIO 117

8911CH04.qxd 9/19/07 10:58 AM Page 117

Figure 4-17. Highlighting errors at design time

Whenever you attempt to build an application that has errors, Visual Studio will display
the Error List window with a list of all the problems it detected, as shown in Figure 4-18. You
can then jump quickly to a problem by double-clicking it in the list.

Figure 4-18. The Error List window

You may find that as you fix errors and rebuild your project, you discover more problems.
That’s because Visual Studio doesn’t check for all types of errors at once. When you try to
compile your application, Visual Studio scans for basic problems such as unrecognized class
names. If these problems exist, they can easily mask other errors. On the other hand, if your
code passes this basic level of inspection, Visual Studio checks for more subtle problems such
as trying to use an unassigned variable.

CHAPTER 4 ■ VISUAL STUDIO118

8911CH04.qxd 9/19/07 10:58 AM Page 118

You can also configure the level of error checking Visual Studio performs for markup in
your .aspx files. Usually, you’ll want to set the level of validation to match the doctype that
you’re using. Unfortunately, Visual Studio doesn’t take this step automatically. Instead, it’s up
to you to choose the level of validation you want from the drop-down list in the HTML Source
Editing toolbar. (If the HTML Source Editing toolbar is not currently displayed, right-click the
toolbar strip and choose HTML Source Editing.) The most common validation choices are
HTML 4.01, XHTML 1.0 Transitional, and XHTML 1.1. For example, if you choose XHTML 1.0
Transitional or XHTML 1.1, you’ll receive a warning in the Error List if your web page includes
syntax that’s not legal in XHTML, like incorrect capitalization, an obsolete formatting attrib-
ute, or an element that’s not properly closed. You’ll still be able to run your web page, but
you’ll know that your page isn’t completely consistent with the XHTML standard.

Automatically Importing Namespaces
Sometimes, you’ll run into an error because you haven’t imported a namespace that you need.
For example, imagine you type a line of code like this:

FileStream fs = new FileStream("newfile.txt", FileMode.Create);

This line creates an instance of the FileStream class, which resides in the System.IO
namespace. However, if you haven’t imported the System.IO namespace, you’ll run into a
compile-time error. Unfortunately, the error simply indicates no known class named
FileStream exists—it doesn’t indicate whether the problem is a misspelling or a missing
import, and it doesn’t tell you which namespace has the class you need.

Visual Studio offers an invaluable tool to help you in this situation. When you move the
text cursor to the unrecognized class name (FileStream in this example), a small box icon
appears underneath. If you hover over that location with the mouse, a page icon appears.
Click the page icon, and a drop-down list of autocorrect options appear (see Figure 4-19).
Using these options, you can convert the line to use the fully qualified class name or add the
required namespace import to the top of your code file, which is generally the cleanest option
(particularly if you use classes from that namespace more than once in the same page).

The only case when this autocorrect feature won’t work is if Visual Studio can’t find the
missing class. This might happen if the class exists in another assembly, and you haven’t
added a reference to that assembly yet.

CHAPTER 4 ■ VISUAL STUDIO 119

8911CH04.qxd 9/19/07 10:58 AM Page 119

Figure 4-19. Build errors in the Error List

Auto Format and Color
Visual Studio also provides some cosmetic conveniences. It automatically colors your code,
making comments green, keywords blue, and normal code black. The result is much more
readable code. You can even configure the colors Visual Studio uses by selecting Tools ➤
Options and then choosing the Environment ➤ Fonts and Colors section.

In addition, Visual Studio is configured by default to automatically format your code. This
means you can type your code lines freely without worrying about tabs and positioning. Visual
Studio automatically applies the “correct” indenting. Fortunately, if you have a different pref-
erence (for example, you want five spaces instead of four spaces of indenting, or you want to
use tabs instead of spaces), you can configure this behavior. Just select Tools ➤ Options, and
find the Text Editor ➤ C# group of settings.

Visual Studio Debugging
Once you’ve created an application, you can compile and run it by choosing Debug ➤ Start
Debugging from the menu or by clicking the Start Debugging button on the toolbar (which
looks like a DVD-style play button). Visual Studio launches your default web browser and
requests the page that’s currently selected in the Solution Explorer. This is a handy trick—if
you’re in the middle of coding SalesPage1.aspx, you’ll see SalesPage1.aspx appear in the
browser, not the Default.aspx home page.

CHAPTER 4 ■ VISUAL STUDIO120

8911CH04.qxd 9/19/07 10:58 AM Page 120

The first time you launch a web application, Visual Studio will ask you whether you want
to configure your web application to allow debugging by adjusting its configuration file.
(Figure 4-20 shows the message you’ll see.) Choose “Modify the Web.config file to enable
debugging.” and click OK.

Figure 4-20. Enabling debugging

Visual Studio may also warn you that script debugging is disabled, depending on your
browser preferences. Script debugging is a useful tool that works with Visual Studio to help
you debug pages that use ASP.NET AJAX (a feature you’ll consider in Chapter 25). However,
there’s no reason to turn script debugging on unless you’re writing client-side JavaScript code
in your web pages. (By default, script debugging is disabled in Internet Explorer so that you
don’t get error messages when you run someone else’s problematic JavaScript code when visit-
ing a website.) It’s a good idea to choose the “Don’t show this dialog again” to make sure Visual
Studio doesn’t repeat the same warning every time you run your web application.

■Tip Regardless of what you choose in Visual Studio, you can change the script debugging setting at any
time through Internet Explorer. Just choose Tools ➤ Internet Options from the Internet Explorer menu, pick
the Advanced tab, and look for the “Disable Script Debugging” setting under the Browsing group.

The Visual Studio Web Server
When you run a web application, Visual Studio starts its integrated web server. Behind the
scenes, ASP.NET compiles the code for your web application, runs your web page, and then
returns the final HTML to the browser. The first time you run a web page, you’ll see a new icon
appear in the system tray at the bottom-right corner of the taskbar. This icon is Visual Studio’s
test web server, which runs in the background hosting your website. The test server only runs
while Visual Studio is running, and it only accepts requests from your computer (so other
users can’t connect to it over a network).

When you run a web page, you’ll notice that the URL in the browser includes a port num-
ber. For example, if you run a web application in a folder named OnlineBank, you might see a
URL like http://localhost:4235/OnlineBank/Default.aspx. This URL indicates that the web

CHAPTER 4 ■ VISUAL STUDIO 121

8911CH04.qxd 9/19/07 10:58 AM Page 121

http://localhost:4235/OnlineBank/Default.aspx

server is running on your computer (localhost), so its requests aren’t being sent over the
Internet. It also indicates that all requests are being transmitted to port number 4235. That
way, the requests won’t conflict with any other applications that might be running on your
computer and listening for requests. Every time Visual Studio starts the integrated web server,
it randomly chooses an available port.

Visual Studio’s built-in web server also allows you to retrieve a listing of all the files in your
website. This means if you create a web application named SampleSite, you can request it in
the form http://localhost:port/SampleSite (omitting the page name) to see a list of all the
files in your web application folder (see Figure 4-21). Then, just click the page you want to test.

Figure 4-21. Choosing from a list of pages

This trick won’t work if you have a Default.aspx page. If you do, any requests that don’t
indicate the page you want are automatically redirected to this page.

Single-Step Debugging
Single-step debugging allows you to test your assumptions about how your code works and
see what’s really happening under the hood of your application. It’s incredibly easy to use. Just
follow these steps:

1. Find a location in your code where you want to pause execution. (You can use any exe-
cutable line of code but not a variable declaration, comment, or blank line.) Click in
the margin next to the line of code, and a red breakpoint will appear (see Figure 4-22).

2. Now start your program as you would ordinarily (by pressing the F5 key or using the
Start button on the toolbar). When the program reaches your breakpoint, execution
will pause, and you’ll be switched to the Visual Studio code window. The breakpoint
statement won’t be executed yet.

CHAPTER 4 ■ VISUAL STUDIO122

8911CH04.qxd 9/19/07 10:58 AM Page 122

http://localhost:port/SampleSite

Figure 4-22. Setting a breakpoint

3. At this point, you have several options. You can execute the current line by pressing
F11. The following line in your code will be highlighted with a yellow arrow, indicating
that this is the next line that will be executed. You can continue like this through your
program, running one line at a time by pressing F11 and following the code’s path of
execution.

4. Whenever the code is in break mode, you can hover over variables to see their current
contents (see Figure 4-23). This allows you to verify that variables contain the values
you expect.

5. You can also use any of the commands listed in Table 4-2 while in break mode. These
commands are available from the context menu by right-clicking the code window or
by using the associated hot key.

CHAPTER 4 ■ VISUAL STUDIO 123

8911CH04.qxd 9/19/07 10:58 AM Page 123

Figure 4-23. Viewing variable contents in break mode

Table 4-2. Commands Available in Break Mode

Command (Hot Key) Description

Step Into (F11) Executes the currently highlighted line and then pauses. If the currently
highlighted line calls a method, execution will pause at the first
executable line inside the method (which is why this feature is called
stepping into).

Step Over (F10) The same as Step Into, except it runs methods as though they are a single
line. If you select Step Over while a method call is highlighted, the entire
method will be executed. Execution will pause at the next executable
statement in the current method.

Step Out (Shift+F11) Executes all the code in the current procedure and then pauses at the
statement that immediately follows the one that called this method or
function. In other words, this allows you to step “out” of the current
procedure in one large jump.

Continue (F5) Resumes the program and continues to run it normally, without pausing
until another breakpoint is reached.

Run to Cursor Allows you to run all the code up to a specific line (where your cursor is
currently positioned). You can use this technique to skip a time-
consuming loop.

CHAPTER 4 ■ VISUAL STUDIO124

8911CH04.qxd 9/19/07 10:58 AM Page 124

Command (Hot Key) Description

Set Next Statement Allows you to change the path of execution of your program while
debugging. This command causes your program to mark the current line
(where your cursor is positioned) as the current line for execution. When
you resume execution, this line will be executed, and the program will
continue from that point. Although this technique is convenient for
jumping over large loops and simulating certain conditions, it’s easy to
cause confusion and runtime errors by using it recklessly.

Show Next Statement Brings you to the line of code where Visual Studio is currently halted.
(This is the line of code that will be executed next when you continue.)
This line is marked by a yellow arrow. The Show Next Statement com-
mand is useful if you lose your place while editing.

You can switch your program into break mode at any point by clicking the Pause button
in the toolbar or selecting Debug ➤ Break All. This might not stop your code where you expect,
however, so you’ll need to rummage around to get your bearings.

■Tip As you’re just starting out with ASP.NET, you won’t have a lot of code to debug. However, be sure to
return to this section as you try out more detailed examples in the following chapters. Visual Studio’s debug-
ging tools are an invaluable way to get a close-up look at how code operates.

When debugging a large website, you might place breakpoints in different places in your
code and in multiple web pages. To get an at-a-glance look at all the breakpoints in your web
application, choose Debug ➤ Windows ➤ Breakpoints. You’ll see a list of all your breakpoints,
as shown in Figure 4-24.

Figure 4-24. The Breakpoints window

You can jump to the location in code where a breakpoint is placed by double-clicking it in
the list. You can also remove a breakpoint (select it and press Delete) or temporarily disable a
breakpoint (by removing the check mark next to it). This allows you to keep a breakpoint to
use in testing later, without leaving it active.

CHAPTER 4 ■ VISUAL STUDIO 125

8911CH04.qxd 9/19/07 10:58 AM Page 125

ADVANCED BREAKPOINTS

Visual Studio allows you to customize breakpoints so they occur only if certain conditions are true. To cus-
tomize a breakpoint, right-click it in the Breakpoints window. A pop-up menu will appear with several options
for making the breakpoint conditional:

• Click Location to see the exact code file and line where this breakpoint is positioned.

• Click Condition to set an expression. You can choose to break when this expression is true or when it
has changed since the last time the breakpoint was hit.

• Click Hit Count to create a breakpoint that pauses only after a breakpoint has been hit a certain num-
ber of times (for example, at least 20) or a specific multiple of times (for example, every fifth time).

• Click Filter to restrict the breakpoint to specific processes or threads. (This technique is rarely useful in
ASP.NET web page code.)

• Click When Hit to choose another action that Visual Studio should take when the breakpoint is reached,
such as running a macro or printing a debug message. If you choose to take one of these actions, you
can also specify whether the breakpoint should force Visual Studio into break mode, or whether your
code should continue executing.

Breakpoints are automatically saved with the Visual Studio solution files, although they aren’t used
when you compile the application in release mode.

Variable Watches
In some cases, you might want to track the status of a variable without switching into break
mode repeatedly. In this case, it’s more useful to use the Autos, Locals, and Watch windows,
which allow you to track variables across an entire application. Table 4-3 describes these
windows.

Table 4-3. Variable Watch Windows

Window Description

Autos Automatically displays variables that Visual Studio determines are important for the
current code statement. For example, this might include variables that are accessed or
changed in the previous line.

Locals Automatically displays all the variables that are in scope in the current method. This
offers a quick summary of important variables.

Watch Displays variables you have added. Watches are saved with your project, so you can
continue tracking a variable later. To add a watch, right-click a variable in your code,
and select Add Watch; alternatively, double-click the last row in the Watch window, and
type in the variable name.

Each row in the Autos, Locals, and Watch windows provides information about the type
or class of the variable and its current value. If the variable holds an object instance, you can
expand the variable and see its members and properties. For example, in the Locals window

CHAPTER 4 ■ VISUAL STUDIO126

8911CH04.qxd 9/19/07 10:58 AM Page 126

you’ll see the variable this (see Figure 4-25), which is a reference to the current object inside of
which your code is executing (in this case, the web page). If you click the plus (+) sign next to
the word this, a full list will appear that describes many page properties (and some system
values).

Figure 4-25. Viewing the current page object in the Locals window

If you are missing one of the Watch windows, you can show it manually by selecting it
from the Debug ➤ Windows submenu.

■Tip The Autos, Locals, and Watch windows allow you to change simple variables while your program is in
break mode. Just double-click the current value in the Value column, and type in a new value. This allows
you to simulate scenarios that are difficult or time-consuming to re-create manually and allows you to test
specific error conditions.

The Last Word
In this chapter, you took a quick look at Visual Studio 2008. First, you saw how to create a new
web application using the clean projectless website model. Next, you considered how to
design basic web pages, complete with controls and code. Finally, you saw how to use Visual
Studio’s rich set of debugging features to get into the brain of your web page code and track
down elusive problems.

In the next chapter, you’ll start building simple web applications with Visual Studio, and
get your first full look at the ASP.NET web page model.

CHAPTER 4 ■ VISUAL STUDIO 127

8911CH04.qxd 9/19/07 10:58 AM Page 127

8911CH04.qxd 9/19/07 10:58 AM Page 128

Web Form Fundamentals

In this chapter, you’ll learn some of the core topics that every ASP.NET developer must
master.

You’ll begin by taking a closer look at the ASP.NET application model, and considering
what files and folders belong in a web application. Next, you’ll take a closer look at server con-
trols, the basic building block of any web form. You’ll study a simple currency converter page
that demonstrates how to convert ordinary HTML into a dynamic ASP.NET-powered web
page. You’ll then explore the web page model, and pick up the skills you need to create con-
trols on the fly, navigate from one page to another, and handle special characters in HTML.
Finally, you’ll consider the ASP.NET configuration model.

The Anatomy of an ASP.NET Application
It’s sometimes difficult to define exactly what a web application is. Unlike a traditional desk-
top program (which users start by running a stand-alone EXE file), ASP.NET applications are
almost always divided into multiple web pages. This division means a user can enter an
ASP.NET application at several different points or follow a link from the application to another
part of the website or another web server. So, does it make sense to consider a website as an
application?

In ASP.NET, the answer is yes. Every ASP.NET application shares a common set of
resources and configuration settings. Web pages from other ASP.NET applications don’t share
these resources, even if they’re on the same web server. Technically speaking, every ASP.NET
application is executed inside a separate application domain. Application domains are iso-
lated areas in memory, and they ensure that even if one web application causes a fatal error,
it’s unlikely to affect any other application that is currently running on the same computer.
Similarly, application domains restrict a web page in one application from accessing the in-
memory information of another application. Each web application is maintained separately
and has its own set of cached, application, and session data.

The standard definition of an ASP.NET application describes it as a combination of files,
pages, handlers, modules, and executable code that can be invoked from a virtual directory
(and, optionally, its subdirectories) on a web server. In other words, the virtual directory is the
basic grouping structure that delimits an application. Figure 5-1 shows a web server that hosts
four separate web applications.

129

C H A P T E R 5

8911CH05.qxd 10/16/07 5:48 PM Page 129

■Note A virtual directory is a directory that’s exposed to the public on a web server. As you’ll discover in
Chapter 9, you deploy your perfected ASP.NET web application by copying it to a virtual directory.

Figure 5-1. ASP.NET applications

ASP.NET File Types
ASP.NET applications can include many types of files. Table 5-1 introduces the essential
ingredients.

CHAPTER 5 ■ WEB FORM FUNDAMENTALS130

8911CH05.qxd 10/16/07 5:48 PM Page 130

Table 5-1. ASP.NET File Types

File Name Description

Ends with .aspx These are ASP.NET web pages (the .NET equivalent of the .asp file in an ASP
application). They contain the user interface and, optionally, the underlying
application code. Users request or navigate directly to one of these pages to
start your web application.

Ends with .ascx These are ASP.NET user controls. User controls are similar to web pages,
except that the user can’t access these files directly. Instead, they must be
hosted inside an ASP.NET web page. User controls allow you to develop a
small piece of user interface and reuse it in as many web forms as you want
without repetitive code. You’ll learn about user controls in Chapter 12.

Ends with .asmx These are ASP.NET web services—collections of methods that can be called
over the Internet. Web services work differently than web pages, but they still
share the same application resources, configuration settings, and memory.
You’ll see an example that uses a web service in Chapter 25.

web.config This is the XML-based configuration file for your ASP.NET application. It
includes settings for customizing security, state management, memory
management, and much more. You’ll get an introduction to the web.config
file in this chapter, and you’ll explore its settings throughout this book.

Global.asax This is the global application file. You can use this file to define global
variables (variables that can be accessed from any web page in the web
application) and react to global events (such as when a web application
first starts). You’ll learn about it in Chapter 7.

Ends with .cs These are code-behind files that contain C# code. They allow you to separate
the application logic from the user interface of a web page. We’ll introduce the
code-behind model in this chapter and use it extensively in this book.

In addition, your web application can contain other resources that aren’t special ASP.NET
files. For example, your virtual directory can hold image files, HTML files, or CSS files. These
resources might be used in one of your ASP.NET web pages, or they might be used independ-
ently. A website could even combine static HTML pages with dynamic ASP.NET pages.

Most of the file types in Table 5-1 are optional. You can create a legitimate ASP.NET appli-
cation with a single .aspx web page file.

ASP.NET Application Directories
Every web application should have a well-planned directory structure. For example, you’ll
probably want to store images in a separate folder from where you store your web pages. Or
you might want to put public ASP.NET pages in one folder and restricted ones in another so
you can apply different security settings based on the directory. (See Chapter 20 for more
about how to create authorization rules like this.)

Along with the directories you create, ASP.NET also uses a few specialized subdirectories,
which it recognizes by name (see Table 5-2). Keep in mind that you won’t see all these directo-
ries in a typical application. Visual Studio will prompt you to create them as needed.

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 131

8911CH05.qxd 10/16/07 5:48 PM Page 131

Table 5-2. ASP.NET Directories

Directory Description

Bin Contains all the compiled .NET components (DLLs) that the ASP.NET
web application uses. For example, if you develop a custom component
for accessing a database (see Chapter 23), you’ll place the component
here. ASP.NET will automatically detect the assembly, and any page in
the web application will be able to use it. This seamless deployment
model is far easier than working with traditional COM components,
which must be registered before they can be used (and often reregistered
when they change).

App_Code Contains source code files that are dynamically compiled for use in
your application. You can use this directory in a similar way as the Bin
directory; the only difference is that you place source code files here
instead of compiled assemblies.

App_GlobalResources Stores global resources that are accessible to every page in the web
application. This directory is used in localization scenarios, when you
need to have a website in more than one language. Localization isn’t
covered in this book, although you can refer to Pro ASP.NET 3.5 in C#
(Apress, 2007) for more information.

App_LocalResources Serves the same purpose as App_GlobalResources, except these
resources are accessible to a specific page only.

App_WebReferences Stores references to web services that the web application uses. For more
information about web services, you can download a three-chapter
introduction from the previous edition of this book, in PDF form, at
www.prosetech.com.

App_Data Stores data, including SQL Server 2005 Express Edition database files and
XML files. Of course, you’re free to store data files in other directories.

App_Themes Stores the themes that are used by your web application. You’ll learn
about themes in Chapter 13.

Introducing Server Controls
ASP.NET introduces a remarkable new model for creating web pages. In old-style web devel-
opment, programmers had to master the quirks and details of HTML before they could design
a dynamic web page. Pages had to be carefully tailored to a specific task, and the only way to
generate additional content was to generate raw HTML tags.

ASP.NET solves this problem with a higher-level model of server controls. These controls
are created and configured as objects. They run on the web server and they automatically
provide their own HTML output. Even better, server controls behave like their Windows
counterparts by maintaining state and raising events that you can react to in code.

In the previous chapter, you built an exceedingly simple web page that incorporated a few
controls you dragged in from the Visual Studio Toolbox. But before you create a more complex
page, it’s worth taking a step back to look at the big picture. ASP.NET actually provides two sets
of server-side controls that you can incorporate into your web forms. These two different
types of controls play subtly different roles:

CHAPTER 5 ■ WEB FORM FUNDAMENTALS132

8911CH05.qxd 10/16/07 5:48 PM Page 132

http://www.prosetech.com

HTML server controls: These are server-based equivalents for standard HTML elements.
These controls are ideal if you’re a seasoned web programmer who prefers to work with
familiar HTML tags (at least at first). They are also useful when migrating ordinary HTML
pages or ASP pages to ASP.NET, because they require the fewest changes.

Web controls: These are similar to the HTML server controls, but they provide a richer
object model with a variety of properties for style and formatting details. They also pro-
vide more events and more closely resemble the controls used for Windows development.
Web controls also feature some user interface elements that have no direct HTML equiva-
lent, such as the GridView, Calendar, and validation controls.

You’ll learn about web controls in the next chapter. In this chapter, you’ll take a detailed
look at HTML server controls.

■Note Even if you plan to use web controls exclusively, it’s worth reading through this section to master
the basics of HTML controls. Along the way, you’ll get an introduction to a few ASP.NET essentials that apply
to all kinds of server controls, including view state, postbacks, and event handling.

HTML Server Controls
HTML server controls provide an object interface for standard HTML elements. They provide
three key features:

They generate their own interface: You set properties in code, and the underlying HTML
tag is created automatically when the page is rendered and sent to the client.

They retain their state: Because the Web is stateless, ordinary web pages need to do a lot of
work to store information between requests. HTML server controls handle this task auto-
matically. For example, if the user selects an item in a list box, that item remains selected
the next time the page is generated. Or, if your code changes the text in a button, the new
text sticks the next time the page is posted back to the web server.

They fire server-side events: For example, buttons fire an event when clicked, text boxes
fire an event when the text they contain is modified, and so on. Your code can respond to
these events, just like ordinary controls in a Windows application. In ASP code, everything
is grouped into one block that executes from start to finish. With event-based program-
ming, you can easily respond to individual user actions and create more structured code.
If a given event doesn’t occur, the event-handler code won’t be executed.

HTML server controls are ideal when you’re performing a quick translation to add server-
side code to an existing HTML page. That’s the task you’ll tackle in the next section, with a
simple one-page web application.

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 133

8911CH05.qxd 10/16/07 5:48 PM Page 133

Converting an HTML Page to an ASP.NET Page
Figure 5-2 shows a currency converter web page. It allows the user to convert a number of U.S.
dollars to the equivalent amount of euros—or at least it would, if it had the code it needed to
do the job. Right now, it’s just a plain, inert HTML page. Nothing happens when the button is
clicked.

Figure 5-2. A simple currency converter

The following listing shows the markup for this page. To make it as clear as possible, this
listing omits the style attribute of the <div> element used for the border. This page has two
<input> elements: one for the text box and one for the submit button. These elements are
enclosed in a <form> tag, so they can submit information to the server when the button is
clicked. The rest of the page consists of static text. The character entity is used to add
an extra space to separate the controls. A doctype at the top of the page declares that it’s writ-
ten according to the strict markup rules of XHTML 1.1.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Currency Converter</title>

</head>
<body>
<form method="post">
<div>
Convert:
<input type="text" />
 U.S. dollars to Euros.

<input type="submit" value="OK" />

CHAPTER 5 ■ WEB FORM FUNDAMENTALS134

8911CH05.qxd 10/16/07 5:48 PM Page 134

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml

</div>
</form>

</body>
</html>

■Note In HTML all input controls are represented with the <input> element. You set the type attribute
to indicate the type of control you want. The <input type="text"> tag is a text box, while
<input type="submit"> creates a submit button for sending the web page back to the web server.
This is quite a bit different than the web controls you’ll see in Chapter 6, which use a different element
for each type of control.

As it stands, this page looks nice but provides no functionality. It consists entirely of the
user interface (HTML elements) and contains no code. It’s an ordinary HTML page—not a
web form.

The easiest way to convert the currency converter to ASP.NET is to start by generating
a new web form in Visual Studio. To do this, select Website ➤ Add New Item. In the
Add New Item dialog box, choose Web Form, type a name for the new page (such as
CurrencyConverter.aspx), make sure the Place Code in Separate File option is checked,
and click Add to create the page.

In the new web form, delete everything that’s currently in the .aspx file, except the page
directive. The page directive gives ASP.NET basic information about how to compile the page.
It indicates the language you’re using for your code and the way you connect your event han-
dlers. If you’re using the code-behind approach, which is recommended, the page directive
also indicates where the code file is located and the name of your custom page class.

Finally, copy all the content from the original HTML page, and paste it into the new page,
right after the page directive. Here’s the resulting web form, with the page directive (in bold)
followed by the HTML content that’s copied from the original page:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="CurrencyConverter.aspx.cs" Inherits="CurrencyConverter" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Currency Converter</title>

</head>
<body>
<form method="post">
<div>
Convert:
<input type="text" />
 U.S. dollars to Euros.

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 135

8911CH05.qxd 10/16/07 5:48 PM Page 135

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml

<input type="submit" value="OK" />
</div>

</form>
</body>
</html>

Now you need to add the attribute runat="server" to each tag that you want to transform
into a server control. You should also add an ID attribute to each control that you need to
interact with in code. The ID attribute assigns the unique name that you’ll use to refer to the
control in code.

In the currency converter application, it makes sense to change the input text box and the
submit button into HTML server controls. In addition, the <form> element must be processed
as a server control to allow ASP.NET to access the controls it contains. Here’s the complete,
correctly modified page:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="CurrencyConverter.aspx.cs" Inherits="CurrencyConverter" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Currency Converter</title>

</head>
<body>
<form runat="server">
<div>
Convert:
<input type="text" ID="US" runat="server" />
 U.S. dollars to Euros.

<input type="submit" value="OK" ID="Convert" runat="server" />

</div>
</form>

</body>
</html>

■Note ASP.NET controls are always placed inside the <form> tag of the page. The <form> tag is a part of
the standard for HTML forms, and it allows the browser to send information to the web server.

The web page still won’t do anything when you run it, because you haven’t written any
code. However, now that you’ve converted the static HTML elements to HTML server controls,
you’re ready to work with them.

CHAPTER 5 ■ WEB FORM FUNDAMENTALS136

8911CH05.qxd 10/16/07 5:48 PM Page 136

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml

View State
To try this page, launch it in Visual Studio by pressing F5. Remember, the first time you run
your web application you’ll be prompted to let Visual Studio modify your web.config file to
allow debugging. Click OK to accept its recommendation and launch your web page in the
browser. Then, select View ➤ Source in your browser to look at the HTML that ASP.NET sent
your way.

The first thing you’ll notice is that the HTML that was sent to the browser is slightly differ-
ent from the information in the .aspx file. First, the runat="server" attributes are stripped out
(because they have no meaning to the client browser, which can’t interpret them). Second,
and more important, an additional hidden field has been added to the form. Here’s what you’ll
see (in a slightly simplified form):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Currency Converter</title>

</head>
<body>
<form ID="form1" name="form1" method="post" action="CurrencyConverter.aspx">
<div>
<input type="hidden" ID="__VIEWSTATE" name="__VIEWSTATE"
value="dDw3NDg2NTI5MDg7Oz4=" />

</div>
<div>
Convert:
<input type="text" ID="US" name="US" />
 U.S. dollars to Euros.

<input type="submit" value="OK" ID="Convert" name="Convert" />

</div>
</form>

</body>
</html>

This hidden field stores information, in a compressed format, about the state of every
control in the page. It allows you to manipulate control properties in code and have the
changes automatically persisted across multiple trips from the browser to the web server. This
is a key part of the web forms programming model. Thanks to view state, you can often forget
about the stateless nature of the Internet and treat your page like a continuously running
application.

Even though the currency converter program doesn’t yet include any code, you’ll already
notice one change. If you enter information in the text box and click the submit button to post
the page, the refreshed page will still contain the value you entered in the text box. (In the
original example that uses ordinary HTML elements, the value will be cleared every time the
page is submitted.) This change occurs because ASP.NET controls automatically retain their
state.

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 137

8911CH05.qxd 10/16/07 5:48 PM Page 137

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml

The HTML Control Classes
Before you can continue any further with the currency converter, you need to know about
the control objects you’ve created. All the HTML server controls are defined in the
System.Web.UI.HtmlControls namespace. Each kind of control has a separate class. Table 5-3
describes the basic HTML server controls and shows you the related HTML element.

Table 5-3. The HTML Server Control Classes

Class Name HTML Element Description

HtmlForm <form> Wraps all the controls on a web page.
All ASP.NET server controls must be
placed inside an HtmlForm control so
that they can send their data to the
server when the page is submitted. You
don’t need to add the <form> section—
instead, Visual Studio will add it to your
web page automatically. However, you
do need to ensure that every other
control you add is placed inside the
<form> section.

HtmlAnchor <a> A hyperlink that the user clicks to jump
to another page.

HtmlImage A link that points to an image, which
will be inserted into the web page at the
current location.

HtmlTable, <table>, <tr>, <th>, A table that displays multiple rows
HtmlTableRow, and and <td> and columns of static text.
HtmlTableCell

HtmlInputButton, <input type="button">, A button that the user clicks to perform
HtmlInputSubmit, and <input type="submit">, an action (HtmlInputButton), submit
HtmlInputReset and <input type="reset"> the page (HtmlInputSubmit), or clear

all the user-supplied values in all the
controls (HtmlInputReset).

HtmlButton <button> A button that the user clicks to perform
an action. This is not supported by all
browsers, so HtmlInputButton is
usually used instead. The key difference
is that the HtmlButton is a container
element. As a result, you can insert just
about anything inside it, including text
and pictures. The HtmlInputButton, on
the other hand, is strictly text-only.

HtmlInputCheckBox <input type="checkbox"> A check box that the user can check or
clear. Doesn’t include any text of its
own.

HtmlInputRadioButton <input type="radio"> A radio button that can be selected in a
group. Doesn’t include any text of its
own.

HtmlInputText and <input type="text"> and A single-line text box where the user
HtmlInputPassword <input type="password"> can enter information. Can also be

displayed as a password field (which
displays bullets instead of characters to
hide the user input).

CHAPTER 5 ■ WEB FORM FUNDAMENTALS138

8911CH05.qxd 10/16/07 5:48 PM Page 138

Class Name HTML Element Description

HtmlTextArea <textarea> A large text box where the user can type
multiple lines of text.

HtmlInputImage <input type="image"> Similar to the tag, but inserts a
“clickable” image that submits the page.
Using server-side code, you can
determine exactly where the user
clicked in the image—a technique
you’ll consider later in this chapter.

HtmlInputFile <input type="file"> A Browse button and text box that can
be used to upload a file to your web
server, as described in Chapter 18.

HtmlInputHidden <input type="hidden"> Contains text information that will be
sent to the server when the page is
posted back but won’t be visible in the
browser.

HtmlSelect <select> A drop-down or regular list box where
the user can select an item.

HtmlHead and HtmlTitle <head> and <title> Represents the header information for
the page, which includes information
about the page that isn’t actually
displayed in the page, such as search
keywords and the web page title. These
are the only HTML server controls that
aren’t placed in the <form> section.

HtmlGenericControl Any other HTML element. This control can represent a variety of
HTML elements that don’t have dedi-
cated control classes. For example, if
you add the runat="server" attribute to
a <div> element, it’s provided to your
code as an HtmlGenericControl object.

Remember, there are two ways to add any HTML server control. You can add it by hand
to the markup in the .aspx file (simply insert the ordinary HTML element, and add the
runat="server" attribute). Alternatively, you can drag the control from the HTML tab of the
Toolbox, and drop it onto the design surface of a web page in Visual Studio. This approach
doesn’t work for every HTML server control, because they don’t all appear in the HTML tab.

So far, the currency converter defines three controls, which are instances of the
HtmlForm, HtmlInputText, and HtmlInputButton classes, respectively. It’s useful to know the
class names if you want to look up information about these classes in the Visual Studio Help.
Table 5-4 gives a quick overview of some of the most important control properties.

Table 5-4. Important HTML Control Properties

Control Most Important Properties

HtmlAnchor HRef, Name, Target, Title

HtmlImage Src, Alt, Align, Border, Width, Height

HtmlInputCheckBox and Checked
HtmlInputRadioButton

Continued

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 139

8911CH05.qxd 10/16/07 5:48 PM Page 139

Table 5-4. Continued

Control Most Important Properties

HtmlInputText Value

HtmlTextArea Value

HtmlInputImage Src, Alt, Align, Border

HtmlSelect Items (collection)

HtmlGenericControl InnerText and InnerHtml

Adding the Currency Converter Code
To actually add some functionality to the currency converter, you need to add some ASP.NET
code. Web forms are event-driven, which means every piece of code acts in response to a spe-
cific event. In the simple currency converter page example, the most useful event occurs when
the user clicks the submit button (named Convert). The HtmlInputButton allows you to react
to this action by handling the ServerClick event.

Before you continue, it makes sense to add another control that can display the result of
the calculation. In this case, you can use a <div> tag named Result. The <div> tag is one way to
insert a block of formatted text into a web page. Here’s the HTML that you’ll need:

<div style="font-weight: bold" ID="Result" runat="server"> ... </div>

The style attribute applies the CSS properties used to format the text. In this example, it
merely applies a bold font.

The example now has the following four server controls:

• A form (HtmlForm object). This is the only control you do not need to access in your
code-behind class.

• An input text box named US (HtmlInputText object).

• A submit button named Convert (HtmlInputButton object).

• A <div> tag named Result (HtmlGenericControl object).

Listing 5-1 shows the revised web page (CurrencyConverter.aspx), but leaves out the doc-
type to save space. Listing 5-2 shows the code-behind class (CurrencyConverter.aspx.cs). The
code-behind class includes an event handler that reacts when the convert button is clicked. It
calculates the currency conversion and displays the result.

Listing 5-1. CurrencyConverter.aspx

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="CurrencyConverter.aspx.cs" Inherits="CurrencyConverter" %>

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Currency Converter</title>

</head>
<body>

CHAPTER 5 ■ WEB FORM FUNDAMENTALS140

8911CH05.qxd 10/16/07 5:48 PM Page 140

http://www.w3.org/1999/xhtml

<form runat="server">
<div>
Convert:
<input type="text" ID="US" runat="server" />
 U.S. dollars to Euros.

<input type="submit" value="OK" ID="Convert" runat="server"
OnServerClick="Convert_ServerClick" />

<div style="font-weight: bold" ID="Result" runat="server"></div>

</div>
</form>

</body>
</html>

Listing 5-2. CurrencyConverter.aspx.cs

using System;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.HtmlControls;

public partial class CurrencyConverter : System.Web.UI.Page
{

protected void Convert_ServerClick(object sender, EventArgs e)
{

decimal USAmount = Decimal.Parse(US.Value);
decimal euroAmount = USAmount * 0.85M;
Result.InnerText = USAmount.ToString() + " U.S. dollars = ";
Result.InnerText += euroAmount.ToString() + " Euros.";

}
}

The code-behind class is a typical example of an ASP.NET page. You’ll notice the following
conventions:

• It starts with several using statements. This provides access to all the important name-
spaces. This is a typical first step in any code-behind file. In this example, the list of
using statements has been shortened to include just the core ASP.NET namespaces in
order to save space. When you create a web page in Visual Studio, it adds several more.

• The page class is defined with the partial keyword. That’s because your class code is
merged with another code file that you never see. This extra code, which ASP.NET gen-
erates automatically, defines all the server controls that are used on the page. This
allows you to access them by name in your code.

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 141

8911CH05.qxd 10/16/07 5:48 PM Page 141

• The page defines a single event handler. This event handler retrieves the value from the
text box, converts it to a numeric value, multiplies it by a preset conversion ratio (which
would typically be stored in another file or a database), and sets the text of the <div>
tag. You’ll notice that the event handler accepts two parameters (sender and e). This is
the .NET standard for all control events. It allows your code to identify the control that
sent the event (through the sender parameter) and retrieve any other information that
may be associated with the event (through the e parameter). You’ll see examples of
these advanced techniques in the next chapter, but for now, it’s important to realize
that you won’t be allowed to handle an event unless your event handler has the correct,
matching signature.

• The event handler is connected to the control event using the OnServerClick attribute
in the <input> tag for the button. You’ll learn more about how this hookup works in the
next section.

■Note Unlike with web controls, you can’t create event handlers for HTML server controls using the
Properties window. Instead, you must type the method in by hand. You must also modify the control tag
to connect your event handler. For example, to connect the Convert button to the method named
Convert_ServerClick, you must add OnServerClick="Convert_ServerClick" to the control tag.

• The += operator is used to quickly add information to the end of the label, without
replacing the existing text.

• The event handler uses ToString() to convert the decimal value to text so it can be
added to the InnerText property. In this particular statement, you don’t need ToString(),
because C# is intelligent enough to realize you’re joining together pieces of text. How-
ever, this isn’t always the case, so it’s best to be explicit about data-type conversions.

You can launch this page to test your code. When you enter a value and click the OK but-
ton, the page is resubmitted, the event-handling code runs, and the page is returned to you
with the conversion details (see Figure 5-3).

Event Handling
When the user clicks the Covert button and the page is sent back to the web server, ASP.NET
needs to know exactly what code you want to run. To create this relationship and connect an
event to an event-handling method, you need to add an attribute in the control tag.

For example, if you want to handle the ServerClick method of the Convert button, you
simply need to set the OnServerClick attribute in the control tag with the name of the event
handler you want to use:

<input type="submit" value="OK" ID="Convert"
OnServerClick="Convert_ServerClick" runat="server">

CHAPTER 5 ■ WEB FORM FUNDAMENTALS142

8911CH05.qxd 10/16/07 5:48 PM Page 142

Figure 5-3. The ASP.NET currency converter

ASP.NET controls always use this syntax. When attaching an event handler in the control
tag, you use the name of the event preceded by the word On. For example, if you want to
handle an event named ServerChange, you’d set an attribute in the control tag named
OnServerChange. When you double-click a control on the design surface, Visual Studio adds
the event handler and sets the event-handling attribute to match. (Now that you understand
this process, you’ll understand the source of a common error. If you double-click a control to
create an event handler, but you then delete the event-handling method, you’ll end up with an
event attribute that points to a nonexistent event. As a result, you’ll receive an error the next
time you run the page. To fix the problem, you need to remove the event attribute from the
control tag.)

■Note There’s one ASP.NET object that doesn’t use this attribute system, because it doesn’t have a control
tag—the web page. Instead, ASP.NET connects the web page events based on method names. In other
words, if you have a method named Page_Load() in your page class, and it has the right signature (it accepts
two parameters, an object representing the sender and an EventArgs object), ASP.NET connects this event
handler to the Page.Load event automatically. This feature is called automatic event wireup.

ASP.NET allows you to use another technique to connect events—you can do it using
code, just as you saw in Chapter 3. For example, here’s the code that’s required to hook up the
ServerClick event of the Convert button using manual event wireup:

Convert.ServerClick += this.Convert_ServerClick;

If you’re using code like this, you’d probably add it to the Page_Load() so it connects your
event handlers when the page is first initialized.

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 143

8911CH05.qxd 10/16/07 5:48 PM Page 143

Seeing as Visual Studio handles event wireup, why should ASP.NET developers care that
they have two ways to hook up an event handler? Well, most of the time you won’t worry about
it. But the manual event wireup technique is useful in certain circumstances. The most com-
mon example is if you want to create a control object and add it to a page dynamically at
runtime. In this situation, you can’t hook up the event handler through the control tag,
because there isn’t a control tag. Instead, you need to create the control and attach its event
handlers using code. (The next chapter has an example of how you can use dynamic control
creation to fill in a table.)

Behind the Scenes with the Currency Converter
So, what really happens when ASP.NET receives a request for the CurrencyConverter.aspx
page? The process actually unfolds over several steps:

1. First, the request for the page is sent to the web server. If you’re running a live site, the
web server is almost certainly IIS, which you’ll learn more about in Chapter 9. If you’re
running the page in Visual Studio, the request is sent to the built-in test server.

2. The web server determines that the .aspx file extension is registered with ASP.NET and
passes it to the ASP.NET worker process. If the file extension belonged to another serv-
ice (as it would for .asp or .html files), ASP.NET would never get involved.

3. If this is the first time a page in this application has been requested, ASP.NET automat-
ically creates the application domain. It also compiles all the web page code for
optimum performance, and caches the compiled files in the directory c:\Windows\
Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files. If this task has
already been performed, ASP.NET will reuse the compiled version of the page.

4. The compiled CurrencyConverter.aspx page acts like a miniature program. It starts fir-
ing events (most notably, the Page.Load event). However, you haven’t created an event
handler for that event, so no code runs. At this stage, everything is working together as
a set of in-memory .NET objects.

5. When the code is finished, ASP.NET asks every control in the web page to render itself
into the corresponding HTML markup.

■Tip In fact, ASP.NET performs a little sleight of hand and may customize the output with additional client-
side JavaScript or DHTML if it detects that the client browser supports it. In the case of
CurrencyConverter.aspx, the output of the page is too simple to require this type of automatic tweaking.

6. The final page is sent to the user, and the application ends.

The description is lengthy, but it’s important to start with a good understanding of the
fundamentals. When you click a button on the page, the entire process repeats itself. However,
in step 4 the ServerClick event fires for HtmlInputButton right after the Page.Load event, and
your code runs.

Figure 5-4 illustrates the stages in a web page request.

CHAPTER 5 ■ WEB FORM FUNDAMENTALS144

8911CH05.qxd 10/16/07 5:48 PM Page 144

Figure 5-4. The stages in an ASP.NET request

The most important detail is that your code works with objects. The final step is to trans-
form these objects into the appropriate HTML output. A similar conversion from objects to
output happens with a Windows program in .NET, but it’s so automatic that programmers
rarely give it much thought. Also, in those environments, the code always runs locally. In an

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 145

8911CH05.qxd 10/16/07 5:48 PM Page 145

ASP.NET application, the code runs in a protected environment on the server. The client sees
the results only once the web page processing has ended and the web page object has been
released from memory.

Error Handling
The currency converter expects that the user will enter a number before clicking the Convert
button. If the user enters something else—for example, a sequence of text or special charac-
ters that can’t be interpreted as a number—an error will occur when the code attempts to use
the Decimal.Parse() method. In the current version of the currency converter, this error will
completely derail the event-handling code. Because this example doesn’t include any code to
handle errors, ASP.NET will simply send an error page back to the user describing the
problem.

In Chapter 8, you’ll learn how to deal with errors by catching them, neutralizing them,
and informing the user more gracefully. However, even without these abilities you can rework
the code that responds to the ServerClick event to avoid potential errors. One good approach
is to use the Decimal.TryParse() method instead of Decimal.Parse(). Unlike Parse(), TryParse()
does not generate an error if the conversion fails—it simply informs you of the problem.

TryParse() accepts two parameters. The first parameter is the value you want to convert
(in this example, US.Value). The second parameter is an output parameter that will receive the
converted value (in this case, the variable named USAmount). What’s special about TryParse()
is its Boolean return value, which indicates if the conversion was successful (true) or not
(false).

Here’s a revised version of the ServerClick event handler that uses TryParse() to check for
conversion problems and inform the user:

protected void Convert_ServerClick(object sender, EventArgs e)
{

decimal USAmount;

// Attempt the conversion.
bool success = Decimal.TryParse(US.Value, out amount);

// Check if it succeeded.
if (success)
{

// The conversion succeeded.
decimal euroAmount = USAmount * 0.85M;
Result.InnerText = USAmount.ToString() + " U.S. dollars = ";
Result.InnerText += euroAmount.ToString() + " Euros.";

}
else
{

// The conversion failed.
Result.InnerText = "The number you typed in was not in the " +
"correct format. Use only numbers.";

}
}

CHAPTER 5 ■ WEB FORM FUNDAMENTALS146

8911CH05.qxd 10/16/07 5:48 PM Page 146

For the sake of brevity, the currency converter examples in the rest of this chapter won’t
use the TryParse() method. However, it’s definitely a worthwhile technique in a real-world
web page.

Improving the Currency Converter
Now that you’ve looked at the basic server controls, it might seem that their benefits are fairly
minor compared with the cost of learning a whole new system of web programming. In the
next section, you’ll start to extend the currency converter application. You’ll see how you can
“snap in” additional functionality to the existing program in an elegant, modular way. As the
program grows, ASP.NET handles its complexity easily, steering you away from the tangled and
intricate code that would be required in old-style ASP applications.

Adding Multiple Currencies
The first task is to allow the user to choose a destination currency. In this case, you need to use
a drop-down list box. In HTML, a drop-down list is represented by a <select> element that
contains one or more <option> elements. Each <option> element corresponds to a separate
item in the list.

To reduce the amount of HTML in the currency converter, you can define a drop-down
list without any list items by adding an empty <select> tag. As long as you ensure that this
<select> tag is a server control (by giving it an ID and adding the runat="server" attribute),
you’ll be able to interact with it in code and add the required items when the page loads.

Here’s the revised HTML for the CurrencyConverter.aspx page:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="CurrencyConverter.aspx.cs" Inherits="CurrencyConverter" %>

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Currency Converter</title>

</head>
<body>
<form runat="server">
<div>
Convert:
<input type="text" ID="US" runat="server" />
 U.S. dollars to
<select ID="Currency" runat="server" />

<input type="submit" value="OK" ID="Convert"
OnServerClick="Convert_ServerClick" runat="server" />

<div style="font-weight: bold" ID="Result" runat="server"></div>

</div>
</form>

</body>
</html>

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 147

8911CH05.qxd 10/16/07 5:48 PM Page 147

http://www.w3.org/1999/xhtml

■Note Up until this point, the samples in this book have included an XHTML doctype. Now that you’re
familiar with this ingredient, there’s no reason to keep repeating it. In the rest of this book, the doctype is left
out of the web page markup to save space. Of course, you’ll still see it if you download the sample code.

The currency list can now be filled using code at runtime. In this case, the ideal event is
the Page.Load event, because this is the first event that occurs when the page is executed.
Here’s the code you need to add to the CurrencyConverter page class:

protected void Page_Load(Object sender, EventArgs e)
{

if (this.IsPostBack == false)
{

Currency.Items.Add("Euro");
Currency.Items.Add("Japanese Yen");
Currency.Items.Add("Canadian Dollar");

}
}

Dissecting the Code . . .
This example illustrates two important points:

• You can use the Items property to get items in a list control. This allows you to append,
insert, and remove <option> elements (which represent the items in the list). Remem-
ber, when generating dynamic content with a server control, you set the properties, and
the control creates the appropriate HTML tags.

• Before adding any items to this list, you need to make sure this is the first time the page
is being served to this particular user. Otherwise, the page will continuously add more
items to the list or inadvertently overwrite the user’s selection every time the user inter-
acts with the page. To perform this test, you check the IsPostBack property of the
current Page. In other words, IsPostback is a property of the CurrencyConverter class,
which CurrencyConverter inherits from the generic Page class. If IsPostBack is false, the
page is being created for the first time, and it’s safe to initialize it.

Storing Information in the List
Of course, if you’re a veteran HTML coder, you know that a select list also provides a value
attribute that you can use to store a value for each item in the list. Because the currency con-
verter uses a short list of hard-coded currencies, this is an ideal place to store the currency
conversion rate.

To set the value tag, you need to create a ListItem object for every item in the list and add
that to the HtmlSelect control. The ListItem class provides a constructor that lets you specify
the text and value at the same time that you create it, thereby allowing condensed code
like this:

CHAPTER 5 ■ WEB FORM FUNDAMENTALS148

8911CH05.qxd 10/16/07 5:48 PM Page 148

protected void Page_Load(Object sender, EventArgs e)
{

if (this.IsPostBack == false)
{

// The HtmlSelect control accepts text or ListItem objects.
Currency.Items.Add(new ListItem("Euros", "0.85"));
Currency.Items.Add(new ListItem("Japanese Yen", "110.33"));
Currency.Items.Add(new ListItem("Canadian Dollars", "1.2"));

}
}

To complete the example, you must rewrite the calculation code to take the selected cur-
rency into account, as follows:

protected void Convert_ServerClick(object sender, EventArgs e)
{

decimal amount = Decimal.Parse(US.Value);

// Retrieve the selected ListItem object by its index number.
ListItem item = Currency.Items[Currency.SelectedIndex];

decimal newAmount = amount * Decimal.Parse(item.Value);
Result.InnerText = amount.ToString() + " U.S. dollars = ";
Result.InnerText += newAmount.ToString() + " " + item.Text;

}

Figure 5-5 shows the revamped currency converter.

Figure 5-5. The multicurrency converter

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 149

8911CH05.qxd 10/16/07 5:48 PM Page 149

All in all, this is a good example of how you can store information in HTML tags using the
value attribute. However, in a more sophisticated application, you probably wouldn’t store the
currency rate. Instead, you would just store some sort of unique identifying ID value. Then,
when the user submits the page, you would retrieve the corresponding conversion rate from a
database or some other storage location (such as an in-memory cache).

Adding Linked Images
Adding other functionality to the currency converter is just as easy as adding a new button.
For example, it might be useful for the utility to display a currency conversion rate graph. To
provide this feature, the program would need an additional button and image control.

Here’s the revised HTML:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="CurrencyConverter.aspx.cs" Inherits="CurrencyConverter" %>

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Currency Converter</title>

</head>
<body>
<form runat="server">
<div>
Convert:
<input type="text" ID="US" runat="server" />
 U.S. dollars to
<select ID="Currency" runat="server" />

<input type="submit" value="OK" ID="Convert"
OnServerClick="Convert_ServerClick" runat="server" />
<input type="submit" value="Show Graph" ID="ShowGraph" runat="server" />

<div style="font-weight: bold" ID="Result" runat="server"></div>

</div>
</form>

</body>
</html>

As it’s currently declared, the image doesn’t refer to a picture. For that reason, it makes
sense to hide it when the page is first loaded by using this code:

protected void Page_Load(Object sender, EventArgs e)
{

if (this.IsPostBack == false)
{

Currency.Items.Add(new ListItem("Euros", "0.85"));
Currency.Items.Add(new ListItem("Japanese Yen", "110.33"));
Currency.Items.Add(new ListItem("Canadian Dollars", "1.2"));

CHAPTER 5 ■ WEB FORM FUNDAMENTALS150

8911CH05.qxd 10/16/07 5:48 PM Page 150

http://www.w3.org/1999/xhtml

}
Graph.Visible = false;

}

Interestingly, when a server control is hidden, ASP.NET omits it from the final HTML page.
Now you can handle the click event of the new button to display the appropriate picture.

The currency converter has three possible picture files—pic0.png, pic1.png, and pic2.png—
depending on the selected currency:

protected void ShowGraph_ServerClick(Object sender, EventArgs e)
{

Graph.Src = "Pic" + Currency.SelectedIndex.ToString() + ".png";
Graph.Visible = true;

}

You need to make sure you link to the event handler through the button, so modify the
<input> element for the button as follows:

<input type="submit" value="Show Graph" ID="ShowGraph"
OnServerClick="ShowGraph_ServerClick" runat="server" />

Already the currency converter is beginning to look more interesting, as shown in
Figure 5-6.

Figure 5-6. The currency converter with an image control

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 151

8911CH05.qxd 10/16/07 5:48 PM Page 151

Setting Styles
In addition to a limited set of properties, each HTML control also provides access to the CSS
attributes through its Style collection. To use this collection, you need to specify the name of
the CSS style attribute and the value you want to assign to it. Here’s the basic syntax:

ControlName.Style["AttributeName"] = "AttributeValue";

For example, you could use this technique to emphasize an invalid entry in the currency
converter with the color red. In this case, you’ll also need to reset the color to its original value
for valid input, because the control uses view state to remember all its settings, including its
style properties:

protected void Convert_ServerClick(object sender, EventArgs e)
{

decimal amount = Decimal.Parse(US.Value);

if (amount <= 0)
{

Result.Style["color"] = "Red";
Result.InnerText = "Specify a positive number";

}
else
{

Result.Style["color"] = "Black";

// Retrieve the selected ListItem object by its index number.
ListItem item = Currency.Items[Currency.SelectedIndex];

decimal newAmount = amount * Decimal.Parse(item.Value);
Result.InnerText = amount.ToString() + " U.S. dollars = ";
Result.InnerText += newAmount.ToString() + " " + item.Text;

}
}

■Tip The Style collection sets the style attribute in the HTML tag with a list of formatting options such as
font family, size, and color. You’ll learn more in Chapter 13. But if you aren’t familiar with CSS styles, you
don’t need to learn them now. Instead, you could use web controls, which provide higher-level properties
that allow you to configure their appearance and automatically create the appropriate style attributes. You’ll
learn about web controls in the next chapter.

This concludes the simple currency converter application, which now boasts automatic
calculation, linked images, and dynamic formatting. In the following sections, you’ll look at
the building blocks of ASP.NET interfaces more closely.

CHAPTER 5 ■ WEB FORM FUNDAMENTALS152

8911CH05.qxd 10/16/07 5:48 PM Page 152

A Deeper Look at HTML Control Classes
Related classes in the .NET Framework use inheritance to share functionality. For example,
every HTML control inherits from the base class HtmlControl. The HtmlControl class provides
essential features every HTML server control uses. Figure 5-7 shows the inheritance diagram.

Figure 5-7. HTML control inheritance

The next few sections dissect the ASP.NET classes that are used for HTML server controls.
You can use this material to help understand the common elements that are shared by all
HTML controls. For the specific details about each HTML control, you can refer to the class
library reference in the Visual Studio Help.

HTML server controls generally provide properties that closely match their tag attributes.
For example, the HtmlImage class provides Align, Alt, Border, Src, Height, and Width proper-
ties. For this reason, users who are familiar with HTML syntax will find that HTML server
controls are the most natural fit. Users who aren’t as used to HTML will probably find that
web controls (described in the next chapter) have a more intuitive set of properties.

HTML Control Events
HTML server controls also provide one of two possible events: ServerClick or ServerChange.

The ServerClick is simply a click that’s processed on the server side. It’s provided by most
button controls, and it allows your code to take immediate action. For example, consider the
HtmlAnchor control, which is the server control that represents the common HTML hyperlink
(the <a> element). There are two ways to use the HtmlAnchor control. One option is to set its
HtmlAnchor.HRef property to a URL, in which case the hyperlink will behave exactly like the

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 153

8911CH05.qxd 10/16/07 5:48 PM Page 153

ordinary HTML <a> element (the only difference being that you can set the URL dynamically
in your code). The other option is to handle the HtmlAnchor.ServerClick event. In this case,
when the link is clicked it will actually post back the page, allowing your code to run. The user
won’t be redirected to a new page unless you provide extra code to forward the request.

The ServerChange event responds when a change has been made to a text or selection
control. This event isn’t as useful as it appears because it doesn’t occur until the page is posted
back (for example, after the user clicks a submit button). At this point, the ServerChange event
occurs for all changed controls, followed by the appropriate ServerClick. The Page.Load event
is the first to fire, but you have no way to know the order of events for other controls.

Table 5-5 shows which controls provide a ServerClick event and which ones provide a
ServerChange event.

Table 5-5. HTML Control Events

Event Controls That Provide It

ServerClick HtmlAnchor, HtmlButton, HtmlInputButton, HtmlInputImage, HtmlInputReset

ServerChange HtmlInputText, HtmlInputCheckBox, HtmlInputRadioButton,
HtmlInputHidden, HtmlSelect, HtmlTextArea

Advanced Events with the HtmlInputImage Control
Chapter 4 introduced the .NET event standard, which dictates that every event should pass
exactly two pieces of information. The first parameter identifies the object (in this case, the
control) that fired the event. The second parameter is a special object that can include addi-
tional information about the event.

In the examples you’ve looked at so far, the second parameter (e) has always been used
to pass an empty System.EventArgs object. This object doesn’t contain any additional
information—it’s just a glorified placeholder. Here’s one such example:

protected void Convert_ServerClick(Object sender, EventArgs e)
{ ... }

In fact, only one HTML server control sends additional information: the HtmlInputImage
control. It sends an ImageClickEventArgs object (from the System.Web.UI namespace) that
provides X and Y properties representing the location where the image was clicked. You’ll
notice that the definition for the HtmlInputImage.ServerClick event handler is a little different
from the event handlers used with other controls:

protected void ImgButton_ServerClick(Object sender, ImageClickEventArgs e)
{ ... }

Using this additional information, you can replace multiple button controls and image
maps with a single, intelligent HtmlInputImage control.

Here’s the markup you need to create the HtmlInputImage control for this example:

<input type="image" ID="ImgButton" runat="server" src="button.png" />
OnServerClick="ImgButton_ServerClick" />

CHAPTER 5 ■ WEB FORM FUNDAMENTALS154

8911CH05.qxd 10/16/07 5:48 PM Page 154

The sample ImageTest.aspx page shown in Figure 5-8 puts this feature to work with a sim-
ple graphical button. Depending on whether the user clicks the button border or the button
surface, a different message is displayed.

Figure 5-8. Using an HtmlInputImage control

The page code examines the click coordinates provided by the ImageClickEventArgs
object and displays them in another control. Here’s the page code you need:

public partial class ImageTest : System.Web.UI.Page
{

protected void ImgButton_ServerClick(Object sender,
ImageClickEventArgs e)

{
Result.InnerText = "You clicked at (" + e.X.ToString() +
", " + e.Y.ToString() + "). ";

if ((e.Y < 100) && (e.Y > 20) && (e.X > 20) && (e.X < 275))
{

Result.InnerText += "You clicked on the button surface.";
}
else
{

Result.InnerText += "You clicked the button border.";
}

}
}

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 155

8911CH05.qxd 10/16/07 5:48 PM Page 155

The HtmlControl Base Class
Every HTML control inherits from the base class HtmlControl. This relationship means that
every HTML control will support a basic set of properties and features. Table 5-6 shows these
properties.

Table 5-6. HtmlControl Properties

Property Description

Attributes Provides a collection of all the attributes that are set in the control tag,
and their values. Rather than reading or setting an attribute through the
Attributes, it’s better to use the corresponding property in the control class.
However, the Attributes collection is useful if you need to add or configure a
custom attribute or an attribute that doesn’t have a corresponding property.

Controls Provides a collection of all the controls contained inside the current control.
(For example, a <div> server control could contain an <input> server control.)
Each object is provided as a generic System.Web.UI.Control object so that you
may need to cast the reference to access control-specific properties.

Disabled Disables the control when set to true, thereby ensuring that the user cannot
interact with it, and its events will not be fired.

EnableViewState Disables the automatic state management for this control when set to false. In
this case, the control will be reset to the properties and formatting specified
in the control tag every time the page is posted back. If this is set to true (the
default), the control uses a hidden input field to store information about its
properties, thereby ensuring that any changes you make in code are
remembered.

Page Provides a reference to the web page that contains this control as a
System.Web.UI.Page object.

Parent Provides a reference to the control that contains this control. If the control is
placed directly on the page (rather than inside another control), it will return
a reference to the page object.

Style Provides a collection of CSS style properties that can be used to format the
control.

TagName Indicates the name of the underlying HTML element (for example, img or
div).

Visible Hides the control when set to false and will not be rendered to the final HTML
page that is sent to the client.

The HtmlControl class also provides built-in support for data binding, which you’ll exam-
ine in Chapter 16.

PROPERTIES CAN BE SET IN CODE OR IN THE TAG

To set the initial value of a property, you can configure the control in the Page.Load event handler, or you can
adjust the control tag in the .aspx file by adding special attributes. Note that the Page.Load event occurs after
the page is initialized with the default values and the tag settings. This means your code can override the
properties set in the tag (but not vice versa).

CHAPTER 5 ■ WEB FORM FUNDAMENTALS156

8911CH05.qxd 10/16/07 5:48 PM Page 156

The following HtmlImage control is an example that sets properties through attributes in the control tag.
The control is automatically disabled and will not fire any events.

Remember, if you set control properties in the Properties window, you are using the control tag
approach. As you make your changes, Visual Studio updates the control tag in the .aspx file.

The HtmlContainerControl Class
Any HTML control that requires a closing tag inherits from the HtmlContainer class (which in
turn inherits from the more basic HtmlControl class). For example, elements such as <a>,
<form>, and <div> always use a closing tag, because they can contain other HTML elements.
On the other hand, elements such as and <input> are used only as stand-alone tags.
Thus, the HtmlAnchor, HtmlForm, and HtmlGenericControl classes inherit from
HtmlContainerControl, while HtmlInputImage and HtmlInputButton do not.

The HtmlContainer control adds two properties to those defined in HtmlControl, as
described in Table 5-7.

Table 5-7. HtmlContainerControl Properties

Property Description

InnerHtml The HTML content between the opening and closing tags of the control. Special
characters that are set through this property will not be converted to the equivalent
HTML entities. This means you can use this property to apply formatting with
nested tags such as , <i>, and <h1>.

InnerText The text content between the opening and closing tags of the control. Special char-
acters will be automatically converted to HTML entities and displayed like text (for
example, the less-than character (<) will be converted to < and will be displayed
as < in the web page). This means you can’t use HTML tags to apply additional for-
matting with this property. The simple currency converter page uses the InnerText
property to enter results into a <div> tag.

The HtmlInputControl Class
This control defines some properties (shown in Table 5-8) that are used for the <input>
element. As you’ve already learned, the <input> element can represent different controls,
depending on the type attribute. The <input type="text"> element is a text box and
<input type="submit"> is a button.

Table 5-8. HtmlInputControl Properties

Property Description

Type Provides the type of input control. For example, a control based on <input type=”file”>
would return file for the type property.

Value Returns the contents of the control as a string. In the simple currency converter, this
property allowed the code to retrieve the information entered in the text input control.

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 157

8911CH05.qxd 10/16/07 5:48 PM Page 157

The Page Class
One control we haven’t discussed in detail yet is the Page class. As explained in the previous
chapter, every web page is a custom class that inherits from System.Web.UI.Page. By inherit-
ing from this class, your web page class acquires a number of properties and methods that
your code can use. These include properties for enabling caching, validation, and tracing,
which are discussed throughout this book.

Table 5-9 provides an overview of some of the more fundamental properties, which you’ll
use throughout this book.

Table 5-9. Basic Page Properties

Property Description

IsPostBack This Boolean property indicates whether this is the first time the page is being
run (false) or whether the page is being resubmitted in response to a control
event, typically with stored view state information (true). You’ll usually check
this property in the Page.Load event handler to ensure that your initial web
page initialization is only performed once.

EnableViewState When set to false, this overrides the EnableViewState property of the
contained controls, thereby ensuring that no controls will maintain state
information.

Application This collection holds information that’s shared between all users in your
website. For example, you can use the Application collection to count the
number of times a page has been visited. You’ll learn more in Chapter 7.

Session This collection holds information for a single user, so it can be used in
different pages. For example, you can use the Session collection to store the
items in the current user’s shopping basket on an e-commerce website. You’ll
learn more in Chapter 7.

Cache This collection allows you to store objects that are time-consuming to create
so they can be reused in other pages or for other clients. This technique,
when implemented properly, can improve performance of your web pages.
Chapter 24 discusses caching in detail.

Request This refers to an HttpRequest object that contains information about the
current web request. You can use the HttpRequest object to get information
about the user’s browser, although you’ll probably prefer to leave these details
to ASP.NET. You’ll use the HttpRequest object to transmit information from
one page to another with the query string in Chapter 7.

Response This refers to an HttpResponse object that represents the response ASP.NET
will send to the user’s browser. You’ll use the HttpResponse object to create
cookies in Chapter 7, and you’ll see how it allows you to redirect the user to a
different web page later in this chapter.

Server This refers to an HttpServerUtility object that allows you to perform a few
miscellaneous tasks. For example, it allows you to encode text so that it’s safe
to place it in a URL or in the HTML markup of your page. You’ll learn more
about these features in this chapter.

User If the user has been authenticated, this property will be initialized with user
information. Chapter 20 describes this property in more detail.

In the following sections, you’ll learn about two tasks that use these properties—
redirecting the user to a new page, and encoding text that may contain special characters
so it can be inserted into web page HTML.

CHAPTER 5 ■ WEB FORM FUNDAMENTALS158

8911CH05.qxd 10/16/07 5:48 PM Page 158

Sending the User to a New Page
In the currency converter example, everything took place in a single page. In a more typical
website, the user will need to surf from one page to another to perform different tasks or com-
plete a single operation.

There are several ways to transfer a user from one page to another. One of the simplest is
to use an ordinary <a> anchor element, which turns a portion of text into a hyperlink. In this
example, the word here is a link to another page:

Click here to go to newpage.aspx.

Another option is to send the user to a new page using code. This approach is useful if you
want to use your code to perform some other work before you redirect the user. It’s also handy
if you need to use code to decide where to send the user. For example, if you create a sequence
of pages for placing an order, you might send existing customers straight to the checkout
while new visitors are redirected to a registration page.

To perform redirection in code, you first need a control that causes the page to be posted
back. In other words, you need an event handler that reacts to the ServerClick event of a con-
trol such as HtmlInputButton or HtmlAnchor. When the page is posted back and your event
handler runs, you can use the HttpResponse.Redirect() method to send the user to the new
page.

Remember, you can get access to the current HttpResponse object through the
Page.Response property. Here’s an example that sends the user to a different page in the
same website directory:

Response.Redirect("newpage.aspx");

When you use the Redirect() method, ASP.NET immediately stops processing the page
and sends a redirect message back to the browser. Any code that occurs after the Redirect()
call won’t be executed. When the browser receives the redirect message, it sends a request for
the new page.

You can use the Redirect() method to send the user to any type of page. You can even send
the user to another website using an absolute URL (a URL that starts with http://), as shown
here:

Response.Redirect("http://www.prosetech.com");

ASP.NET gives you one other option for sending the user to a new page. You can use the
HttpServerUtility.Transfer() method instead of Response.Redirect(). An HttpServerUtility
object is provided through the Page.Server property, so your redirection code would look
like this:

Server.Transfer("newpage.aspx");

The advantage of using the Transfer() method is the fact that it doesn’t involve the
browser. Instead of sending a redirect message back to the browser, ASP.NET simply starts pro-
cessing the new page as though the user had originally requested that page. This behavior
saves a bit of time, but it also introduces some significant limitations. You can’t use Transfer()
to send the user to another website or to a non-ASP.NET page (such as an HTML page). The
Transfer() method only allows you to jump from one ASP.NET page to another, in the same
web application. Furthermore, when you use Transfer() the user won’t have any idea that

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 159

8911CH05.qxd 10/16/07 5:48 PM Page 159

http://www.prosetech.com

another page has taken over, because the browser will still show the original URL. This can
cause a problem if you want to support browser bookmarks. On the whole, it’s much more
common to use HttpResponse.Redirect() than HttpServerUtility.Transfer().

HTML Encoding
As you already know, there are certain characters that have a special meaning in HTML. For
example, the angle brackets (< >) are always used to create tags. This can cause problems if
you actually want to use these characters as part of the content of your web page.

For example, imagine you want to display this text on a web page:

Enter a word <here>

If you try to write this information to a page or place it inside a control, you end up with
this instead:

Enter a word

The problem is that the browser has tried to interpret the <here> as an HTML tag. A simi-
lar problem occurs if you actually use valid HTML tags. For example, consider this text:

To bold text use the tag.

Not only will the text not appear, but the browser will interpret it as an instruction to
make the text that follows bold. To circumvent this automatic behavior, you need to convert
potential problematic values to their HTML equivalents. For example, < becomes < in your
final HTML page, which the browser displays as the < character. Table 5-10 lists some special
characters that need to be encoded.

Table 5-10. Common HTML Special Characters

Result Description Encoded Entity

Nonbreaking space

< Less-than symbol <

> Greater-than symbol >

& Ampersand &

" Quotation mark "

You can perform this transformation on your own, or you can circumvent the problem by
using the InnerText property of an HTML server control. When you set the contents of a con-
trol using InnerText, any illegal characters are automatically converted into their HTML
equivalents. However, this won’t help if you want to set a tag that contains a mix of embedded
HTML tags and encoded characters. It also won’t be of any use for controls that don’t provide
an InnerText property, such as the Label web control you’ll examine in the next chapter. In
these cases, you can use the HttpServerUtility.HtmlEncode() method to replace the special
characters. (Remember, an HttpServerUtility object is provided through the Page.Server
property.)

Here’s an example:

CHAPTER 5 ■ WEB FORM FUNDAMENTALS160

8911CH05.qxd 10/16/07 5:48 PM Page 160

// Will output as "Enter a word <here>" in the HTML file, but the
// browser will display it as "Enter a word <here>".
ctrl.InnerHtml = Server.HtmlEncode("Enter a word <here>");

Or consider this example, which mingles real HTML tags with text that needs to be
encoded:

ctrl.InnerHtml = "To bold text use the ";
ctrl.InnerHtml += Server.HtmlEncode("") + " tag.";

Figure 5-9 shows the results of successfully and incorrectly encoding special HTML char-
acters. You can refer to the HtmlEncodeTest.aspx page included with the examples for this
chapter.

Figure 5-9. Encoding special HTML characters

The HtmlEncode() method is particularly useful if you’re retrieving values from a data-
base and you aren’t sure whether the text is valid HTML. You can use the HtmlDecode()
method to revert the text to its normal form if you need to perform additional operations or
comparisons with it in your code.

Along with the HtmlEncode() and HtmlDecode() methods, the HttpServerUtility class
also includes UrlEncode() and UrlDecode() methods. Much as HtmlEncode() allows you to
convert text to valid HTML with no special characters, UrlEncode() allows you to convert text
into a form that can be used in a URL. This technique is particularly useful if you want to pass
information from one page to another by tacking it onto the end of the URL. You’ll see this
technique demonstrated in Chapter 7.

Application Events
In this chapter, you’ve seen how ASP.NET controls fire events that you can handle in your
code. Although server controls are the most common source of events, there’s another type of
event that you’ll occasionally encounter: application events. Application events aren’t nearly
as important in an ASP.NET application as the events fired by server controls, but you might

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 161

8911CH05.qxd 10/16/07 5:48 PM Page 161

use them to perform additional processing tasks. For example, using application events you
can write logging code that runs every time a request is received, no matter what page is being
requested. Basic ASP.NET features like session state and authentication use application events
to plug into the ASP.NET processing pipeline.

You can’t handle application events in the code behind for a web form. Instead, you need
the help of another ingredient: the Global.asax file.

The Global.asax File
The Global.asax file allows you to write code that responds to global application events. These
events fire at various points during the lifetime of a web application, including when the
application domain is first created (when the first request is received for a page in your web-
site folder).

To add a Global.asax file to an application in Visual Studio, choose Website ➤ Add New
Item, and select the Global Application Class file type. Then, click OK.

The Global.asax file looks similar to a normal .aspx file, except that it can’t contain any
HTML or ASP.NET tags. Instead, it contains event handlers. For example, the following
Global.asax file reacts to the Application.EndRequest event, which happens just before the
page is sent to the user:

<%@ Application Language="C#" %>

<script language="c#" runat="server">
protected void Application_OnEndRequest()
{

Response.Write("<hr />This page was served at " +
DateTime.Now.ToString());

}
</script>

This event handler uses the Write() method of the built-in Response object to write a footer
at the bottom of the page with the date and time that the page was created (see Figure 5-10).

Figure 5-10. HelloWorld.aspx with an automatic footer

CHAPTER 5 ■ WEB FORM FUNDAMENTALS162

8911CH05.qxd 10/16/07 5:48 PM Page 162

Each ASP.NET application can have one Global.asax file. Once you place it in the appro-
priate website directory, ASP.NET recognizes it and uses it automatically. For example, if you
add the Global.asax file shown previously to a web application, every web page in that appli-
cation will include a footer.

■Note This technique—responding to application events and using the Response.Write() method—isn’t
the best way to add a footer to the pages in your website. A better approach is to add a user control that
creates the footer (Chapter 12) or define a master page template that includes a footer (Chapter 14).

Additional Application Events
Application.EndRequest is only one of more than a dozen events you can respond to in your
code. To create a different event handler, you simply need to create a subroutine with the
defined name. Table 5-12 lists some of the most common application events that you’ll use.

Table 5-12. Basic Application Events

Event-Handling Method Description

Application_Start() Occurs when the application starts, which is the first time it
receives a request from any user. It doesn’t occur on subsequent
requests. This event is commonly used to create or cache some
initial information that will be reused later.

Application_End() Occurs when the application is shutting down, generally because
the web server is being restarted. You can insert cleanup code here.

Application_BeginRequest() Occurs with each request the application receives, just before the
page code is executed.

Application_EndRequest() Occurs with each request the application receives, just after the
page code is executed.

Session_Start() Occurs whenever a new user request is received and a session is
started. Sessions are discussed in detail in Chapter 7.

Session_End() Occurs when a session times out or is programmatically ended.
This event is only raised if you are using in-process session state
storage (the InProc mode, not the StateServer or SQLServer
modes).

Application_Error() Occurs in response to an unhandled error. You can find more
information about error handling in Chapter 8.

ASP.NET Configuration
The last topic you’ll consider in this chapter is the ASP.NET configuration file system.

Every web application includes a web.config file that configures fundamental settings—
everything from the way error messages are shown to the security settings that lock out
unwanted visitors. You’ll consider the settings in the web.config file throughout this book.

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 163

8911CH05.qxd 10/16/07 5:48 PM Page 163

(And there are many more settings that you won’t consider in this book, because they’re used
much more rarely.)

The ASP.NET configuration files have several key advantages:

They are never locked: You can update web.config settings at any point, even while your
application is running. If there are any requests currently under way, they’ll continue to
use the old settings, while new requests will get the changed settings right away.

They are easily accessed and replicated: Provided you have the appropriate network rights,
you can change a web.config file from a remote computer. You can also copy the
web.config file and use it to apply identical settings to another application or another
web server that runs the same application in a web farm scenario.

The settings are easy to edit and understand: The settings in the web.config file are human-
readable, which means they can be edited and understood without needing a special
configuration tool.

In the following sections, you’ll get a high-level overview of the web.config file and learn
how ASP.NET’s configuration system works.

The web.config File
The web.config file uses a predefined XML format. The entire content of the file is nested in a
root <configuration> element. Inside this element are several more subsections, some of
which you’ll never change, and others which are more important.

Here’s the basic skeletal structure of the web.config file, with the three most important
sections highlighted in bold:

<?xml version="1.0" ?>
<configuration>

<configSections>...</configSections>
<appSettings>...</appSettings>
<connectionStrings>...</connectionStrings>
<system.web>...</system.web>
<system.codedom>...</system.codedom>
<system.webServer>...</system.webServer>

</configuration>

Note that the web.config file is case-sensitive, like all XML documents, and starts every
setting with a lowercase letter. This means you cannot write <AppSettings> instead of
<appSettings>.

■Tip To learn more about XML, the format used for the web.config file, you can refer to Chapter 19.

As a web developer, there are three sections in the web.config file that you’ll work with.
The <appSettings> section allows you to add your own miscellaneous pieces of information.
You’ll learn how to use it in the next section. The <connectionStrings> section allows you to

CHAPTER 5 ■ WEB FORM FUNDAMENTALS164

8911CH05.qxd 10/16/07 5:48 PM Page 164

define the connection information for accessing a database. You’ll learn about this section in
Chapter 15. Finally, the <system.web> section holds every ASP.NET setting you’ll need to con-
figure.

Inside the <system.web> element are separate elements for each aspect of website
configuration. You can include as few or as many of these as you want. For example, if you
need to specify special error settings, you would add the <customErrors> element in the
<system.web> section. If you wanted to control how ASP.NET’s security works, you’d add the
<authentication> and <authorization> sections. You’ll consider the different elements that
you can add to the <system.web> section throughout this book.

Nested Configuration
ASP.NET uses a multilayered configuration system that allows you to set settings at different
levels.

Every web server starts with some basic settings that are defined in two configuration files
in the c:\Windows\Microsoft.NET\Framework\v2.0.50727\Config directory. These two files
are machine.config and web.config. Generally, you won’t edit either of these files manually,
because they affect the entire computer. Instead, you’ll configure the web.config file in your
web application folder. Using that file, you can set additional settings or override the defaults
that are configured in the two system files.

More interestingly, you can use different settings for different parts of your application. To
use this technique, you need to create additional subdirectories inside your virtual directory.
These subdirectories can contain their own web.config files with additional settings.

Subdirectories inherit web.config settings from the parent directory. For example, imag-
ine you create a website in the directory c:\ASP.NET\TestWeb. Inside this directory, you create
a folder named Secure. Pages in the c:\ASP.NET\TestWeb\Secure directory can acquire set-
tings from three files, as shown in Figure 5-11.

Figure 5-11. Configuration inheritance

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 165

8911CH05.qxd 10/16/07 5:48 PM Page 165

Any machine.config or web.config settings that aren’t explicitly overridden in the
c:\ASP.NET\TestWeb\Secure\web.config file will still apply to the SecureHelloWorld.aspx page.
In this way, subdirectories can specify just a small set of settings that differ from the rest of the
web application. One reason you might want to use multiple directories in an application is to
apply different security settings. Files that need to be secured would then be placed in a dedi-
cated directory with a web.config file that defines more stringent security settings.

Storing Custom Settings in the web.config File
ASP.NET also allows you to store your own settings in the web.config file, in an element called
<appSettings>. Note that the <appSettings> element is nested in the root <configuration> ele-
ment. Here’s the basic structure:

<?xml version="1.0" ?>
<configuration>

...
<appSettings>

<!-- Custom application settings go here. -->
</appSettings>
...
<system.web>

<!-- ASP.NET Configuration sections go here. -->
</system.web>
...

</configuration>

■Note This example adds a comment in the place where you’d normally find additional settings. XML
comments are bracketed with the <!-- and --> character sequences. You can also use XML comments to
temporarily disable a setting in a configuration file.

The custom settings that you add are written as simple string variables. You might want to
use a special web.config setting for several reasons:

To centralize an important setting that needs to be used in many different pages: For exam-
ple, you could create a variable that stores a database query. Any page that needs to use
this query can then retrieve this value and use it.

To make it easy to quickly switch between different modes of operation: For example, you
might create a special debugging variable. Your web pages could check for this variable
and, if it’s set to a specified value, output additional information to help you test the
application.

To set some initial values: Depending on the operation, the user might be able to modify
these values, but the web.config file could supply the defaults.

CHAPTER 5 ■ WEB FORM FUNDAMENTALS166

8911CH05.qxd 10/16/07 5:48 PM Page 166

You can enter custom settings using an <add> element that identifies a unique variable
name (key) and the variable contents (value). The following example adds a variable that
defines a file path where important information is stored:

<appSettings>
<add key="DataFilePath"
value="e:\NetworkShare\Documents\WebApp\Shared" />

</appSettings>

You can add as many application settings as you want, although this example defines
just one.

You can create a simple test page to query this information and display the results,
as shown in the following example (which is provided with the sample code as
ShowSettings.aspx and ShowSettings.aspx.cs). You retrieve custom application settings from
web.config by key name, using the WebConfigurationManager class, which is found in the
System.Web.Configuration namespace. This class provides a static property called
AppSettings with a collection of application settings.

using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.Configuration;

public partial class ShowSettings : System.Web.UI.Page
{

protected void Page_Load()
{

lblTest.Text = "This app will look for data in the directory:
";
lblTest.Text += WebConfigurationManager.AppSettings["DataFilePath"];

lblTest.Text += "";
}

}

■Tip Notice that this code formats the text by inserting HTML tags into the label alongside the text content,
including bold tags () to emphasize certain words, and a line break (
) to split the output over
multiple lines. This is a common technique.

Later, in Chapter 18, you’ll learn how to get file and directory information and read and
write files. For now, the simple application just displays the custom web.config setting, as
shown in Figure 5-12.

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 167

8911CH05.qxd 10/16/07 5:48 PM Page 167

Figure 5-12. Displaying custom application settings

ASP.NET is configured, by default, to deny any requests for .config files. This means a
remote user will not be able to access the file through IIS. Instead, they’ll receive the error
message shown in Figure 5-13.

Figure 5-13. Requests for web.config are denied.

The Website Administration Tool (WAT)
Editing the web.config file by hand is refreshingly straightforward, but it can be a bit tedious.
To help alleviate the drudgery, ASP.NET includes a graphical configuration tool called the
Website Administration Tool (WAT), which lets you configure various parts of the web.config
file using a web page interface. To run the WAT to configure the current web project in Visual
Studio, select Website ➤ ASP.NET Configuration. A web browser window will appear (see
Figure 5-14). Internet Explorer will automatically log you on under the current Windows user
account, allowing you to make changes.

CHAPTER 5 ■ WEB FORM FUNDAMENTALS168

8911CH05.qxd 10/16/07 5:48 PM Page 168

Figure 5-14. Running the WAT

You can use the WAT to automate the web.config changes you made in the previous
example. To try this, click the Application tab. Using this tab, you can create a new setting
(click the Create Application Settings link). If you click Manage Application Settings, you’ll see
a list with all the applications settings that are defined in your application (Figure 5-15). You
can then choose to remove or edit any one of them.

Figure 5-15. Editing an application setting with the WAT

CHAPTER 5 ■ WEB FORM FUNDAMENTALS 169

8911CH05.qxd 10/16/07 5:48 PM Page 169

This is the essential idea behind the WAT. You make your changes using a graphical inter-
face (a web page), and the WAT generates the settings you need and adds them to the
web.config file for your application behind the scenes. Of course, the WAT has a number of
settings for configuring more complex ASP.NET settings, and you’ll use it throughout this
book.

The Last Word
This chapter presented you with your first look at web applications, web pages, and configura-
tion. You should now understand how to create an ASP.NET web page and use HTML server
controls.

HTML controls are a compromise between web controls and traditional ASP.NET pro-
gramming. They use the familiar HTML elements but provide a limited object-oriented
interface. Essentially, HTML controls are designed to be straightforward, predictable, and
automatically compatible with existing programs. With HTML controls, the final HTML page
that is sent to the client closely resembles the original .aspx page.

In the next chapter, you’ll learn about web controls, which provide a more sophisticated
object interface that abstracts away the underlying HTML. If you’re starting a new project or
need to add some of ASP.NET’s most powerful controls, web controls are the best option.

CHAPTER 5 ■ WEB FORM FUNDAMENTALS170

8911CH05.qxd 10/16/07 5:48 PM Page 170

Web Controls

The previous chapter introduced the event-driven and control-based programming model
of ASP.NET. This model allows you to create programs for the Web using the same object-
oriented techniques you would use to write a Windows application.

However, HTML server controls really show only a glimpse of what is possible with
ASP.NET’s server control model. To see some of the real advantages, you need to dive into the
richer and more extensible web controls. In this chapter, you’ll explore the basic web controls
and their class hierarchy. You’ll also delve deeper into ASP.NET’s event handling, learn the
details of the web page life cycle, and put your knowledge to work by creating a web page that
lets the user design a greeting card.

Stepping Up to Web Controls
Now that you’ve seen the new model of server controls, you might wonder why you need addi-
tional web controls. But in fact, HTML controls are much more limited than server controls
need to be. For example, every HTML control corresponds directly to an HTML tag, meaning
you’re bound by the limitations and abilities of HTML. Web controls, on the other hand, have
no such restriction. They emphasize the future of web design.

These are some of the reasons you should switch to web controls:

They provide a rich user interface: A web control is programmed as an object but doesn’t
necessarily correspond to a single element in the final HTML page. For example, you
might create a single Calendar or GridView control, which will be rendered as dozens of
HTML elements in the final page. When using ASP.NET programs, you don’t need to know
anything about HTML. The control creates the required HTML tags for you.

They provide a consistent object model: HTML is full of quirks and idiosyncrasies. For
example, a simple text box can appear as one of three elements, including <textarea>,
<input type="text">, and <input type="password">. With web controls, these three ele-
ments are consolidated as a single TextBox control. Depending on the properties you set,
the underlying HTML element that ASP.NET renders may differ. Similarly, the names of
properties don’t follow the HTML attribute names. For example, controls that display text,
whether it’s a caption or a text box that can be edited by the user, expose a Text property.

171

C H A P T E R 6

8911CH06.qxd 9/19/07 11:08 AM Page 171

They tailor their output automatically: ASP.NET server controls can detect the type of
browser and automatically adjust the HTML code they write to take advantage of features
such as support for JavaScript. You don’t need to know about the client because ASP.NET
handles that layer and automatically uses the best possible set of features. This feature is
known as adaptive rendering.

They provide high-level features: You’ll see that web controls allow you to access addi-
tional events, properties, and methods that don’t correspond directly to typical HTML
controls. ASP.NET implements these features by using a combination of tricks.

Throughout this book, you’ll see examples that use the full set of web controls. To master
ASP.NET development, you need to become comfortable with these user-interface ingredients
and understand their abilities. HTML server controls, on the other hand, are less important
for web development. You’ll only use them if you’re migrating an existing HTML page to the
ASP.NET world, or if you need to have fine-grained control over the HTML code that will be
generated and sent to the client.

Basic Web Control Classes
If you’ve ever created a Windows application before, you’re probably familiar with the basic set
of standard controls, including labels, buttons, and text boxes. ASP.NET provides web controls
for all these standbys. (And if you’ve created .NET Windows applications, you’ll notice that the
class names and properties have many striking similarities, which are designed to make it easy
to transfer the experience you acquire in one type of application to another.)

Table 6-1 lists the basic control classes and the HTML elements they generate. Some con-
trols (such as Button and TextBox) can be rendered as different HTML elements. In this case,
ASP.NET uses the element that matches the properties you’ve set. Also, some controls have no
real HTML equivalent. For example, the CheckBoxList and RadioButtonList controls output as
a <table> that contains multiple HTML check boxes or radio buttons. ASP.NET exposes them
as a single object on the server side for convenient programming, thus illustrating one of the
primary strengths of web controls.

Table 6-1. Basic Web Controls

Control Class Underlying HTML Element

Label

Button <input type="submit"> or <input type="button">

TextBox <input type="text">, <input type="password">, or <textarea>

CheckBox <input type="checkbox">

RadioButton <input type="radio">

Hyperlink <a>

LinkButton <a> with a contained tag

ImageButton <input type="image">

Image

CHAPTER 6 ■ WEB CONTROLS172

8911CH06.qxd 9/19/07 11:08 AM Page 172

Control Class Underlying HTML Element

ListBox <select size="X"> where X is the number of rows that are visible at once

DropDownList <select>

CheckBoxList A list or <table> with multiple <input type="checkbox"> tags

RadioButtonList A list or <table> with multiple <input type="radio"> tags

BulletedList An ordered list (numbered) or unordered list (bulleted)

Panel <div>

Table, TableRow, and <table>, <tr>, and <td> or <th>
TableCell

This table omits some of the more specialized controls used for data, navigation, security,
and web portals. You’ll see these controls as you learn about their features throughout this
book.

The Web Control Tags
ASP.NET tags have a special format. They always begin with the prefix asp: followed by the
class name. If there is no closing tag, the tag must end with />. (This syntax convention is bor-
rowed from XML, which you’ll learn about in much more detail in Chapter 19.) Each attribute
in the tag corresponds to a control property, except for the runat="server" attribute, which sig-
nals that the control should be processed on the server.

The following, for example, is an ASP.NET TextBox:

<asp:TextBox ID="txt" runat="server" />

When a client requests this .aspx page, the following HTML is returned. The name is a
special attribute that ASP.NET uses to track the control.

<input type="text" ID="txt" name="txt" />

Alternatively, you could place some text in the TextBox, set its size, make it read-only, and
change the background color. All these actions have defined properties. For example, the
TextBox.TextMode property allows you to specify SingleLine (the default), MultiLine (for a
<textarea> type of control), or Password (for an input control that displays bullets to hide the
true value). You can adjust the color using the BackColor and ForeColor properties. And you
can tweak the size of the TextBox using the Rows property. Here’s an example of a customized
TextBox:

<asp:TextBox ID="txt" BackColor="Yellow" Text="Hello World"
ReadOnly="True" TextMode="MultiLine" Rows="5" runat="server" />

The resulting HTML uses the <textarea> element and sets all the required style attributes.
Figure 6-1 shows it in the browser.

CHAPTER 6 ■ WEB CONTROLS 173

8911CH06.qxd 9/19/07 11:08 AM Page 173

Figure 6-1. A customized text box

<textarea name="txt" rows="5" cols="20" readonly="readonly" ID="txt"
style="background-color:Yellow;">Hello World</textarea>

Clearly, it’s easy to create a web control tag. It doesn’t require any understanding of
HTML. However, you will need to understand the control class and the properties that are
available to you.

CASE-SENSITIVITY IN ASP.NET FORMS

The .aspx layout portion of a web page tolerates different capitalization for tag names, property names, and
enumeration values. For example, the following two tags are equivalent, and both will be interpreted correctly
by the ASP.NET engine, even though their case differs:

<asp:Button ID="Button1" runat="server"
Enabled="False" Text="Button" Font-Size="XX-Small" />

<asp:button ID="Button2" runat="server"
Enabled="false" tExT="Button" d" />

This design was adopted to make .aspx pages behave more like ordinary HTML web pages, which
ignore case completely. However, you can’t use the same looseness in the tags that apply settings in the
web.config file or the machine.config file. Here, case must match exactly.

Web Control Classes
Web control classes are defined in the System.Web.UI.WebControls namespace. They follow a
slightly more tangled object hierarchy than HTML server controls, as shown in Figure 6-2.

CHAPTER 6 ■ WEB CONTROLS174

8911CH06.qxd 9/19/07 11:08 AM Page 174

Figure 6-2. The web control hierarchy

This inheritance diagram includes some controls that you won’t study in this chapter,
including the data controls, such as the GridView, DetailsView, and FormView, and the valida-
tion controls. You’ll explore these controls in later chapters.

The WebControl Base Class
Most web controls begin by inheriting from the WebControl base class. This class defines the
essential functionality for tasks such as data binding and includes some basic properties that
you can use with almost any web control, as described in Table 6-2.

Table 6-2. WebControl Properties

Property Description

AccessKey Specifies the keyboard shortcut as one letter. For example, if you set
this to Y, the Alt+Y keyboard combination will automatically change
focus to this web control. This feature is supported only on Internet
Explorer 4.0 and higher.

BackColor, ForeColor, Sets the colors used for the background, foreground, and border of the
and BorderColor control. In most controls, the foreground color sets the text color.

BorderWidth Specifies the size of the control border.

Continued

CHAPTER 6 ■ WEB CONTROLS 175

8911CH06.qxd 9/19/07 11:08 AM Page 175

Table 6-2. Continued

Property Description

BorderStyle One of the values from the BorderStyle enumeration, including
Dashed, Dotted, Double, Groove, Ridge, Inset, Outset, Solid, and None.

Controls Provides a collection of all the controls contained inside the current
control. Each object is provided as a generic System.Web.UI.Control
object, so you will need to cast the reference to access control-specific
properties.

Enabled When set to false, the control will be visible, but it will not be able to
receive user input or focus.

EnableViewState Set this to false to disable the automatic state management for this
control. In this case, the control will be reset to the properties and
formatting specified in the control tag (in the .aspx page) every time the
page is posted back. If this is set to true (the default), the control uses
the hidden input field to store information about its properties,
ensuring that any changes you make in code are remembered.

Font Specifies the font used to render any text in the control as a
System.Web.UI.WebControls.FontInfo object.

Height and Width Specifies the width and height of the control. For some controls, these
properties will be ignored when used with older browsers.

Page Provides a reference to the web page that contains this control as a
System.Web.UI.Page object.

Parent Provides a reference to the control that contains this control. If the
control is placed directly on the page (rather than inside another
control), it will return a reference to the page object.

TabIndex A number that allows you to control the tab order. The control with a
TabIndex of 0 has the focus when the page first loads. Pressing Tab
moves the user to the control with the next lowest TabIndex, provided
it is enabled. This property is supported only in Internet Explorer 4.0
and higher.

ToolTip Displays a text message when the user hovers the mouse above the
control. Many older browsers don’t support this property.

Visible When set to false, the control will be hidden and will not be rendered to
the final HTML page that is sent to the client.

The next few sections describe some of the common concepts you’ll use with almost any
web control, including how to set properties that use units and enumerations and how to use
colors and fonts.

Units
All the properties that use measurements, including BorderWidth, Height, and Width, require
the Unit structure, which combines a numeric value with a type of measurement (pixels, per-
centage, and so on). This means when you set these properties in a control tag, you must
make sure to append px (pixel) or % (for percentage) to the number to indicate the type
of unit.

CHAPTER 6 ■ WEB CONTROLS176

8911CH06.qxd 9/19/07 11:08 AM Page 176

Here’s an example with a Panel control that is 300 pixels wide and has a height equal to
50 percent of the current browser window:

<asp:Panel Height="300px" Width="50%" ID="pnl" runat="server" />

If you’re assigning a unit-based property through code, you need to use one of the static
methods of the Unit type. Use Pixel() to supply a value in pixels, and use Percentage() to sup-
ply a percentage value:

// Convert the number 300 to a Unit object
// representing pixels, and assign it.
pnl.Height = Unit.Pixel(300);

// Convert the number 50 to a Unit object
// representing percent, and assign it.
pnl.Width = Unit.Percentage(50);

You could also manually create a Unit object and initialize it using one of the supplied
constructors and the UnitType enumeration. This requires a few more steps but allows you to
easily assign the same unit to several controls:

// Create a Unit object.
Unit myUnit = new Unit(300, UnitType.Pixel);

// Assign the Unit object to several controls or properties.
pnl.Height = myUnit;
pnl.Width = myUnit;

Enumerations
Enumerations are used heavily in the .NET class library to group a set of related constants. For
example, when you set a control’s BorderStyle property, you can choose one of several prede-
fined values from the BorderStyle enumeration. In code, you set an enumeration using the dot
syntax:

ctrl.BorderStyle = BorderStyle.Dashed;

In the .aspx file, you set an enumeration by specifying one of the allowed values as a
string. You don’t include the name of the enumeration type, which is assumed automatically.

<asp:Label BorderStyle="Dashed" Text="Border Test" ID="lbl"
runat="server" />

Figure 6-3 shows the label with the altered border.

CHAPTER 6 ■ WEB CONTROLS 177

8911CH06.qxd 9/19/07 11:08 AM Page 177

Figure 6-3. Modifying the border style

Colors
The Color property refers to a Color object from the System.Drawing namespace. You can
create color objects in several ways:

Using an ARGB (alpha, red, green, blue) color value: You specify each value as an integer
from 0 to 255. The alpha component represents the transparency of a color, and usually
you’ll use 255 to make the color completely opaque.

Using a predefined .NET color name: You choose the correspondingly named read-only
property from the Color structure. These properties include the 140 HTML color names.

Using an HTML color name: You specify this value as a string using the ColorTranslator
class.

To use any of these techniques, you’ll probably want to start by importing the
System.Drawing namespace, as follows:

using System.Drawing;

The following code shows several ways to specify a color in code:

// Create a color from an ARGB value
int alpha = 255, red = 0, green = 255, blue = 0;
ctrl.ForeColor = Color.FromArgb(alpha, red, green, blue);

// Create a color using a .NET name
ctrl.ForeColor = Color.Crimson;

// Create a color from an HTML code
ctrl.ForeColor = ColorTranslator.FromHtml("Blue");

When defining a color in the .aspx file, you can use any one of the known color names:

<asp:TextBox ForeColor="Red" Text="Test" ID="txt" runat="server" />

CHAPTER 6 ■ WEB CONTROLS178

8911CH06.qxd 9/19/07 11:08 AM Page 178

The HTML color names that you can use are listed in the MSDN Help. Alternatively, you
can use a hexadecimal color number (in the format #<red><green><blue>) as shown here:

<asp:TextBox ForeColor="#ff50ff" Text="Test"
ID="txt" runat="server" />

Fonts
The Font property actually references a full FontInfo object, which is defined in the
System.Web.UI.WebControls namespace. Every FontInfo object has several properties that
define its name, size, and style (see Table 6-3).

Table 6-3. FontInfo Properties

Property Description

Name A string indicating the font name (such as Verdana).

Names An array of strings with font names, in the order of preference. The
browser will use the first matching font that’s installed on the user’s
computer.

Size The size of the font as a FontUnit object. This can represent an
absolute or relative size.

Bold, Italic, Strikeout, Boolean properties that apply the given style attribute.
Underline, and Overline

In code, you can assign a font by setting the various font properties using the familiar dot
syntax:

ctrl.Font.Name = "Verdana";
ctrl.Font.Bold = true;

You can also set the size using the FontUnit type:

// Specifies a relative size.
ctrl.Font.Size = FontUnit.Small;

// Specifies an absolute size of 14 pixels.
ctrl.Font.Size = FontUnit.Point(14);

In the .aspx file, you need to use a special “object walker” syntax to specify object proper-
ties such as Font. The object walker syntax uses a hyphen (-) to separate properties. For
example, you could set a control with a specific font (Tahoma) and font size (40 point) like
this:

<asp:TextBox Font-Name="Tahoma" Font-Size="40" Text="Size Test" ID="txt"
runat="server" />

Or you could set a relative size like this:

<asp:TextBox Font-Name="Tahoma" Font-Size="Large" Text="Size Test"
ID="txt" runat="server" />

CHAPTER 6 ■ WEB CONTROLS 179

8911CH06.qxd 9/19/07 11:08 AM Page 179

Figure 6-4 shows the altered TextBox in this example.

Figure 6-4. Modifying a control’s font

A font setting is really just a recommendation. If the client computer doesn’t have the font
you request, it reverts to a standard font. To deal with this problem, it’s common to specify a
list of fonts, in order of preference. To do so, you use the Font.Names property instead of
Font.Name, as shown here:

<asp:TextBox Font-Names="Verdana,Tahoma,Arial"
Text="Size Test" ID="txt" runat="server" />

Here, the browser will use the Verdana font (if it has it). If not, it will fall back on Tahoma
or Arial.

When specifying fonts, it’s a good idea to end with one of the following fonts, which are
supported on all browsers:

• Times

• Arial and Helvetica

• Courier

The following fonts are found on almost all Windows and Mac computers, but not neces-
sarily on other operating systems like Unix:

• Verdana

• Georgia

• Tahoma

• Comic Sans

• Arial Black

• Impact

CHAPTER 6 ■ WEB CONTROLS180

8911CH06.qxd 9/19/07 11:08 AM Page 180

Focus
Unlike HTML server controls, every web control provides a Focus() method. The Focus()
method affects only input controls (controls that can accept keystrokes from the user). When
the page is rendered in the client browser, the user starts in the focused control.

For example, if you have a form that allows the user to edit customer information, you
might call the Focus() method on the first text box in that form. That way, the cursor appears
in this text box immediately when the page first loads in the browser. If the text box is partway
down the form, the page even scrolls down to it automatically. The user can then move from
control to control using the time-honored Tab key.

If you’re a seasoned HTML developer, you know there isn’t any built-in way to give focus
to an input control. Instead, you need to rely on JavaScript. This is the secret to ASP.NET’s
implementation. When your code is finished processing and the page is rendered, ASP.NET
adds an extra block of JavaScript code to the end of your page. This JavaScript code simply sets
the focus to the last control that used the Focus() method. If you haven’t called Focus() at all,
this code isn’t added to the page.

Rather than call the Focus() method programmatically, you can set a control that should
always be focused by setting the DefaultFocus property of the <form> tag:

<form DefaultFocus="TextBox2" runat="server">

You can override the default focus by calling the Focus() method in your code.
Another way to manage focus is using access keys. For example, if you set the AccessKey

property of a TextBox to A, pressing Alt+A focus will switch to the TextBox. Labels can
also get into the game, even though they can’t accept focus. The trick is to set the
Label.AssociatedControlID property to specify a linked input control. That way, the label
transfers focus to a nearby control.

For example, the following label gives focus to TextBox2 when the keyboard combination
Alt+2 is pressed:

<asp:Label AccessKey="2" AssociatedControlID="TextBox2" runat="server"
Text="TextBox2:" />
<asp:TextBox runat="server" ID="TextBox2" />

Focusing and access keys are also supported in non-Microsoft browsers, including
Firefox.

The Default Button
Along with control focusing, ASP.NET also allows you to designate a default button on a web
page. The default button is the button that is “clicked” when the user presses the Enter key. For
example, if your web page includes a form, you might want to make the submit button into a
default button. That way, if the user hits Enter at any time, the page is posted back and the
Button.Click event is fired for that button.

To designate a default button, you must set the HtmlForm.DefaultButton property with
the ID of the respective control, as shown here:

<form DefaultButton="cmdSubmit" runat="server">

CHAPTER 6 ■ WEB CONTROLS 181

8911CH06.qxd 9/19/07 11:08 AM Page 181

The default button must be a control that implements the IButtonControl interface. The
interface is implemented by the Button, LinkButton, and ImageButton web controls but not
by any of the HTML server controls.

In some cases, it makes sense to have more than one default button. For example, you
might create a web page with two groups of input controls. Both groups may need a different
default button. You can handle this by placing the groups into separate panels. The Panel con-
trol also exposes the DefaultButton property, which works when any input control it contains
gets the focus.

CONTROL PREFIXES

When working with web controls, it’s often useful to use a three-letter lowercase prefix to identify the type of
control. The preceding example (and those in the rest of this book) follows this convention to make user
interface code as clear as possible. Some recommended control prefixes are as follows:

• Button: cmd

• CheckBox: chk

• Image: img

• Label: lbl

• List control: lst

• Panel: pnl

• RadioButton: opt

• TextBox: txt

If you’re a veteran programmer, you’ll also notice that this book doesn’t use prefixes to identify data
types. This is in keeping with the new philosophy of .NET, which recognizes that data types can often change
freely and without consequence and that variables often point to full-featured objects instead of simple data
variables.

List Controls
The list controls include the ListBox, DropDownList, CheckBoxList, RadioButtonList, and
BulletedList. They all work in essentially the same way but are rendered differently in the
browser. The ListBox, for example, is a rectangular list that displays several entries, while the
DropDownList shows only the selected item. The CheckBoxList and RadioButtonList are simi-
lar to the ListBox, but every item is rendered as a check box or option button, respectively.
Finally, the BulletedList is the odd one out—it’s the only list control that isn’t selectable.
Instead, it renders itself as a sequence of numbered or bulleted items.

All the selectable list controls provide a SelectedIndex property that indicates the selected
row as a zero-based index (just like the HtmlSelect control you used in the previous chapter).

CHAPTER 6 ■ WEB CONTROLS182

8911CH06.qxd 9/19/07 11:08 AM Page 182

For example, if the first item in the list is selected, the SelectedIndex will be 0. Selectable list
controls also provide an additional SelectedItem property, which allows your code to retrieve
the ListItem object that represents the selected item. The ListItem object provides three
important properties: Text (the displayed content), Value (the hidden value from the HTML
markup), and Selected (true or false depending on whether the item is selected).

In the previous chapter, you used code like this to retrieve the selected ListItem object
from an HtmlSelect control called Currency, as follows:

ListItem item;
item = Currency.Items(Currency.SelectedIndex);

If you used the ListBox web control, you can simplify this code with a clearer syntax:

ListItem item;
item = Currency.SelectedItem;

Multiple-Select List Controls
Some list controls can allow multiple selections. This isn’t allowed for the DropDownList or
RadioButtonList, but it is supported for a ListBox, provided you have set the SelectionMode
property to the enumerated value ListSelectionMode.Multiple. The user can then select
multiple items by holding down the Ctrl key while clicking the items in the list. With the
CheckBoxList, multiple selections are always possible.

If you have a list control that supports multiple selections, you can find all the selected
items by iterating through the Items collection of the list control and checking the
ListItem.Selected property of each item. Figure 6-5 shows a simple web page example. It pro-
vides a list of computer languages and indicates which selections the user made when the OK
button is clicked.

Figure 6-5. A simple CheckListBox test

CHAPTER 6 ■ WEB CONTROLS 183

8911CH06.qxd 9/19/07 11:08 AM Page 183

The .aspx file for this page defines CheckListBox, Button, and Label controls, as
shown here:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="CheckListTest.aspx.cs" Inherits="CheckListTest" %>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
<title>CheckBoxTest</title>

</head>
<body>
<form runat="server">
<div>
Choose your favorite programming languages:

<asp:CheckBoxList ID="chklst" runat="server" />

<asp:Button ID="cmdOK" Text="OK" OnClick="cmdOK_Click" runat="server" />

<asp:Label ID="lblResult" runat="server" />

</div>
</form>

</body>
</html>

The code adds items to the CheckListBox at startup and iterates through the collection
when the button is clicked:

public partial class CheckListTest : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

if (!this.IsPostBack)
{

chklst.Items.Add("C");
chklst.Items.Add("C++");
chklst.Items.Add("C#");
chklst.Items.Add("Visual Basic 6.0");
chklst.Items.Add("VB.NET");
chklst.Items.Add("Pascal");

}
}

protected void cmdOK_Click(object sender, EventArgs e)
{

lblResult.Text = "You chose:";

foreach (ListItem lstItem in chklst.Items)
{

if (lstItem.Selected == true)

CHAPTER 6 ■ WEB CONTROLS184

8911CH06.qxd 9/19/07 11:08 AM Page 184

http://www.w3.org/1999/xhtml

{
// Add text to label.
lblResult.Text += "
" + lstItem.Text;

}
}
lblResult.Text += "";

}
}

The BulletedList Control
The BulletedList control is a server-side equivalent of the (unordered list) and
(ordered list) elements. As with all list controls, you set the collection of items that should be
displayed through the Items property. Additionally, you can use the properties in Table 6-4 to
configure how the items are displayed.

Table 6-4. Added BulletedList Properties

Property Description

BulletStyle Determines the type of list. Choose from Numbered (1, 2, 3, . . .),
LowerAlpha (a, b, c, . . .) and UpperAlpha (A, B, C, . . .), LowerRoman
(i, ii, iii, . . .) and UpperRoman (I, II, III, . . .), and the bullet symbols
Disc, Circle, Square, or CustomImage (in which case you must set the
BulletImageUrl property).

BulletImageUrl If the BulletStyle is set to CustomImage, this points to the image that is
placed to the left of each item as a bullet.

FirstBulletNumber In an ordered list (using the Numbered, LowerAlpha, UpperAlpha,
LowerRoman, and UpperRoman styles), this sets the first value. For
example, if you set FirstBulletNumber to 3, the list might read 3, 4, 5
(for Numbered) or C, D, E (for UpperAlpha).

DisplayMode Determines whether the text of each item is rendered as text (use Text, the
default) or a hyperlink (use LinkButton or HyperLink). The difference
between LinkButton and HyperLink is how they treat clicks. When you use
LinkButton, the BulletedList fires a Click event that you can react to on the
server to perform the navigation. When you use HyperLink, the BulletedList
doesn’t fire the Click event—instead, it treats the text of each list item as a
relative or absolute URL, and renders them as ordinary HTML hyperlinks.
When the user clicks an item, the browser attempts to navigate to that URL.

If you set the DisplayMode to LinkButton, you can react to the Button.Click event to
determine which item was clicked. Here’s an example:

protected void BulletedList1_Click(object sender, BulletedListEventArgs e)
{

string itemText = BulletedList1.Items[e.Index].Text;
Label1.Text = "You choose item" + itemText;

}

CHAPTER 6 ■ WEB CONTROLS 185

8911CH06.qxd 9/19/07 11:08 AM Page 185

Figure 6-6 shows all the BulletStyle values that the BulletList supports. When you click one
of the items, the list changes to use that BulletStyle. You can try this example page with the
sample WebControls project for this chapter.

Figure 6-6. Various BulletedList styles

Table Controls
Essentially, the Table control is built out of a hierarchy of objects. Each Table object contains
one or more TableRow objects. In turn, each TableRow object contains one or more TableCell
objects. Each TableCell object contains other ASP.NET controls of HTML content that displays
information. If you’re familiar with the HTML table tags, this relationship (shown in Figure 6-7)
will seem fairly logical.

To create a table dynamically, you follow the same philosophy as you would for any other
web control. First, you create and configure the necessary ASP.NET objects. Then, ASP.NET
converts these objects to their final HTML representation before the page is sent to the client.

Consider the example shown in Figure 6-8. It allows the user to specify a number of rows
and columns as well as whether cells should have borders.

CHAPTER 6 ■ WEB CONTROLS186

8911CH06.qxd 9/19/07 11:08 AM Page 186

Figure 6-7. Table control containment

Figure 6-8. The table test options

CHAPTER 6 ■ WEB CONTROLS 187

8911CH06.qxd 9/19/07 11:08 AM Page 187

When the user clicks the Create button, the table is filled dynamically with sample data
according to the selected options, as shown in Figure 6-9.

Figure 6-9. A dynamically generated table

The .aspx code creates the TextBox, CheckBox, Button, and Table controls:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="TableTest.aspx.cs" Inherits="TableTest" %>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
<title>Table Test</title>

</head>
<body>
<form runat="server">
<div>
Rows:
<asp:TextBox ID="txtRows" runat="server" />
 Cols:
<asp:TextBox ID="txtCols" runat="server" />

<asp:CheckBox ID="chkBorder" runat="server"
Text="Put Border Around Cells" />

<asp:Button ID="cmdCreate" OnClick="cmdCreate_Click" runat="server"
Text="Create" />

<asp:Table ID="tbl" runat="server" />

</div>

CHAPTER 6 ■ WEB CONTROLS188

8911CH06.qxd 9/19/07 11:08 AM Page 188

http://www.w3.org/1999/xhtml

</form>
</body>
</html>

You’ll notice that the Table control doesn’t contain any actual rows or cells. To make a
valid table, you would need to nest several layers of tags. The following example creates a table
with a single cell that contains the text A Test Row:

<asp:Table ID="tbl" runat="server">
<asp:TableRow ID="row" runat="server">
<asp:TableCell ID="cell" runat="server">A Sample Value</asp:TableCell>

</asp:TableRow>
</asp:Table>

The table test web page doesn’t have any nested elements. This means the table will be
created as a server-side control object, but unless the code adds rows and cells, the table will
not be rendered in the final HTML page.

The TableTest class uses two event handlers. When the page is first loaded, it adds a bor-
der around the table. When the button is clicked, it dynamically creates the required TableRow
and TableCell objects in a loop.

public partial class TableTest : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

// Configure the table's appearance.
// This could also be performed in the .aspx file
// or in the cmdCreate_Click event handler.
tbl.BorderStyle = BorderStyle.Inset;
tbl.BorderWidth = Unit.Pixel(1);

}

protected void cmdCreate_Click(object sender, EventArgs e)
{

// Remove all the current rows and cells.
// This is not necessary if EnableViewState is set to false.
tbl.Controls.Clear();

int rows = Int32.Parse(txtRows.Text);
int cols = Int32.Parse(txtCols.Text);

for (int row = 0; row < rows; row++)
{

// Create a new TableRow object.
TableRow rowNew = new TableRow();

// Put the TableRow in the Table.
tbl.Controls.Add(rowNew);

CHAPTER 6 ■ WEB CONTROLS 189

8911CH06.qxd 9/19/07 11:08 AM Page 189

for (int col = 0; col < cols; col++)
{

// Create a new TableCell object.
TableCell cellNew = new TableCell();

cellNew.Text = "Example Cell (" + row.ToString() + ",";
cellNew.Text += col.ToString() + ")";

if (chkBorder.Checked)
{

cellNew.BorderStyle = BorderStyle.Inset;
cellNew.BorderWidth = Unit.Pixel(1);

}

// Put the TableCell in the TableRow.
rowNew.Controls.Add(cellNew);

}
}

}
}

This code uses the Controls collection to add child controls. Every container control pro-
vides this property. You could also use the TableCell.Controls collection to add web controls to
each TableCell. For example, you could place an Image control and a Label control in each
cell. In this case, you can’t set the TableCell.Text property. The following code snippet uses this
technique, and Figure 6-10 displays the results:

// Create a new TableCell object.
cellNew = new TableCell();

// Create a new Label object.
Label lblNew = new Label();
lblNew.Text = "Example Cell (" + row.ToString() + "," + col.ToString() +
")
";

System.Web.UI.WebControls.Image imgNew = new System.Web.UI.WebControls.Image();
imgNew.ImageUrl = "cellpic.png";

// Put the label and picture in the cell.
cellNew.Controls.Add(lblNew);
cellNew.Controls.Add(imgNew);

// Put the TableCell in the TableRow.
rowNew.Controls.Add(cellNew);

CHAPTER 6 ■ WEB CONTROLS190

8911CH06.qxd 9/19/07 11:08 AM Page 190

The real flexibility of the table test page is that each Table, TableRow, and TableCell is a
full-featured object. If you want, you can give each cell a different border style, border color,
and text color by setting the corresponding properties.

Figure 6-10. A table with contained controls

Web Control Events and AutoPostBack
The previous chapter explained that one of the main limitations of HTML server controls is
their limited set of useful events—they have exactly two. HTML controls that trigger a post-
back, such as buttons, raise a ServerClick event. Input controls provide a ServerChange event
that doesn’t actually fire until the page is posted back.

Server controls are really an ingenious illusion. You’ll recall that the code in an ASP.NET
page is processed on the server. It’s then sent to the user as ordinary HTML. Figure 6-11 illus-
trates the order of events in page processing.

This is the same in ASP.NET as it was in traditional ASP programming. The question is,
how can you write server code that will react immediately to an event that occurs on the
client?

Some events, such as the Click event of a button, do occur immediately. That’s because
when clicked, the button posts back the page. This is a basic convention of HTML forms. How-
ever, other actions do cause events but don’t trigger a postback. An example is when the user
changes the text in a text box (which triggers the TextChanged event) or chooses a new item in
a list (the SelectedIndexChanged event). You might want to respond to these events, but with-
out a postback your code has no way to run.

CHAPTER 6 ■ WEB CONTROLS 191

8911CH06.qxd 9/19/07 11:08 AM Page 191

Figure 6-11. The page processing sequence

ASP.NET handles this by giving you two options:

• You can wait until the next postback to react to the event. For example, imagine you
want to react to the SelectedIndexChanged event in a list. If the user selects an item in a
list, nothing happens immediately. However, if the user then clicks a button to post
back the page, two events fire: Button.Click followed by TextBox.TextChanged. And if
you have several controls, it’s quite possible for a single postback to result in several
change events, which fire one after the other, in an undetermined order.

• You can use the automatic postback feature to force a control to post back the page
immediately when it detects a specific user action. In this scenario, when the user clicks
a new item in the list, the page is posted back, your code executes, and a new version of
the page is returned.

CHAPTER 6 ■ WEB CONTROLS192

8911CH06.qxd 9/19/07 11:08 AM Page 192

The option you choose depends on the result you want. If you need to react immediately
(for example, you want to update another control when a specific action takes place), you
need to use automatic postbacks. On the other hand, automatic postbacks can sometimes
make the page less responsive, because each postback and page refresh adds a short, but
noticeable, delay and page refresh. (You’ll learn how to create pages that update themselves
without a noticeable page refresh when you consider ASP.NET AJAX in Chapter 25.)

All input web controls support automatic postbacks. Table 6-5 provides a basic list of web
controls and their events.

Table 6-5. Web Control Events

Event Web Controls That Provide It Always Posts Back

Click Button, ImageButton True

TextChanged TextBox (fires only after the user changes the False
focus to another control)

CheckedChanged CheckBox, RadioButton False

SelectedIndexChanged DropDownList, ListBox, CheckBoxList, False
RadioButtonList

If you want to capture a change event (such as TextChanged, CheckedChanged, or
SelectedIndexChanged) immediately, you need to set the control’s AutoPostBack property to
true. This way, the page will be submitted automatically when the user interacts with the con-
trol (for example, picks a selection in the list, clicks a radio button or a check box, or changes
the text in a text box and then tabs away to a new control).

When the page is posted back, ASP.NET will examine the page, load all the current infor-
mation, and then allow your code to perform some extra processing before returning the page
back to the user (see Figure 6-12). Depending on the result you want, you could have a page
that has some controls that post back automatically and others that don’t.

This postback system isn’t ideal for all events. For example, some events that you may be
familiar with from Windows programs, such as mouse movement events or key press events,
aren’t practical in an ASP.NET application. Resubmitting the page every time a key is pressed
or the mouse is moved would make the application unbearably slow and unresponsive.

CHAPTER 6 ■ WEB CONTROLS 193

8911CH06.qxd 9/19/07 11:08 AM Page 193

Figure 6-12. The postback processing sequence

CHAPTER 6 ■ WEB CONTROLS194

8911CH06.qxd 9/19/07 11:08 AM Page 194

How Postback Events Work
Chapter 1 explained that not all types of web programming use server-side code like ASP.NET.
One common example of client-side web programming is JavaScript, which uses simple code
that’s limited in scope and is executed by the browser. ASP.NET uses the client-side abilities of
JavaScript to bridge the gap between client-side and server-side code. (Another scripting lan-
guage is VBScript, but JavaScript is the only one that works on all modern browsers, including
Internet Explorer, Firefox, Opera, Safari, and Netscape.)

Here’s how it works: If you create a web page that includes one or more web controls that
are configured to use AutoPostBack, ASP.NET adds a special JavaScript function to the ren-
dered HTML page. This function is named __doPostBack(). When called, it triggers a postback,
sending data back to the web server.

ASP.NET also adds two additional hidden input fields that are used to pass information
back to the server. This information consists of the ID of the control that raised the event and
any additional information that might be relevant. These fields are initially empty, as shown
here:

<input type="hidden" name="__EVENTTARGET" id="__EVENTTARGET" value="" />
<input type="hidden" name="__EVENTARGUMENT" id="__EVENTARGUMENT" value="" />

The __doPostBack() function has the responsibility for setting these values with the
appropriate information about the event and then submitting the form. A slightly simplified
version of the __doPostBack() function is shown here:

<script language="text/javascript">
<!--

function __doPostBack(eventTarget, eventArgument) {
var theform = document.Form1;
theform.__EVENTTARGET.value = eventTarget;
theform.__EVENTARGUMENT.value = eventArgument;
theform.submit();

}
// -->
</script>

Remember, ASP.NET generates the __doPostBack() function automatically, provided at
least one control on the page uses automatic postbacks.

Finally, any control that has its AutoPostBack property set to true is connected to the
__doPostBack() function using the onclick or onchange attributes. These attributes indicate
what action the browser should take in response to the client-side JavaScript events onclick
and onchange.

The following example shows the tag for a list control named lstBackColor, which posts
back automatically. Whenever the user changes the selection in the list, the client-side
onchange event fires. The browser then calls the __doPostBack() function, which sends the
page back to the server.

<select ID="lstBackColor" onchange="__doPostBack('lstBackColor','')"
language="javascript">

CHAPTER 6 ■ WEB CONTROLS 195

8911CH06.qxd 9/19/07 11:08 AM Page 195

In other words, ASP.NET automatically changes a client-side JavaScript event into a
server-side ASP.NET event, using the __doPostBack() function as an intermediary. Figure 6-13
shows this process.

Figure 6-13. An automatic postback

The Page Life Cycle
To understand how web control events work, you need to have a solid understanding of the
page life cycle. Consider what happens when a user changes a control that has the
AutoPostBack property set to true:

1. On the client side, the JavaScript __doPostBack function is invoked, and the page is
resubmitted to the server.

2. ASP.NET re-creates the Page object using the .aspx file.

3. ASP.NET retrieves state information from the hidden view state field and updates the
controls accordingly.

4. The Page.Load event is fired.

5. The appropriate change event is fired for the control. (If more than one control has
been changed, the order of change events is undetermined.)

6. The Page.Unload event fires, and the page is rendered (transformed from a set of
objects to an HTML page).

7. The new page is sent to the client.

To watch these events in action, it helps to create a simple event tracker application (see
Figure 6-14). All this application does is write a new entry to a list control every time one of the
events it is monitoring occurs. This allows you to see the order in which events are triggered.

CHAPTER 6 ■ WEB CONTROLS196

8911CH06.qxd 9/19/07 11:08 AM Page 196

Figure 6-14. The event tracker

Listing 6-1 shows the markup code for the event tracker, and Listing 6-2 shows the code-
behind class that makes it work.

Listing 6-1. EventTracker.aspx

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="EventTracker.aspx.cs" Inherits="EventTracker" %>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
<title>Event Tracker</title>

</head>
<body>
<form runat="server">
<div>

<h1>List of events:</h1>
<asp:ListBox ID="lstEvents" runat="server" Width="355px"
Height="150px" />

<h1>Controls being monitored for change events:</h1>
<asp:TextBox ID="txt" runat="server" AutoPostBack="true"
OnTextChanged="CtrlChanged" />

<asp:CheckBox ID="chk" runat="server" AutoPostBack="true"
OnCheckedChanged="CtrlChanged"/>

CHAPTER 6 ■ WEB CONTROLS 197

8911CH06.qxd 9/19/07 11:08 AM Page 197

http://www.w3.org/1999/xhtml

<asp:RadioButton ID="opt1" runat="server" GroupName="Sample"
AutoPostBack="true" OnCheckedChanged="CtrlChanged"/>
<asp:RadioButton ID="opt2" runat="server" GroupName="Sample"
AutoPostBack="true" OnCheckedChanged="CtrlChanged"/>

</div>
</form>

</body>
</html>

Listing 6-2. EventTracker.vb

public partial class EventTracker : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

Log("<< Page_Load >>");
}

protected void Page_PreRender(object sender, EventArgs e)
{

// When the Page.UnLoad event occurs, it is too late
// to change the list.
Log("Page_PreRender");

}

protected void CtrlChanged(Object sender, EventArgs e)
{

// Find the control ID of the sender.
// This requires converting the Object type into a Control class.
string ctrlName = ((Control)sender).ID;
Log(ctrlName + " Changed");

}

private void Log(string entry)
{

lstEvents.Items.Add(entry);

// Select the last item to scroll the list so the most recent
// entries are visible.
lstEvents.SelectedIndex = lstEvents.Items.Count - 1;

}
}

CHAPTER 6 ■ WEB CONTROLS198

8911CH06.qxd 9/19/07 11:08 AM Page 198

Dissecting the Code . . .
The following points are worth noting about this code:

• The code writes to the ListBox using a private Log() subroutine. The Log() subroutine
adds the text and automatically scrolls to the bottom of the list each time a new entry is
added, thereby ensuring that the most recent entries remain visible.

• All the change events are handled by the same method, CtrlChanged().If you look care-
fully at the .aspx file, you’ll notice see that each input control connects its monitored
event to the CtrlChanged() method. The event-handling code in the CtrlChanged()
method uses the source parameter to find out what control sent the event, and it incor-
porates that information in the log string.

• The page includes event handlers for the Page.Load and Page.PreRender events. As with
all page events, these event handlers are connected by method name. That means to
add the event handler for the Page.PreRender event, you simply need to add a method
named Page_PreRender(), like the one shown here.

• The page includes event handlers for the Page.Load and Page.PreRender events. As with
all page events, these event handlers are connected by method name. That means to
add the event handler for the Page.PreRender event, you simply need to add a method
named Page_PreRender(), like the one shown here.

A Simple Web Page
Now that you’ve had a whirlwind tour of the basic web control model, it’s time to put it to work
with the second single-page utility. In this case, it’s a simple example for a dynamic e-card
generator. You could extend this sample (for example, allowing users to store e-cards to the
database), but even on its own, this example demonstrates basic control manipulation with
ASP.NET.

The web page is divided into two regions. On the left is an ordinary <div> tag containing a
set of web controls for specifying card options. On the right is a Panel control (named pnlCard),
which contains two other controls (lblGreeting and imgDefault) that are used to display user-
configurable text and a picture. This text and picture represents the greeting card. When the
page first loads, the card hasn’t yet been generated, and the right portion is blank (as shown in
Figure 6-15).

CHAPTER 6 ■ WEB CONTROLS 199

8911CH06.qxd 9/19/07 11:08 AM Page 199

Figure 6-15. The e-card generator

■Tip The <div> tag is useful when you want to group text and controls and apply a set of formatting prop-
erties (such as a color or font) to all of them. The <div> tag is used in many of the examples in this book, but
it can safely be omitted—the only change will be the appearance of the formatted page.

Whenever the user clicks the Update button, the page is posted back and the “card” is
updated (see Figure 6-16).

CHAPTER 6 ■ WEB CONTROLS200

8911CH06.qxd 9/19/07 11:08 AM Page 200

Figure 6-16. A user-configured greeting card

The .aspx layout code is straightforward. Of course, the sheer length of it makes it difficult
to work with efficiently. Here’s the markup, without the formatting details for the <div> ele-
ment:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="GreetingCardMaker.aspx.cs" Inherits="GreetingCardMaker" %>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title>Greeting Card Maker</title>
</head>
<body>
<form runat="server">
<div>
<!-- Here are the controls: -->
Choose a background color:

<asp:DropDownList ID="lstBackColor" runat="server" Width="194px"
Height="22px"/>

Choose a font:

CHAPTER 6 ■ WEB CONTROLS 201

8911CH06.qxd 9/19/07 11:08 AM Page 201

http://www.w3.org/1999/xhtml

<asp:DropDownList ID="lstFontName" runat="server" Width="194px"
Height="22px" />

Specify a numeric font size:

<asp:TextBox ID="txtFontSize" runat="server" />

Choose a border style:

<asp:RadioButtonList ID="lstBorder" runat="server" Width="177px"
Height="59px" />

<asp:CheckBox ID="chkPicture" runat="server"
Text="Add the Default Picture"></asp:CheckBox>

Enter the greeting text below:

<asp:TextBox ID="txtGreeting" runat="server" Width="240px" Height="85px"
TextMode="MultiLine" />

<asp:Button ID="cmdUpdate" OnClick="cmdUpdate_Click"
runat="server" Width="71px" Height="24px" Text="Update" />

</div>

<!-- Here is the card: -->
<asp:Panel ID="pnlCard" runat="server"
Width="339px" Height="481px"
HorizontalAlign="Center">

<asp:Label ID="lblGreeting" runat="server" Width="256px"
Height="150px" />

<asp:Image ID="imgDefault" runat="server" Width="212px"
Height="160px" />

</asp:Panel>
</form>

</body>
</html>

The code follows the familiar pattern with an emphasis on two events: the Page.Load
event, where initial values are set, and the Button.Click event, where the card is generated.

public partial class GreetingCardMaker : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

if (!this.IsPostBack)
{

// Set color options.
lstBackColor.Items.Add("White");
lstBackColor.Items.Add("Red");
lstBackColor.Items.Add("Green");
lstBackColor.Items.Add("Blue");
lstBackColor.Items.Add("Yellow");

// Set font options.
lstFontName.Items.Add("Times New Roman");
lstFontName.Items.Add("Arial");

CHAPTER 6 ■ WEB CONTROLS202

8911CH06.qxd 9/19/07 11:08 AM Page 202

lstFontName.Items.Add("Verdana");
lstFontName.Items.Add("Tahoma");

// Set border style options by adding a series of
// ListItem objects.
ListItem item = new ListItem();

// The item text indicates the name of the option.
item.Text = BorderStyle.None.ToString();

// The item value records the corresponding integer
// from the enumeration. To obtain this value, you
// must cast the enumeration value to an integer,
// and then convert the number to a string so it
// can be placed in the HTML page.
item.Value = ((int)BorderStyle.None).ToString();

// Add the item.
lstBorder.Items.Add(item);

// Now repeat the process for two other border styles.
item = new ListItem();
item.Text = BorderStyle.Double.ToString();
item.Value = ((int)BorderStyle.Double).ToString();
lstBorder.Items.Add(item);

item = new ListItem();
item.Text = BorderStyle.Solid.ToString();
item.Value = ((int)BorderStyle.Solid).ToString();
lstBorder.Items.Add(item);

// Select the first border option.
lstBorder.SelectedIndex = 0;

// Set the picture.
imgDefault.ImageUrl = "defaultpic.png";

}
}

protected void cmdUpdate_Click(object sender, EventArgs e)
{

// Update the color.
pnlCard.BackColor = Color.FromName(lstBackColor.SelectedItem.Text);

// Update the font.
lblGreeting.Font.Name = lstFontName.SelectedItem.Text;

CHAPTER 6 ■ WEB CONTROLS 203

8911CH06.qxd 9/19/07 11:08 AM Page 203

if (Int32.Parse(txtFontSize.Text) > 0)
{

lblGreeting.Font.Size =
FontUnit.Point(Int32.Parse(txtFontSize.Text));

}

// Update the border style. This requires two conversion steps.
// First, the value of the list item is converted from a string
// into an integer. Next, the integer is converted to a value in
// the BorderStyle enumeration.
int borderValue = Int32.Parse(lstBorder.SelectedItem.Value);
pnlCard.BorderStyle = (BorderStyle)borderValue;

// Update the picture.
if (chkPicture.Checked)
{

imgDefault.Visible = true;
}
else
{

imgDefault.Visible = false;
}

// Set the text.
lblGreeting.Text = txtGreeting.Text;

}
}

As you can see, this example limits the user to a few preset font and color choices. The
code for the BorderStyle option is particularly interesting. The lstBorder control has a list that
displays the text name of one of the BorderStyle enumerated values. You’ll remember from the
introductory chapters that every enumerated value is really an integer with a name assigned
to it. The lstBorder also secretly stores the corresponding number so that the code can retrieve
the number and set the enumeration easily when the user makes a selection and the
cmdUpdate_Click event handler fires.

Improving the Greeting Card Generator
ASP.NET pages have access to the full .NET class library. With a little exploration, you’ll find
classes that might help the greeting-card maker, such as tools that let you retrieve all the
known color names and all the fonts installed on the web server.

For example, you can fill the lstFontName control with a list of fonts using the
InstalledFontCollection class. To access it, you need to import the System.Drawing.Text
namespace. You also need to import the System.Drawing namespace, because it defines the
FontFamily class that represents the individual fonts that are installed on the web server:

CHAPTER 6 ■ WEB CONTROLS204

8911CH06.qxd 9/19/07 11:08 AM Page 204

using System.Drawing;
using System.Drawing.Text;

Here’s the code that gets the list of fonts and uses it to fill the list:

// Get the list of available fonts, and add them to the font list.
InstalledFontCollection fonts = new InstalledFontCollection();
foreach (FontFamily family in fonts.Families)
{

lstFontName.Items.Add(family.Name);
}

Figure 6-17 shows the resulting font list.

Figure 6-17. The font list

To get a list of the color names, you need to resort to a more advanced trick. Although you
could hard-code a list of common colors, .NET actually provides a long list of color names in
the System.Drawing.KnownColor enumeration. However, actually extracting the names from
this enumeration takes some work.

The trick is to use a basic feature of all enumerations: the static Enum.GetNames()
method, which inspects an enumeration and provides an array of strings, with one string for
each value in the enumeration. The web page can then use data binding to automatically fill
the list control with the information in the ColorArray. (You’ll explore data binding in much
more detail in Chapter 16.)

■Note Don’t worry if this example introduces a few features that look entirely alien! These features are
more advanced (and aren’t tied specifically to ASP.NET). However, they show you some of the flavor that the
full .NET class library can provide for a mature application.

CHAPTER 6 ■ WEB CONTROLS 205

8911CH06.qxd 9/19/07 11:08 AM Page 205

Here’s the code that copies all the color names into the list box:

// Get the list of colors.
string[] colorArray = Enum.GetNames(typeof(KnownColor));
lstBackColor.DataSource = colorArray;
lstBackColor.DataBind();

A minor problem with this approach is that it includes system environment colors (for
example, ActiveBorder) in the list. It may not be obvious to the user what colors these values
represent. Still, this approach works well for this simple application. You can use a similar
technique to fill in BorderStyle options:

// Set border style options.
string[] borderStyleArray = Enum.GetNames(typeof(BorderStyle));
lstBorder.DataSource = borderStyleArray;
lstBorder.DataBind();

This code raises a new challenge: how do you convert the value that the user selects into
the appropriate constant for the enumeration? When the user chooses a border style from the
list, the SelectedItem property will have a text string like “Groove”. But to apply this border
style to the control, you need a way to determine the enumerated constant that matches this
text.

You can handle this problem in a few ways. (Earlier, you saw an example in which the
enumeration integer was stored as a value in the list control.) In this case, the most direct
approach involves using an advanced feature called a TypeConverter. A TypeConverter is a
special class that is able to convert from a specialized type (in this case, the BorderStyle
enumeration) to a simpler type (such as a string), and vice versa.

To access this class, you need to import the System.ComponentModel namespace:

using System.ComponentModel;

You can then add the following code to the cmdUpdate_Click event handler:

// Find the appropriate TypeConverter for the BorderStyle enumeration.
TypeConverter converter = TypeDescriptor.GetConverter(typeof(BorderStyle));

// Update the border style using the value from the converter.
pnlCard.BorderStyle = converter.ConvertFromString(
lstBorder.SelectedItem.Text);

This code gets the appropriate TypeConverter (in this case, one that’s designed expressly
to work with the BorderStyle enumeration). It then converts the text name (such as Solid) to
the appropriate value (BorderStyle.Solid).

Generating the Cards Automatically
The last step is to use ASP.NET’s automatic postback events to make the card update dynami-
cally every time an option is changed. The Update button could now be used to submit the
final, perfected greeting card, which might then be e-mailed to a recipient or stored in a
database.

CHAPTER 6 ■ WEB CONTROLS206

8911CH06.qxd 9/19/07 11:08 AM Page 206

To configure the controls so they automatically trigger a page postback, simply set the
AutoPostBack property of each input control to true. An example is shown here:

Choose a background color:

<asp:DropDownList ID="lstBackColor" AutoPostBack="true" runat="server"

Width="194px" Height="22px"/>

Next, alter the control tags so that the changed event of each input control is connected to
an event handler named ControlChanged. Here’s an example with the SelectedIndexChanged
event or the drop-down list:

Choose a background color:

<asp:DropDownList ID="lstBackColor" AutoPostBack="true" runat="server"

OnSelectedIndexChanged="ControlChanged" Width="194px" Height="22px"/>

You’ll notice that the name of the change event depends on the control. For example, the
TextBox provides a TextChanged event, the ListBox provides a SelectedIndexChanged event,
and so on.

Finally, you need to create an event handler that can handle the change events. To save a
few steps, you can use the same event handler for all the input controls. All the event handler
needs to do is call the update routine that regenerates the greeting card.

protected void ControlChanged(object sender, System.EventArgs e)
{

// Refresh the greeting card (because a control was changed).
UpdateCard();

}

protected void cmdUpdate_Click(object sender, EventArgs e)
{

// Refresh the greeting card (because the button was clicked).
UpdateCard();

}

private void UpdateCard()
{

// (The code that draws the greeting card goes here.)
}

With these changes, it’s easy to perfect the more extensive card-generating program
shown in Figure 6-18. The full code for this application is provided with the online samples.

CHAPTER 6 ■ WEB CONTROLS 207

8911CH06.qxd 9/19/07 11:08 AM Page 207

Figure 6-18. A more extensive card generator

■Tip Automatic postback isn’t always best. Sometimes an automatic postback can annoy a user, especially
when the user is working over a slow connection or when the server needs to perform a time-consuming
option. For that reason, it’s sometimes best to use an explicit submit button and not enable AutoPostBack
for most input controls. Alternatively, you might jazz up your web page with the ASP.NET AJAX features
described in Chapter 25, which allow you to create user interfaces that feel more responsive, and can
update themselves without a distracting full-page refresh.

CHAPTER 6 ■ WEB CONTROLS208

8911CH06.qxd 9/19/07 11:08 AM Page 208

The Last Word
This chapter introduced you to web controls and their object interface. As you continue
through this book, you’ll learn about more web controls. The following highlights are still
to come:

• In Chapter 11, you’ll learn about advanced controls such as the AdRotator, the Calendar,
and the validation controls. You’ll also learn about specialized container controls, such
as the MultiView and Wizard.

• In Chapter 14, you’ll learn about navigation controls such as the TreeView and Menu.

• In Chapter 17, you’ll learn about the GridView, DetailsView, and FormView—high-level
web controls that let you manipulate a complex table of data from any data source.

For a good reference that shows each web control and lists its important properties, refer
to the Visual Studio Help.

CHAPTER 6 ■ WEB CONTROLS 209

8911CH06.qxd 9/19/07 11:08 AM Page 209

8911CH06.qxd 9/19/07 11:08 AM Page 210

State Management

The most significant difference between programming for the web and programming for the
desktop is state management—how you store information over the lifetime of your applica-
tion. This information can be as simple as a user’s name, or as complex as a stuffed-full
shopping cart for an e-commerce store.

In a traditional Windows application, there’s little need to think about state management.
Memory is plentiful and always available, and you only need to worry about a single user. In a
web application, it’s a different story. Thousands of users can simultaneously run the same
application on the same computer (the web server), each one communicating over a stateless
HTTP connection. These conditions make it impossible to design a web application like a
traditional Windows program.

Understanding these state limitations is the key to creating efficient web applications. In
this chapter, you’ll see how you can use ASP.NET’s state management features to store infor-
mation carefully and consistently. You’ll explore different storage options, including view
state, session state, and custom cookies. You’ll also consider how to transfer information from
page to page using cross-page posting and the query string.

The Problem of State
In a traditional Windows program, users interact with a continuously running application.
A portion of memory on the desktop computer is allocated to store the current set of working
information.

In a web application, the story is quite a bit different. A professional ASP.NET site might
look like a continuously running application, but that’s really just a clever illusion. In a typical
web request, the client connects to the web server and requests a page. When the page is
delivered, the connection is severed, and the web server abandons any information it has
about the client. By the time the user receives a page, the web page code has already stopped
running, and there’s no information left in the web server’s memory.

This stateless design has one significant advantage. Because clients need to be connected
for only a few seconds at most, a web server can handle a huge number of nearly simultane-
ous requests without a performance hit. However, if you want to retain information for a
longer period of time so it can be used over multiple postbacks or on multiple pages, you
need to take additional steps.

211

C H A P T E R 7

8911CH07.qxd 10/8/07 4:24 PM Page 211

View State
One of the most common ways to store information is in view state. View state uses a hidden
field that ASP.NET automatically inserts in the final, rendered HTML of a web page. It’s a per-
fect place to store information that’s used for multiple postbacks in a single web page.

In the previous chapters, you learned how web controls use view state to keep track of
certain details. For example, if you change the text of a label, the Label control automatically
stores its new text in view state. That way, the text remains in place the next time the page is
posted back. Web controls store most of their property values in view state, provided the con-
trol’s EnableViewState property is set to true (which is the default).

However, view state isn’t limited to web controls. Your web page code can add bits of
information directly to the view state of the containing page and retrieve it later after the page
is posted back. The type of information you can store includes simple data types and your
own custom objects.

The ViewState Collection
The ViewState property of the page provides the current view state information. This property
is an instance of the StateBag collection class. The StateBag is a dictionary collection, which
means every item is stored in a separate “slot” using a unique string name.

For example, consider this code:

// The this keyword refers to the current Page object. It's optional.
this.ViewState["Counter"] = 1;

This places the value 1 (or rather, an integer that contains the value 1) into the ViewState
collection and gives it the descriptive name Counter. If currently no item has the name
Counter, a new item will be added automatically. If an item is already stored under the name
Counter, it will be replaced.

When retrieving a value, you use the key name. You also need to cast the retrieved value to
the appropriate data type using the casting syntax you saw in Chapter 2 and Chapter 3. This
extra step is required because the ViewState collection stores all items as basic objects, which
allows it to handle many different data types.

Here’s the code that retrieves the counter from view state and converts it to an integer:

int counter;
counter = (int)this.ViewState["Counter"];

■Note ASP.NET provides many collections that use the same dictionary syntax. This includes the collec-
tions you’ll use for session and application state, as well as those used for caching and cookies. You’ll see
several of these collections in this chapter.

CHAPTER 7 ■ STATE MANAGEMENT212

8911CH07.qxd 10/8/07 4:24 PM Page 212

A View State Example
The following example is a simple counter program that records how many times a button is
clicked. Without any kind of state management, the counter will be locked perpetually at 1.
With careful use of view state, the counter works as expected.

public partial class SimpleCounter : System.Web.UI.Page
{

protected void cmdIncrement_Click(Object sender, EventArgs e)
{

int counter;
if (ViewState["Counter"] == null)
{

counter = 1;
}
else
{

counter = (int)ViewState["Counter"] + 1;
}

ViewState["Counter"] = counter;
lblCount.Text = "Counter: " + counter.ToString();

}
}

The code checks to make sure the item exists in view state before it attempts to retrieve it.
Otherwise, you could easily run into problems such as the infamous null reference exception
(which is described in Chapter 8).

Figure 7-1 shows the output for this page.

Figure 7-1. A simple view state counter

CHAPTER 7 ■ STATE MANAGEMENT 213

8911CH07.qxd 10/8/07 4:24 PM Page 213

Making View State Secure
You probably remember from Chapter 5 that view state information is stored in a single
jumbled string that looks like this:

<input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE"
value="dDw3NDg2NTI5MDg7Oz4=" />

As you add more information to view state, this value can become much longer. Because
this value isn’t formatted as clear text, many ASP.NET programmers assume that their view
state data is encrypted. It isn’t. Instead, the view state information is simply patched together
in memory and converted to a Base64 string (which is a special type of string that’s always
acceptable in an HTML document because it doesn’t include any extended characters). A
clever hacker could reverse-engineer this string and examine your view state data in a matter
of seconds.

Tamperproof View State
If you want to make view state more secure, you have two choices. First, you can make sure
the view state information is tamperproof by instructing ASP.NET to use a hash code. A hash
code is sometimes described as a cryptographically strong checksum. The idea is that ASP.NET
examines all the data in view state, just before it renders the final page. It runs this data
through a hashing algorithm (with the help of a secret key value). The hashing algorithm cre-
ates a short segment of data, which is the hash code. This code is then added at the end of the
view state data, in the final HTML that’s sent to the browser.

When the page is posted back, ASP.NET examines the view state data and recalculates the
hash code using the same process. It then checks whether the checksum it calculated matches
the hash code that is stored in the view state for the page. If a malicious user changes part of
the view state data, ASP.NET will end up with a new hash code that doesn’t match. At this
point, it will reject the postback completely. (You might think a really clever user could get
around this by generating fake view state information and a matching hash code. However,
malicious users can’t generate the right hash code, because they don’t have the same crypto-
graphic key as ASP.NET. This means the hash codes they create won’t match.)

Hash codes are actually enabled by default, so if you want this functionality, you don’t
need to take any extra steps. Occasionally, developers choose to disable this feature to prevent
problems in a web farm where different servers have different keys. (The problem occurs if the
page is posted back and handled by a new server, which won’t be able to verify the view state
information.) To disable hash codes, you can use the enableViewStateMac attribute of the
<pages> element in the web.config or machine.config file, as shown here:

<configuration>
<system.web>
<pages enableViewStateMac="false" />
...

</system.web>
</configuration>

However, a much better way to solve this problem is to configure multiple servers to use
the same key, thereby removing any problem. Chapter 9 describes this technique.

CHAPTER 7 ■ STATE MANAGEMENT214

8911CH07.qxd 10/8/07 4:24 PM Page 214

Private View State
Even when you use hash codes, the view state data will still be readable by the user. In many
cases, this is completely acceptable—after all, the view state tracks information that’s often
provided directly through other controls. However, if your view state contains some informa-
tion you want to keep secret, you can enable view state encryption.

You can turn on encryption for an individual page using the ViewStateEncryptionMode
property of the Page directive:

<%@Page ViewStateEncryptionMode="Always" %>

Or you can set the same attribute in a configuration file:

<configuration>
<system.web>
<pages viewStateEncryptionMode="Always" />
...

</system.web>
</configuration>

Either way, this enforces encryption. You have three choices for your view state encryp-
tion setting—always encrypt (Always), never encrypt (Never), or encrypt only if a control
specifically requests it (Auto). The default is Auto, which means that the page won’t encrypt its
view state unless a control on that page specifically requests it. (Technically, a control makes
this request by calling the Page.RegisterRequiresViewStateEncryption() method.) If no control
calls this method to indicate it has sensitive information, the view state is not encrypted,
thereby saving the encryption overhead. On the other hand, a control doesn’t have absolute
power—if it calls Page.RegisterRequiresViewStateEncryption() and the encryption mode is
Never, the view state won’t be encrypted.

■Tip Don’t encrypt view state data if you don’t need to do so. The encryption will impose a performance
penalty, because the web server needs to perform the encryption and decryption with each postback.

Retaining Member Variables
You have probably noticed that any information you set in a member variable for an ASP.NET
page is automatically abandoned when the page processing is finished and the page is sent to
the client. Interestingly, you can work around this limitation using view state.

The basic principle is to save all member variables to view state when the Page.PreRender
event occurs and retrieve them when the Page.Load event occurs. Remember, the Load event
happens every time the page is created. In the case of a postback, the Load event occurs first,
followed by any other control events.

The following example uses this technique with a single member variable (named Con-
tents). The page provides a text box and two buttons. The user can choose to save a string of
text and then restore it at a later time (see Figure 7-2). The Button.Click event handlers store
and retrieve this text using the Contents member variable. These event handlers don’t need to

CHAPTER 7 ■ STATE MANAGEMENT 215

8911CH07.qxd 10/8/07 4:24 PM Page 215

save or restore this information using view state, because the PreRender and Load event han-
dlers perform these tasks when page processing starts and finishes.

Figure 7-2. A page with state

public partial class PreserveMembers : Page
{

// A member variable that will be cleared with every postback.
private string contents;

protected void Page_Load(Object sender, EventArgs e)
{

if (this.IsPostBack)
{

// Restore variables.
contents = (string)ViewState["contents"];

}
}

protected void Page_PreRender(Object sender, EventArgs e)
{

// Persist variables.
ViewState["contents"] = contents;

}

protected void cmdSave_Click(Object sender, EventArgs e)
{

// Transfer contents of text box to member variable.
contents = txtValue.Text;
txtValue.Text = "";

}

CHAPTER 7 ■ STATE MANAGEMENT216

8911CH07.qxd 10/8/07 4:24 PM Page 216

protected void cmdLoad_Click(Object sender, EventArgs e)
{

// Restore contents of member variable to text box.
txtValue.Text = contents;

}
}

The logic in the Load and PreRender event handlers allows the rest of your code to work
more or less as it would in a desktop application. However, you must be careful not to store
needless amounts of information when using this technique. If you store unnecessary infor-
mation in view state, it will enlarge the size of the final page output and can thus slow down
page transmission times. Another disadvantage with this approach is that it hides the low-
level reality that every piece of data must be explicitly saved and restored. When you hide this
reality, it’s more likely that you’ll forget to respect it and design for it.

If you decide to use this approach to save member variables in view state, use it exclu-
sively. In other words, refrain from saving some view state variables at the PreRender stage
and others in control event handlers, because this is sure to confuse you and any other pro-
grammer who looks at your code.

■Tip The previous code example reacts to the Page.PreRender event, which occurs just after page pro-
cessing is complete and just before the page is rendered in HTML. This is an ideal place to store any leftover
information that is required. You cannot store view state information in an event handler for the Page.Unload
event. Though your code will not cause an error, the information will not be stored in view state, because the
final HTML page output is already rendered.

Storing Custom Objects
You can store your own objects in view state just as easily as you store numeric and string
types. However, to store an item in view state, ASP.NET must be able to convert it into a stream
of bytes so that it can be added to the hidden input field in the page. This process is called
serialization. If your objects aren’t serializable (and by default they’re not), you’ll receive an
error message when you attempt to place them in view state.

To make your objects serializable, you need to add a Serializable attribute before your
class declaration. For example, here’s an exceedingly simple Customer class:

[Serializable]
public class Customer
{

private string firstName;
public string FirstName
{

get { return firstName; }
set { firstName = value; }

}

CHAPTER 7 ■ STATE MANAGEMENT 217

8911CH07.qxd 10/8/07 4:24 PM Page 217

private string lastName;
public string LastName
{

get { return lastName; }
set { lastName = value; }

}

public Customer(string firstName, string lastName)
{

FirstName = firstName;
LastName = lastName;

}
}

Because the Customer class is marked as serializable, it can be stored in view state:

// Store a customer in view state.
Customer cust = new Customer("Marsala", "Simons");
ViewState["CurrentCustomer"] = cust;

Remember, when using custom objects, you’ll need to cast your data when you retrieve it
from view state.

// Retrieve a customer from view state.
Customer cust;
cust = (Customer)ViewState["CurrentCustomer"];

Once you understand this principle, you’ll also be able to determine which .NET objects
can be placed in view state. You simply need to find the class information in the Visual Studio
Help. The easiest approach is to look the class up in the index. For example, to find out about
the FileInfo class (which you’ll learn about in Chapter 18), look for the index entry “FileInfo
class.” In the class documentation, you’ll see the declaration for that class, which looks some-
thing like this:

[Serializable]
[ComVisible(true)]
public sealed class FileInfo : FileSystemInfo

If the class declaration is preceded with the Serializable attribute (as it is here), instances
of this class can be placed in view state. If the Serializable attribute isn’t present, the class isn’t
serializable, and you won’t be able to place instances in view state.

Transferring Information Between Pages
One of the most significant limitations with view state is that it’s tightly bound to a specific
page. If the user navigates to another page, this information is lost. This problem has several
solutions, and the best approach depends on your requirements.

CHAPTER 7 ■ STATE MANAGEMENT218

8911CH07.qxd 10/8/07 4:24 PM Page 218

In the following sections, you’ll learn two basic techniques to transfer information
between pages: cross-page posting and the query string.

Cross-Page Posting
A cross-page postback is a technique that extends the postback mechanism you’ve already
learned about so that one page can send the user to another page, complete with all the infor-
mation for that page. This technique sounds conceptually straightforward, but it’s a potential
minefield. If you’re not careful, it can lead you to create pages that are tightly coupled to
others and difficult to enhance and debug.

The infrastructure that supports cross-page postbacks is a new property named
PostBackUrl, which is defined by the IButtonControl interface and turns up in button
controls such as ImageButton, LinkButton, and Button. To use cross-posting, you simply set
PostBackUrl to the name of another web form. When the user clicks the button, the page will
be posted to that new URL with the values from all the input controls on the current page.

Here’s an example—a page named CrossPage1.aspx that defines a form with two text
boxes and a button. When the button is clicked, it posts to a page named CrossPage2.aspx.

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="CrossPage1.aspx.cs"
Inherits="CrossPage1" %>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title>CrossPage1</title>
</head>
<body>

<form id="form1" runat="server" >
<div>
First Name:
<asp:TextBox ID="txtFirstName" runat="server"></asp:TextBox>

Last Name:
<asp:TextBox ID="txtLastName" runat="server"></asp:TextBox>

<asp:Button runat="server" ID="cmdPost"
PostBackUrl="CrossPage2.aspx" Text="Cross-Page Postback" />

</div>
</form>

</body>
</html>

The CrossPage1 page doesn’t include any code. Figure 7-3 shows how it appears in the
browser.

CHAPTER 7 ■ STATE MANAGEMENT 219

8911CH07.qxd 10/8/07 4:24 PM Page 219

http://www.w3.org/1999/xhtml

Figure 7-3. The source of a cross-page postback

Now if you load this page and click the button, the page will be posted back to
CrossPage2.aspx. At this point, the CrossPage2.aspx page can interact with CrossPage1.aspx
using the Page.PreviousPage property. Here’s an event handler that grabs the title from the
previous page and displays it:

public partial class CrossPage2 : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

if (PreviousPage != null)
{

lblInfo.Text = "You came from a page titled " +
PreviousPage.Title;

}
}

}

Note that this page checks for a null reference before attempting to access the
PreviousPage object. If it’s a null reference, no cross-page postback took place. This means
CrossPage2.aspx was requested directly, or CrossPage2.aspx posted back to itself. Either way,
no PreviousPage object is available.

Figure 7-4 shows what you’ll see when CrossPage1.aspx posts to CrossPage2.aspx.

CHAPTER 7 ■ STATE MANAGEMENT220

8911CH07.qxd 10/8/07 4:24 PM Page 220

Figure 7-4. The target of a cross-page postback

Getting More Information from the Source Page
The previous example shows an interesting initial test, but it doesn’t really allow you to trans-
fer any useful information. After all, you’re probably interested in retrieving specific details
(such as the text in the text boxes of CrossPage1.aspx) from CrossPage2.aspx. The title alone
isn’t very interesting.

To get more specific details, such as control values, you need to cast the PreviousPage ref-
erence to the appropriate page class (in this case it’s the CrossPage1 class). Here’s an example
that handles this situation properly, by checking first whether the PreviousPage object is an
instance of the expected class:

protected void Page_Load(object sender, EventArgs e)
{

CrossPage1 prevPage = PreviousPage as CrossPage1;
if (prevPage != null)
{

// (Read some information from the previous page.)
}

}

You can also solve this problem in another way. Rather than casting the reference
manually, you can add the PreviousPageType directive to the .aspx page that receives the
cross-page postback (in this example, CrossPage2.aspx), right after the Page directive. The
PreviousPageType directive indicates the expected type of the page initiating the cross-page
postback. Here’s an example:

<%@ PreviousPageType VirtualPath="~/CrossPage1.aspx" %>

CHAPTER 7 ■ STATE MANAGEMENT 221

8911CH07.qxd 10/8/07 4:24 PM Page 221

Now, the PreviousPage property will automatically use the CrossPage1 type. That allows
you to skip the casting code and go straight to work using the previous page object, like this:

protected void Page_Load(object sender, EventArgs e)
{

if (PreviousPage != null)
{

// (Read some information from the previous page.)
}

}

However, this approach is more fragile because it limits you to a single page class. You
don’t have the flexibility to deal with situations where more than one page might trigger a
cross-page postback. For that reason, it’s usually more flexible to use the casting approach.

Once you’ve cast the previous page to the appropriate page type, you still won’t be able to
directly access the control objects it contains. That’s because the controls on the web page are
not publicly accessible to other classes. You can work around this by using properties.

For example, if you want to expose the values from two text boxes in the source page, you
might add properties that wrap the control variables. Here are two properties you could add to
the CrossPage1 class to expose its TextBox controls:

public TextBox FirstNameTextBox
{

get { return txtFirstName; }
}
public TextBox LastNameTextBox
{

get { return txtLastName; }
}

However, this usually isn’t the best approach. The problem is that it exposes too many
details, giving the target page the freedom to read everything from the text in the text box to its
fonts and colors. If you need to change the page later to use different input controls, it will be
difficult to maintain these properties. Instead, you’ll probably be forced to rewrite code in
both pages.

A better choice is to define specific, limited methods or properties that extract just the
information you need. For example, you might decide to add a FullName property that
retrieves just the text from the two text boxes. Here’s the full page code for CrossPage1.aspx
with this property:

public partial class CrossPage1 : System.Web.UI.Page
{

public string FullName
{

get { return txtFirstName.Text + " " + txtLastName.Text; }
}

}

CHAPTER 7 ■ STATE MANAGEMENT222

8911CH07.qxd 10/8/07 4:24 PM Page 222

This way, the relationship between the two pages is clear, simple, and easy to maintain.
You can probably change the controls in the source page (CrossPage1) without needing to
change other parts of your application. For example, if you decide to use different controls for
name entry in CrossPage1.aspx, you will be forced to revise the code for the FullName prop-
erty. However, your changes would be confined to CrossPage1.aspx, and you wouldn’t need to
modify CrossPage2.aspx at all.

Here’s how you can rewrite the code in CrossPage2.aspx to display the information from
CrossPage1.aspx:

protected void Page_Load(object sender, EventArgs e)
{

if (PreviousPage != null)
{

lblInfo.Text = "You came from a page titled " +
PreviousPage.Title + "
";

CrossPage1 prevPage = PreviousPage as CrossPage1;
if (prevPage != null)
{

lblInfo.Text += "You typed in this: " + prevPage.FullName;
}

}
}

Notice that the target page (CrossPage2.aspx) can access the Title property of the previous
page (CrossPage1.aspx) without performing any casting. That’s because the Title property is
defined as part of the base System.Web.UI.Page class, and so every web page includes it. How-
ever, to get access to the more specialized FullName property you need to cast the previous
page to the right page class (CrossPage1), or use the PreviousPageType directive that was dis-
cussed earlier.

Figure 7-5 shows the new result.

Figure 7-5. Retrieving specific information from the source page

CHAPTER 7 ■ STATE MANAGEMENT 223

8911CH07.qxd 10/8/07 4:24 PM Page 223

■Note Cross-page postbacks are genuinely useful, but they can lead the way to more complicated pages.
If you allow multiple source pages to post to the same destination page, it’s up to you to code the logic that
figures out which page the user came from and then act accordingly. To avoid these headaches, it’s easiest
to perform cross-page postbacks between two specific pages only.

ASP.NET uses some interesting sleight of hand to make cross-page postbacks work. The
first time the second page accesses Page.PreviousPage, ASP.NET needs to create the previous
page object. To do this, it actually starts the page processing but interrupts it just before the
PreRender stage, and it doesn’t let the page render any HTML output.

However, this still has some interesting side effects. For example, all the page events of the
previous page are fired, including Page.Load and Page.Init, and the Button.Click event also
fires for the button that triggered the cross-page postback. ASP.NET fires these events because
they might be needed to return the source page to the state it was last in, just before it trig-
gered the cross-page postback.

The Query String
Another common approach is to pass information using a query string in the URL. This
approach is commonly found in search engines. For example, if you perform a search on the
Google website, you’ll be redirected to a new URL that incorporates your search parameters.
Here’s an example:

http://www.google.ca/search?q=organic+gardening

The query string is the portion of the URL after the question mark. In this case, it defines a
single variable named q, which contains the string organic+gardening.

The advantage of the query string is that it’s lightweight and doesn’t exert any kind of bur-
den on the server. However, it also has several limitations:

• Information is limited to simple strings, which must contain URL-legal characters.

• Information is clearly visible to the user and to anyone else who cares to eavesdrop on
the Internet.

• The enterprising user might decide to modify the query string and supply new values,
which your program won’t expect and can’t protect against.

• Many browsers impose a limit on the length of a URL (usually from 1KB to 2KB). For
that reason, you can’t place a large amount of information in the query string and still
be assured of compatibility with most browsers.

Adding information to the query string is still a useful technique. It’s particularly well
suited in database applications where you present the user with a list of items that correspond
to records in a database, such as products. The user can then select an item and be forwarded
to another page with detailed information about the selected item. One easy way to imple-
ment this design is to have the first page send the item ID to the second page. The second
page then looks that item up in the database and displays the detailed information. You’ll
notice this technique in e-commerce sites such as Amazon.

CHAPTER 7 ■ STATE MANAGEMENT224

8911CH07.qxd 10/8/07 4:24 PM Page 224

http://www.google.ca/search?q=organic+gardening

To store information in the query string, you need to place it there yourself. Unfortu-
nately, you have no collection-based way to do this. Typically, this means using a special
HyperLink control or a special Response.Redirect() statement such as the one shown here:

// Go to newpage.aspx. Submit a single query string argument
// named recordID, and set to 10.
Response.Redirect("newpage.aspx?recordID=10");

You can send multiple parameters as long as they’re separated with an ampersand (&):

// Go to newpage.aspx. Submit two query string arguments:
// recordID (10) and mode (full).
Response.Redirect("newpage.aspx?recordID=10&mode=full");

The receiving page has an easier time working with the query string. It can receive the
values from the QueryString dictionary collection exposed by the built-in Request object:

string ID = Request.QueryString["recordID"];

Note that information is always retrieved as a string, which can then be converted to
another simple data type. Values in the QueryString collection are indexed by the variable
name. If you attempt to retrieve a value that isn’t present in the query string, you’ll get a null
reference.

■Note Unlike view state, information passed through the query string is clearly visible and unencrypted.
Don’t use the query string for information that needs to be hidden or made tamperproof.

A Query String Example
The next program presents a list of entries. When the user chooses an item by clicking the
appropriate item in the list, the user is forwarded to a new page. This page displays the
received ID number. This provides a quick and simple query string test with two pages. In a
sophisticated application, you would want to combine some of the data control features that
are described later in Part 3 of this book.

The first page provides a list of items, a check box, and a submission button (see Figure 7-6).

CHAPTER 7 ■ STATE MANAGEMENT 225

8911CH07.qxd 10/8/07 4:24 PM Page 225

Figure 7-6. A query string sender

Here’s the code for the first page:

public partial class QueryStringSender : System.Web.UI.Page
{

protected void Page_Load(Object sender, EventArgs e)
{

if (!this.IsPostBack)
{
// Add sample values.

lstItems.Items.Add("Econo Sofa");
lstItems.Items.Add("Supreme Leather Drapery");
lstItems.Items.Add("Threadbare Carpet");
lstItems.Items.Add("Antique Lamp");
lstItems.Items.Add("Retro-Finish Jacuzzi");

}
}

protected void cmdGo_Click(Object sender, EventArgs e)
{

if (lstItems.SelectedIndex == -1)
{

lblError.Text = "You must select an item.";
}
else
{

// Forward the user to the information page,
// with the query string data.
string url = "QueryStringRecipient.aspx?";

CHAPTER 7 ■ STATE MANAGEMENT226

8911CH07.qxd 10/8/07 4:24 PM Page 226

url += "Item=" + lstItems.SelectedItem.Text + "&";
url += "Mode=" + chkDetails.Checked.ToString();
Response.Redirect(url);

}
}

}

Here’s the code for the recipient page (shown in Figure 7-7):

public partial class QueryStringRecipient : System.Web.UI.Page
{

protected void Page_Load(Object sender, EventArgs e)
{

lblInfo.Text = "Item: " + Request.QueryString["Item"];
lblInfo.Text += "
Show Full Record: ";
lblInfo.Text += Request.QueryString["Mode"];

}
}

Figure 7-7. A query string recipient

One interesting aspect of this example is that it places information in the query string that
isn’t valid—namely, the space that appears in the item name. When you run the application,
you’ll notice that ASP.NET encodes the string for you automatically, converting spaces to the
valid %20 equivalent escape sequence. The recipient page reads the original values from the
QueryString collection without any trouble. This automatic encoding isn’t always sufficient. To
deal with special characters, you should use the URL-encoding technique described in the
next section.

CHAPTER 7 ■ STATE MANAGEMENT 227

8911CH07.qxd 10/8/07 4:24 PM Page 227

URL Encoding
One potential problem with the query string is that some characters aren’t allowed in a URL.
In fact, the list of characters that are allowed in a URL is much shorter than the list of allowed
characters in an HTML document. All characters must be alphanumeric or one of a small set
of special characters (including $-_.+!*'(),). Some browsers tolerate certain additional special
characters (Internet Explorer is notoriously lax), but many do not. Furthermore, some charac-
ters have special meaning. For example, the ampersand (&) is used to separate multiple query
string parameters, the plus sign (+) is an alternate way to represent a space, and the number
sign (#) is used to point to a specific bookmark in a web page. If you try to send query string
values that include any of these characters, you’ll lose some of your data. You can test this out
with the previous example by adding items with special characters in the list box.

To avoid potential problems, it’s a good idea to perform URL encoding on text values
before you place them in the query string. With URL encoding, special characters are replaced
by escaped character sequences starting with the percent sign (%), followed by a two-digit
hexadecimal representation. For example, the & character becomes %26. The only exception
is the space character, which can be represented as the character sequence %20 or the + sign.

To perform URL encoding, you use the UrlEncode() and UrlDecode() methods of the
HttpServerUtility class. As you learned in Chapter 5, an HttpServerUtility object is made avail-
able to your code in every web form through the Page.Server property. The following code uses
the UrlEncode() method to rewrite the previous example, so it works with product names that
contain special characters:

string url = "QueryStringRecipient.aspx?";
url += "Item=" + Server.UrlEncode(lstItems.SelectedItem.Text) + "&";
url += "Mode=" _ chkDetails.Checked.ToString();
Response.Redirect(url);

Notice that it’s important not to encode everything. In this example, you can’t encode the
& character that joins the two query string values, because it truly is a special character.

You can use the UrlDecode() method to return a URL-encoded string to its initial value.
However, you don’t need to take this step with the query string. That’s because ASP.NET auto-
matically decodes your values when you access them through the Request.QueryString
collection. (Many people still make the mistake of decoding the query string values a second
time. Usually, decoding already decoded data won’t cause a problem. The only exception is if
you have a value that includes the + sign. In this case, using UrlDecode() will convert the +
sign to a space, which isn’t what you want.)

Cookies
Cookies provide another way that you can store information for later use. Cookies are small
files that are created on the client’s hard drive (or, if they’re temporary, in the web browser’s
memory). One advantage of cookies is that they work transparently without the user being
aware that information needs to be stored. They also can be easily used by any page in your
application and even be retained between visits, which allows for truly long-term storage.
They suffer from some of the same drawbacks that affect query strings—namely, they’re lim-
ited to simple string information, and they’re easily accessible and readable if the user finds

CHAPTER 7 ■ STATE MANAGEMENT228

8911CH07.qxd 10/8/07 4:24 PM Page 228

and opens the corresponding file. These factors make them a poor choice for complex or pri-
vate information or large amounts of data.

Some users disable cookies on their browsers, which will cause problems for web applica-
tions that require them. Also, users might manually delete the cookie files stored on their
hard drives. But for the most part, cookies are widely adopted and used extensively on many
websites.

Before you can use cookies, you should import the System.Net namespace so you can
easily work with the appropriate types:

using System.Net;

Cookies are fairly easy to use. Both the Request and Response objects (which are provided
through Page properties) provide a Cookies collection. The important trick to remember is
that you retrieve cookies from the Request object, and you set cookies using the Response
object.

To set a cookie, just create a new HttpCookie object. You can then fill it with string infor-
mation (using the familiar dictionary pattern) and attach it to the current web response:

// Create the cookie object.
HttpCookie cookie = new HttpCookie("Preferences");

// Set a value in it.
cookie["LanguagePref"] = "English";

// Add another value.
cookie["Country"] = "US";

// Add it to the current web response.
Response.Cookies.Add(cookie);

A cookie added in this way will persist until the user closes the browser and will be sent
with every request. To create a longer-lived cookie, you can set an expiration date:

// This cookie lives for one year.
cookie.Expires = DateTime.Now.AddYears(1);

You retrieve cookies by cookie name using the Request.Cookies collection:

HttpCookie cookie = Request.Cookies["Preferences"];

// Check to see whether a cookie was found with this name.
// This is a good precaution to take,
// because the user could disable cookies,
// in which case the cookie will not exist.
string language;
if (cookie != null)
{

language = cookie["LanguagePref"];
}

CHAPTER 7 ■ STATE MANAGEMENT 229

8911CH07.qxd 10/8/07 4:24 PM Page 229

The only way to remove a cookie is by replacing it with a cookie that has an expiration
date that has already passed. This code demonstrates the technique:

HttpCookie cookie = new HttpCookie("LanguagePref");
cookie.Expires = DateTime.Now.AddDays(-1);
Response.Cookies.Add(cookie);

A Cookie Example
The next example shows a typical use of cookies to store a customer name. If the name is
found, a welcome message is displayed, as shown in Figure 7-8.

Figure 7-8. Displaying information from a custom cookie

Here’s the code for this page:

public partial class CookieExample : System.Web.UI.Page
{

protected void Page_Load(Object sender, EventArgs e)
{

HttpCookie cookie = Request.Cookies["Preferences"];
if (cookie == null)
{

lblWelcome.Text = "Unknown Customer";
}
else
{

lblWelcome.Text = "Cookie Found.

";
lblWelcome.Text += "Welcome, " + cookie["Name"];

}
}

CHAPTER 7 ■ STATE MANAGEMENT230

8911CH07.qxd 10/8/07 4:24 PM Page 230

protected void cmdStore_Click(Object sender, EventArgs e)
{

// Check for a cookie, and only create a new one if
// one doesn't already exist.
HttpCookie cookie = Request.Cookies["Preferences"];
if (cookie == null)
{

cookie = new HttpCookie("Preferences");
}

cookie["Name"] = txtName.Text;
cookie.Expires = DateTime.Now.AddYears(1);
Response.Cookies.Add(cookie);

lblWelcome.Text = "Cookie Created.

";
lblWelcome.Text += "New Customer: " + cookie["Name"];

}
}

■Note You’ll find that some other ASP.NET features use cookies. Two examples are session state (which
allows you to temporarily store user-specific information in server memory) and forms security (which allows
you to restrict portions of a website and force users to access it through a login page). Chapter 20 discusses
forms security, and the next section of this chapter discusses session state.

Session State
There comes a point in the life of most applications when they begin to have more sophisti-
cated storage requirements. An application might need to store and access complex
information such as custom data objects, which can’t be easily persisted to a cookie or sent
through a query string. Or the application might have stringent security requirements that
prevent it from storing information about a client in view state or in a custom cookie. In these
situations, you can use ASP.NET’s built-in session state facility.

Session state management is one of ASP.NET’s premiere features. It allows you to store
any type of data in memory on the server. The information is protected, because it is never
transmitted to the client, and it’s uniquely bound to a specific session. Every client that
accesses the application has a different session and a distinct collection of information.
Session state is ideal for storing information such as the items in the current user’s shopping
basket when the user browses from one page to another.

Session Tracking
ASP.NET tracks each session using a unique 120-bit identifier. ASP.NET uses a proprietary
algorithm to generate this value, thereby guaranteeing (statistically speaking) that the number

CHAPTER 7 ■ STATE MANAGEMENT 231

8911CH07.qxd 10/8/07 4:24 PM Page 231

is unique and it’s random enough that a malicious user can’t reverse-engineer or “guess” what
session ID a given client will be using. This ID is the only piece of session-related information
that is transmitted between the web server and the client.

When the client presents the session ID, ASP.NET looks up the corresponding session,
retrieves the objects you stored previously, and places them into a special collection so they
can be accessed in your code. This process takes place automatically.

For this system to work, the client must present the appropriate session ID with each
request. You can accomplish this in two ways:

Using cookies: In this case, the session ID is transmitted in a special cookie (named
ASP.NET_SessionId), which ASP.NET creates automatically when the session collection is
used. This is the default, and it’s also the same approach that was used in earlier versions
of ASP.

Using modified URLs: In this case, the session ID is transmitted in a specially modified (or
munged) URL. This allows you to create applications that use session state with clients
that don’t support cookies.

Session state doesn’t come for free. Though it solves many of the problems associated
with other forms of state management, it forces the server to store additional information in
memory. This extra memory requirement, even if it is small, can quickly grow to performance-
destroying levels as hundreds or thousands of clients access the site.

In other words, you must think through any use of session state. A careless use of session
state is one of the most common reasons that a web application can’t scale to serve a large
number of clients. Sometimes a better approach is to use caching, as described in Chapter 24.

Using Session State
You can interact with session state using the System.Web.SessionState.HttpSessionState class,
which is provided in an ASP.NET web page as the built-in Session object. The syntax for adding
items to the collection and retrieving them is basically the same as for adding items to a page’s
view state.

For example, you might store a DataSet in session memory like this:

Session["InfoDataSet"] = dsInfo;

You can then retrieve it with an appropriate conversion operation:

dsInfo = (DataSet)Session["InfoDataSet"];

■Note Chapter 15 explores the DataSet.

Session state is global to your entire application for the current user. However, session
state can be lost in several ways:

CHAPTER 7 ■ STATE MANAGEMENT232

8911CH07.qxd 10/8/07 4:24 PM Page 232

• If the user closes and restarts the browser.

• If the user accesses the same page through a different browser window, although the
session will still exist if a web page is accessed through the original browser window.
Browsers differ on how they handle this situation.

• If the session times out due to inactivity. More information about session timeout can
be found in the configuration section.

• If your web page code ends the session by calling the Session.Abandon() method.

In the first two cases, the session actually remains in memory on the web server, because
ASP.NET has no idea that the client has closed the browser or changed windows. The session
will linger in memory, remaining inaccessible, until it eventually expires.

Table 7-1 describes the methods and properties of the HttpSessionState class.

Table 7-1. HttpSessionState Members

Member Description

Count Provides the number of items in the current session collection.

IsCookieless Identifies whether the session is tracked with a cookie or modified URLs.

IsNewSession Identifies whether the session was created only for the current request. If no
information is in session state, ASP.NET won’t bother to track the session or
create a session cookie. Instead, the session will be re-created with every
request.

Mode Provides an enumerated value that explains how ASP.NET stores session state
information. This storage mode is determined based on the web.config settings
discussed in the “Session State Configuration” section later in this chapter.

SessionID Provides a string with the unique session identifier for the current client.

Timeout Determines the number of minutes that will elapse before the current session
is abandoned, provided that no more requests are received from the client.
This value can be changed programmatically, letting you make the session
collection longer when needed.

Abandon() Cancels the current session immediately and releases all the memory it
occupied. This is a useful technique in a logoff page to ensure that server
memory is reclaimed as quickly as possible.

Clear() Removes all the session items but doesn’t change the current session identifier.

A Session State Example
The next example uses session state to store several Furniture data objects. The data object
combines a few related variables and uses a special constructor so it can be created and ini-
tialized in one easy line. Rather than use full property procedures, the class takes a shortcut
and uses public member variables so that the code listing remains short and concise. (If you
refer to the full code in the downloadable examples, you’ll see that it uses property procedures.)

CHAPTER 7 ■ STATE MANAGEMENT 233

8911CH07.qxd 10/8/07 4:24 PM Page 233

public class Furniture
{

public string Name;
public string Description;
public decimal Cost;

public Furniture(string name, string description,
decimal cost)

{
Name = name;
Description = description;
Cost = cost;

}
}

Three Furniture objects are created the first time the page is loaded, and they’re stored in
session state. The user can then choose from a list of furniture piece names. When a selection
is made, the corresponding object will be retrieved, and its information will be displayed, as
shown in Figure 7-9.

Figure 7-9. A session state example with data objects

public partial class SessionStateExample : System.Web.UI.Page
{

protected void Page_Load(Object sender, EventArgs e)
{

if (!this.IsPostBack)
{

// Create Furniture objects.

CHAPTER 7 ■ STATE MANAGEMENT234

8911CH07.qxd 10/8/07 4:24 PM Page 234

Furniture piece1 = new Furniture("Econo Sofa",
"Acme Inc.", 74.99M);

Furniture piece2 = new Furniture("Pioneer Table",
"Heritage Unit", 866.75M);

Furniture piece3 = new Furniture("Retro Cabinet",
"Sixties Ltd.", 300.11M);

// Add objects to session state.
Session["Furniture1"] = piece1;
Session["Furniture2"] = piece2;
Session["Furniture3"] = piece3;

// Add rows to list control.
lstItems.Items.Add(piece1.Name);
lstItems.Items.Add(piece2.Name);
lstItems.Items.Add(piece3.Name);

}

// Display some basic information about the session.
// This is useful for testing configuration settings.
lblSession.Text = "Session ID: " + Session.SessionID;
lblSession.Text += "
Number of Objects: ";
lblSession.Text += Session.Count.ToString();
lblSession.Text += "
Mode: " + Session.Mode.ToString();
lblSession.Text += "
Is Cookieless: ";
lblSession.Text += Session.IsCookieless.ToString();
lblSession.Text += "
Is New: ";
lblSession.Text += Session.IsNewSession.ToString();
lblSession.Text += "
Timeout (minutes): ";
lblSession.Text += Session.Timeout.ToString();

}

protected void cmdMoreInfo_Click(Object sender, EventArgs e)
{

if (lstItems.SelectedIndex == -1)
{

lblRecord.Text = "No item selected.";
}
else
{

// Construct the right key name based on the index.
string key = "Furniture" +

(lstItems.SelectedIndex + 1).ToString();

// Retrieve the Furniture object from session state.
Furniture piece = (Furniture)Session[key];

CHAPTER 7 ■ STATE MANAGEMENT 235

8911CH07.qxd 10/8/07 4:24 PM Page 235

// Display the information for this object.
lblRecord.Text = "Name: " + piece.Name;
lblRecord.Text += "
Manufacturer: ";
lblRecord.Text += piece.Description;
lblRecord.Text += "
Cost: " + piece.Cost.ToString("c");

}
}

}

It’s also a good practice to add a few session-friendly features in your application. For
example, you could add a logout button to the page that automatically cancels a session using
the Session.Abandon() method. This way, the user will be encouraged to terminate the session
rather than just close the browser window, and the server memory will be reclaimed faster.

MAKING SESSION STATE MORE SCALABLE

When web developers need to store a large amount of state information, they face a confounding problem.
They can use session state and ensure excellent performance for a small set of users, but they risk poor
scalability for large numbers. Alternatively, they can use a database to store temporary session information.
This allows them to store a large amount of session information for a long time (potentially weeks or months
instead of mere minutes). However, it also slows performance because the database must be queried for
almost every page request.

The compromise involves caching. The basic approach is to create a temporary database record with
session information and store its unique ID in session state. This ensures that the in-memory session infor-
mation is always minimal, but your web page code can easily find the corresponding session record. To
reduce the number of database queries, you’ll also add the session information to the cache (indexed under
the session identifier). On subsequent requests, your code can check for the session information in the cache
first. If the information is no longer in the cache, your code can retrieve it from the database as a last resort.
This process becomes even more transparent if you create a custom component that provides the session
information and performs the required cache lookup for you.

For more information, read about custom components in Chapter 23, and caching in Chapter 24.

Session State Configuration
You configure session state through the web.config file for your current application (which is
found in the same virtual directory as the .aspx web page files). The configuration file allows
you to set advanced options such as the timeout and the session state mode. If you’re creating
your web application in Visual Studio, your project will include an automatically generated
web.config file.

The following listing shows the most important options that you can set for the
<sessionState> element. Keep in mind that you won’t use all of these details at the same time.
Some settings only apply to certain session state modes, as you’ll see shortly.

CHAPTER 7 ■ STATE MANAGEMENT236

8911CH07.qxd 10/8/07 4:24 PM Page 236

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.web>
<!-- Other settings omitted. -->

<sessionState
cookieless="UseCookies" cookieName="ASP.NET_SessionId"
regenerateExpiredSessionId="false"
timeout="20"
mode="InProc"
stateConnectionString="tcpip=127.0.0.1:42424"
stateNetworkTimeout="10"
sqlConnectionString="data source=127.0.0.1;Integrated Security=SSPI"
sqlCommandTimeout="30"
allowCustomSqlDatabase="false"
customProvider=""

/>
</system.web>

</configuration>

The following sections describe the preceding session state settings.

Cookieless
You can set the cookieless setting to one of the values defined by the HttpCookieMode enu-
meration, as described in Table 7-2.

Table 7-2. HttpCookieMode Values

Value Description

UseCookies Cookies are always used, even if the browser or device doesn’t support
cookies or they are disabled. This is the default. If the device does not
support cookies, session information will be lost over subsequent requests,
because each request will get a new ID.

UseUri Cookies are never used, regardless of the capabilities of the browser or
device. Instead, the session ID is stored in the URL.

UseDeviceProfile ASP.NET chooses whether to use cookieless sessions by examining the
BrowserCapabilities object. The drawback is that this object indicates what
the device should support—it doesn’t take into account that the user may
have disabled cookies in a browser that supports them.

AutoDetect ASP.NET attempts to determine whether the browser supports cookies by
attempting to set and retrieve a cookie (a technique commonly used on the
Web). This technique can correctly determine whether a browser supports
cookies but has them disabled, in which case cookieless mode is used
instead.

Here’s an example that forces cookieless mode (which is useful for testing):

<sessionState cookieless="UseUri" ... />

CHAPTER 7 ■ STATE MANAGEMENT 237

8911CH07.qxd 10/8/07 4:24 PM Page 237

In cookieless mode, the session ID will automatically be inserted into the URL. When
ASP.NET receives a request, it will remove the ID, retrieve the session collection, and forward
the request to the appropriate directory. Figure 7-10 shows a munged URL.

Figure 7-10. A munged URL with the session ID

Because the session ID is inserted in the current URL, relative links also automatically
gain the session ID. In other words, if the user is currently stationed on Page1.aspx and clicks a
relative link to Page2.aspx, the relative link includes the current session ID as part of the URL.
The same is true if you call Response.Redirect() with a relative URL, as shown here:

Response.Redirect("Page2.aspx");

Figure 7-11 shows a sample website (included with the online samples in the
CookielessSessions directory) that tests cookieless sessions. It contains two pages and uses
cookieless mode. The first page (Cookieless1.aspx) contains a HyperLink control and two but-
tons, all of which take you to a second page (Cookieless2.aspx). The trick is that these controls
have different ways of performing their navigation. Only two of them work with cookieless
session—the third loses the current session.

Figure 7-11. Three tests of cookieless sessions

The HyperLink control navigates to the page specified in its NavigateUrl property, which
is set to the relative path Cookieless2.aspx. If you click this link, the session ID is retained in

CHAPTER 7 ■ STATE MANAGEMENT238

8911CH07.qxd 10/8/07 4:24 PM Page 238

the URL, and the new page can retrieve the session information. This demonstrates that
cookieless sessions work with relative links.

The two buttons on this page use programmatic redirection by calling the
Response.Redirect() method. The first button uses the relative path Cookieless2.aspx, much
like the HyperLink control. This approach works with cookieless session state, and preserves
the munged URL with no extra steps required.

protected void cmdLink_Click(Object sender, EventArgs e)
{

Response.Redirect("Cookieless2.aspx");
}

The only real limitation of cookieless state is that you cannot use absolute links (links
that include the full URL, starting with http://). The second button uses an absolute link to
demonstrate this problem. Because ASP.NET cannot insert the session ID into the URL, the
session is lost.

protected void cmdLinkAbsolute_Click(Object sender, EventArgs e)
{

string url = "http://localhost:56371/CookielessSessions/Cookieless2.aspx";
Response.Redirect(url);

}

Now the target page (Figure 7-12) checks for the session information, but can’t find it.

Figure 7-12. A lost session

Writing the code to demonstrate this problem in a test environment is a bit tricky. The
problem is that Visual Studio’s integrated web server chooses a different port for your website
every time you start it. As a result, you’ll need to edit the code every time you open Visual
Studio so that your URL uses the right port number (such as 56371 in the previous example).

CHAPTER 7 ■ STATE MANAGEMENT 239

8911CH07.qxd 10/8/07 4:24 PM Page 239

http://localhost:56371/CookielessSessions/Cookieless2.aspx

There’s another workaround. You can use some crafty code that gets the current URL from
the page and just modifies the last part of it (changing the page name from Cookieless1.aspx
to Cookieless2.aspx). Here’s how:

// Create a new URL based on the current URL (but ending with
// the page Cookieless2.aspx instead of Cookieless1.aspx.
string url = "http://" + Request.Url.Authority +
Request.Url.Segments[0] + Request.Url.Segments[1] +
"Cookieless2.aspx";

Response.Redirect(url);

Of course, if you deploy your website to a real virtual directory that’s hosted by IIS, you
won’t use a randomly chosen port number anymore, and you won’t experience this quirk.
Chapter 9 has more about virtual directories and website deployment.

DEALING WITH EXPIRED SESSSION IDS

By default, ASP.NET allows you to reuse a session identifier. For example, if you make a request and your
query string contains an expired session, ASP.NET creates a new session and uses that session ID. The prob-
lem is that a session ID might inadvertently appear in a public place—such as in a results page in a search
engine. This could lead to multiple users accessing the server with the same session identifier and then all
joining the same session with the same shared data.

To avoid this potential security risk, you should include the optional regenerateExpiredSessionId attri-
bute and set it to true whenever you use cookieless sessions. This way, a new session ID will be issued if a
user connects with an expired session ID. The only drawback is that this process also forces the current page
to lose all view state and form data, because ASP.NET performs a redirect to make sure the browser has a
new session identifier.

Timeout
Another important session state setting in the web.config file is the timeout. This specifies the
number of minutes that ASP.NET will wait, without receiving a request, before it abandons the
session.

This setting represents one of the most important compromises of session state. A differ-
ence of minutes can have a dramatic effect on the load of your server and the performance of
your application. Ideally, you will choose a timeframe that is short enough to allow the server
to reclaim valuable memory after a client stops using the application but long enough to allow
a client to pause and continue a session without losing it.

You can also programmatically change the session timeout in code. For example, if you
know a session contains an unusually large amount of information, you may need to limit the
amount of time the session can be stored. You would then warn the user and change the time-
out property. Here’s a sample line of code that changes the timeout to 10 minutes:

Session.Timeout = 10;

CHAPTER 7 ■ STATE MANAGEMENT240

8911CH07.qxd 10/8/07 4:24 PM Page 240

Mode
The remaining session state settings allow you to configure ASP.NET to use different session
state services, depending on the mode that you choose. The next few sections describe the
modes you can choose from.

■Note If you’re hosting ASP.NET using more than one web server (which is affectionately known as a web
farm), you’ll also need to take some extra configuration steps to make sure all the web servers are in sync.
Otherwise, one server might encode information in session state differently than another, which will cause a
problem if the user is routed from one server to another during a session. The solution is to modify the
<machineKey> section of the machine.config file so that it’s consistent across all servers. For more informa-
tion, refer to Chapter 9.

InProc
InProc is the default mode. InProc is similar to how session state was stored in previous ver-
sions of ASP. It instructs information to be stored in the same process as the ASP.NET worker
threads, which provides the best performance but the least durability. If you restart your
server, the state information will be lost.

InProc makes sense for most small websites. In a web farm scenario, though, it won’t
work. To allow session state to be shared between servers, you must use the out-of-process or
SQL Server state service. Another reason you might want to avoid InProc mode is if you find
that your users are losing session state information at unpredictable times. In ASP.NET, appli-
cation domains can be restarted for a variety of reasons, including configuration changes and
updated pages, and when certain thresholds are met (regardless of whether an error has
occurred). If you find that you’re losing sessions before the timeout limit, you may want to
experiment with a more durable mode.

■Note When using the StateServer and SQLServer modes, the objects you store in session state must be
serializable. Otherwise, ASP.NET will not be able to transmit the object to the state service or store it in the
database. Earlier in this chapter, you learned how to create a serializable Customer class for storing in view
state.

Off
This setting disables session state management for every page in the application. This can
provide a slight performance improvement for websites that are not using session state.

StateServer
With this setting, ASP.NET will use a separate Windows service for state management. This
service runs on the same web server, but it’s outside the main ASP.NET process, which gives it

CHAPTER 7 ■ STATE MANAGEMENT 241

8911CH07.qxd 10/8/07 4:24 PM Page 241

a basic level of protection if the ASP.NET process needs to be restarted. The cost is the
increased time delay imposed when state information is transferred between two processes.
If you frequently access and change state information, this can make for a fairly unwelcome
slowdown.

When using the StateServer setting, you need to specify a value for the
stateConnectionString setting. This string identifies the TCP/IP address of the computer that
is running the StateServer service and its port number (which is defined by ASP.NET and
doesn’t usually need to be changed). This allows you to host the StateServer on another com-
puter. If you don’t change this setting, the local server will be used (set as address 127.0.0.1).

Of course, before your application can use the service, you need to start it. The easiest
way to do this is to use the Microsoft Management Console (MMC). Here’s how:

1. Select Start ➤ Settings ➤ Control Panel (or just Start ➤ Control Panel in Windows
Vista).

2. Open the Administrative Tools group, and then choose Computer Management.

3. In the Computer Management tool, go to the Services and Applications ➤ Services
node.

4. Find the service called ASP.NET State Service in the list, as shown in Figure 7-13.

Figure 7-13. The ASP.NET state service

5. Once you find the service in the list, you can manually start and stop it by right-clicking
it. Generally, you’ll want to configure Windows to automatically start the service. Right-
click it, select Properties, and modify the Startup Type, setting it to Automatic, as
shown in Figure 7-14.

CHAPTER 7 ■ STATE MANAGEMENT242

8911CH07.qxd 10/8/07 4:24 PM Page 242

Figure 7-14. Windows services

■Note When using StateServer mode, you can also set an optional stateNetworkTimeout attribute that
specifies the maximum number of seconds to wait for the service to respond before canceling the request.
The default value is 10 (seconds).

SQLServer
This setting instructs ASP.NET to use an SQL Server database to store session information, as
identified by the sqlConnectionString attribute. This is the most resilient state store but also
the slowest by far. To use this method of state management, you’ll need to have a server with
SQL Server installed.

When setting the sqlConnectionString attribute, you follow the same sort of pattern you
use with ADO.NET data access. Generally, you’ll need to specify a data source (the server
address) and a user ID and password, unless you’re using SQL integrated security.

In addition, you need to install the special stored procedures and temporary session
databases. These stored procedures take care of storing and retrieving the session informa-
tion. ASP.NET includes a command-line tool that does the work for you automatically, called
aspnet_regsql.exe. It’s found in the c:\Windows\Microsoft.NET\Framework\v2.0.50727
directory. The easiest way to run aspnet_regsql.exe is to start by launching the Visual Studio
command prompt (open the Start menu and choose Programs ➤ Visual Studio 2008 ➤
Visual Studio Tools ➤ Visual Studio 2008 Command Prompt). You can then type in an
aspnet_regsql.exe command, no matter what directory you’re in.

CHAPTER 7 ■ STATE MANAGEMENT 243

8911CH07.qxd 10/8/07 4:24 PM Page 243

You can use the aspnet_regsql.exe tool to perform several database-related tasks. As you
travel through this book, you’ll see how to use aspnet_regsql.exe with ASP.NET features like
membership (Chapter 21), profiles (Chapter 22), and caching (Chapter 24). To use
aspnet_regsql.exe to create a session storage database, you supply the –ssadd parameter. In
addition, you use the –S parameter to indicate the database server name, and the –E parame-
ter to log in to the database using the currently logged-in Windows user account.

Here’s a command that creates the session storage database on the current computer,
using the default database name ASPState:

aspnet_regsql.exe -S localhost -E –ssadd

This command uses the alias localhost, which tells aspnet_regsql.exe to connect to the data-
base server on the current computer.

■Note The aspnet_regsql.exe command supports additional options that allow you to store session infor-
mation in a database with a different name. You can find out about these options by referring to the Visual
Studio help (look up aspnet_regsql in the index) or by surfing to http://msdn2.microsoft.com/en-us/
library/ms178586.aspx. This information also describes the extra steps you need to take to use the
database-backed session storage with SQL Server 2005 Express Edition.

Once you’ve created your session state database, you need to tell ASP.NET to use it by
modifying the <sessionState> section of the web.config file. If you’re using a database named
ASPState to store your session information (which is the default), you don’t need to supply the
database name. Instead, you simply have to indicate the location of the server and the type of
authentication that ASP.NET should use to connect to it, as shown here:

<sessionState
sqlConnectionString="data source=127.0.0.1;Integrated Security=SSPI"
... />

When using the SQLServer mode, you can also set an optional sqlCommandTimeout
attribute that specifies the maximum number of seconds to wait for the database to respond
before canceling the request. The default is 30 seconds.

Custom

When using custom mode, you need to indicate which session state store provider to use by
supplying the customProvider attribute. The customProvider attribute indicates the name of
the class. The class may be part of your web application (in which case the source code is
placed in the App_Code subfolder) or it can be in an assembly that your web application is
using (in which case the compiled assembly is placed in the Bin subfolder).

Creating a custom state provider is a low-level task that needs to be handled carefully to
ensure security, stability, and scalability. Custom state providers are also beyond the scope of
this book. However, other vendors may release custom state providers you want to use. For
example, Oracle could provide a custom state provider that allows you to store state informa-
tion in an Oracle database.

CHAPTER 7 ■ STATE MANAGEMENT244

8911CH07.qxd 10/8/07 4:24 PM Page 244

http://msdn2.microsoft.com/en-us

Application State
Application state allows you to store global objects that can be accessed by any client. Applica-
tion state is based on the System.Web.HttpApplicationState class, which is provided in all web
pages through the built-in Application object.

Application state is similar to session state. It supports the same type of objects, retains
information on the server, and uses the same dictionary-based syntax. A common example
with application state is a global counter that tracks how many times an operation has been
performed by all the web application’s clients.

For example, you could create a Global.asax event handler that tracks how many sessions
have been created or how many requests have been received into the application. Or you can
use similar logic in the Page.Load event handler to track how many times a given page has
been requested by various clients. Here’s an example of the latter:

protected void Page_Load(Object sender, EventArgs e)
{

// Retrieve the current counter value.
int count = 0;
if (Application["HitCounterForOrderPage"] != null)
{

count = (int)Application["HitCounterForOrderPage"];
}

// Increment the counter.
count++;

// Store the current counter value.
Application["HitCounterForOrderPage"] = count;
lblCounter.Text = count.ToString();

}

Once again, application state items are stored as objects, so you need to cast them when
you retrieve them from the collection. Items in application state never time out. They last until
the application or server is restarted, or the application domain refreshes itself (because of
automatic process recycling settings or an update to one of the pages or components in the
application).

Application state isn’t often used, because it’s generally inefficient. In the previous exam-
ple, the counter would probably not keep an accurate count, particularly in times of heavy
traffic. For example, if two clients requested the page at the same time, you could have a
sequence of events like this:

1. User A retrieves the current count (432).

2. User B retrieves the current count (432).

3. User A sets the current count to 433.

4. User B sets the current count to 433.

CHAPTER 7 ■ STATE MANAGEMENT 245

8911CH07.qxd 10/8/07 4:24 PM Page 245

In other words, one request isn’t counted because two clients access the counter at the
same time. To prevent this problem, you need to use the Lock() and Unlock() methods, which
explicitly allow only one client to access the Application state collection at a time.

protected void Page_Load(Object sender, EventArgs e)
{

// Acquire exclusive access.
Application.Lock();

int count = 0;
if (Application["HitCounterForOrderPage"] != null)
{

count = (int)Application["HitCounterForOrderPage"];
}
count++;
Application["HitCounterForOrderPage"] = count;

// Release exclusive access.
Application.Unlock();

lblCounter.Text = count.ToString();
}

Unfortunately, all other clients requesting the page will be stalled until the Application
collection is released. This can drastically reduce performance. Generally, frequently modified
values are poor candidates for application state. In fact, application state is rarely used in the
.NET world because its two most common uses have been replaced by easier, more efficient
methods:

• In the past, application state was used to store application-wide constants, such as a
database connection string. As you saw in Chapter 5, this type of constant can be stored
in the web.config file, which is generally more flexible because you can change it easily
without needing to hunt through web page code or recompile your application.

• Application state can also be used to store frequently used information that is time-
consuming to create, such as a full product catalog that requires a database lookup.
However, using application state to store this kind of information raises all sorts of
problems about how to check whether the data is valid and how to replace it when
needed. It can also hamper performance if the product catalog is too large. Chapter 24
introduces a similar but much more sensible approach—storing frequently used infor-
mation in the ASP.NET cache. Many uses of application state can be replaced more
efficiently with caching.

■Tip If you decide to use application state, you can initialize its contents when your application first starts.
Just add the initialization code to the Global.asax file in a method named Application_OnStart(), as described
in Chapter 5.

CHAPTER 7 ■ STATE MANAGEMENT246

8911CH07.qxd 10/8/07 4:24 PM Page 246

An Overview of State Management Choices
Each state management choice has a different lifetime, scope, performance overhead, and
level of support. Table 7-3 and Table 7-4 show an at-a-glance comparison of your state man-
agement options.

Table 7-3. State Management Options Compared (Part 1)

View State Query String Custom Cookies

Allowed Data Types All serializable A limited amount String data.
.NET data types. of string data.

Storage Location A hidden field in the The browser’s The client’s
current web page. URL string. computer (in

memory or a
small text file,
depending on
its lifetime
settings).

Lifetime Retained permanently Lost when the user Set by the
for postbacks to a enters a new URL programmer.
single page. or closes the browser. Can be used in

However, this can be multiple pages
stored in a bookmark. and can persist

between visits.

Scope Limited to the Limited to the The whole
current page. target page. ASP.NET

application.

Security Tamperproof by default Clearly visible and Insecure, and
but easy to read. You easy for the user to can be modified
can enforce encryption modify. by the user.
by using the
ViewStateEncryptionMode
property of the Page directive.

Performance Slow if a large amount of None, because the None, because
Implications information is stored, but amount of data is the amount of

will not affect server trivial. data is trivial.
performance.

Typical Use Page-specific settings. Sending a product Personalization
ID from a catalog preferences for
page to a details a website.
page.

CHAPTER 7 ■ STATE MANAGEMENT 247

8911CH07.qxd 10/8/07 4:24 PM Page 247

Table 7-4. State Management Options Compared (Part 2)

Session State Application State

Allowed Data Types All .NET data types for the default All .NET data types.
in-process storage mode. All
serializable .NET data types if
you use an out-of-process
storage mode.

Storage Location Server memory, state service, Server memory.
or SQL Server, depending on
the mode you choose.

Lifetime Times out after a predefined The lifetime of the application
period (usually 20 minutes, but (typically, until the server is
can be altered globally or rebooted).
programmatically).

Scope The whole ASP.NET application. The whole ASP.NET
application. Unlike other
methods, application data is
global to all users.

Security Very secure, because data is Very secure, because data is
never transmitted to the client. never transmitted to the

client.

Performance Implications Slow when storing a large amount Slow when storing a large
of information, especially if there amount of information,
are many users at once, because because this data will never
each user will have their own time out and be removed.
copy of session data.

Typical Use Storing items in a shopping basket. Storing any type of global
data.

■Note ASP.NET has another, more specialized type of state management called profiles. Profiles allow you
to store and retrieve user-specific information from a database. The only catch is that you need to authenti-
cate the user in order to get the right information. You’ll learn about profiles in Chapter 22.

The Last Word
State management is the art of retaining information between requests. Usually, this informa-
tion is user-specific (such as a list of items in a shopping cart, a user name, or an access level),
but sometimes it’s global to the whole application (such as usage statistics that track site activ-
ity). Because ASP.NET uses a disconnected architecture, you need to explicitly store and
retrieve state information with each request. The approach you choose to store this data can
dramatically affect the performance, scalability, and security of your application. Remember
to consult Table 7-3 and Table 7-4 to help evaluate different types of state management and
determine what is best for your needs.

CHAPTER 7 ■ STATE MANAGEMENT248

8911CH07.qxd 10/8/07 4:24 PM Page 248

Error Handling, Logging,
and Tracing

No software can run free from error, and ASP.NET applications are no exception. Sooner or
later your code will be interrupted by a programming mistake, invalid data, unexpected cir-
cumstances, or even hardware failure. Novice programmers spend sleepless nights worrying
about errors. Professional developers recognize that bugs are an inherent part of software
applications and code defensively, testing assumptions, logging problems, and writing error-
handling code to deal with the unexpected.

In this chapter, you’ll learn the error-handling and debugging practices that you can use
to defend your ASP.NET applications against common errors, track user problems, and solve
mysterious issues. You’ll learn how to use structured exception handling, how to use logs to
keep a record of unrecoverable errors, and how to set up web pages with custom error mes-
sages for common HTTP errors. You’ll also learn how to use page tracing to see diagnostic
information about ASP.NET pages.

Common Errors
Errors can occur in a variety of situations. Some of the most common causes of errors include
attempts to divide by zero (usually caused by invalid input or missing information) and
attempts to connect to a limited resource such as a file or a database (which can fail if the
file doesn’t exist, the database connection times out, or the code has insufficient security
credentials).

One infamous type of error is the null reference exception, which usually occurs when a
program attempts to use an uninitialized object. As a .NET programmer, you’ll quickly learn to
recognize and resolve this common but annoying mistake. The following code example shows
the problem in action, with two SqlConnection objects that represent database connections:

// Define a variable named conOne and create the object.
private SqlConnection conOne = new SqlConnection();

// Define a variable named conTwo, but don't create the object.
private SqlConnection conTwo;

public void cmdDoSomething_Click(object sender, EventArgs e)
{

249

C H A P T E R 8

8911CH08.qxd 10/8/07 4:26 PM Page 249

// This works, because the object has been created
// with the new keyword.
conOne.ConnectionString = "...";
...

// The following statement will fail and generate a
// null reference exception.
// You cannot modify a property (or use a method) of an
// object that doesn't exist!
conTwo.ConnectionString = "...";
...

}

When an error occurs in your code, .NET checks to see whether any error handlers appear
in the current scope. If the error occurs inside a method, .NET searches for local error han-
dlers and then checks for any active error handlers in the calling code. If no error handlers are
found, the page processing is aborted and an error page is displayed in the browser. Depend-
ing on whether the request is from the local computer or a remote client, the error page may
show a detailed description (as shown in Figure 8-1) or a generic message. You’ll explore this
topic a little later in the “Error Pages” section of this chapter.

Figure 8-1. A sample error page

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING250

8911CH08.qxd 10/8/07 4:26 PM Page 250

Even if an error is the result of invalid input or the failure of a third-party component, an
error page can shatter the professional appearance of any application. The application users
end up with a feeling that the application is unstable, insecure, or of poor quality—and they’re
at least partially correct.

If an ASP.NET application is carefully designed and constructed, an error page will almost
never appear. Errors may still occur because of unforeseen circumstances, but they will be
caught in the code and identified. If the error is a critical one that the application cannot solve
on its own, it will report a more useful (and user-friendly) page of information that might
include a link to a support e-mail or a phone number where the customer can receive addi-
tional assistance. You’ll look at those techniques in this chapter.

Exception Handling
Most .NET languages support structured exception handling. Essentially, when an error occurs
in your application, the .NET Framework creates an exception object that represents the prob-
lem. You can catch this object using an exception handler. If you fail to use an exception
handler, your code will be aborted, and the user will see an error page.

Structured exception handling provides several key features:

Exceptions are object-based: Each exception provides a significant amount of diagnostic
information wrapped into a neat object, instead of a simple message and an error code.
These exception objects also support an InnerException property that allows you to wrap
a generic error over the more specific error that caused it. You can even create and throw
your own exception objects.

Exceptions are caught based on their type: This allows you to streamline error-handling
code without needing to sift through obscure error codes.

Exception handlers use a modern block structure: This makes it easy to activate and deacti-
vate different error handlers for different sections of code and handle their errors
individually.

Exception handlers are multilayered: You can easily layer exception handlers on top of
other exception handlers, some of which may check only for a specialized set of errors.

Exceptions are a generic part of the .NET Framework: This means they’re completely cross-
language compatible. Thus, a .NET component written in C# can throw an exception that
you can catch in a web page written in VB.

■Note Exception handlers are a key programming technique. They allow you to react to problems that
occur at runtime due to factors outside your control. However, you obviously shouldn’t use exception han-
dlers to hide the bugs that might crop up in your code! Instead, you need to track down these programmer
mistakes at development time and correct them. Visual Studio’s debugging features (which were described
in Chapter 4) can help you in this task.

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 251

8911CH08.qxd 10/8/07 4:26 PM Page 251

The Exception Class
Every exception class derives from the base class System.Exception. The .NET Framework
is full of predefined exception classes, such as NullReferenceException, IOException,
SqlException, and so on. The Exception class includes the essential functionality for identify-
ing any type of error. Table 8-1 lists its most important members.

Table 8-1. Exception Properties

Member Description

HelpLink A link to a help document, which can be a relative or fully qualified URL
(uniform resource locator) or URN (uniform resource name), such as
file:///C:/ACME/MyApp/help.html#Err42. The .NET Framework doesn’t
use this property, but you can set it in your custom exceptions if you want
to use it in your web page code.

InnerException A nested exception. For example, a method might catch a simple file IO
(input/output) error and create a higher-level “operation failed” error.
The details about the original error could be retained in the
InnerException property of the higher-level error.

Message A text description with a significant amount of information describing the
problem.

Source The name of the application or object where the exception was raised.

StackTrace A string that contains a list of all the current method calls on the stack, in
order of most to least recent. This is useful for determining where the
problem occurred.

TargetSite A reflection object (an instance of the System.Reflection.MethodBase
class) that provides some information about the method where the error
occurred. This information includes generic method details such as the
method name and the data types for its parameter and return values. It
doesn’t contain any information about the actual parameter values that
were used when the problem occurred.

GetBaseException() A method useful for nested exceptions that may have more than one layer.
It retrieves the original (deepest nested) exception by moving to the base
of the InnerException chain.

When you catch an exception in an ASP.NET page, it won’t be an instance of the generic
System.Exception class. Instead, it will be an object that represents a specific type of error.
This object will be based on one of the many classes that inherit from System.Exception.
These include diverse classes such as DivideByZeroException, ArithmeticException,
IOException, SecurityException, and many more. Some of these classes provide additional
details about the error in additional properties.

Visual Studio provides a useful tool to browse through the exceptions in the .NET class
library. Simply select Debug ➤ Exceptions from the menu (you’ll need to have a project
open in order for this to work). The Exceptions dialog box will appear. Expand the Common
Language Runtime Exceptions group, which shows a hierarchical tree of .NET exceptions
arranged by namespace (see Figure 8-2).

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING252

8911CH08.qxd 10/8/07 4:26 PM Page 252

file:///C:/ACME/MyApp/help.html#Err42

Figure 8-2. Visual Studio’s exception viewer

The Exceptions dialog box allows you to specify what exceptions should be handled by
your code when debugging and what exceptions will cause Visual Studio to enter break mode
immediately. That means you don’t need to disable your error-handling code to troubleshoot
a problem. For example, you could choose to allow your program to handle a common
FileNotFoundException (which could be caused by an invalid user selection) but instruct
Visual Studio to pause execution if an unexpected DivideByZero exception occurs.

To set this up, add a check mark in the Thrown column next to the entry for the
System.DivideByZero exception. This way, you’ll be alerted as soon as the problem occurs. If
you don’t add a check mark to the Thrown column, your code will continue, run any exception
handlers it has defined, and try to deal with the problem. You’ll be notified only if an error
occurs and no suitable exception handler is available.

The Exception Chain
Figure 8-3 shows how the InnerException property works. In the specific scenario shown
here, a FileNotFoundException led to a NullReferenceException, which led to a custom
UpdateFailedException. Using an exception-handling block, the application can catch the
UpdateFailedException. It can then get more information about the source of the problem by
following the InnerException property to the NullReferenceException, which in turn refer-
ences the original FileNotFoundException.

The InnerException property is an extremely useful tool for component-based program-
ming. Generally, it’s not much help if a component reports a low-level problem such as a null
reference or a divide-by-zero error. Instead, it needs to communicate a more detailed message
about which operation failed and what input may have been invalid. The calling code can
then often correct the problem and retry the operation.

On the other hand, sometimes you’re debugging a bug that lurks deep inside the compo-
nent itself. In this case, you need to know precisely what caused the error—you don’t want to
replace it with a higher-level exception that could obscure the root problem. Using an excep-
tion chain handles both these scenarios: you receive as many linked exception objects as
needed, which can specify information from the least to the most specific error condition.

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 253

8911CH08.qxd 10/8/07 4:26 PM Page 253

Figure 8-3. Exceptions can be chained together.

Handling Exceptions
The first line of defense in an application is to check for potential error conditions before per-
forming an operation. For example, a program can explicitly check whether the divisor is 0
before performing a calculation, or if a file exists before attempting to open it:

if (divisor != 0)
{

// It's safe to divide some number by divisor.
}

if (System.IO.File.Exists("myfile.txt"))
{

// You can now open the myfile.txt file.
// However, you should still use exception handling because a variety of
// problems can intervene (insufficient rights, hardware failure, etc.).

}

Even if you perform this basic level of “quality assurance,” your application is still vulner-
able. For example, you have no way to protect against all the possible file access problems that
occur, including hardware failures or network problems that could arise spontaneously in the
middle of an operation. Similarly, you have no way to validate a user ID and password for a
database before attempting to open a connection—and even if you did, that technique would
be subject to its own set of potential errors. In some cases, it may not be practical to perform
the full range of defensive checks, because they may impose a noticeable performance drag
on your application. For all these reasons, you need a way to detect and deal with errors when
they occur.

The solution is structured exception handling. To use structured exception handling, you
wrap potentially problematic code in the special block structure shown here:

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING254

8911CH08.qxd 10/8/07 4:26 PM Page 254

try
{

// Risky code goes here (i.e., opening a file, connecting to a database).
}
catch
{

// An error has been detected. You can deal with it here.
}
finally
{

// Time to clean up, regardless of whether or not there was an error.
}

The try statement enables error handling. Any exceptions that occur in the following lines
can be “caught” automatically. The code in the catch block will be executed when an error is
detected. And either way, whether a bug occurs or not, the finally section of the code will be
executed last. This allows you to perform some basic cleanup, such as closing a database con-
nection. The finally code is important because it will execute even if an error has occurred that
will prevent the program from continuing. In other words, if an unrecoverable exception halts
your application, you’ll still have the chance to release resources.

The act of catching an exception neutralizes it. If all you want to do is render a specific
error harmless, you don’t even need to add any code in the catch block of your error handler.
Usually, however, this portion of the code will be used to report the error to the user or log it
for future reference. In a separate component (such as a business object), this code might
handle the exception, perform some cleanup, and then rethrow it to the calling code, which
will be in the best position to remedy it or alert the user. Or it might actually create a new
exception object with additional information and throw that.

Catching Specific Exceptions
Structured exception handling is particularly flexible because it allows you to catch specific
types of exceptions. To do so, you add multiple catch statements, each one identifying the type
of exception (and providing a new variable to catch it in), as follows:

try
{

// Risky database code goes here.
}
catch (System.Data.SqlClient.SqlException err)
{

// Catches common problems like connection errors.
}
catch (System.NullReferenceException err)
{

// Catches problems resulting from an uninitialized object.
}

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 255

8911CH08.qxd 10/8/07 4:26 PM Page 255

An exception will be caught as long as it’s an instance of the indicated class or if it’s
derived from that class. In other words, if you use this statement:

catch (Exception err)

you will catch any exception, because every exception object is derived from the
System.Exception base class.

Exception blocks work a little like conditional code. As soon as a matching exception han-
dler is found, the appropriate catch code is invoked. Therefore, you must organize your catch
statements from most specific to least specific:

try
{

// Risky database code goes here.
}
catch (System.Data.SqlClient.SqlException err)
{

// Catches common problems like connection errors.
}
catch (System.NullReferenceException err)
{

// Catches problems resulting from an uninitialized object.
}
catch (System.Exception err)
{

// Catches any other errors.
}

Ending with a catch statement for the base Exception class is often a good idea to make
sure no errors slip through. However, in component-based programming, you should make
sure you intercept only those exceptions you can deal with or recover from. Otherwise, it’s bet-
ter to let the calling code catch the original error.

DETERMINING THE EXCEPTIONS YOU NEED TO CATCH

When you’re using classes from the .NET Framework, you may not know what exceptions you need to catch.
Fortunately, Visual Studio Help can fill you in.

The trick is to look up the method or constructor you’re using in the class library reference. One fast
way to jump to a specific method is to use the Help index—just type in the class name, followed by a period,
followed by the method name, as in File.Open (which is a method you’ll use to open files in Chapter 17). If
there is more than one overloaded version of the method, you’ll see a page that lists them all, and you’ll need
to click the one that has the parameters you want.

Once you find the right method, scroll through the method documentation until you find a section
named Exceptions. This section lists all the possible exceptions that this method can throw. For example, if
you look up the File.Open() method, you’ll find that possible exceptions include DirectoryNotFoundException,
FileNotFoundException, UnauthorizedAccessException, and so on. You probably won’t write a catch block for
each possible exception. However, you should still know about all of them so you can decide which excep-
tions you want to handle separately.

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING256

8911CH08.qxd 10/8/07 4:26 PM Page 256

Nested Exception Handlers
When an exception is thrown, .NET tries to find a matching catch statement in the current
method. If the code isn’t in a local structured exception block, or if none of the catch state-
ments match the exception, .NET will move up the call stack one level at a time, searching for
active exception handlers.

Consider the example shown here, where the Page.Load event handler calls a private
DivideNumbers() method:

protected void Page_Load(Object sender, EventArgs e)
{

try
{

DivideNumbers(5, 0);
}
catch (DivideByZeroException err)
{

// Report error here.
}

}

private decimal DivideNumbers(decimal number, decimal divisor)
{

return number/divisor;
}

In this example, the DivideNumbers() method lacks any sort of exception handler. How-
ever, the DivideNumbers() method call is made inside a try block, which means the problem
will be caught further upstream in the calling code. This is a good approach because the
DivideNumbers() routine could be used in a variety of circumstances (or if it’s part of a com-
ponent, in a variety of different types of applications). It really has no access to any kind of
user interface and can’t directly report an error. Only the calling code is in a position to deter-
mine whether the problem is a serious one or a minor one, and only the calling code can
prompt the user for more information or report error details in the web page.

■Note In this example, great care is taken to use the decimal data type rather than the more common
double data type. That’s because contrary to what you might expect, it is acceptable to divide a double by 0.
The result is the special value Double.PositiveInfinity (or Double.NegativeInfinity if you divide a negative
number by 0).

You can also overlap exception handlers in such a way that different exception handlers
filter out different types of problems. Here’s one such example:

protected void Page_Load(Object sender, EventArgs e)
{

try

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 257

8911CH08.qxd 10/8/07 4:26 PM Page 257

{
decimal average = GetAverageCost(DateTime.Now);

}
catch (DivideByZeroException err)
{

// Report error here.
}

}

private decimal GetAverageCost(DateTime saleDate)
{

try
{

// Use Database access code here to retrieve all the sale records
// for this date, and calculate the average.

}
catch (SqlException err)
{

// Handle a database related problem.
}
finally
{

// Close the database connection.
}

}

Dissecting the Code . . .
You should be aware of the following points:

• If an SqlException occurs during the database operation, it will be caught in the
GetAverageCost() method.

• If a DivideByZeroException occurs (for example, the method receives no records but
still attempts to calculate an average), the exception will be caught in the calling
Page.Load event handler.

• If another problem occurs (such as a null reference exception), no active exception
handler exists to catch it. In this case, .NET will search through the entire call stack
without finding a matching catch statement in an active exception handler and
will generate a runtime error, end the program, and return a page with exception
information.

Exception Handling in Action
You can use a simple program to test exceptions and see what sort of information is retrieved.
This program allows a user to enter two values and attempts to divide them. It then reports all
the related exception information in the page (see Figure 8-4).

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING258

8911CH08.qxd 10/8/07 4:26 PM Page 258

Figure 8-4. Catching and displaying exception information

Obviously, you can easily prevent this exception from occurring by using extra code-
safety checks, or elegantly resolve it using the validation controls. However, this code provides
a good example of how you can deal with the properties of an exception object. It also gives
you a good idea about what sort of information will be returned.

Here’s the page class code for this example:

public partial class ErrorHandlingTest : System.Web.UI.Page
{

protected void cmdCompute_Click(Object sender, EventArgs e)
{

try
{

decimal a, b, result;
a = Decimal.Parse(txtA.Text);
b = Decimal.Parse(txtB.Text);
result = a / b;
lblResult.Text = result.ToString();
lblResult.ForeColor = System.Drawing.Color.Black;

}
catch (Exception err)
{

lblResult.Text = "Message: " + err.Message;
lblResult.Text += "

";
lblResult.Text += "Source: " + err.Source;
lblResult.Text += "

";

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 259

8911CH08.qxd 10/8/07 4:26 PM Page 259

lblResult.Text += "Stack Trace: " + err.StackTrace;
lblResult.ForeColor = System.Drawing.Color.Red;

}
}

}

Note that as soon as the error occurs, execution is transferred to an exception handler.
The code in the try block isn’t completed. It’s for that reason that the result for the label is set
in the try block. These lines will be executed only if the division code runs error-free.

You’ll see many more examples of exception handling throughout this book. The data
access chapters in Part 4 of this book show the best practices for exception handling when
accessing a database.

Mastering Exceptions
Keep in mind these points when working with structured exception handling:

Break down your code into multiple try/catch blocks: If you put all your code into one
exception handler, you’ll have trouble determining where the problem occurred. You have
no way to “resume” the code in a try block. This means that if an error occurs at the begin-
ning of a lengthy try block, you’ll skip a large amount of code. The rule of thumb is to use
one exception handler for one related task (such as opening a file and retrieving informa-
tion).

Report all errors: During debugging, portions of your application’s error-handling code
may mask easily correctable mistakes in your application. To prevent this from happen-
ing, make sure you report all errors, and consider leaving out some error-handling logic
in early builds.

Don’t use exception handlers for every statement: Simple code statements (assigning a con-
stant value to a variable, interacting with a control, and so on) may cause errors during
development testing but will not cause any future problems once perfected. Error han-
dling should be used when you’re accessing an outside resource or dealing with supplied
data that you have no control over (and thus may be invalid).

Throwing Your Own Exceptions
You can also define your own exception objects to represent custom error conditions. All you
need to do is create an instance of the appropriate exception class and then use the throw
statement.

The next example introduces a modified DivideNumbers() method. It explicitly checks
whether the specified divisor is 0 and then manually creates and throws an instance of the
DivideByZeroException class to indicate the problem, rather than attempt the operation.
Depending on the code, this pattern can save time by eliminating some unnecessary steps,
or it can prevent a task from being initiated if it can’t be completed successfully.

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING260

8911CH08.qxd 10/8/07 4:26 PM Page 260

protected void Page_Load(Object sender, EventArgs e)
{

try
{

DivideNumbers(5, 0);
}
catch (DivideByZeroException err)
{

// Report error here.
}

}

private decimal DivideNumbers(decimal number, decimal divisor)
{

if (divisor == 0)
{

DivideByZeroException err = new DivideByZeroException();
throw err;

}
else
{

return number/divisor;
}

}

Alternatively, you can create a .NET exception object and specify a custom error message
by using a different constructor:

private decimal DivideNumbers(decimal number, decimal divisor)
{

if (divisor == 0)
{

DivideByZeroException err = new DivideByZeroException(
"You supplied 0 for the divisor parameter. You must be stopped.");

throw err;
}
else
{

return number/divisor;
}

}

In this case, any ordinary exception handler will still catch the DivideByZeroException.
The only difference is that the error object has a modified Message property that contains the
custom string. Figure 8-5 shows the resulting exception.

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 261

8911CH08.qxd 10/8/07 4:26 PM Page 261

Figure 8-5. Standard exception, custom message

Throwing an exception is most useful in component-based programming. In component-
based programming, your ASP.NET page is creating objects and calling methods from a class
defined in a separately compiled assembly. In this case, the class in the component needs to
be able to notify the calling code (the web application) of any errors. The component should
handle recoverable errors quietly and not pass them up to the calling code. On the other
hand, if an unrecoverable error occurs, it should always be indicated with an exception and
never through another mechanism (such as a return code). For more information about
component-based programming, refer to Chapter 23.

If you can find an exception in the class library that accurately reflects the problem that
has occurred, you should throw it. If you need to return additional or specialized information,
you can create your own custom exception class.

Custom exception classes should always inherit from System.ApplicationException,
which itself derives from the base Exception class. This allows .NET to distinguish between
two broad classes of exceptions—those you create and those that are native to the .NET
Framework.

When you create an exception class, you can add properties to record additional informa-
tion. For example, here is a special class that records information about the failed attempt to
divide by zero:

public class CustomDivideByZeroException : ApplicationException
{

// Add a variable to specify the "other" number.
// This might help diagnose the problem.
public decimal DividingNumber;

}

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING262

8911CH08.qxd 10/8/07 4:26 PM Page 262

You can throw this custom exception like this:

private decimal DivideNumbers(decimal number, decimal divisor)
{

if (divisor == 0)
{

CustomDivideByZeroException err = new CustomDivideByZeroException();
err.DividingNumber = number;
throw err;

}
else
{

return number/divisor;
}

}

To perfect the custom exception, you need to supply it with the three standard construc-
tors. This allows your exception class to be created in the standard ways that every exception
supports:

• On its own, with no arguments

• With a custom message

• With a custom message and an exception object to use as the inner exception

These constructors don’t actually need to contain any code. All these constructors
need to do is forward the parameters to the base class (the constructors in the inherited
Application-Exception class) using the base keyword, as shown here:

public class CustomDivideByZeroException : ApplicationException
{

// Add a variable to specify the "other" number.
private decimal dividingNumber;
public decimal DividingNumber
{

get { return dividingNumber; }
set { dividingNumber = value; }

}

public CustomDivideByZeroException() : base()
{}

public CustomDivideByZeroException(string message) : base(message)
{}

public CustomDivideByZeroException(string message, Exception inner) :
base(message, inner)

{}
}

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 263

8911CH08.qxd 10/8/07 4:26 PM Page 263

The third constructor is particularly useful for component programming. It allows you to
set the InnerException property with the exception object that caused the original problem.
The next example shows how you could use this constructor with a component class called
ArithmeticUtility:

public class ArithmeticUtilityException : ApplicationException
{

public ArithmeticUtilityException() : base()
{}

public ArithmeticUtilityException(string message) : base(message)
{}

public ArithmeticUtilityException(string message, Exception inner) :
base(message, inner)

{}
}

public class ArithmeticUtility
{

private decimal Divide(decimal number, decimal divisor)
{

try
{

return number/divisor;
}
catch (Exception err)
{

// Create an instance of the specialized exception class,
// and place the original error in the InnerException property.
ArithmeticUtilityException errNew =
new ArithmeticUtilityException("Divide by zero", err);

// Now throw the new exception.
throw errNew;

}
}

}

Remember, custom exception classes are really just a standardized way for one class to
communicate an error to a different portion of code. If you aren’t using components or your
own utility classes, you probably don’t need to create custom exception classes.

Logging Exceptions
In many cases, it’s best not only to detect and catch exceptions but to log them as well. For
example, some problems may occur only when your web server is dealing with a particularly
large load. Other problems might recur intermittently, with no obvious causes. To diagnose

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING264

8911CH08.qxd 10/8/07 4:26 PM Page 264

these errors and build a larger picture of site problems, you need to log exceptions so they can
be reviewed later.

The .NET Framework provides a wide range of logging tools. When certain errors occur,
you can send an e-mail, add a database record, or create and write to a file. We describe many
of these techniques in other parts of this book. However, you should keep your logging code as
simple as possible. For example, you’ll probably run into trouble if you try to log a database
exception using another table in the database.

One of the most fail-safe logging tools is the Windows event logging system, which is built
into the Windows operating system and available to any application. Using the Windows event
logs, your website can write text messages that record errors or unusual events. The Windows
event logs store your messages as well as various other details, such as the message type
(information, error, and so on) and the time the message was left.

Viewing the Windows Event Logs
To view the Windows event logs, you use the Event Viewer tool that’s included with Windows.
To launch it, begin by selecting Start ➤ Settings ➤ Control Panel (or just Start ➤ Control Panel
in Windows Vista). Open the Administrative Tools group, and then choose Event Viewer.

If you’re running Windows XP or Windows Server 2003, you’ll see just three logs—
Application, Security, and System. If you’re running Windows Vista or Windows Server 2008,
you’ll find these three plus a Setup log, all of which appear under the Windows Logs section
(Figure 8-6). Table 8-2 describes these standard Windows logs.

Figure 8-6. The Event Viewer

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 265

8911CH08.qxd 10/8/07 4:26 PM Page 265

Table 8-2. Windows Event Logs

Log Name Description

Application Used to track errors or notifications from any application. Generally, you’ll use this
log when you’re performing event logging, or you’ll create your own custom log.

Security Used to track security-related problems but generally used exclusively by the
operating system.

System Used to track operating system events.

Setup Used to track issues that occur when installing Windows updates or other soft-
ware. This log only appears in Windows Vista.

Using the Event Viewer, you can perform a variety of management tasks with the logs. For
example, if you right-click one of the logs in the Event Viewer list you’ll see options that allow
you to clear the events in the log, save the log entries to another file, and import an external
log file.

Each event record in an event log identifies the source (generally, the application or serv-
ice that created the record), the type of notification (error, information, warning), and the time
the log entry was inserted. In Windows Vista, you simply need to select a log entry and its
information will appear in a display area underneath the list of entries (see Figure 8-6). In
Windows XP or Windows Server 2003, you need to double-click a log entry to see the full
information.

You can also review event logs in Visual Studio. First, display the Server Explorer window
(if it’s not already visible) by choosing View ➤ Server Explorer. (The Server Explorer window
usually appears at the left side of the Visual Studio window, where it shares space with the
Toolbox.) Using the Server Explorer, expand the Servers ➤ [ComputerName] ➤ Event Logs
group to see a list of event logs on your computer. This list is a bit longer than what you saw in
the Event Viewer, because it includes both the Windows event logs you saw and custom event
logs for specific applications (which you’ll learn to create later in this chapter).

If you expand an event log in the Server Explorer window, you’ll find all the event log
entries, grouped according to the source that made the log entry. Figure 8-7 shows some of the
event logs left in the Application log on the current computer by the event source .NET Run-
time Optimization Source. Once you select a log entry, you can view its specific details (such
as the event log message and the time it was left) in the Properties window.

One of the potential problems with event logs is that old entries are automatically dis-
carded when the event log reaches a maximum size. In Windows XP, the default log size is a
stingy 0.5MB, although log entries are kept for at least 7 days even if they exceed this size limit
(unless you specify otherwise). In Windows Vista, logs get a much more reasonable upper limit
of 20MB (except for the new Setup log, which gets just 1MB).

No matter which operating system you’re using, you’ll find that logs grow quickly. That
means that unless you’re using a custom event log that has lots of space, your log entries
might not last for a long period of time. Ideally, you should use event logs to record informa-
tion that is reviewed and acted on over a relatively short period of time. For example, event
logs are a good choice if you plan to log application errors and review them to diagnose
strange behavior immediately after it happens. Event logs don’t make as much sense if you
want to get a detailed picture of application activity six months later, because Windows (or
someone else) may delete old log entries. In this scenario, a custom database makes more
sense.

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING266

8911CH08.qxd 10/8/07 4:26 PM Page 266

Figure 8-7. Viewing event log entries in Visual Studio

If you want to add a little more breathing room to an existing log, you can change its
maximum size. This is a particularly worthwhile step if you plan to use the application log in
Windows XP. To do so, right-click the log and choose Properties. You’ll see the Application
Properties window shown in Figure 8-8, where you can change the maximum size.

Figure 8-8. Log properties

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 267

8911CH08.qxd 10/8/07 4:26 PM Page 267

■Tip You can increase the log size, but you really shouldn’t disable automatic log deletion altogether,
because you could end up consuming a huge amount of space over time if information isn’t being regularly
removed.

Writing to the Event Log
You can interact with event logs in an ASP.NET page by using the classes in the
System.Diagnostics namespace. First, import the namespace at the beginning of your
code-behind file:

using System.Diagnostics;

The following example rewrites the simple ErrorTest page to use event logging:

public partial class ErrorTestLog : Page
{

protected void cmdCompute_Click(Object sender, EventArgs e)
{

try
{

decimal a, b, result;
a = Decimal.Parse(txtA.Text);
b = Decimal.Parse(txtB.Text);
result = a / b;
lblResult.Text = result.ToString();
lblResult.ForeColor = System.Drawing.Color.Black;

}
catch (Exception err)
{

lblResult.Text = "Message: " + err.Message + "

";
lblResult.Text += "Source: " + err.Source + "

";
lblResult.Text += "Stack Trace: " + err.StackTrace;
lblResult.ForeColor = System.Drawing.Color.Red;

// Write the information to the event log.
EventLog log = new EventLog();
log.Source = "DivisionPage";
log.WriteEntry(err.Message, EventLogEntryType.Error);

}
}

}

The event log record will now appear in the Event Viewer utility, as shown in Figure 8-9.
Note that logging is intended for the system administrator or developer. It doesn’t replace the
code you use to notify the user and explain that a problem has occurred.

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING268

8911CH08.qxd 10/8/07 4:26 PM Page 268

Figure 8-9. An event record

EVENT LOG SECURITY

This logging code will run without a hitch when you try it in Visual Studio. However, when you deploy your
application to a web server (as described in Chapter 9), you might not be so lucky. The problem is that the
ASP.NET service runs under a Windows account that has fewer privileges than an average user. If you’re
using IIS 5 (the version included with Windows XP), this user is an account named ASPNET. If you’re using a
later version of IIS (such as the version included with Windows Vista or Windows Server 2003), this is the net-
work service account. Either way, the account that’s used to run ASP.NET code ordinarily won’t have the
permissions to create event log entries.

To remedy this problem, you can use a different account (as explained in Chapter 9), or you can grant
the required permissions to the account that ASP.NET is already using (like the ASPNET account). To do the
latter, you need to modify the registry as described in these steps:

1. Run regedit.exe, either by using a command-line prompt or by choosing Run from the Start menu.

2. Browse to the HKEY_Local_Machine\SYSTEM\CurrentControlSet\Services\EventLog section of the
registry.

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 269

8911CH08.qxd 10/8/07 4:26 PM Page 269

3. Select the EventLog folder if you want to give ASP.NET permission to all areas of the event log. Or
select a specific folder that corresponds to the event log ASP.NET needs to access.

4. Right-click the folder and choose Permissions.

5. Add the account that ASP.NET is using to the list (or a group that this account belongs to). If you’re
using IIS 5, this is the ASPNET account. To add it, click the Add button, type in ASPNET, and then click
OK. If you’re using IIS 6 in Windows Server 2003, you need to add permissions to the IIS_WPG group
instead of the ASPNET account. If you’re using IIS 7 in Windows Vista or Windows Server 2008, you
need to add permissions to the IIS_USRS group.

6. Give the account Full Control for this section of the registry by selecting the Allow check box next to
Full Control.

Custom Logs
You can also log errors to a custom log. For example, you could create a log with your com-
pany name and add records to it for all your ASP.NET applications. You might even want to
create an individual log for a particularly large application and use the Source property of
each entry to indicate the page (or web service method) that caused the problem.

Accessing a custom log is easy—you just need to use a different constructor for the
EventLog class to specify the custom log name. You also need to register an event source for the
log. This initial step needs to be performed only once—in fact, you’ll receive an error if you try
to create the same event source. Typically, you’ll use the name of the application as the event
source.

Here’s an example that uses a custom log named ProseTech and registers the event source
DivideByZeroApp:

// Register the event source if needed.
if (!EventLog.SourceExists("ProseTech"))
{

// This registers the event source and creates the custom log,
// if needed.
EventLog.CreateEventSource("DivideByZeroApp", "ProseTech");

}

// Open the log. If the log doesn't exist,
// it will be created automatically.
EventLog log = new EventLog("ProseTech");
log.Source = "DivideByZeroApp";
log.WriteEntry(err.Message, EventLogEntryType.Error);

If you specify the name of a log that doesn’t exist when you use the CreateEventSource()
method, the system will create a new, custom event log for you the first time you write an
entry.

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING270

8911CH08.qxd 10/8/07 4:26 PM Page 270

In order to see a newly created event log in the Event Viewer tool, you’ll need to exit Event
Viewer and restart it. In Windows XP and Windows Server 2003, custom event logs appear
alongside the standard Windows event logs. In Windows Vista, they appear in a separate group
named Applications and Services Logs, as shown in Figure 8-10.

Figure 8-10. A custom log

You can use this sort of code anywhere in your application. Usually, you’ll use logging
code when responding to an exception that might be a symptom of a deeper problem.

A Custom Logging Class
Rather than adding too much logging code in the catch block, a better approach is to create a
separate class that handles the event logging grunt work. You can then use that class from any
web page, without duplicating any code.

To use this approach, begin by creating a new code file in the App_Code subfolder of your
website. You can do this in Visual Studio by choosing Website ➤ Add New Item. In the Add
New Item dialog box, choose Class, pick a suitable file name, and then click Add.

Here’s an example of a class named MyLogger that handles the event logging details:

public class MyLogger
{

public void LogError(string pageInError, Exception err)

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 271

8911CH08.qxd 10/8/07 4:26 PM Page 271

{
RegisterLog();

EventLog log = new EventLog("ProseTech");
log.Source = pageInError;
log.WriteEntry(err.Message, EventLogEntryType.Error);

}

private void RegisterLog()
{

// Register the event source if needed.
if (!EventLog.SourceExists("ProseTech"))
{

EventLog.CreateEventSource("DivideByZeroApp", "ProseTech");
}

}
}

Once you have a class in the App_Code folder, it’s easy to use it anywhere in your website.
Here’s how you might use the MyLogger class in a web page to log an exception:

try
{

// Risky code goes here.
}
catch (Exception err)
{

// Log the error using the logging class.
MyLogger logger = new MyLogger();
logger.LogError(Request.Path, err);

// Now handle the error as appropriate for this page.
lblResult.Text = "Sorry. An error occurred.";

}

If you write log entries frequently, you may not want to check if the log exists every time
you want to write an entry. Instead, you could create the event source once—when the appli-
cation first starts up—using an application event handler in the Global.asax file. This
technique is described in Chapter 5.

■Tip Event logging uses disk space and takes processor time away from web applications. Don’t store
unimportant information, large quantities of data, or information that would be better off in another type of
storage (such as a relational database). Generally, you should use an event log to log unexpected conditions
or errors, not customer actions or performance-tracking information.

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING272

8911CH08.qxd 10/8/07 4:26 PM Page 272

Retrieving Log Information
One of the disadvantages of the event logs is that they’re tied to the web server. This can make
it difficult to review log entries if you don’t have a way to access the server (although you can
read them from another computer on the same network). This problem has several possible
solutions. One interesting technique involves using a special administration page. This
ASP.NET page can use the EventLog class to retrieve and display all the information from
the event log.

Figure 8-11 shows in a simple web page all the entries that were left by the
ErrorTestCustomLog page. The results are shown using a label in a scrollable panel (a Panel
control with the Scrollbars property set to Vertical). A more sophisticated approach would
use similar code but with one of the data controls discussed in Chapter 17.

Figure 8-11. A log viewer page

Here’s the web page code you’ll need:

public partial class EventReviewPage : System.Web.UI.Page
{

protected void cmdGet_Click(Object sender, EventArgs e)
{

lblResult.Text = "";

// Check if the log exists.
if (!EventLog.Exists(txtLog.Text))
{

lblResult.Text = "The event log " + txtLog.Text ;
lblResult.Text += " doesn't exist.";

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 273

8911CH08.qxd 10/8/07 4:26 PM Page 273

}
else
{

EventLog log = new EventLog(txtLog.Text);
foreach (EventLogEntry entry in log.Entries)
{

// Write the event entries to the page.
if (chkAll.Checked ||
entry.Source == txtSource.Text)

{
lblResult.Text += "Entry Type: ";
lblResult.Text += entry.EntryType.ToString();
lblResult.Text += "
Message: ";
lblResult.Text += entry.Message;
lblResult.Text += "
Time Generated: ";
lblResult.Text += entry.TimeGenerated;
lblResult.Text += "

";

}
}

}
}

protected void chkAll_CheckedChanged(Object sender,
EventArgs e)

{
// The chkAll control has AutoPostback = true.
if (chkAll.Checked)
{

txtSource.Text = "";
txtSource.Enabled = false;

}
else
{

txtSource.Enabled = true;
}

}
}

If you choose to display all the entries from the application log, the page will perform
slowly. Two factors are at work here. First, it takes time to retrieve each event log entry; a typi-
cal application log can easily hold several thousand entries. Second, the code used to append
text to the Label control is inefficient. Every time you add a new piece of information to the
Label.Text property, .NET needs to generate a new String object. A better solution is to use the
specialized System.Text.StringBuilder class, which is designed to handle intensive string pro-
cessing with a lower overhead by managing an internal buffer or memory.

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING274

8911CH08.qxd 10/8/07 4:26 PM Page 274

Here’s the more efficient way you could write the string processing code:

// For maximum performance, join all the event
// information into one large string using the
// StringBuilder.
System.Text.StringBuilder sb = new System.Text.StringBuilder();

EventLog log = new EventLog(txtLog.Text);
foreach (EventLogEntry entry in log.Entries)
{

// Write the event entries to the StringBuilder.
if (chkAll.Checked ||
entry.Source == txtSource.Text)

{
sb.Append("Entry Type: ");
sb.Append(entry.EntryType.ToString());
sb.Append("
Message: ");
sb.Append(entry.Message);
sb.Append("
Time Generated: ");
sb.Append(entry.TimeGenerated);
sb.Append("

");

}
// Copy the complete text to the web page.
lblResult.Text = sb.ToString();

}

■Tip You can get around some of the limitations of the event log by using your own custom logging sys-
tem. All the ingredients you need are built into the common class library. For example, you could store error
information in a database using the data access techniques described in Chapter 15.

Error Pages
As you create and test an ASP.NET application, you’ll become familiar with the rich error pages
that are shown to describe unhandled errors. These rich error pages are extremely useful for
diagnosing problems during development, because they contain a wealth of information.
Some of this information includes the source code where the problem occurred (with the
offending line highlighted), the type of error, and a detailed error message describing the
problem. Figure 8-12 shows a sample rich error page.

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 275

8911CH08.qxd 10/8/07 4:26 PM Page 275

Figure 8-12. A rich ASP.NET error page

By default, this error page is shown only for local requests that are sent from the http://
localhost domain. (This domain always refers to the current computer, regardless of its actual
server name or Internet address.) ASP.NET doesn’t show rich error pages for requests from
other computers; they receive the rather unhelpful generic page shown in Figure 8-13. You can
replace these error messages with a friendlier custom error page, as you’ll learn a bit later, in
the “Custom Error Pages” section.

This generic page lacks any specific details about the type of error or the offending code.
Sharing that information with end users would be a security risk (potentially exposing sensi-
tive details about the source code), and it would be completely unhelpful, because clients are
never in a position to modify the source code themselves. Instead, the page includes a generic
message explaining that an error has occurred and describing how to change the configura-
tion settings (by modifying the web.config file) so that remote users also see the rich error
pages. This is the task you’ll tackle in the next section.

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING276

8911CH08.qxd 10/8/07 4:26 PM Page 276

http://localhost
http://localhost

Figure 8-13. A generic client error page

Error Modes
You can change the configuration of your web application so that all users see the rich
ASP.NET error pages with detailed error information. This option is intended as a testing tool.
For example, in the initial rollout of an application beta, you might use field testers. These
field testers would need to report specific information about application errors to aid in the
debugging process. Similarly, you could use remote error pages if you’re working with a team
of developers and testing an ASP.NET application from a server on your local network. In both
of these situations, the web application is uploaded to a remote computer before you begin
testing it.

To change the error mode, you need to add the <customErrors> section to the web.config
file. Here it is, with the default setting:

<configuration>
<system.web>
<customErrors mode="RemoteOnly" />
...

</system.web>
...

</configuration>

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 277

8911CH08.qxd 10/8/07 4:26 PM Page 277

Table 8-3 lists the options for the mode attribute. (Remember, generic error messages are
the less-detailed error pages you saw in Figure 8-13, while rich error pages are the detailed
error listings that include a portion of the source code and the stack trace, as shown in
Figure 8-12.)

Table 8-3. Error Modes

Error Mode Description

RemoteOnly Generic error pages are shown for remote users. Rich error pages are shown for
local requests (requests that are made from the current computer). This is the
default setting.

Off Rich error pages are shown for all users, regardless of the source of the request.
This setting is helpful in many development scenarios but should not be used in
a deployed application. (Not only will the rich error pages confuse users, but
they may reveal sensitive information about your code.)

On Generic error pages are shown for all users, regardless of the source of the
request. This is the most secure option, but it complicates debugging because
you’ll need logging or tracing code to report error information.

It makes good sense to hide the rich error pages from ordinary users. However, the
generic error pages really aren’t that much more useful. The message they show has less infor-
mation and won’t reveal any secrets about your code (Figure 8-13), but it’s still confusing for
mere mortals. ASP.NET allows you to replace the generic error page with a custom error page
of your own devising. The next section shows you how.

Custom Error Pages
In a deployed application, you should use the On or RemoteOnly error mode. Any errors in
your application should be dealt with through error-handling code, which can then present a
helpful and user-oriented message (rather than the developer-oriented code details in
ASP.NET’s rich error messages).

However, you can’t catch every possible error in an ASP.NET application. For example, a
hardware failure could occur spontaneously in the middle of an ordinary code statement that
could not normally cause an error. More commonly, the user might encounter an HTTP error
by requesting a page that doesn’t exist. ASP.NET allows you to handle these problems with cus-
tom error pages.

You can implement custom error pages in two ways. You can create a single generic error
page and configure ASP.NET to use it by modifying the web.config file as shown here:

<configuration>
<system.web>
<customErrors mode="RemoteOnly" defaultRedirect="DefaultError.aspx" />

</system.web>
</configuration>

ASP.NET will now exhibit the following behavior:

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING278

8911CH08.qxd 10/8/07 4:26 PM Page 278

• If ASP.NET encounters an HTTP error while serving the request, it will forward the user
to the DefaultError.aspx web page.

• If ASP.NET encounters an unhandled application error and the mode is set to On (see
Table 8-3), it will forward the user to the DefaultError.aspx. Remote users will never see
the generic ASP.NET error page.

• If ASP.NET encounters an unhandled application error and the mode is set to Off, it will
display the ASP.NET error page instead.

• If ASP.NET encounters an unhandled application error and the mode is set to
RemoteOnly, the behavior depends on where the request is originating from. If it’s a
local request being made from the same computer, you’ll get the ASP.NET error page
with the diagnostic information. Otherwise, you’ll see the DefaultError.aspx page.

■Note What happens if an error occurs in the error page itself? In a custom error page (in this case,
DefaultError.aspx), ASP.NET will not be able to handle an error. It will not try to reforward the user to the
same page. Instead, it will display the normal client error page with the generic message.

You can also create error pages targeted at specific types of HTTP errors (such as the
infamous 404 Not Found error or Access Denied). This technique is commonly used with web-
sites to provide friendly equivalents for common problems. Figure 8-14 shows how one site
handles this issue.

Figure 8-14. A sample custom error page

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 279

8911CH08.qxd 10/8/07 4:26 PM Page 279

To define an error-specific custom page, you add an <error> element to the
<customErrors> element. The <error> element identifies the HTTP error code and the
redirect page.

<configuration>
<system.web>
<customErrors defaultRedirect="DefaultError.aspx">
<error statusCode="404" redirect="404.aspx" />

<customErrors>
</system.web>

</configuration>

In this example, the user will be redirected to the 404.aspx page when requesting an
ASP.NET page that doesn’t exist. This custom error page may not work exactly the way you
expect, because it comes into effect only if ASP.NET is handling the request.

For example, if you request the nonexistent page whateverpage.aspx, you’ll be redirected
to 404.aspx, because the .aspx file extension is registered to the ASP.NET service. However, if
you request the nonexistent page whateverpage.html, ASP.NET will not process the request,
and the default redirect setting specified in IIS will be used.

When an error occurs that isn’t specifically addressed by a custom <error> element, the
default error page will be used.

Page Tracing
ASP.NET’s detailed error pages are extremely helpful when you’re testing and perfecting an
application. However, sometimes you need more information to verify that your application
is performing properly or to track down logic errors, which may produce invalid data but no
obvious exceptions.

You could try to catch these errors by recording diagnostic information in an event log,
but this assumes that someone will actually review the log regularly. More aggressively, you
could display some information directly in the web page. The problem with this strategy is
that you need to remove (or at least comment out) all this extra code before you deploy your
web application. Otherwise, your website users could see strange debugging messages when
they least expect it.

Fortunately, there’s an easier way to solve the problem without resorting to a homegrown
solution. ASP.NET provides a feature called tracing that gives you a far more convenient and
flexible way to report diagnostic information.

Enabling Tracing
To use tracing, you need to explicitly enable it. There are several ways to switch on tracing.
One of the easiest ways is by adding an attribute to the Page directive in the .aspx file:

<%@ Page Trace="true" ... %>

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING280

8911CH08.qxd 10/8/07 4:26 PM Page 280

You can also enable tracing using the built-in Trace object (which is an instance of the
System.Web.TraceContext class). Here’s an example of how you might turn tracing on in the
Page.Load event handler:

protected void Page_Load(Object sender, EventArgs e)
{

Trace.IsEnabled = true;
}

This technique is useful because it allows you to enable or disable tracing for a page
under specific circumstances that you test for in your code.

Note that by default, once you enable tracing it will only apply to local requests. That pre-
vents actual end users from seeing the tracing information. If you need to trace a web page
from an offsite location, you should use a technique like the one shown previously (for query
string activation). You’ll also need to change some web.config settings to enable remote trac-
ing. Information about modifying these settings is found at the end of this chapter, in the
“Application-Level Tracing” section.

WHAT ABOUT VISUAL STUDIO?

Visual Studio provides a full complement of debugging tools that allow you to set breakpoints, step through
code, and view the contents of variables while your program executes. Though you can use Visual Studio in
conjunction with page tracing, you probably won’t need to do so. Instead, page tracing will become more
useful for debugging problems after you have deployed the application to a web server. Chapter 4 discussed
Visual Studio debugging.

Tracing Information
ASP.NET tracing automatically provides a lengthy set of standard, formatted information.
Figure 8-15 shows what this information looks like. To build this example, you can start with
any basic ASP.NET page. Shown here is a rudimentary ASP.NET page with just a label and a
button.

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 281

8911CH08.qxd 10/8/07 4:26 PM Page 281

Figure 8-15. A simple ASP.NET page

On its own, this page does very little, displaying a single line of text. However, if you click
the button, tracing is enabled by setting the Trace.IsEnabled property to true (as shown in the
previous code snippet). When the page is rendered, it will include a significant amount of
diagnostic information, as shown in Figure 8-16.

Tracing information is provided in several different categories, which are described in the
following sections. Depending on your page, you may not see all the tracing information. For
example, if the page request doesn’t supply any query string parameters, you won’t see the
QueryString collection. Similarly, if there’s no data being held in application or session state,
you won’t see those sections either.

■Tip If you’re using style sheets, your rules may affect the formatting and layout of the trace information,
potentially making it difficult to read. If this becomes a problem, you can use application-level tracing, as
described later in this chapter (see the “Application-Level Tracing” section).

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING282

8911CH08.qxd 10/8/07 4:26 PM Page 282

Figure 8-16. Tracing the simple ASP.NET page

Request Details
This section includes some basic information such as the current session ID, the time the web
request was made, and the type of web request and encoding (see Figure 8-17). Most of these
details are fairly uninteresting, and you won’t spend much time looking at them. The excep-
tion is the session ID—it allows you to determine when a new session is created. (Sessions are
used to store information for a specific user in between page requests. You learned about
them in Chapter 7.)

Figure 8-17. Request details

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 283

8911CH08.qxd 10/8/07 4:26 PM Page 283

Trace Information
Trace information shows the different stages of processing that the page went through before
being sent to the client (see Figure 8-18). Each section has additional information about how
long it took to complete, as a measure from the start of the first stage (From First) and as a
measure from the start of the previous stage (From Last). If you add your own trace messages
(a technique described shortly), they will also appear in this section.

Figure 8-18. Trace information

Control Tree
The control tree shows you all the controls on the page, indented to show their hierarchy
(which controls are contained inside other controls), as shown in Figure 8-19. In this simple
page example, the control tree includes buttons named cmdWrite, cmdWrite_Category,
cmdError, and cmdSession, all of which are explicitly defined in the web page markup.
ASP.NET also adds literal controls automatically to represent spacing and any other static ele-
ments that aren’t server controls (such as text or ordinary HTML tags). These controls appear
in between the buttons in this example, and have automatically generated names like ctl00,
ctl01, ctl02, and so on.

One useful feature of this section is the Viewstate column, which tells you how many
bytes of space are required to persist the current information in the control. This can help you
gauge whether enabling control state is detracting from performance, particularly when work-
ing with data-bound controls such as the GridView.

Figure 8-19. Control tree

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING284

8911CH08.qxd 10/8/07 4:26 PM Page 284

Session State and Application State
These sections display every item that is in the current session or application state. Each item
in the appropriate state collection is listed with its name, type, and value. If you’re storing sim-
ple pieces of string information, the value is straightforward—it’s the actual text in the string.
If you’re storing an object, .NET calls the object’s ToString() method to get an appropriate
string representation. For complex objects that don’t override ToString() to provide anything
useful, the result may just be the class name.

Figure 8-20 shows the session state section after you’ve added two items to session state
(an ordinary string and a DataSet object). Chapter 7 has more about using session state.

Figure 8-20. Session state

Request Cookies and Response Cookies
These sections display the cookies that were sent by the web browser with the request for this
page, and the cookies that were returned by the web server with the response. ASP.NET shows
the content and the size of each cookie in bytes.

Figure 8-21 shows an example with a page that uses a cookie named Preferences that
stores a single piece of information: a user name. (You learned to write the code that creates
this cookie in Chapter 7.) In addition, the web browser receives a cookie named ASP.NET_
SessionId, which ASP.NET creates automatically to store the current session ID.

Figure 8-21. Cookies collections

There’s one quirk with the list of cookies in the trace information. If you haven’t created
at least one custom cookie of your own, you won’t see any cookies, including the ones that
ASP.NET creates automatically (like the session cookie). ASP.NET assumes that if you aren’t
using cookies yourself, you aren’t interested in seeing these details.

Headers Collection
This section lists all the HTTP headers (see Figure 8-22). Technically, the headers are bits of
information that are sent to the server as part of a request. They include information about
the browser making the request, the types of content it supports, and the language it uses. In
addition, the Response Headers Collection lists the headers that are sent to the client as part
of a response (just before the actual HTML that’s shown in the browser). The set of response

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 285

8911CH08.qxd 10/8/07 4:26 PM Page 285

headers is smaller, and it includes details like the version of ASP.NET and the type of content
that’s being sent (text/html for web pages).

Generally, you don’t need to use the header information directly. Instead, ASP.NET takes
this information into account automatically.

Figure 8-22. Headers collection

Form Collection
This section lists the posted-back form information. The form information includes all the
values that are submitted by web controls, like the text in a text box and the current selection
in a list box. The ASP.NET web controls pull the information they need out of the form collec-
tion automatically, so you rarely need to worry about it.

Figure 8-23 shows the form values for the simple page shown in Figure 8-15. It includes
the hidden view state field, another hidden field that’s used for event validation (a low-level
ASP.NET feature that helps prevent people from tampering with your web pages before post-
ing them back), and a field for the cmdTrace button, which is the only web control on the
page.

Figure 8-23. Form collection

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING286

8911CH08.qxd 10/8/07 4:26 PM Page 286

Query String Collection
This section lists the variables and values submitted in the query string. You can see this infor-
mation directly in the web page URL (in the address box in the browser). However, if the query
string consists of several different values and contains a lot of information, it may be easier to
review the individual items in the trace display.

Figure 8-24 shows the information for a page that was requested with two query string
values, one named search and the other named style. You can try this out with the
SimpleTrace.aspx page by typing in ?search=cat&style=full at the end of the URL in the
address box of your web browser.

Figure 8-24. Query string collection

Server Variables
This section lists all the server variables and their contents. You don’t generally need to exam-
ine this information. Note also that if you want to examine a server variable programmatically,
you can do so by name with the built-in Request.ServerVariables collection or by using one of
the more useful higher-level properties from the Request object.

Writing Trace Information
The default trace log provides a set of important information that can allow you to monitor
some important aspects of your application, such as the current state contents and the time
taken to execute portions of code. In addition, you’ll often want to generate your own tracing
messages. For example, you might want to output the value of a variable at various points in
execution so you can compare it with an expected value. Similarly, you might want to output
messages when the code reaches certain points in execution so you can verify that various
procedures are being used (and are used in the order you expect). Once again, these are tasks
you can also achieve using Visual Studio debugging, but tracing is an invaluable technique
when you’re working with a web application that’s been deployed to a test web server.

To write a custom trace message, you use the Write() method or the Warn() method of the
built-in Trace object. These methods are equivalent. The only difference is that Warn() dis-
plays the message in red lettering, which makes it easier to distinguish from other messages in
the list. Here’s a code snippet that writes a trace message when the user clicks a button:

protected void cmdWrite_Click(Object sender, EventArgs e)
{

Trace.Write("About to place an item in session state.");
Session["Test"] = "Contents";
Trace.Write("Placed item in session state.");

}

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 287

8911CH08.qxd 10/8/07 4:26 PM Page 287

These messages appear in the trace information section of the page, along with the
default messages that ASP.NET generates automatically (see Figure 8-25).

Figure 8-25. Custom trace messages

You can also use an overloaded method of Write() or Warn() that allows you to specify the
category. A common use of this field is to indicate the current method, as shown in Figure 8-26.

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING288

8911CH08.qxd 10/8/07 4:26 PM Page 288

Figure 8-26. A categorized trace message

protected void cmdWriteCategory_Click(Object sender, EventArgs e)
{

Trace.Write("cmdWriteCategory_Click",
"About to place an item in session state.");

Session["Test"] = "Contents";
Trace.Write("cmdWriteCategory_Click",
"Placed item in session state.");

}

Alternatively, you can supply category and message information with an exception object
that will automatically be described in the trace log, as shown in Figure 8-27.

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 289

8911CH08.qxd 10/8/07 4:26 PM Page 289

Figure 8-27. An exception trace message

protected void cmdError_Click(Object sender, EventArgs e)
{

try
{

DivideNumbers(5, 0);
}
catch (Exception err)
{

Trace.Warn("cmdError_Click", "Caught Error", err);
}

}

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING290

8911CH08.qxd 10/8/07 4:26 PM Page 290

private decimal DivideNumbers(decimal number, decimal divisor)
{

return number/divisor;
}

By default, trace messages are listed in the order they were written by your code. Alterna-
tively, you can specify that messages should be sorted by category using the TraceMode
attribute in the Page directive:

<%@ Page Trace="true" TraceMode="SortByCategory" %>

or the TraceMode property of the Trace object in your code:

Trace.TraceMode = TraceMode.SortByCategory;

Application-Level Tracing
Application-level tracing allows you to enable tracing for an entire application. However, the
tracing information won’t be displayed in the page. Instead, it will be collected and stored in
memory for a short amount of time. You can review the recently traced information by
requesting a special URL. Application-level tracing provides several advantages. The tracing
information won’t be mangled by the formatting and layout in your web page, you can com-
pare trace information from different requests, and you can review the trace information
that’s recorded for someone else’s request.

To enable application-level tracing, you need to modify settings in the web.config file, as
shown here:

<configuration>
<system.web>
<trace enabled="true" requestLimit="10" pageOutput="false"
traceMode="SortByTime" localOnly="true" />

</system.web>
</configuration>

Table 8-4 lists the tracing options.

Table 8-4. Tracing Options

Attribute Values Description

enabled true, false Turns application-level tracing on or off.

requestLimit Any integer Stores tracing information for a maximum number
(for example, 10) of HTTP requests. Unlike page-level tracing, this allows

you to collect a batch of information from multiple
requests. When the maximum is reached, ASP.NET may
discard the information from the oldest request (which is
the default behavior) or the information from the new
request, depending on the mostRecent setting.

Continued

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 291

8911CH08.qxd 10/8/07 4:26 PM Page 291

Table 8-4. Continued

Attribute Values Description

pageOutput true, false Determines whether tracing information will be
displayed on the page (as it is with page-level tracing). If
you choose false, you’ll still be able to view the collected
information by requesting trace.axd from the virtual
directory where your application is running.

traceMode SortByTime,
SortByCategory Determines the sort order of trace messages.

localOnly true, false Determines whether tracing information will be shown
only to local clients (clients using the same computer) or
can be shown to remote clients as well. By default, this is
true and remote clients cannot see tracing information.

mostRecent true, false Keeps only the most recent trace messages if true. When
the requestLimit maximum is reached, the information
for the oldest request is abandoned every time a new
request is received. If false (the default), ASP.NET stops
collecting new trace messages when the limit is reached.

To view tracing information, you request the trace.axd file in the web application’s root
directory. This file doesn’t actually exist; instead, ASP.NET automatically intercepts the request
and interprets it as a request for the tracing information. It will then list the most recent col-
lected requests, provided you’re making the request from the local machine or have enabled
remote tracing (see Figure 8-28).

Figure 8-28. Traced application requests

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING292

8911CH08.qxd 10/8/07 4:26 PM Page 292

You can see the detailed information for any request by clicking the View Details link. This
provides a useful way to store tracing information for a short period of time and allows you to
review it without needing to see the actual pages (see Figure 8-29).

Figure 8-29. One of the traced application requests

The Last Word
One of the most significant differences between an ordinary website and a professional web
application is often in how it deals with errors. In this chapter, you learned the different lines
of defense you can use in .NET, including structured error handling, logging, custom error
pages, and tracing.

CHAPTER 8 ■ ERROR HANDLING, LOGGING, AND TRACING 293

8911CH08.qxd 10/8/07 4:26 PM Page 293

8911CH08.qxd 10/8/07 4:26 PM Page 294

Deploying ASP.NET
Applications

The .NET Framework makes it almost painless to deploy any type of application, including
ASP.NET websites. Often, you won’t need to do much more than copy your web application
directory to the web server and then configure it as a virtual directory. The headaches of the
past—registering components and troubleshooting version conflicts—are gone. This simplic-
ity makes it practical to deploy websites by manually copying files, rather than relying on a
dedicated setup tool.

In this chapter, you’ll begin by learning about IIS (Internet Information Services), the
Windows operating system component that acts as a web server. You’ll explore how to create
virtual directories for your web applications, making them available to other clients on the
network or on the Internet. Finally, you’ll consider the tools in Visual Studio that simplify web-
site deployment.

ASP.NET Applications and the Web Server
ASP.NET applications always work in conjunction with a web server—a specialized piece of
software that accepts requests over HTTP (Hypertext Transport Protocol) and serves content.
When you’re running your web application in Visual Studio, you use the test web server that’s
built in. When you deploy your website to a broader audience, you need a real web server,
such as IIS.

Web servers run special software to support mail exchange, FTP and HTTP access, and
everything else clients need in order to access web content. Before you can go any further, you
need to understand a little more about how web servers work.

How Web Servers Work
The easiest job a web server has is to provide ordinary HTML pages. When you request such a
file, the web server simply reads it off the hard drive (or retrieves it from an in-memory cache)
and sends the complete document to the browser, which displays it. In this case, the web
server is just a glorified file server that waits for network requests and dishes out the corre-
sponding documents.

When you use a web server in conjunction with dynamic content such as an ASP.NET
page, something more interesting takes place. On its own, the web server has no idea how to
process ASP.NET tags or run C# code. However, it’s able to enlist the help of the ASP.NET 295

C H A P T E R 9

8911CH09.qxd 10/23/07 12:22 PM Page 295

engine to perform all the heavy lifting. Figure 9-1 diagrams how this process works for ASP
and ASP.NET pages. For example, when you request the page Default.aspx, the web server
sends the request over to the ASP.NET engine (which starts automatically if needed). The
ASP.NET engine loads the requested page, runs the code it contains, and then creates the final
HTML document, which it passes back to IIS. IIS then sends the HTML document to the
client.

Figure 9-1. How IIS handles an ASP file request

At this point, you might be wondering how the web server knows when it needs to get the
ASP or ASP.NET engine involved. Essentially, the web server looks at the file extension of the
requested page (such as .asp or .aspx) to determine the type of content. The web server com-
pares this extension against a list to determine what program owns this file type. For example,
the web server’s list indicates that the .aspx extension is owned by the aspnet_isapi.dll compo-
nent in the c:\Windows\Microsoft.NET\Framework\v2.0.50727 directory. The aspnet_isapi.dll
component is known as an ISAPI extension, because it uses the ISAPI (Internet Server API)
model to plug into the web server.

■Note In theory, you can tweak the file type registrations differently for each application. This way, differ-
ent websites can use different versions of the ASP.NET engine. You’ll see how to do this in the “Registering
the ASP.NET File Mappings” section.

All web servers perform the same task as that shown in Figure 9-1. However, when you
run an ASP.NET application in Visual Studio, you don’t need to worry about deployment and
file type registration. That’s because Visual Studio includes a built-in web server. It receives the
requests for the pages in your web application and then runs the corresponding code. This
test web server has a significant limitation—it only accepts requests from the local computer.
In other words, there’s no way for other people on other computers to access your website.

To run your web application outside the development environment, you need a more
powerful web server. The web server software runs continuously on your computer (or, more
likely, a dedicated web server computer). This means it’s ready to handle HTTP requests at any
time and provide your pages to clients who connect from the same network or over the Inter-
net. On Microsoft Windows operating systems, the web server you’ll use is IIS.

In most cases, you won’t be developing on the same computer you use to host your
website. If you do, you will hamper the performance of your web server by tying it up with
development work. You will also frustrate clients if a buggy test application crashes the

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS296

8911CH09.qxd 10/23/07 12:22 PM Page 296

computer and leaves the website unavailable, or if you accidentally overwrite the deployed
web application with a work in progress. Generally, you’ll perfect your web application on
another computer and then copy all the files to the web server.

WEB HOSTING COMPANIES

In this chapter, you’ll learn how to do all the deployment work—including installing IIS and configuring your
website—by hand. If you’re responsible for setting up the web server (for example, your company has a web
server on site, or you’re using your web application to serve a smaller audience on a local network), you’ll
need these skills.

However, many developers aren’t so intimately involved in the deployment of their web applications.
Instead, they use a web hosting company that supports ASP.NET 3.5. If you’re in this situation, you simply
need to copy your web application files to the web server using an FTP program, or the support that’s built
into Visual Studio, which you’ll explore in this chapter. In this case, you may not be as interested in the
specifics of IIS that are covered in this chapter. However, you may still want to review them just to understand
more about how web hosting and IIS work.

The Virtual Directory
When you deploy your web application to a web server, it’s exposed through something called
a virtual directory. A virtual directory is simply the public face of your website directory.

For example, your website might exist in a directory on the server named c:\MySite. To
allow remote users to access this website through their browsers, you could expose it as a
virtual directory. The virtual directory name might match the real directory name (in this
case, MySite), or it might be something different. When the user requests a page in a virtual
directory (say, http://WebServer/MySite/Checkout.aspx), the web server looks for the corre-
sponding file in the corresponding physical directory (c:\MySite\Checkout.aspx). You’ll learn
more about this process—how URL requests are processed by the web server—in the next
section.

Web Application URLs
You can use ASP.NET applications in a variety of different environments, including LANs (local
area networks) and over the Internet. To understand the difference, it helps to review a little
about how web servers work with networks and the Internet.

A network is defined simply as a group of devices connected by communication links. A
traditional LAN connects devices over a limited area, such as within a company site or an indi-
vidual’s house. Multiple LANs are connected into a WAN (wide area network) using a variety of
technologies. In fact, the Internet is nothing more than a high-speed backbone that joins mil-
lions of LANs.

The cornerstone of the Internet is IP (Internet Protocol). On an IP network, each com-
puter is given a unique 32-bit number called an IP address. An IP address is typically written as
four numbers from 0 to 255 separated by periods (as in 192.145.0.1). To access another com-
puter over a network, you need to use its IP address.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS 297

8911CH09.qxd 10/23/07 12:22 PM Page 297

http://WebServer/MySite/Checkout.aspx

Of course, IP addresses aren’t easy to remember and don’t make for great marketing cam-
paigns. To make life easier, web servers on the Internet usually register unique domain names
such as www.microsoft.com. This domain name is mapped to the IP address by a special cata-
log, which is maintained by a network of servers on the Internet. This network, called the DNS
(Domain Name Service), is a core part of the infrastructure of the Internet. When you type
http://www.microsoft.com in a web browser, the browser contacts a DNS server, looks up the
IP address that’s mapped to www.microsoft.com, and contacts it.

So, what effect does all this have on the accessibility of your website? To be easily reached
over the Internet, the web server you use needs to be in the DNS registry. To get in the DNS
registry, you must have a fixed IP address. Commercial Internet service providers won’t give
you a fixed IP address unless you’re willing to pay a sizable fee. In fact, most will place you
behind a firewall or some type of NAT (network address translation), which will hide your
computer’s IP address. The same is true in most company networks, which are shielded from
the outside world.

ASP.NET applications don’t need to be accessible over the Internet. Many are useful within
an internal network. In this case, you don’t need to worry about the DNS registry. Other com-
puters can access your website using either the IP address of your machine or, more likely, the
network computer name.

For example, imagine you deploy an application to a virtual directory named MyWebApp.
On the web server, you can access it like this:

http://localhost/MyWebApp

■Tip Remember, localhost is a special part of the URL called a loopback alias. It always points to the cur-
rent computer, whatever its name is. Technically, the loopback alias is mapped to something called the
loopback address, which is the IP address 127.0.0.1. You can use the alias or the numeric address inter-
changeably.

Assuming the computer is named MyWebServer, here’s how you can access the virtual
web directory on another computer on the same LAN:

http://MyWebServer/MyWebApp

■Tip If you don’t know the name of your computer, right-click the My Computer icon either on your desktop
or in Windows Explorer, and select Properties. Then choose the Computer Name tab. Look for Full Computer
Name.

Now, assume that MyWebServer is registered in the DNS as www.MyDomain.com and is
exposed to the Internet. You could then use the following URL:

http://www.MyDomain.com/MyWebApp

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS298

8911CH09.qxd 10/23/07 12:22 PM Page 298

http://www.microsoft.com
http://www.microsoft.com
http://www.microsoft.com
http://localhost/MyWebApp
http://MyWebServer/MyWebApp
http://www.MyDomain.com
http://www.MyDomain.com/MyWebApp

Finally, you can always use the computer’s IP address, provided the computer is on the
same network or visible on the Internet. Assuming the IP address is 123.5.123.4, here’s the URL
you would use:

http://123.5.123.4/MyWebApp

Because internal networks often use dynamic IP addresses, and DNS registration
changes, using the computer name or domain name to access a website is almost always the
best approach.

If you study the URLs that the built-in web server in Visual Studio uses, you’ll notice
they’re a little different than what you usually see when surfing the Internet. Namely, they
include a port number. That means instead of requesting a page like this:

http://localhost/MyWebApp/Default.aspx

you might request a page like this:

http://localhost:2040/MyWebApp/Default.aspx

That’s because the Visual Studio web server watches requests on a dynamically chosen
port number. (In this example, the port number is 2040, but you’ll see that it changes each
time you run Visual Studio.) By using a dynamic port number, Visual Studio makes sure its
built-in web server doesn’t infringe on any other web server software you have on the com-
puter.

Real web servers are almost always configured to monitor port 80 (and port 443 for
encrypted traffic). If you don’t type in a port number for a URL, the browser assumes you’re
using port 80.

Web Farms
Some applications run on web farms, a group of server computers that share the responsibility
of handling requests. Usually web farms are reserved for high-powered web applications that
need to be able to handle heavy loads, because multiple computers can deal with more simul-
taneous surfers than a single web server. However, web farms are overkill for many small- and
midsized websites.

The way a web farm works is deceptively simple. Essentially, instead of placing web appli-
cation files on a single web server, you place a copy on several separate web servers. When a
request is received for your website, it’s directed to one of these web servers (based on which
one has the lightest load). That web server then deals with the request. Obviously, if you
decide to update your application, you need to make sure you update each web server in the
web farm with the same version to prevent discrepancies.

Some web hosting companies use web farms to host multiple websites. For example, your
website might be running on more than one web server, but each of these web servers might
also host multiple websites. This provides a flexible deployment model that lets different web
applications share resources.

Web farms pose a few new challenges. For example, if you decide to use session state, it’s
important you use StateServer or SQLServer mode, as described in Chapter 9. Otherwise, a
user’s session information might get trapped on one server. If a subsequent request is directed
to another server, the information will be lost, and a new session will be created.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS 299

8911CH09.qxd 10/23/07 12:22 PM Page 299

http://123.5.123.4/MyWebApp
http://localhost/MyWebApp/Default.aspx
http://localhost:2040/MyWebApp/Default.aspx

Another wrinkle occurs with view state (discussed in Chapter 9) and forms authentication
(Chapter 18). The problem in both cases is the same—ASP.NET encodes some information to
prevent tampering and verifies the information later. For example, with view state, ASP.NET
adds a hash code, which double-checks the next time the page is posted back to make sure the
user hasn’t changed the hidden view state field (in which case the request is rejected). The
problem that can happen with web farms is that the hash code one web server creates might
not match the hash code expected by another web server that uses a different secret key. As a
result, if a page is posted back to a web farm and a different web server gets involved, an error
can occur.

To resolve this problem, you can disable view state hash codes (as described in Chapter 9).
This isn’t recommended. A better solution is to configure each web server in the web farm to
use the same key. With a web hosting provider, this step will already have been performed. If
you have your own web farm, it won’t be—the default is for each server to create its own ran-
dom key. So, obviously, these keys won’t match.

To configure web servers to use the same key, head to the c:\Windows\Microsoft.NET\
Framework\v2.0.50727\Config directory, and crack open the machine.config file in a text
editor. In the <system.web> section, add a <machineKey> element, like this:

<machineKey validationKey="DE4C0C8F69E34EFC93F2FD3C04484A184A6FF124BFD14504..."
decryptionKey="0A335689ABD7F3EB3BB79826861359E08..." validation="SHA1" />

This explicitly sets a validation key and a decryption key. As long as you set all the servers
in the web farm to use the same key, they can share view state (and use other features, such as
forms authentication). Of course, you can’t create the key string on your own and have it be
sufficiently random. So you should use a tool for this (such as the key generator at http://
www.aspnetresources.com/tools/keycreator.aspx).

Internet Information Services (IIS)
As you’ve probably guessed by now, deploying a web application is just the process of copying
your web application files to a web server. By taking this step, you accomplish three things:

• You ensure your web applications are available even when Visual Studio isn’t running.

• You allow users on other computers to run your web applications. (The Visual Studio
web server handles only local requests.)

• Your web application URLs will no longer need a port number.

Depending on your organization, you may be in charge of deploying web applications, or
a dedicated web administrator may handle the process. Either way, it’s worth learning the
deployment process, which is quite straightforward.

The Many Faces of IIS
The tricky part about using IIS is the fact that it exists in several different versions. The version
of IIS you use depends on the operating system you’re using:

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS300

8911CH09.qxd 10/23/07 12:22 PM Page 300

http://www.aspnetresources.com/tools/keycreator.aspx
http://www.aspnetresources.com/tools/keycreator.aspx

• Windows XP Professional includes IIS 5.1. (Other editions of Windows XP don’t include
any version of IIS.)

• Windows Server 2003 uses IIS 6.

• Windows Vista and Windows Server 2008 use IIS 7.

As a general rule, when you want to publish your website, you should use a server version
of Windows to host it. Desktop versions, such as Windows XP and Windows Vista, are fine for
development testing, but they implement a connection limit, which makes them less suitable
for real-world use. Windows XP Professional and Windows Vista Business, Enterprise, and Ulti-
mate only allow IIS to process ten simultaneous requests. Windows Vista Home Basic and
Starter only allow three simultaneous requests.

This chapter provides the basic instructions to get started with IIS, no matter what ver-
sion you’re using. But be prepared for a bit of an adjustment if you need to move from one
version to another—and feel free to skip over the instructions that don’t apply to your version
of IIS.

■Tip As a quick test to find out whether IIS is installed, try firing up a browser and requesting http://
localhost on the current computer. The exact welcome page you see depends on the version of IIS, but as
long as you don’t receive an error you’ll know that IIS is installed.

Before you can start using IIS, you need to make sure the web server computer has the
required IIS software. The following sections provide a high-level overview of the process.
They tell you where to go to find IIS and switch it on, depending on the version of Windows
that you’re using. Once IIS is installed, you’ll need to make sure that IIS knows about it, as
described in the “Registering the ASP.NET File Mappings” section.

■Tip Remember, if you just want to learn about IIS and practice using its administrative tools and configur-
ing web applications, you can install IIS on your own local computer and use it there.

Installing IIS 5 (in Windows XP)
Installing IIS is easy. Here are the steps you need to follow:

1. Click Start, and choose Settings ➤ Control Panel.

2. Choose Add or Remove Programs.

3. Click Add/Remove Windows Components.

4. If Internet Information Services (IIS) is checked (see Figure 9-2), you already have this
component installed. Otherwise, click it, and then click Next to install the required IIS
files. You’ll probably need to have your Windows setup CD handy.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS 301

8911CH09.qxd 10/23/07 12:22 PM Page 301

http://localhost
http://localhost

Figure 9-2. Installing IIS 5

5. Now you need to install the .NET 3.5 runtime (if you haven’t installed it already). There
are several ways to install .NET 3.5, but one of the easiest is to choose it from the list of
optional downloads available through the Windows Update feature. Just select Windows
Update from the Start menu. Another choice is to search for the .NET runtime on
the Web.

■Note Best security practices encourage you not to include any development tools (such as Visual Studio)
on the web server. You also don’t need to have the full .NET Framework on the web server. Instead, install
only the .NET runtime, which includes the ASP.NET engine. The .NET runtime is also known as the .NET
redistributable package.

Installing IIS 6 (in Windows Server 2003)
If you’re using Windows Server 2003, you can install IIS through the Add/Remove Windows
Components dialog box; but it’s more likely you’ll use the Manage Your Server Wizard. Here’s
how it works:

1. Click Start, and then click Manage Your Server.

2. Select Add or Remove a Role from the main Manage Your Server window. This launches
the Configure Your Server Wizard.

3. Click Next to continue past the introductory window. The setup wizard will test your
available and enabled network connections and then continue to the next step.

4. Now you choose the roles to enable. Select Application Server (IIS, ASP.NET) from the
list, as shown in Figure 9-3, and click Next.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS302

8911CH09.qxd 10/23/07 12:22 PM Page 302

Figure 9-3. Choosing an application server role

5. Check the Enable ASP.NET box on the next window (shown in Figure 9-4). If you don’t,
IIS will be enabled, but it will be able to serve only static content such as ordinary
HTML pages. Click Next to continue.

Figure 9-4. Enabling other services

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS 303

8911CH09.qxd 10/23/07 12:22 PM Page 303

6. The next window summarizes the options you’ve chosen. Click Next to continue by
installing IIS 6.0 and ASP.NET. Once the process is complete, you’ll see a final confir-
mation message.

7. At this point, you’ve successfully installed IIS (and an older version of ASP.NET). To use
your ASP.NET 3.5 websites, you need the .NET 3.5 runtime. To get it, hunt it down on
the Web or use the Windows Server 2003 Windows Update feature.

Installing IIS 7 (in Windows Vista)
IIS 7 is the next evolutionary step for IIS. As with other versions of Windows, it’s included but
not initially installed. To switch it on, you need to follow these steps:

1. Click Start, and then click Control Panel.

2. Choose Programs and Features.

3. In the task list (on the left), click the “Turn Windows features on or off” link.

4. Find the Internet Information Services item near the top of the list (see Figure 9-5),
and make sure it’s checked. Then click OK to complete your configuration change.

5. Once IIS is installed, you need to install the .NET 3.5 runtime. You can hunt it down on
the Web or use the Windows Update feature.

Figure 9-5. Installing IIS 7

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS304

8911CH09.qxd 10/23/07 12:22 PM Page 304

■Note Windows Vista allows you to enable or disable individual features in IIS by choosing the items that
appear in the Internet Information Services group. Many of these check boxes correspond to optional IIS fea-
tures that are outside the scope of this book (although you’ll use the security modules in Chapter 20). To
learn more about these many settings and IIS administration in general, consult a dedicated book about
IIS 7.

Installing IIS 7 (in Windows Server 2008)
Windows Server 2008 uses the same version of IIS as Windows Vista. However, you’ll usually
use the Server Manager to configure IIS. Here’s how:

1. Choose Start Menu, then All Programs, then Administrative Tools ➤ Server Manager.

2. Choose the Roles node in the tree on the left.

3. Click the Add Roles link in the right section of the window. This opens a wizard that
allows you to add a new role to your server.

4. Follow the steps within the Wizard until you reach the Select Server Roles step. Check
the Web Server role in the list of roles and click Next. You’ll probably be prompted to
install additional required roles—if so, just accept the operation and continue.

5. After you’ve installed any additional roles you need, you’ll be prompted to configure
the Web Server role. As in Windows Vista, you can choose the specific features of IIS 7
that should be enabled (see Figure 9-5).

6. Eventually, you’ll end up at a summary page. IIS 7 is now installed with the .NET 3.5
runtime.

Registering the ASP.NET File Mappings
Ideally, you’ll install IIS before you install the .NET 3.5 runtime (or, if you’re using Windows
Server 2008, at the same time). That’s because when you perform the .NET setup, it configures
IIS to recognize all the right file types (such as .aspx). If you install the .NET runtime before IIS,
you’ll run into a problem because IIS won’t recognize your ASP.NET files and won’t hand them
off to the ASP.NET worker process to execute your code. Instead, it sends the raw text of the
page (the .aspx tags) directly to the requesting browser. The next section (“Verifying That
ASP.NET Is Correctly Installed”) demonstrates this problem.

Fortunately, it’s easy to correct this problem by repairing your IIS file mappings. You need
to use the aspnet_regiis.exe command-line utility with the -i command-line parameter (for
install), as shown here:

c:\Windows\Microsoft.NET\Framework\v2.0.50727\aspnet_regiis.exe -i

At this point, ASP.NET will check all your virtual directories and register the ASP.NET file
types.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS 305

8911CH09.qxd 10/23/07 12:22 PM Page 305

If you have more than one version of ASP.NET installed on the computer, make sure you
run the correct version of aspnet_regiis. If you use the version of aspnet_regiis included with
an older version of ASP.NET, such as 1.1, you’ll reset all your web applications to use
ASP.NET 1.1.

■Tip The easiest way to make sure you get the right version of aspnet_regiis is to rely on the Visual Studio
Command Prompt. The Visual Studio Command Prompt is really just an ordinary Windows command prompt,
but it sets the path variable so that the tools you need are at your fingertips. When you type aspnet_regiis.exe
in the Visual Studio Command Prompt (without specifying a path), you’ll automatically run the correct ver-
sion. To start the Visual Studio Command Prompt, open the Start menu, choose Programs, and then choose
Microsoft Visual Studio 2008 ➤ Visual Studio Tools ➤ Visual Studio 2008 Command Prompt.

This approach could be more drastic than what you really want, because it affects every
web application on the web server. What if you want some applications on the web server to
execute with ASP.NET 1.1 and others to use ASP.NET 3.5? (This might occur if you’re in the
process of updating several web applications and the migration isn’t yet tested.) In this case,
you need to use aspnet_regiis carefully so that it applies its magic to individual applications
only.

To change file mappings for a single web application, you use the -s parameter, followed
by the full path to your web application. This path always starts with W3SVC/1/ROOT/ fol-
lowed by the application folder name, as shown here:

aspnet_regiis -s W3SVC/1/ROOT/SampleApp1

Remember, if you want to register an application to use a different version of ASP.NET,
you need to use the version of aspnet_regiis that’s included with that version, along with the -s
parameter.

Every version of aspnet_regiis is able to give you a list of all the versions of ASP.NET that
are installed on the computer (and where they are). Just use the -lv option, as shown here:

aspnet_regiis -lv

You can get more information about aspnet_regiis.exe from the MSDN Help, and you can
see all the parameters by using the -? parameter. Later in this chapter (in the “Managing Web-
sites with IIS Manager” section), you’ll learn how you can configure virtual directories using
the graphical IIS Manager tool. One of the features it provides is a way to set the ASP.NET ver-
sion for each web application, without requiring you to run aspnet_regiis.

Verifying That ASP.NET Is Correctly Installed
After installing ASP.NET, it’s a good idea to test that it’s working. All you need to do is create a
simple ASP.NET page, request it in a browser, and make sure it’s processed successfully.

To perform this test, create a text file in the c:\Inetpub\wwwroot directory. (This is the
directory that IIS creates to represent the root of your web server.) Name this file test.aspx. The
file name isn’t that important, but the extension is. It’s the .aspx extension that tells IIS this file
needs to be processed by the ASP.NET engine.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS306

8911CH09.qxd 10/23/07 12:22 PM Page 306

Inside the test.aspx file, paste the following markup:

<html>
<body>
<h1>The date is <% Response.Write(DateTime.Now.ToLongDateString()) %>
</h1>

</body>
</html>

When you request this file in a browser, ASP.NET will load the file, execute the embedded
code statement (which retrieves the current date and inserts it into the page), and then return
the final HTML page. This example isn’t a full-fledged ASP.NET web page, because it doesn’t
use the web control model. However, it’s still enough to test that ASP.NET is working properly.
When you enter http://localhost/test.aspx in the browser, you should see a page that looks
like the one shown in Figure 9-6.

Figure 9-6. ASP.NET is correctly installed.

If you see only the plain text, as in Figure 9-7, ASP.NET isn’t installed correctly. This prob-
lem commonly occurs if ASP.NET is installed but the ASP.NET file types aren’t registered in IIS.
In this case, ASP.NET won’t actually process the request. Instead, the raw page will be sent
directly to the user, and the browser will display only the content that isn’t inside a tag or a
script block.

Figure 9-7. ASP.NET isn’t installed or configured correctly.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS 307

8911CH09.qxd 10/23/07 12:22 PM Page 307

http://localhost/test.aspx

To solve this problem, use the aspnet_regiis.exe tool described in the previous section to
register the ASP.NET file mappings.

Managing Websites with IIS Manager
When IIS is installed, it automatically creates a directory named c:\Inetpub\wwwroot, which
represents your website. Any files in this directory will appear as though they’re in the root of
your web server.

To add more pages to your web server, you can copy HTML, ASP, or ASP.NET files directly
to the c:\Inetpub\wwwroot directory. For example, if you add the file TestFile.html to this
directory, you can request it in a browser through the URL http://localhost/TestFile.html.
You can even create subdirectories to group related resources. For example, you can access the
file c:\Inetpub\wwwroot\MySite\MyFile.html through a browser using the URL http://
localhost/MySite/MyFile.html.

Using the wwwroot directory is straightforward, but it makes for poor organization. To
properly use ASP or ASP.NET, you need to make your own virtual directory for each web appli-
cation you create. With a virtual directory, you can expose any physical directory (on any drive
on your computer) on your web server as though it were located in the c:\Inetpub\wwwroot
directory.

Before you get started, you need to launch IIS Manager. To do so, open the Start menu
and choose Programs ➤ Administrative Tools ➤ Internet Information Services. (You’ll see the
somewhat longer name Internet Information Services (IIS) Manager in Windows Vista and
Windows Server 2008.)

Every version of IIS Manager works a bit differently, but they all allow you to manage
virtual directories. And though they also look a bit different, they all include a similar tree
structure on the left-hand side. Initially, this tree shows a single item—your computer. You
can expand this item to find all the virtual directories that are currently configured on the
web server, each of which represents a separate web application.

Figure 9-8 shows the IIS Manager window for IIS 7. It’s divided into three parts:

• On the left side is the website tree. In Figure 9-8, there are two web applications in the
website tree: EightBall and SampleApp.

• In the middle is a useful set of icons that allow you to perform various configuration
tasks with the currently selected item in the tree, which is usually a website folder.
These icons are part of Features View. Alternatively, you can switch to Content View by
clicking the Content View button at the bottom of the pane. In this case, you’ll simply
see the contents of the selected folder. Click Features View to switch back.

• On the right side are additional shortcuts that let you quickly perform a few of the most
common tasks (again, based on the currently selected item in the tree). This is a stan-
dard design that’s used in several Windows management tools. However, in IIS Manager
these links aren’t terribly useful, and you’ll be more likely to use the icons in Features
View.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS308

8911CH09.qxd 10/23/07 12:22 PM Page 308

http://localhost/TestFile.html
http://localhost/MySite/MyFile.html
http://localhost/MySite/MyFile.html

Figure 9-8. IIS Manager for IIS 7

The IIS Manager for IIS 5 and IIS 6 is similar, but different (see Figure 9-9). It provides a
similar tree on the left, but it doesn’t include the Features View in the middle. Instead, it sim-
ply shows the contents of the currently selected website folder. To perform most configuration
tasks, you’ll need to right-click a website in the tree.

Figure 9-9. IIS Manager for IIS 5

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS 309

8911CH09.qxd 10/23/07 12:22 PM Page 309

Now that you’ve taken your first look at IIS Manager, you’re ready to get started managing
your websites. In the next section, you’ll learn how to create your first virtual directory.

Creating a Virtual Directory
When you’re ready to deploy a website on a computer that has IIS, the first step you’ll usually
take is to create the physical directory where the pages will be stored (for example, c:\MySite).
The second step is to expose this physical directory as a virtual directory through IIS. This
means the website becomes publicly visible to other computers that are connected to your
computer. Ordinarily, a remote computer won’t be allowed to access your c:\MySite directory.
However, if you map c:\MySite to a virtual directory, the remote user will be able to request the
files in the directory through IIS.

Before going any further, choose the directory you want to expose as a virtual directory.
You can use any directory you want, on any drive, and you can place it as many levels deep as
makes sense. You can use a directory that already has your website files, or you can copy these
files after you create the virtual directory. Either way, the first step is to register this directory
with IIS.

The easiest and most flexible way to create a virtual directory is to use the IIS Manager
utility. Here’s what you need to do:

1. To create a new virtual directory for an existing physical directory, expand the node for
the current computer, expand the Web Sites node underneath, and then right-click the
Default Web Site item.

2. If you’re using IIS 5 or IIS 6, choose New ➤ Virtual Directory from the context menu. A
wizard will start to manage the process (see Figure 9-10). As you step through the wiz-
ard, you’ll be asked to supply the information IIS needs. If you’re using IIS 7, choose
Add Application directory. You’ll be asked to supply essentially the same information,
but in a single window (see Figure 9-11).

Figure 9-10. Configuring a web application in IIS 5

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS310

8911CH09.qxd 10/23/07 12:22 PM Page 310

Figure 9-11. Configuring a web application in IIS 7

3. The first piece of information you need to supply is the alias—the name a remote
client will use to access the files in this virtual directory. For example, if your alias is
MyApp and your computer is MyServer, you can request pages using URLs such as
http://MyServer/MyApp/MyPage.aspx.

4. Choose a directory. The directory is the physical directory on your hard drive that will
be exposed as a virtual directory. For example, c:\Inetpub\wwwroot is the physical
directory that is used for the root virtual directory of your web server. IIS will provide
access to all the allowed file types in this directory.

5. If you’re using IIS 5 or IIS 6, there’s one more step. You need to choose the permissions
for your virtual directory. To host an ASP.NET application, you need only to enable the
read and execute permissions (the first two check boxes). If you’re using a develop-
ment computer that will never act as a live web server, you can allow additional
permissions. (Keep in mind, however, that this could allow other users on a local net-
work to access and modify files in the virtual directory.)

6. If you’re using IIS 7, you can also specify the application pool by clicking the Select
button. An application pool is a group of settings that applies to one or more applica-
tions. (Later in this chapter, you’ll see how you can create a new application pool to
make IIS run under a different Windows account.) For now, just keep the standard
DefaultAppPool setting.

7. To finish the process in IIS 5 or IIS 6, advance to the end of the wizard and then click
Next. In IIS 7, you simply need to click OK in the Add Virtual Directory dialog box.

When you finish these steps, you’ll see your new virtual directory appear in the list in IIS
Manager.

You can remove an existing virtual directory by selecting it and pressing the Delete key, or
you can change its settings by right-clicking it and choosing Properties (in IIS 5 and IIS 6) or
selecting it and using the icons in the Features View on the right (in IIS 7).

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS 311

8911CH09.qxd 10/23/07 12:22 PM Page 311

http://MyServer/MyApp/MyPage.aspx

Once you’ve created your virtual directory, fire up a browser to make sure it works. For
example, if you’ve created the virtual directory with the alias MyApplication and it contains
the page MyPage.aspx, you should be able to request http://localhost/MyApplication/
MyPage.aspx.

VIRTUAL DIRECTORIES ALLOW ACCESS TO SUBDIRECTORIES

Imagine you create a virtual directory called MyApp on a computer called MyServer. The virtual directory cor-
responds to the physical directory c:\MyApp. If you add the subdirectory c:\MyApp\MoreFiles, this directory
will automatically be included in the IIS tree as an ordinary folder. Clients will be able to access files in this
folder by specifying the folder name, as in http://MyServer/MyApp/MoreFiles/SomeFile.html.

By default, the subdirectory will inherit all the permissions of the virtual directory. However, you can
change these settings using the IIS Manager. This is a common technique used to break a single application
into different parts (for example, if some pages require heightened security settings).

This is also the source of a common mistake in ASP.NET deployment. To understand the problem, imag-
ine you have a website in a folder named c:\Applications\WebApps\Site1. This is the directory you should use
when you create your virtual directory. However, if you accidentally create a virtual directory for the parent
directory c:\Applications\WebApps, you might not realize the error right away. That’s because you’ll still be
able to access the files in Site1 (because it’s a subdirectory of your virtual directory WebApps). However,
when you try to request one of the web pages inside Site1, you’ll receive an error page informing you that the
settings in the web.config file aren’t valid. The problem is that certain settings are only valid at the applica-
tion level, not the subdirectory level. To solve this problem, remove the incorrect virtual directory and create
the one you really want.

You can easily solve this problem. In IIS 5 or IIS 6, you need to right-click on the virtual
directory, choose Properties, and select the Virtual Directory tab. Finally, click the Create but-
ton next to the Application Name box. In IIS 7, the process is even easier—just right-click the
virtual directory and choose Convert to Application.

Configuring a Virtual Directory
IIS makes it easy to configure web applications after you’ve created them. And though there’s
no way to cover all the options in a single chapter, the following sections cover some of the
settings you’re most likely to change. For more information, consult a dedicated book about
IIS administration.

■Note You won’t consider the IIS authentication and security settings in this chapter. Instead, you’ll tackle
them when you consider the ASP.NET security model in Chapter 20.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS312

8911CH09.qxd 10/23/07 12:22 PM Page 312

http://localhost/MyApplication
http://MyServer/MyApp/MoreFiles/SomeFile.html

Setting a Default Page
Consider the virtual directory http://localhost/MySite. A user can request a specific page in
this directory using a URL such as http://localhost/MySite/MyPage1.aspx. But what happens
if the user simply types http://localhost/MySite into a web browser?

In this case, IIS will examine the list of default documents that are defined for that virtual
directory. It will scan the list from top to bottom and return the first matching page. Using the
list in Figure 9-12, IIS will check first for a Default.htm file, then for Default.asp, index.htm,
iisstart.asp, and Default.aspx, which is the home page that most ASP.NET applications use.

Figure 9-12. The default document list (in IIS 5)

If IIS doesn’t find any of these pages, it will either return an error message or, if you’ve
enabled the Browse permission (which usually you won’t), it will provide a file list.

To configure the default documents in IIS 5 or IIS 6, right-click the virtual directory and
choose Properties. The Properties window will appear, with its information divided into sev-
eral tabs. Then, choose the Documents tab, where you can add, remove, and rearrange the
default document list.

To configure the default documents in IIS 7, select the virtual directory. Then double-click
the Default Document icon in the Features area on the right. When entering default docu-
ments in IIS 7, you place the entire list on one line, with each document separated from the
previous one by a comma.

Custom Error Pages
As you learned in Chapter 8, you can use configuration settings to replace application errors
with custom error messages. However, this technique won’t work if the web request never
makes it to the ASP.NET service (for example, if the user requests an HTML file that doesn’t

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS 313

8911CH09.qxd 10/23/07 12:22 PM Page 313

http://localhost/MySite
http://localhost/MySite/MyPage1.aspx
http://localhost/MySite

exist). In this case, you may want to supplement custom ASP.NET error handling with IIS error
pages for other generic error conditions.

To configure custom error pages in IIS 5 or IIS 6, right-click the virtual directory and
choose Properties. In the Properties window, pick the Custom Errors tab. You can then specify
the error page that will be displayed for specific types of HTTP errors.

To configure custom error pages in IIS 7, start by selecting the virtual directory. Then,
double-click the Error Pages icon in the Features area. You’ll see a list of HTTP errors that are
mapped to specific HTML error pages (as shown in Figure 9-13). You can add or remove items,
or double-click an error to choose a different HTML file.

Figure 9-13. IIS custom errors (in IIS 7)

ASP.NET Settings
As you learned in Chapter 5, an ASP.NET web application is configured using the settings in
the web.config file. You can edit these settings by hand, or you can use the Website Adminis-
tration Tool to change some of them using a graphical web page interface. Interestingly, you
can also tweak some of these settings from directly inside IIS. The actual settings you can
adjust depends on the version of IIS you’re using. IIS 7 is much more integrated with ASP.NET,
and allows you to change far more settings.

To see what you can change in IIS 5 or IIS 6, right-click the virtual directory and choose
Properties. Then, pick the ASP.NET tab (shown in Figure 9-14). The ASP.NET tab provides
several useful features:

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS314

8911CH09.qxd 10/23/07 12:22 PM Page 314

• It gives you at-a-glance information about the current version of ASP.NET you’re using
for this application.

• It allows you to choose any version of ASP.NET that’s installed on the computer just by
selecting it from a drop-down list. This is an easy way to configure different applica-
tions to use different versions of ASP.NET, without using the aspnet_regiis.exe tool
described earlier.

• It provides an Edit Configuration button that, when clicked, launches another set of
tabs that you can use to tweak the settings in the web.config file. There’s no difference
between changing settings through this window and changing them by hand. However,
harried website administrators might find this approach makes it easier to monitor and
tweak the configuration of different applications without hunting for files.

Figure 9-14. Configuring ASP.NET settings (in IIS 5)

In IIS 7, select the virtual directory you want to change, and look at the icons in the
ASP.NET category of the Features area (as shown in Figure 9-15). There’s quite a lot that you
can play with. Some of the highlights include

• Application Settings: Use this feature to enter custom pieces of information that you
want to use in your application (as described in Chapter 5).

• Connection Strings: Use this feature to set the connection string used to connect to a
database (as described in Chapter 15).

• Session State: Use this feature to configure how session state works. You can set the
timeout and the way that session state information is stored (in server memory, a
separate process, or a custom database). Chapter 7 has more about these options.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS 315

8911CH09.qxd 10/23/07 12:22 PM Page 315

• .NET Users and .NET Roles: Use these features to define website users and roles (groups
of users with different permissions). You’ll learn about these features in Chapters 20
and 21.

• .NET Profile: Use this feature to define user-specific data that you want ASP.NET to store
in a database automatically. You’ll learn more about the profiles feature in Chapter 22.

Figure 9-15. Configuring ASP.NET settings (in IIS 7)

Deploying a Simple Site
You now know enough to deploy an ordinary ASP.NET website. All you need to do is follow
these two simple steps:

1. Create the virtual directory on the web server.

2. Copy the entire site (including subdirectories) to the virtual directory.

How you transfer these files depends on the Internet hosting service you’re using. Usually,
you’ll need to use an FTP program to upload the files to a designated area. However, if both
your computer and the web server are on the same internal network, you might just use Win-
dows Explorer or the command prompt to copy files.

If you’re using a commercial web host, the virtual directory will already be created for you,
and you’ll simply need to transfer the files.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS316

8911CH09.qxd 10/23/07 12:22 PM Page 316

Before you transfer your application files, you should make sure debug mode isn’t
enabled in the deployed version. To do so, find the debug attribute in the compilation tag,
if it is present, and set it to false, as shown here:

<configuration>
<system.web>
<compilation debug="false">

...
</compilation>

<!-- Other settings omitted. -->
</system.web>

<configuration>

When debugging is enabled, the compiled ASP.NET web page code will be larger and exe-
cute more slowly. For that reason, you should use debugging only while testing your web
application.

Web Applications and Components
It’s just as straightforward to deploy web applications that use other components. That’s
because any custom components your website uses are copied into the Bin subdirectory
when you add a reference in Visual Studio. No additional steps are required to register assem-
blies or to copy them to a specific system directory.

■Note Private assemblies are quite a boon for web hosting companies that need to host dozens, hundreds,
or thousands of web applications on the same computer. Their web servers can’t install risky components
into a system directory just because one website requires it—especially when the version that one site
requires might conflict with the version needed by another site on the same computer.

Of course, this principle doesn’t hold true if you’re using shared assemblies, which are
stored in a special system location called the GAC (global assembly cache). Usually, you won’t
store components in this location, because it complicates development and offers few bene-
fits. The core .NET assemblies are located in the GAC because they’re large and likely to be
used in almost every .NET application. It doesn’t make sense to force you to deploy the .NET
assemblies with every website you create. However, this means it’s up to the administrator of
the web server to install the version of the .NET Framework you require. This detail just isn’t in
your website’s control.

Other Configuration Steps
The simple model of deployment you’ve seen so far is often called zero-touch deployment,
because you don’t need to manually configure web server resources. (It’s also sometimes
called XCopy deployment, because transferring websites is as easy as copying directories.)

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS 317

8911CH09.qxd 10/23/07 12:22 PM Page 317

However, some applications are more difficult to set up on a web server. Here are some com-
mon factors that will require additional configuration steps:

Databases: If your web application uses a database, you’ll need to transfer the database to
the web server. You can do this by generating a SQL script that will automatically create
the database and load it with data. Alternately, you could back up the database and then
restore it on the web server. In either case, an administrator needs to use a database man-
agement tool.

Alternate machine.config settings: You can control the settings for your web application in
the web.config file that you deploy. However, problems can occur if your web application
relies on settings in the machine.config file that aren’t present on the web server.

Windows account permissions: Usually, a web server will run web page code under a
restricted account. This account might not be allowed to perform the tasks you rely on,
such as writing to files or the Windows event log, or connecting to a database. In this case,
an administrator needs to specifically grant the permissions you need to the account that
runs the ASP.NET engine for your website.

IIS security settings: If your website uses SSL encryption or Windows authentication (as
described in Chapter 18), the virtual directory settings will need to be tweaked. This also
requires the help of an administrator.

To solve these problems in the most effective way, it helps to work with an experienced
Windows administrator. That’s especially true if the web server is using IIS 6 or IIS 7, which
allow every web application on a server to run under a different Windows account. This
ensures that your website can be granted the exact permission set it requires, without affect-
ing any other web applications.

Code Compilation
By default, when you deploy an application you’ve created with Visual Studio, you deploy the
uncompiled source files. The first time a page is requested, it is compiled dynamically and
cached in a temporary directory for reuse. The advantage of this approach is that it’s easy to
make last-minute changes directly to your files without needing to go through any compila-
tion steps. However, this approach has some clear disadvantages:

• The first request for a page is slow. After a page has been requested more than once, this
problem disappears.

• The web server contains all your source code and is clearly visible to anyone who has
access to the server. Even though visitors can’t see your code, website administrators
can (and they could even change it).

To improve performance and prevent other people from seeing your code, you have
another option—you can use ASP.NET’s precompilation feature. Essentially, you use a
command-line tool named aspnet_compiler.exe, which is stored in the familiar c:\Windows\
Microsoft.NET\Framework\v2.0.50727 directory. You use this compiler on your development
machine before you deploy the application. It compiles the entire website into binary files.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS318

8911CH09.qxd 10/23/07 12:22 PM Page 318

Here’s the syntax for the aspnet_compiler tool:

aspnet_compiler -m metabasePath targetDirectory

Essentially, you need to specify the source (where the web application resides) and the
target directory (where the compiled version of the application should be copied).

To specify the source, you use the -m option and specify the metabase path in the form
W3SVC/1/ROOT/[VirtualDirectoryName], just as you would with aspnet_regiis. Here’s an
example:

aspnet_compiler -m W3SVC/1/ROOT/MyApp C:\MyAppDeploy

You can then copy the files from the target directory to your web server (or if you’re really
crafty, you can use aspnet_compiler to send the compiled files straight to the target directory
as part of your build process).

If you use the command line shown previously, the c:\MyAppDeploy directory will con-
tain all the .aspx files but no .cs files—meaning all the source code is compiled into assemblies
in the Bin directory and hidden. Even more interestingly, the information in the .aspx files has
also been removed. If you open a web page, you’ll find that it doesn’t contain any tags. Instead,
it just contains the statement “This is a marker file generated by the precompilation tool and
should not be deleted!” All the tags have been moved into the compiled files in the Bin direc-
tory, along with the source code. The aspnet_compiler just keeps the .aspx files so you can
remember what web pages there are.

■Note The aspnet_compiler compiles a web application to prepare it for deployment. However, you can
compile a website after it’s transferred to the web server. This is called in-place compilation, and it won’t
remove your code. Instead, it simply creates and caches the compiled versions of your web pages so there
won’t be any delay for the first set of requests. In-place compilation is useful when you want to optimize
performance but don’t want (or need) to hide the code. To perform an in-place compilation, omit the target
directory when you use aspnet_compiler.

The ASP.NET Account
Some of the subtlest issues with ASP.NET deployment involve security. When the web server
launches the aspnet_isapi.dll for the first time, it loads under a specific Windows user account.
The actual account that’s used depends on the version of IIS you’re using:

• If you’re using IIS 5, the account is ASPNET (which is created automatically when you
install the .NET Framework).

• If you’re using IIS 6 or IIS 7, it’s the network service account.

• If you’re using the integrated test server in Visual Studio, the server runs under your
account. That means it has all your permissions, and as a result you generally won’t run
into permission problems while you’re testing your application. This can be very mis-
leading, because you might not realize that there are potential permission problems
waiting for you once you deploy the application.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS 319

8911CH09.qxd 10/23/07 12:22 PM Page 319

You can change the account that ASP.NET uses to run code. Under IIS 5, you do this by
editing the machine.config file that defines settings for the entire web server. In IIS 6 and IIS 7,
you configure this account in IIS Manager, which is a bit easier.

New ASP.NET programmers often ask why ASP.NET code doesn’t run under another
account—say, the account of the user who is making the request from the browser. However, if
you consider this situation, you’ll quickly realize the problems. It’s almost certain that the end
user doesn’t have a Windows account defined on the web server. Even if the user has a corre-
sponding user account, that account shouldn’t have the same rights as the ASP.NET engine.

The trick is to use an account that’s limited enough that it can’t be abused by attackers but
still has the required permissions to run your code. Both the ASPNET account and the net-
work account achieve that goal, because they have a set of carefully limited privileges.

By default, the ASPNET account won’t be allowed to perform tasks such as reading the
Windows registry, retrieving information from a database, or writing to most locations on the
local hard drive. On the other hand, it will have the permissions that are essential for normal
functioning. For example, the ASPNET account is allowed to access the c:\Windows\
Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files directory so it can compile
and cache web pages.

The limited security settings of the ASPNET and network service accounts are designed to
prevent attacks on your web server. In most cases, the goal is to prevent any attacks that could
exploit flaws in your application and trick it into undertaking actions that it’s technically
allowed to do (such as deleting a file) but should never perform. Although this is a worthwhile
goal, you’ll probably find that your applications require some additional permissions beyond
those given to the ASPNET and network service accounts. For example, you might need access
to a specific file or a database. To make this possible, you grant additional permissions to
these accounts in the same way you would grant them to any other Windows user account.
However, the process isn’t always obvious—so you might want to consult a good handbook
about Windows system administration before you take these steps.

Alternatively, you might want to change the account that’s used to run the worker process
to a different account with the required permissions. The following sections explain how.

■Note Before changing the account used to run ASP.NET code, make sure you fully understand the effects.
If you use an account with more permissions than you need, you open the door to a wide range of potential
hacks and attacks. It’s always best to use a dedicated account for running ASP.NET code and to restrict what
it can do to the bare minimum.

Changing the Account in IIS 5
To change the ASP.NET settings to use a different account, you need to perform the following
steps:

1. Open the machine.config file in the c:\Windows\Microsoft.NET\Framework\
v2.0.50727\Config directory using Notepad.

2. Search for the setting autoConfig="true". You’ll find the processModel setting shown
here:

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS320

8911CH09.qxd 10/23/07 12:22 PM Page 320

<processModel autoConfig="true" />

3. To specify an account other than ASPNET, you need to add the userName and pass-
word attributes. You can use another account that’s defined on the system, as shown
here:

<processModel autoConfig="true"
userName="MyASPAccount" password="s!pec5%_degrees" />

Alternatively, you can set the userName attribute to System and set the password to
AutoGenerate. This tells ASP.NET to use the local system account, which is a local
account with wide-ranging permissions.

<processModel autoConfig="true"
userName="System" password="AutoGenerate" />

■Note It’s tempting to use the local system account, because it has complete power to perform any task
on the computer. Although this may make sense for test web server scenarios, it’s a dangerous habit. First,
using the local system account makes developers less conscious of security while they program, which is
never a good approach in the threat-conscious world of modern programming. Second, it also means you
are less aware of the minimum permissions the application requires, which can complicate your life when
you need to deploy the application to a production server.

4. Now you must restart the ASP.NET service. To do this, you can either reboot the com-
puter or you can use Task Manager to manually terminate the ASP.NET service. In the
latter case, look for the process named aspnet_wp.exe. Select it, and click End Process.
The worker process may restart itself automatically. If not, it will relaunch itself the
next time you request an ASP.NET web page.

■Note The ASP.NET account is a global setting that affects all web applications on the computer.

Changing the Account in IIS 6 or IIS 7
In IIS 6 and IIS 7, you change the user account by changing the application pool that’s used to
run your web application. Editing the machine.config file (as described in the previous sec-
tion) will have no effect.

Here’s what you need to do in IIS 6:

1. In the IIS Manager tree, expand the Application Pools group at the top. Then, find the
pool your application is using. By default, this is the DefaultAppPool.

2. If you’re using IIS 6, right-click the application pool and select Properties. Then, select
the Identity tab. In IIS 7, right-click it and choose Advanced Settings.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS 321

8911CH09.qxd 10/23/07 12:22 PM Page 321

3. You have two options when setting the account. You can choose one of the predefined
account types from a drop-down list (as shown in Figure 9-16), including Network Ser-
vice (the default), Local Service (which is essentially the same as ASPNET), or Local
System (which runs as an administrator with extensive privileges). Alternatively, you
can supply the user name and password for a specific user. If you take this approach,
the information you enter is encrypted for the current computer (unlike in IIS 5, where
it’s stored in ordinary text in the machine.config file).

Figure 9-16. Changing the web application user account (in IIS 7)

When you make your change in this way, you affect all the web applications that use the
DefaultAppPool. Another option is to create a new application pool first. In IIS 6, you simply
need to right-click the Application Pools group and choose New ➤ Application Pool. In IIS 7,
you right-click the Application Pools group and choose Add Application Pool. You can then
configure this application pool to use a specific user account.

Once you’ve created the application pool, you can modify your web application so that it
uses the newly created application. To perform this step in IIS 6, right-click the virtual direc-
tory and choose Properties. Look for the Application Pool list, where you can pick from all the
application pools that you’ve created. In IIS 7, right-click the virtual direction and choose
Advanced Settings to find the same setting.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS322

8911CH09.qxd 10/23/07 12:22 PM Page 322

Giving the ASP.NET Account More Privileges
Changing the account that ASP.NET uses is a risky step. If you’re not careful, you’ll end up
using an account that has more permissions than it should. It then becomes easier for a mali-
cious user to perform an attack that damages your web server or its data.

For example, imagine you create a web page that allows users to upload files. If you don’t
design this page carefully, the user might be able to trick your application into uploading a file
into a location it shouldn’t, such as the c:\Windows directory. If your web application is run-
ning with elevated permissions, it might be allowed to overwrite a Windows system file in this
directory—which allows the attacker to cause much more damage with this exploit.

For this reason, security experts recommend giving your web applications the smallest set
of permissions that still allows them to function properly. One of the easiest ways to imple-
ment this design is to start with a strictly limited account (such as ASPNET or the network
service account) and then gradually give it the additional permissions it needs (but nothing
more).

There’s no magic to this approach, but you might need the help of an experienced Windows
administrator to figure out how to set permissions for various Windows resources. If you’re
using IIS 5, you assign these permissions directly to the ASPNET user. If you’re using IIS 6 and
IIS 7, you don’t use the same technique, because the network service account is a special
account that’s defined by the system. Instead, in IIS 6 you assign permissions to the IIS_WPG
group, of which the network service account is a member. In IIS 7, the same principle applies,
except the group is named IIS_IUSRS. The IIS_WPG or IIS_IUSRS group is created automati-
cally when you install Windows.

Deploying with Visual Studio
Visual Studio aims to simplify web application deployment in the same way it simplifies the
task of designing rich web pages. Although you need to understand how IIS works in order to
manage virtual directories effectively (and fix the inevitable configuration problems), Visual
Studio includes features that integrate with IIS and allow you to create virtual directories with-
out leaving the comfort of your design-time environment.

Visual Studio has three key deployment-related features:

• You can create a virtual directory when you create a new project.

• You can use the Copy Web Site feature to transfer an existing website to a virtual
directory.

• You can use the Publish Web Site feature to compile your website and transfer it to
another location.

■Note If your computer is running under Windows Vista, you’ll need to take an extra step before you get
started. In order for Visual Studio to communicate with IIS, you need to be running Visual Studio as an
administrator. To do so, right-click the Visual Studio shortcut and choose Run As Administrator.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS 323

8911CH09.qxd 10/23/07 12:22 PM Page 323

Creating a Virtual Directory for a New Project
When you create a website in Visual Studio, you can simultaneously create a virtual directory
for that website. If you choose to do so, Visual Studio won’t use its built-in web server. Instead,
all your requests will flow through IIS. (Happily, you’ll still see the same behavior and have
access to the same debugging tools.)

To try this, select File ➤ New Web Site. In the New Web Site dialog box, choose HTTP for
the location (instead of File System). You can then supply a URL. For example, if you supply
http://localhost/MyWebSite, Visual Studio will create the virtual directory MyWebSite on the
current computer. Figure 9-17 shows an example.

Figure 9-17. Creating a virtual directory to hold a new project

■Note If you specify a virtual directory that already exists, Visual Studio won’t create it—it will just use the
existing directory. This is convenient because it allows you to set up the virtual directory ahead of time with
exactly the options you want and then create the website in it. If the virtual directory doesn’t already exist,
Visual Studio creates the virtual directory in the c:\Inetpub\wwwroot directory.

This approach often isn’t the best way to create a virtual directory. It has several limitations:

• It forces you to set up the virtual directory when you first create the application. If
you’ve already created an application, you can’t use this approach for creating a virtual
directory.

• The virtual directory is always created in the c:\Inetpub\wwwroot directory. This can
make it hard to keep track of where your files are. (As you’ll discover, you can work
around this limitation.)

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS324

8911CH09.qxd 10/23/07 12:22 PM Page 324

http://localhost/MyWebSite

• You can’t configure other settings, such as default pages, custom errors, and virtual
directory permissions.

• Any change you make and debugging you perform act on the live version of your appli-
cation that’s running on the web server. If you’re using a production web server, this is
an unacceptable risk. If you’re using a test web server, you may have opened potential
security issues, because remote users can request pages in your application from other
computers.

For these reasons, it’s more common for developers to create their application using the
built-in web server in Visual Studio and then create a virtual directory by hand when they’re
ready to deploy it to a test or production web server.

Visual Studio doesn’t give you the full options of IIS Manager, but you can get a little more
control. In the New Web Site dialog box, type http://localhost (for the current computer),
and click the Browse button. You’ll see all the virtual directories that are defined in IIS, just as
in IIS Manager (see Figure 9-18).

Figure 9-18. Viewing virtual directories in Visual Studio

You can’t view or change their properties, but you can choose an existing virtual directory
where you want to create your application. You can also use the Create New Virtual Directory
button in the top-right corner of the window (it appears as a folder icon with a globe). Click
this button, and you’ll get the chance to supply the virtual directory alias and its physical file
path (see Figure 9-19).

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS 325

8911CH09.qxd 10/23/07 12:22 PM Page 325

http://localhost

Figure 9-19. Creating a virtual directory in a specific location

Copying a Website
Visual Studio also includes a quick and easy way to transfer your web application files without
using a separate program or leaving the design environment. You simply need to open your
web project and select Website ➤ Copy Web Site from the menu. This opens a new Visual Studio
dialog box that will be familiar to anyone who has used Microsoft FrontPage (see Figure 9-20).

This window includes two file lists. On the left are the files in the current project (on your
local hard drive). On the right are the files on the target location (the remote web server).
When you first open this window, you won’t see anything on the right, because you haven’t
specified the target. You need to click the Connect button at the top of the window to supply
this information.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS326

8911CH09.qxd 10/23/07 12:22 PM Page 326

Figure 9-20. Copying a website

When you click Connect, Visual Studio shows a familiar dialog box—it looks almost the
same as what you see when you create a virtual directory for a new project. Using this window,
you can specify one of the following types of locations:

File System: This is the easiest choice—you simply need to browse through a tree of drives
and directories or through the shares provided by other computers on the network. If you
want to create a new directory for your application, just click the Create New Folder icon
above the top-right corner of the directory tree.

Local IIS: This choice allows you to browse the virtual directories made available on the
local computer through IIS. To create a new virtual directory for your web application,
click the Create New Web Application icon at the top-right corner of the virtual directory
tree.

FTP Site: This option isn’t quite as convenient as browsing for a directory—instead, you’ll
need to enter all the connection information, including the FTP site, port, directory, and a
user name and password before you can connect (see Figure 9-21).

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS 327

8911CH09.qxd 10/23/07 12:22 PM Page 327

Figure 9-21. Setting the target site

Remote Web Server: This option accesses a website at a specified URL using HTTP. For this
to work, the web server must have the FrontPage Extensions installed. When you connect,
you’ll be prompted for a user name and password.

Once you choose the appropriate destination, click Open. Visual Studio will attempt to
connect to the remote site and retrieve a list of its files.

The Copy Web Site feature is particularly useful for updating a web server. That’s because
Visual Studio compares the file list on the local and remote websites, and it flags files that exist
in one location only (with the status New) or those that are newer versions (with the status
Changed). You can then select the files you want to transfer and click one of the arrow buttons
to transfer them from one location to the other (see Figure 9-22).

Publishing a Website
The website copying feature is great for transferring files to a test server. However, it doesn’t
give you the option of precompiling your code. If you’re deploying your application to a live
web server and you want to keep the source code tightly locked down, you’ll want something
more.

As described earlier in this chapter, you can use the aspnet_compiler command-line
utility to compile ASP.NET applications. This functionality is also available in Visual Studio
through the website publishing feature. While the website copying feature is designed to let
you update individual files (which is ideal when updating a test server), the publishing feature
is intended to transfer your entire website in compiled form with a couple of clicks.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS328

8911CH09.qxd 10/23/07 12:22 PM Page 328

Figure 9-22. Synchronizing a remote website

Here’s what you need to do:

1. Select Build ➤ Publish Web Site from the menu. The Publish Web Site dialog box will
appear (see Figure 9-23).

2. Enter a file path or a URL for an FTP site or a FrontPage-enabled site in the Target
Location text box. To get some help, click the ellipsis (...) next to the Target Location
text box. This opens the familiar dialog box with options for choosing (or creating) a
virtual directory, file path, FTP site, or remote server.

3. Leave the other check boxes unselected. You can choose to allow updates, in which
case the code-behind files are compiled but the .aspx files with the HTML and tags
aren’t compiled. This option allows you to make only limited changes (and it increases
the potential for accidental changes or tampering), so it isn’t terribly useful.

4. Click OK. Your website files will be compiled with aspnet_compiler and then trans-
ferred to the target location.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS 329

8911CH09.qxd 10/23/07 12:22 PM Page 329

Figure 9-23. Publishing a website

The Last Word
This chapter covered IIS (the web server that powers ASP.NET websites) and the deployment
model for ASP.NET. You also considered the tools that Visual Studio includes to make deploy-
ment easier. This rounds out Part 2 of this book, and you now have all the fundamentals you
need to create a basic ASP.NET website. In the next part, you’ll refine your web pages with a
few new features, like validation and graphics. You’ll also learn how to standardize layout and
formatting across your website, and build a navigation system that lets users surf from one
page to another.

CHAPTER 9 ■ DEPLOYING ASP.NET APPLICATIONS330

8911CH09.qxd 10/23/07 12:22 PM Page 330

Building Better
Web Forms

P A R T 3

8911CH10.qxd 9/19/07 11:20 AM Page 331

8911CH10.qxd 9/19/07 11:20 AM Page 332

Validation

This chapter looks at some of the most useful controls that are included in ASP.NET: the
validation controls. These controls take a previously time-consuming and complicated task—
verifying user input and reporting errors—and automate it with an elegant, easy-to-use
collection of validators. Each validator has its own built-in logic. Some check for missing data,
others verify that numbers fall in a predefined range, and so on. In many cases, the validation
controls allow you to verify user input without writing a line of code.

In this chapter, you’ll learn how to use the validation controls in an ASP.NET web page,
and how to get the most out of them with sophisticated regular expressions, custom validation
functions, and more. And as usual, you’ll peer under the hood to see how ASP.NET imple-
ments these features.

Understanding Validation
As a seasoned developer, you probably realize users will make mistakes. What’s particularly
daunting is the range of possible mistakes that users can make. Here are some common
examples:

• Users might ignore an important field and leave it blank.

• Users might try to type a short string of nonsense to circumvent a required field check,
thereby creating endless headaches on your end. For example, you might get stuck with
an invalid e-mail address that causes problems for your automatic e-mailing program.

• Users might make an honest mistake, such as entering a typing error, entering a non-
numeric character in a number field, or submitting the wrong type of information.
They might even enter several pieces of information that are individually correct but
when taken together are inconsistent (for example, entering a MasterCard number
after choosing Visa as the payment type).

• Malicious users might try to exploit a weakness in your code by entering carefully struc-
tured wrong values. For example, they might attempt to cause a specific error that will
reveal sensitive information. A more dramatic example of this technique is the SQL
injection attack, where user-supplied values change the operation of a dynamically
constructed database command. (Of course, validation is no defense for poor coding.
When you consider database programming in Chapter 15, you’ll learn how to use para-
meterized commands, which avoid the danger of SQL injection attacks altogether.)

333

C H A P T E R 1 0

8911CH10.qxd 9/19/07 11:20 AM Page 333

A web application is particularly susceptible to these problems, because it relies on basic
HTML input controls that don’t have all the features of their Windows counterparts. For exam-
ple, a common technique in a Windows application is to handle the KeyPress event of a text
box, check to see whether the current character is valid, and prevent it from appearing if it
isn’t. This technique makes it easy to create a text box that accepts only numeric input.

In web applications, however, you don’t have that sort of fine-grained control. To handle a
KeyPress event, the page would have to be posted back to the server every time the user types
a letter, which would slow down the application hopelessly. Instead, you need to perform all
your validation at once when a page (which may contain multiple input controls) is submit-
ted. You then need to create the appropriate user interface to report the mistakes. Some
websites report only the first incorrect field, while others use a table, list, or window to
describe them all. By the time you’ve perfected your validation strategy, you’ll have spent a
considerable amount of effort writing tedious code.

ASP.NET aims to save you this trouble and provide you with a reusable framework of vali-
dation controls that manages validation details by checking fields and reporting on errors
automatically. These controls can even use client-side JavaScript to provide a more dynamic
and responsive interface while still providing ordinary validation for older browsers (often
referred to as down-level browsers).

The Validator Controls
ASP.NET provides five validator controls, which are described in Table 10-1. Four are targeted
at specific types of validation, while the fifth allows you to apply custom validation routines.
You’ll also see a ValidationSummary control in the Toolbox, which gives you another
option for showing a list of validation error messages in one place. You’ll learn about the
ValidationSummary later in this chapter (see the “Other Display Options” section).

Table 10-1. Validator Controls

Control Class Description

RequiredFieldValidator Validation succeeds as long as the input control doesn’t contain an
empty string.

RangeValidator Validation succeeds if the input control contains a value within a
specific numeric, alphabetic, or date range.

CompareValidator Validation succeeds if the input control contains a value that
matches the value in another input control, or a fixed value that
you specify.

RegularExpressionValidator Validation succeeds if the value in an input control matches a
specified regular expression.

CustomValidator Validation is performed by a user-defined function.

Each validation control can be bound to a single input control. In addition, you can apply
more than one validation control to the same input control to provide multiple types of
validation.

If you use the RangeValidator, CompareValidator, or RegularExpressionValidator, valida-
tion will automatically succeed if the input control is empty, because there is no value to
validate. If this isn’t the behavior you want, you should also add a RequiredFieldValidator and

CHAPTER 10 ■ VALIDATION334

8911CH10.qxd 9/19/07 11:20 AM Page 334

link it to the same input control. This ensures that two types of validation will be performed,
effectively restricting blank values.

Server-Side Validation
You can use the validator controls to verify a page automatically when the user submits it or
manually in your code. The first approach is the most common.

When using automatic validation, the user receives a normal page and begins to fill in the
input controls. When finished, the user clicks a button to submit the page. Every button has a
CausesValidation property, which can be set to true or false. What happens when the user
clicks the button depends on the value of the CausesValidation property:

• If CausesValidation is false, ASP.NET will ignore the validation controls, the page will be
posted back, and your event-handling code will run normally.

• If CausesValidation is true (the default), ASP.NET will automatically validate the page
when the user clicks the button. It does this by performing the validation for each con-
trol on the page. If any control fails to validate, ASP.NET will return the page with some
error information, depending on your settings. Your click event-handling code may or
may not be executed—meaning you’ll have to specifically check in the event handler
whether the page is valid.

Based on this description, you’ll realize that validation happens automatically when cer-
tain buttons are clicked. It doesn’t happen when the page is posted back because of a change
event (such as choosing a new value in an AutoPostBack list) or if the user clicks a button that
has CausesValidation set to false. However, you can still validate one or more controls manu-
ally and then make a decision in your code based on the results. You’ll learn about this process
in more detail a little later (see the “Manual Validation” section).

■Note Many other button-like controls that can be used to submit the page also provide the
CausesValidation property. Examples include the LinkButton, ImageButton, and BulletedList.

Client-Side Validation
In most modern browsers (including Internet Explorer 5 or later and any version of Firefox),
ASP.NET automatically adds JavaScript code for client-side validation. In this case, when the
user clicks a CausesValidation button, the same error messages will appear without the page
needing to be submitted and returned from the server. This increases the responsiveness of
your web page.

However, even if the page validates successfully on the client side, ASP.NET still revali-
dates it when it’s received at the server. This is because it’s easy for an experienced user to
circumvent client-side validation. For example, a malicious user might delete the block of
JavaScript validation code and continue working with the page. By performing the validation
at both ends, ASP.NET makes sure your application can be as responsive as possible while also
remaining secure.

CHAPTER 10 ■ VALIDATION 335

8911CH10.qxd 9/19/07 11:20 AM Page 335

The Validation Controls
The validation controls are found in the System.Web.UI.WebControls namespace and inherit
from the BaseValidator class. This class defines the basic functionality for a validation control.
Table 10-2 describes its key properties.

Table 10-2. Properties of the BaseValidator Class

Property Description

ControlToValidate Identifies the control that this validator will check. Each validator
can verify the value in one input control. However, it’s perfectly
reasonable to “stack” validators—in other words, attach several
validators to one input control to perform more than one type of
error checking.

ErrorMessage and ForeColor If validation fails, the validator control can display a text message
(set by the ErrorMessage property). By changing the ForeColor,
you can make this message stand out in angry red lettering.

Display Allows you to configure whether this error message will be
inserted into the page dynamically when it’s needed (Dynamic) or
whether an appropriate space will be reserved for the message
(Static). Dynamic is useful when you’re placing several validators
next to each other. That way, the space will expand to fit the
currently active error indicators, and you won’t be left with any
unseemly whitespace. Static is useful when the validator is in a
table and you don’t want the width of the cell to collapse when no
message is displayed Finally, you can also choose None to hide the
error message altogether.

IsValid After validation is performed, this returns true or false depending
on whether it succeeded or failed. Generally, you’ll check the state
of the entire page by looking at its IsValid property instead to find
out if all the validation controls succeeded.

Enabled When set to false, automatic validation will not be performed for
this control when the page is submitted.

EnableClientScript If set to true, ASP.NET will add JavaScript and DHTML code to
allow client-side validation on browsers that support it.

When using a validation control, the only properties you need to implement are
ControlToValidate and ErrorMessage. In addition, you may need to implement the properties
that are used for your specific validator. Table 10-3 outlines these properties.

Table 10-3. Validator-Specific Properties

Validator Control Added Members

RequiredFieldValidator None required

RangeValidator MaximumValue, MinimumValue, Type

CompareValidator ControlToCompare, Operator, Type, ValueToCompare

RegularExpressionValidator ValidationExpression

CustomValidator ClientValidationFunction, ValidateEmptyText, ServerValidate event

CHAPTER 10 ■ VALIDATION336

8911CH10.qxd 9/19/07 11:20 AM Page 336

Later in this chapter (in the “A Validated Customer Form” section), you’ll see a customer
form example that demonstrates each type of validation.

A Simple Validation Example
To understand how validation works, you can create a simple web page. This test uses a single
Button web control, two TextBox controls, and a RangeValidator control that validates the
first text box. If validation fails, the RangeValidator control displays an error message, so you
should place this control immediately next to the TextBox it’s validating. The second text box
does not use any validation.

Figure 10-1 shows the appearance of the page after a failed validation attempt.

Figure 10-1. Failed validation

In addition, place a Label control at the bottom of the form. This label will report when
the page has been posted back and the event-handling code has executed. Disable its
EnableViewState property to ensure that it will be cleared every time the page is posted back.

The markup for this page defines a RangeValidator control, sets the error message, identi-
fies the control that will be validated, and requires an integer from 1 to 10. These properties
are set in the .aspx file, but they could also be configured in the event handler for the
Page.Load event. The Button automatically has its CauseValidation property set to true,
because this is the default.

A number (1 to 10):
<asp:TextBox id="txtValidated" runat="server" />
<asp:RangeValidator id="RangeValidator" runat="server"
ErrorMessage="This Number Is Not In The Range"
ControlToValidate="txtValidated"
MaximumValue="10" MinimumValue="1"
Type="Integer" />

Not validated:
<asp:TextBox id="txtNotValidated" runat="server" />

<asp:Button id="cmdOK" runat="server" Text="OK" OnClick="cmdOK_Click" />

CHAPTER 10 ■ VALIDATION 337

8911CH10.qxd 9/19/07 11:20 AM Page 337

<asp:Label id="lblMessage" runat="server"
EnableViewState="False" />

Finally, here is the code that responds to the button click:

protected void cmdOK_Click(Object sender, EventArgs e)
{

lblMessage.Text = "cmdOK_Click event handler executed.";
}

If you’re testing this web page in a modern browser, you’ll notice an interesting trick.
When you first open the page, the error message is hidden. But if you type an invalid number
(remember, validation will succeed for an empty value) and press the Tab key to move to the
second text box, an error message will appear automatically next to the offending control. This
is because ASP.NET adds a special JavaScript function that detects when the focus changes.
The actual implementation of this JavaScript code is somewhat complicated, but ASP.NET
handles all the details for you automatically. As a result, if you try to click the OK button with
an invalid value in txtValidated, your actions will be ignored and the page won’t be posted
back.

Not all browsers will support client-side validation. To see what will happen on a down-
level browser, set the RangeValidator.EnableClientScript property to false, and rerun the page.
Now error messages won’t appear dynamically as you change focus. However, when you click
the OK button, the page will be returned from the server with the appropriate error message
displayed next to the invalid control.

The potential problem in this scenario is that the click event-handling code will still exe-
cute, even though the page is invalid. To correct this problem and ensure that your page
behaves the same on modern and older browsers, you must specifically abort the event code
if validation hasn’t been performed successfully.

protected void cmdOK_Click(Object sender, EventArgs e)
{

// Abort the event if the control isn't valid.
if (!RangeValidator.IsValid) return;
lblMessage.Text = "cmdOK_Click event handler executed.";

}

This code solves the current problem, but it isn’t much help if the page contains multiple
validation controls. Fortunately, every web form provides its own IsValid property. This prop-
erty will be false if any validation control has failed. It will be true if all the validation controls
completed successfully. If validation was not performed (for example, if the validation con-
trols are disabled or if the button has CausesValidation set to false), you’ll get an
HttpException when you attempt to read the IsValid property.

protected void cmdOK_Click(Object sender, EventArgs e)
{

// Abort the event if any control on the page is invalid.
if (!Page.IsValid) return;
lblMessage.Text = "cmdOK_Click event handler executed.";

}

CHAPTER 10 ■ VALIDATION338

8911CH10.qxd 9/19/07 11:20 AM Page 338

Remember, client-side validation is just nice frosting on top of your application. Server-
side validation will always be performed, ensuring that crafty users can’t “spoof” pages.

Other Display Options
In some cases, you might have already created a carefully designed form that combines multi-
ple input fields. Perhaps you want to add validation to this page, but you can’t reformat the
layout to accommodate all the error messages for all the validation controls. In this case, you
can save some work by using the ValidationSummary control.

To try this, set the Display property of the RangeValidator control to None. This ensures
the error message will never be displayed. However, validation will still be performed and the
user will still be prevented from successfully clicking the OK button if some invalid informa-
tion exists on the page.

Next, add the ValidationSummary in a suitable location (such as the bottom of the page):

<asp:ValidationSummary id="Errors" runat="server" />

When you run the page, you won’t see any dynamic messages as you enter invalid infor-
mation and tab to a new field. However, when you click the OK button, the
ValidationSummary will appear with a list of all error messages, as shown in Figure 10-2. In
this case, it retrieves one error message (from the RangeValidator control). However, if you had
a dozen validators, it would retrieve all their error messages and create a list.

Figure 10-2. The validation summary

When the ValidationSummary displays the list of errors, it automatically retrieves the
value of the ErrorMessage property from each validator. In some cases, you’ll want to display
a full message in the summary and some sort of visual indicator next to the offending control.
For example, many websites use an error icon or an asterisk to highlight text boxes with
invalid input. You can use this technique with the help of the Text property of the validators.
Ordinarily, Text is left empty. However, if you set both Text and ErrorMessage, the ErrorMessage

CHAPTER 10 ■ VALIDATION 339

8911CH10.qxd 9/19/07 11:20 AM Page 339

value will be used for the summary while the Text value is displayed in the validator. (Of
course, you’ll need to make sure you aren’t also setting the Display property of your validator
to None, which hides it completely.)

Here’s an example of a validator that includes a detailed error message (which will appear
in the ValidationSummary) and an asterisk indicator (which will appear in the validator, next
to the control that has the problem):

<asp:RangeValidator id="RangeValidator" runat="server"
Text="*" ErrorMessage="The First Number Is Not In The Range"
ControlToValidate="txtValidated"
MaximumValue="10" MinimumValue="1" Type="Integer" />

You can even get a bit fancier by replacing the plain asterisk with a snippet of more inter-
esting HTML. Here’s an example that uses the tag to add a small error icon image when
validation fails:

<asp:RangeValidator id="RangeValidator" runat="server"
Text="" alt='Error' ... />

Figure 10-3 shows this validator in action.

Figure 10-3. A validation summary and an error indicator

The ValidationSummary control provides some useful properties you can use to fine-tune
the error display. You can set the HeaderText property to display a special title at the top of
the list (such as Your page contains the following errors:). You can also change the ForeColor
and choose a DisplayMode. The possible modes are BulletList (the default), List, and
SingleParagraph.

Finally, you can choose to have the validation summary displayed in a pop-up dialog box
instead of on the page (see Figure 10-3). This approach has the advantage of leaving the user
interface of the page untouched, but it also forces the user to dismiss the error messages by
closing the window before being able to modify the input controls. If users will need to refer
to these messages while they fix the page, the inline display is better.

CHAPTER 10 ■ VALIDATION340

8911CH10.qxd 9/19/07 11:20 AM Page 340

To show the summary in a dialog box, set the ShowMessageBox property of the
ValidationSummary to true. Keep in mind that unless you set the ShowSummary property
to false, you’ll see both the message box and the in-page summary (as in Figure 10-4).

Figure 10-4. A message box summary

Manual Validation
Your final option is to disable validation and perform the work on your own, with the help of
the validation controls. This allows you to take other information into consideration or create
a specialized error message that involves other controls (such as images or buttons).

You can create manual validation in one of three ways:

• Use your own code to verify values. In this case, you won’t use any of the ASP.NET vali-
dation controls.

• Disable the EnableClientScript property for each validation control. This allows an
invalid page to be submitted, after which you can decide what to do with it depending
on the problems that may exist.

• Add a button with CausesValidation set to false. When this button is clicked, manually
validate the page by calling the Page.Validate() method. Then examine the IsValid prop-
erty, and decide what to do.

The next example uses the second approach. Once the page is submitted, it examines all
the validation controls on the page by looping through the Page.Validators collection. Every
time it finds a control that hasn’t validated successfully, it retrieves the invalid value from the
input control and adds it to a string. At the end of this routine, it displays a message that
describes which values were incorrect, as shown in Figure 10-5.

CHAPTER 10 ■ VALIDATION 341

8911CH10.qxd 9/19/07 11:20 AM Page 341

Figure 10-5. Manual validation

This technique adds a feature that wouldn’t be available with automatic validation, which
uses the ErrorMessage property. In that case, it isn’t possible to include the actual incorrect
values in the message.

Here’s the event handler that checks for invalid values:

protected void cmdOK_Click(Object sender, EventArgs e)
{

string errorMessage = "Mistakes found:
";

// Search through the validation controls.
foreach (BaseValidator ctrl in this.Validators)
{

if (!ctrl.IsValid)
{

errorMessage += ctrl.ErrorMessage + "
";

// Find the corresponding input control, and change the
// generic Control variable into a TextBox variable.
// This allows access to the Text property.
TextBox ctrlInput =
(TextBox)this.FindControl(ctrl.ControlToValidate);

errorMessage += " * Problem is with this input: ";
errorMessage += ctrlInput.Text + "
";

}
}
lblMessage.Text = errorMessage;

}

CHAPTER 10 ■ VALIDATION342

8911CH10.qxd 9/19/07 11:20 AM Page 342

This example uses an advanced technique: the Page.FindControl() method. It’s required
because the ControlToValidate property of each validator simply provides a string with the
name of a control, not a reference to the actual control object. To find the control that matches
this name (and retrieve its Text property), you need to use the FindControl() method. Once the
code has retrieved the matching text box, it can perform other tasks such as clearing the cur-
rent value, tweaking a property, or even changing the text box color. Note that the FindControl()
method returns a generic Control reference, because you might search any type of control. To
access all the properties of your control, you need to cast it to the appropriate type (such as
TextBox in this example).

Validating with Regular Expressions
One of ASP.NET’s most powerful validation controls is the RegularExpressionValidator, which
validates text by determining whether or not it matches a specific pattern.

For example, e-mail addresses, phone numbers, and file names are all examples of text
that has specific constraints. A phone number must be a set number of digits, an e-mail
address must include exactly one @ character (with text on either side), and a file name can’t
include certain special characters like \ and ?. One way to define patterns like these is with
regular expressions.

Regular expressions have appeared in countless other languages and gained popularity
as an extremely powerful way to work with strings. In fact, Visual Studio even allows program-
mers to perform a search-and-replace operation in their code using a regular expression
(which may represent a new height of computer geekdom). Regular expressions can almost be
considered an entire language of their own. How to master all the ways you can use regular
expressions—including pattern matching, back references, and named groups—could occupy
an entire book (and several books are dedicated to just that subject). Fortunately, you can
understand the basics of regular expressions without nearly that much work.

Literals and Metacharacters
All regular expressions consist of two kinds of characters: literals and metacharacters. Literals
are not unlike the string literals you type in code. They represent a specific defined character.
For example, if you search for the string literal "l", you’ll find the character l and nothing else.

Metacharacters provide the true secret to unlocking the full power of regular expressions.
You’re probably already familiar with two metacharacters from the DOS world (? and *).
Consider the command-line expression shown here:

Del *.*

The expression *.* contains one literal (the period) and two metacharacters (the aster-
isks). This translates as “delete every file that starts with any number of characters and ends
with an extension of any number of characters (or has no extension at all).” Because all files in
DOS implicitly have extensions, this has the well-documented effect of deleting everything in
the current directory.

Another DOS metacharacter is the question mark, which means “any single character.”
For example, the following statement deletes any file named hello that has an extension of
exactly one character.

Del hello.?

CHAPTER 10 ■ VALIDATION 343

8911CH10.qxd 9/19/07 11:20 AM Page 343

The regular expression language provides many flexible metacharacters—far more than
the DOS command line. For example, \s represents any whitespace character (such as a space
or tab). \d represents any digit. Thus, the following expression would match any string that
started with the numbers 333, followed by a single whitespace character and any three num-
bers. Valid matches would include 333 333 and 333 945 but not 334 333 or 3334 945.

333\s\d\d\d

One aspect that can make regular expressions less readable is that they use special
metacharacters that are more than one character long. In the previous example, \s represents
a single character, as does \d, even though they both occupy two characters in the expression.

You can use the plus (+) sign to represent a repeated character. For example, 5+7 means
“one or more occurrences of the character 5, followed by a single 7.” The number 57 would
match, as would 555557. You can also use parentheses to group a subexpression. For example,
(52)+7 would match any string that started with a sequence of 52. Matches would include 527,
52527, 5252527, and so on.

You can also delimit a range of characters using square brackets. [a-f] would match any
single character from a to f (lowercase only). The following expression would match any word
that starts with a letter from a to f, contains one or more “word” characters (letters), and ends
with ing—possible matches include acting and developing.

[a-f]\w+ing

The following is a more useful regular expression that can match any e-mail address by
verifying that it contains the @ symbol. The dot is a metacharacter used to indicate any char-
acter except newline. However, some invalid e-mail addresses would still be allowed,
including those that contain spaces and those that don’t include a dot (.). You’ll see a better
example a little later in the customer form example.

.+@.+

Finding a Regular Expression
Clearly, picking the perfect regular expression may require some testing. In fact, numerous
reference materials (on the Internet and in paper form) include useful regular expressions for
validating common values such as postal codes. To experiment, you can use the simple
RegularExpressionTest page included with the online samples, which is shown in Figure 10-6.
It allows you to set a regular expression that will be used to validate a control. Then you can
type in some sample values and see whether the regular expression validator succeeds or fails.

CHAPTER 10 ■ VALIDATION344

8911CH10.qxd 9/19/07 11:20 AM Page 344

Figure 10-6. A regular expression test page

The code is quite simple. The Set This Expression button assigns a new regular expression
to the RegularExpressionValidator control (using whatever text you have typed). The Validate
button simply triggers a postback, which causes ASP.NET to perform validation automatically.
If an error message appears, validation has failed. Otherwise, it’s successful.

public partial class RegularExpressionTest : System.Web.UI.Page
{

protected void cmdSetExpression_Click(Object sender, EventArgs e)
{

TestValidator.ValidationExpression = txtExpression.Text;
lblExpression.Text = "Current Expression: ";
lblExpression.Text += txtExpression.Text;

}
}

Table 10-4 shows some of the fundamental regular expression building blocks. If you need
to match a literal character with the same name as a special character, you generally precede it
with a \ character. For example, *hello* matches *hello* in a string, because the special
asterisk (*) character is preceded by a slash (\).

CHAPTER 10 ■ VALIDATION 345

8911CH10.qxd 9/19/07 11:20 AM Page 345

Table 10-4. Regular Expression Characters

Character Description

* Zero or more occurrences of the previous character or subexpression. For example,
7*8 matches 7778 or just 8.

+ One or more occurrences of the previous character or subexpression. For example,
7+8 matches 7778 but not 8.

() Groups a subexpression that will be treated as a single element. For example, (78)+
matches 78 and 787878.

{m,n} The previous character (or subexpression) can occur from m to n times. For
example, A{1,3} matches A, AA, or AAA.

| Either of two matches. For example, 8|6 matches 8 or 6.

[] Matches one character in a range of valid characters. For example, [A-C] matches
A, B, or C.

[^] Matches a character that isn’t in the given range. For example, [^A-B] matches any
character except A and B.

. Any character except newline. For example, .here matches where and there.

\s Any whitespace character (such as a tab or space).

\S Any nonwhitespace character.

\d Any digit character.

\D Any character that isn’t a digit.

\w Any “word” character (letter, number, or underscore).

\W Any character that isn’t a “word” character (letter, number, or underscore).

Table 10-5 shows a few common (and useful) regular expressions.

Table 10-5. Commonly Used Regular Expressions

Content Regular Expression Description

E-mail address* \S+@\S+\.\S+ Check for an at (@) sign and dot (.)
and allow nonwhitespace characters
only.

Password \w+ Any sequence of one or more word
characters (letter, space, or
underscore).

Specific-length password \w{4,10} A password that must be at least four
characters long but no longer than ten
characters.

Advanced password [a-zA-Z]\w{3,9} As with the specific-length password,
this regular expression will allow four
to ten total characters. The twist is
that the first character must fall in the
range of a–z or A–Z (that is to say. it
must start with a nonaccented
ordinary letter).

CHAPTER 10 ■ VALIDATION346

8911CH10.qxd 9/19/07 11:20 AM Page 346

Content Regular Expression Description

Another advanced password [a-zA-Z]\w*\d+\w* This password starts with a letter
character, followed by zero or more
word characters, one or more digits,
and then zero or more word
characters. In short, it forces a
password to contain one or more
numbers somewhere inside it. You
could use a similar pattern to require
two numbers or any other special
character.

Limited-length field \S{4,10} Like the password example, this allows
four to ten characters, but it allows
special characters (asterisks,
ampersands, and so on).

U.S. Social Security number \d{3}-\d{2}-\d{4} A sequence of three, two, then four
digits, with each group separated by a
dash. You could use a similar pattern
when requiring a phone number.

* You have many different ways to validate e-mail addresses with regular expressions of varying complexity.
See http://www.4guysfromrolla.com/webtech/validateemail.shtml for a discussion of the subject and
numerous examples.

Some logic is much more difficult to model in a regular expression. An example is the
Luhn algorithm, which verifies credit card numbers by first doubling every second digit, then
adding these doubled digits together, and finally dividing the sum by ten. The number is valid
(although not necessarily connected to a real account) if there is no remainder after dividing
the sum. To use the Luhn algorithm, you need a CustomValidator control that runs this logic
on the supplied value. (You can find a detailed description of the Luhn algorithm at http://
en.wikipedia.org/wiki/Luhn_formula.)

A Validated Customer Form
To bring together these various topics, you’ll now see a full-fledged web form that combines a
variety of pieces of information that might be needed to add a user record (for example, an
e-commerce site shopper or a content site subscriber). Figure 10-7 shows this form.

CHAPTER 10 ■ VALIDATION 347

8911CH10.qxd 9/19/07 11:20 AM Page 347

http://www.4guysfromrolla.com/webtech/validateemail.shtml
http://en.wikipedia.org/wiki/Luhn_formula
http://en.wikipedia.org/wiki/Luhn_formula

Figure 10-7. A sample customer form

Several types of validation are taking place on the customer form:

• Three RequiredFieldValidator controls make sure the user enters a user name, a pass-
word, and a password confirmation.

• A CompareValidator ensures that the two versions of the masked password match.

• A RegularExpressionValidator checks that the e-mail address contains an at (@) symbol.

• A RangeValidator ensures the age is a number from 0 to 120.

• A CustomValidator performs a special validation on the server of a “referrer code.” This
code verifies that the first three characters make up a number that is divisible by 7.

The tags for the validator controls are as follows:

<asp:RequiredFieldValidator id="vldUserName" runat="server"
ErrorMessage="You must enter a user name."
ControlToValidate="txtUserName" />

<asp:RequiredFieldValidator id="vldPassword" runat="server"
ErrorMessage="You must enter a password."
ControlToValidate="txtPassword" />

CHAPTER 10 ■ VALIDATION348

8911CH10.qxd 9/19/07 11:20 AM Page 348

<asp:CompareValidator id="vldRetype" runat="server"
ErrorMessage="Your password does not match."
ControlToCompare="txtPassword" ControlToValidate="txtRetype" />

<asp:RequiredFieldValidator id="vldRetypeRequired" runat="server"
ErrorMessage="You must confirm your password."
ControlToValidate="txtRetype" />

<asp:RegularExpressionValidator id="vldEmail" runat="server"
ErrorMessage="This email is missing the @ symbol."
ValidationExpression=".+@.+" ControlToValidate="txtEmail" />

<asp:RangeValidator id="vldAge" runat="server"
ErrorMessage="This age is not between 0 and 120." Type="Integer"
MinimumValue="0" MaximumValue="120"
ControlToValidate="txtAge" />

<asp:CustomValidator id="vldCode" runat="server"
ErrorMessage="Try a string that starts with 014."
ValidateEmptyText="False"
OnServerValidate="vldCode_ServerValidate"
ControlToValidate="txtCode" />

The form provides two validation buttons—one that requires validation and one that
allows the user to cancel the task gracefully:

<asp:Button id="cmdSubmit" runat="server"
OnClick="cmdSubmit_Click" Text="Submit"></asp:Button>

<asp:Button id="cmdCancel" runat="server"
CausesValidation="False" OnClick="cmdCancel_Click" Text="Cancel">

</asp:Button>

Here’s the event-handling code for the buttons:

protected void cmdSubmit_Click(Object sender, EventArgs e)
{

if (Page.IsValid)
{

lblMessage.Text = "This is a valid form.";
}

}

protected void cmdCancel_Click(Object sender, EventArgs e)
{

lblMessage.Text = "No attempt was made to validate this form.";
}

The only form-level code that is required for validation is the custom validation code. The
validation takes place in the event handler for the CustomValidator.ServerValidate event. This

CHAPTER 10 ■ VALIDATION 349

8911CH10.qxd 9/19/07 11:20 AM Page 349

method receives the value it needs to validate (e.Value) and sets the result of the validation to
true or false (e.IsValid).

protected void vldCode_ServerValidate(Object source, ServerValidateEventArgs e)
{

try
{

// Check whether the first three digits are divisible by seven.
int val = Int32.Parse(e.Value.Substring(0, 3));
if (val % 7 == 0)
{

e.IsValid = true;
}
else
{

e.IsValid = false;
}

}
catch
{

// An error occurred in the conversion.
// The value is not valid.
e.IsValid = false;

}
}

This example also introduces one new detail: error handling. This error-handling code
ensures that potential problems are caught and dealt with appropriately. Without error han-
dling, your code may fail, leaving the user with nothing more than a cryptic error page. The
reason this example requires error-handling code is because it performs two steps that aren’t
guaranteed to succeed. First, the Int32.Parse() method attempts to convert the data in the text
box to an integer. An error will occur during this step if the information in the text box is non-
numeric (for example, if the user entered the characters 4G). Similarly, the String.Substring()
method, which extracts the first three characters, will fail if fewer than three characters appear
in the text box. To guard against these problems, you can specifically check these details
before you attempt to use the Parse() and Substring() methods, or you can use error handling
to respond to problems after they occur. (Another option is to use the TryParse() method,
which returns a Boolean value that tells you whether the conversion succeeded. You saw
TryParse() at work in Chapter 5.)

■Tip In some cases, you might be able to replace custom validation with a particularly ingenious use of a
regular expression. However, you can use custom validation to ensure that validation code is executed only
at the server. That prevents users from seeing your regular expression template (in the rendered JavaScript
code) and using it to determine how they can outwit your validation routine. For example, a user may not
have a valid credit card number, but if they know the algorithm you use to test credit card numbers, they can
create a false one more easily.

CHAPTER 10 ■ VALIDATION350

8911CH10.qxd 9/19/07 11:20 AM Page 350

The CustomValidator has another quirk. You’ll notice that your custom server-side valida-
tion isn’t performed until the page is posted back. This means that if you enable the client
script code (the default), dynamic messages will appear informing the user when the other
values are incorrect, but they will not indicate any problem with the referral code until the
page is posted back to the server.

This isn’t really a problem, but if it troubles you, you can use the
CustomValidator.ClientValidationFunction property. Add a client-side JavaScript or VBScript
validation function to the .aspx portion of the web page. (Ideally, it will be JavaScript for com-
patibility with browsers other than Internet Explorer.) Remember, you can’t use client-side
ASP.NET code, because C# and VB aren’t recognized by the client browser.

Your JavaScript function will accept two parameters (in true .NET style), which identify
the source of the event and the additional validation parameters. In fact, the client-side event
is modeled on the .NET ServerValidate event. Just as you did in the ServerValidate event
handler, in the client validation function, you retrieve the value to validate from the Value
property of the event argument object. You then set the IsValid property to indicate whether
validation succeeds or fails.

The following is the client-side equivalent for the code in the ServerValidate event
handler. The JavaScript code resembles C# superficially.

<script type="text/javascript">
<!--
function MyCustomValidation(objSource, objArgs)
{

// Get value.
var number = objArgs.Value;

// Check value and return result.
number = number.substr(0, 3);
if (number % 7 == 0)
{

objArgs.IsValid = true;
}
else
{

objArgs.IsValid = false;
}

}
// -->
</script>

Once you’ve added the validation script function, you must set the
ClientValidationFunction property of the CustomValidator control to the name of the function.
You can edit the CustomValidator tag by hand or use the Properties window in Visual Studio.

<asp:CustomValidator id="vldCode" runat="server"
ErrorMessage="Try a string that starts with 014."
ControlToValidate="txtCode"
OnServerValidate="vldCode_ServerValidate"
ClientValidationFunction="MyCustomValidation" />

CHAPTER 10 ■ VALIDATION 351

8911CH10.qxd 9/19/07 11:20 AM Page 351

ASP.NET will now call this function on your behalf when it’s required.

■Tip Even when you use client-side validation, you must still include the ServerValidate event handler, both
to provide server-side validation for clients that don’t support the required JavaScript and DHTML features
and to prevent clients from circumventing your validation by modifying the HTML page they receive.

By default, custom validation isn’t performed on empty values. However, you can change
this behavior by setting the CustomValidator.ValidateEmptyText property to true. This is a use-
ful approach if you create a more detailed JavaScript function (for example, one that updates
with additional information) and want it to run when the text is cleared.

YOU CAN VALIDATE LIST CONTROLS

The examples in this chapter have concentrated exclusively on validating text entry, which is the most com-
mon requirement in a web application. While you can’t validate RadioButton or CheckBox controls, you can
validate most single-select list controls.

When validating a list control, the value that is being validated is the Value property of the selected
ListItem object. Remember, the Value property is the special hidden information attribute that can be added
to every list item. If you don’t use it, you can’t validate the control (validating the text of the selection isn’t a
supported option).

Validation Groups
In more complex pages, you might have several distinct groups of controls, possibly in sepa-
rate panels. In these situations, you may want to perform validation separately. For example,
you might create a form that includes a box with login controls and a box underneath it with
the controls for registering a new user. Each box includes its own submit button, and depend-
ing on which button is clicked, you want to perform the validation just for that section of the
page.

This scenario is possible thanks to a feature called validation groups. To create a valida-
tion group, you need to put the input controls, the validators, and the CausesValidation
button controls into the same logical group. You do this by setting the ValidationGroup
property of every control with the same descriptive string (such as “LoginGroup” or
“NewUserGroup”). Every control that provides a CausesValidation property also includes
the ValidationGroup property.

For example, the following page defines two validation groups, named Group1 and
Group2. The controls for each group are placed into separate Panel controls.

<form id="form1" runat="server">
<asp:Panel ID="Panel1" runat="server">
<asp:TextBox ID="TextBox1" ValidationGroup="Group1" runat="server" />
<asp:RequiredFieldValidator ID="RequiredFieldValidator1"

CHAPTER 10 ■ VALIDATION352

8911CH10.qxd 9/19/07 11:20 AM Page 352

ErrorMessage="*Required" ValidationGroup="Group1"
runat="server" ControlToValidate="TextBox1" />
<asp:Button ID="Button1" Text="Validate Group1"
ValidationGroup="Group1" runat="server" />

</asp:Panel>

<asp:Panel ID="Panel2" runat="server">
<asp:TextBox ID="TextBox2" ValidationGroup="Group2"
runat="server" />
<asp:RequiredFieldValidator ID="RequiredFieldValidator2"
ErrorMessage="*Required" ValidationGroup="Group2"
ControlToValidate="TextBox2" runat="server" />
<asp:Button ID="Button2" Text="Validate Group2"
ValidationGroup="Group2" runat="server" />

</asp:Panel>
</form>

If you click the button in the topmost Panel, only the first text box is validated. If you click
the button in the second Panel, only the second text box is validated (as shown in Figure 10-8).

Figure 10-8. Grouping controls for validation

What happens if you add a new button that doesn’t specify any validation group? In this
case, the button validates every control that isn’t explicitly assigned to a named validation
group. In the current example, no controls fit the requirement, so the page is posted back suc-
cessfully and deemed to be valid.

If you want to make sure a control is always validated, regardless of the validation group
of the button that’s clicked, you’ll need to create multiple validators for the control, one for
each group (and one with no validation group).

CHAPTER 10 ■ VALIDATION 353

8911CH10.qxd 9/19/07 11:20 AM Page 353

The Last Word
In this chapter, you learned how to use one of ASP.NET’s most practical features: validation.
You saw how ASP.NET combines server-side and client-side validation to ensure bulletproof
security without sacrificing the usability of your web pages. You also looked at the types of val-
idation provided by the various validation controls, and even brushed up on the powerful
pattern-matching syntax used for regular expressions. Finally, you considered how to cus-
tomize and extend the validation process to handle a few different scenarios.

CHAPTER 10 ■ VALIDATION354

8911CH10.qxd 9/19/07 11:20 AM Page 354

Rich Controls

Rich controls are web controls that model complex user interface elements. Although no
strict definition exists for what is and what isn’t a rich control, the term commonly describes a
web control that has an object model that’s distinctly separate from the HTML it generates.
A typical rich control can be programmed as a single object (and added to a web page with a
single control tag) but renders itself using a complex sequence of HTML elements. Rich con-
trols can also react to user actions (like a mouse click on a specific region of the control) and
raise more meaningful events that your code can respond to on the web server. In other
words, rich controls give you a way to create advanced user interfaces in your web pages
without writing lines of convoluted HTML.

In this chapter, you’ll take a look at several web controls that have no direct equivalent in
the world of ordinary HTML. You’ll start with the Calendar, which provides slick date-selection
functionality. Next, you’ll consider the AdRotator, which gives you an easy way to insert a ran-
domly selected image into a web page. Finally, you’ll learn how to create sophisticated pages
with multiple views using two advanced container controls: the MultiView and the Wizard.
These controls allow you to pack a miniature application into a single page. Using them, you
can handle a multistep task without redirecting the user from one page to another.

■Note ASP.NET includes numerous rich controls that are discussed elsewhere in this book, including rich
data controls, security controls, and controls tailored for web portals. In this chapter, you’ll focus on a few
useful web controls that don’t fit neatly into any of these categories. All of these controls appear in the
Standard tab of the Visual Studio Toolbox.

The Calendar
The Calendar control presents a miniature calendar that you can place in any web page. Like
most rich controls, the Calendar can be programmed as a single object (and defined in a
single simple tag), but it renders itself with dozens of lines of HTML output.

<asp:Calendar id="MyCalendar" runat="server" />

The Calendar control presents a single-month view, as shown in Figure 11-1. The user
can navigate from month to month using the navigational arrows, at which point the page is
posted back and ASP.NET automatically provides a new page with the correct month values.

355

C H A P T E R 1 1

8911CH11.qxd 10/17/07 5:03 PM Page 355

You don’t need to write any additional event-handling code to manage this process. When the
user clicks a date, the date becomes highlighted in a gray box (by default). You can retrieve the
selected day in your code as a DateTime object from the Calendar.SelectedDate property.

Figure 11-1. The default Calendar

This basic set of features may provide everything you need in your application. Alterna-
tively, you can configure different selection modes to allow users to select entire weeks or
months or to render the control as a static calendar that doesn’t allow selection. The only fact
you must remember is that if you allow month selection, the user can also select a single week
or a day. Similarly, if you allow week selection, the user can also select a single day.

You set the type of selection through the Calendar.SelectionMode property. You may also
need to set the Calendar.FirstDayOfWeek property to configure how a week is selected. (For
example, set FirstDayOfWeek to the enumerated value Sunday, and weeks will be selected
from Sunday to Saturday.)

When you allow multiple date selection, you need to examine the SelectedDates property,
which provides a collection of all the selected dates. You can loop through this collection using
the foreach syntax. The following code demonstrates this technique:

lblDates.Text = "You selected these dates:
";

foreach (DateTime dt in MyCalendar.SelectedDates)
{

lblDates.Text += dt.ToLongDateString() + "
";
}

Figure 11-2 shows the resulting page after this code has been executed.

CHAPTER 11 ■ RICH CONTROLS356

8911CH11.qxd 10/17/07 5:03 PM Page 356

Figure 11-2. Selecting multiple dates

Formatting the Calendar
The Calendar control provides a whole host of formatting-related properties. You can set vari-
ous parts of the calendar, like the header, selector, and various day types, by using one of the
style properties (for example, WeekendDayStyle). Each of these style properties references a
full-featured TableItemStyle object that provides properties for coloring, border style, font,
and alignment. Taken together, they allow you to modify almost any part of the calendar’s
appearance.

Table 11-1 lists the style properties that the Calendar control provides.

Table 11-1. Properties for Calendar Styles

Member Description

DayHeaderStyle The style for the section of the Calendar that displays the days of the
week (as column headers).

DayStyle The default style for the dates in the current month.

NextPrevStyle The style for the navigation controls in the title section that move from
month to month.

OtherMonthDayStyle The style for the dates that aren’t in the currently displayed month. These
dates are used to “fill in” the calendar grid. For example, the first few cells
in the topmost row may display the last few days from the previous
month.

Continued

CHAPTER 11 ■ RICH CONTROLS 357

8911CH11.qxd 10/17/07 5:03 PM Page 357

Table 11-1. Continued

Member Description

SelectedDayStyle The style for the selected dates on the calendar.

SelectorStyle The style for the week and month date-selection controls.

TitleStyle The style for the title section.

TodayDayStyle The style for the date designated as today (represented by the
TodaysDate property of the Calendar control).

WeekendDayStyle The style for dates that fall on the weekend.

You can adjust each style using the Properties window. For a quick shortcut, you can set
an entire related color scheme using the Calendar’s Auto Format feature. To do so, start by
selecting the Calendar on the design surface of a web form. Then, click the arrow icon that
appears next to its top-right corner to show the Calendar’s smart tag, and click the Auto For-
mat link. You’ll be presented with a list of predefined formats that set the style properties, as
shown in Figure 11-3.

Figure 11-3. Calendar styles

You can also use additional properties to hide some elements or configure the text they
display. For example, properties that start with “Show” (such as ShowDayHeader, ShowTitle,
and ShowGridLines) can be used to hide or show a specific visual element. Properties that end
in “Text” (such as PrevMonthText, NextMonthText, and SelectWeekText) allow you to set the
text that’s shown in part of the calendar.

Restricting Dates
In most situations where you need to use a calendar for selection, you don’t want to allow the
user to select any date in the calendar. For example, the user might be booking an appoint-
ment or choosing a delivery date—two services that are generally provided only on set days.
The Calendar control makes it surprisingly easy to implement this logic. In fact, if you’ve

CHAPTER 11 ■ RICH CONTROLS358

8911CH11.qxd 10/17/07 5:03 PM Page 358

worked with the date and time controls on the Windows platform, you’ll quickly recognize
that the ASP.NET versions are far superior.

The basic approach to restricting dates is to write an event handler for the
Calendar.DayRender event. This event occurs when the Calendar control is about to create a
month to display to the user. This event gives you the chance to examine the date that is being
added to the current month (through the e.Day property) and decide whether it should be
selectable or restricted.

The following code makes it impossible to select any weekend days or days in years
greater than 2010:

protected void MyCalendar_DayRender(Object source, DayRenderEventArgs e)
{

// Restrict dates after the year 2010 and those on the weekend.
if (e.Day.IsWeekend || e.Day.Date.Year > 2010)
{

e.Day.IsSelectable = false;
}

}

The e.Day object is an instance of the CalendarDay class, which provides various proper-
ties. Table 11-2 describes some of the most useful.

Table 11-2. CalendarDay Properties

Property Description

Date The DateTime object that represents this date.

IsWeekend True if this date falls on a Saturday or Sunday.

IsToday True if this value matches the Calendar.TodaysDate property, which is set to the
current day by default.

IsOtherMonth True if this date doesn’t belong to the current month but is displayed to fill in
the first or last row. For example, this might be the last day of the previous
month or the next day of the following month.

IsSelectable Allows you to configure whether the user can select this day.

The DayRender event is extremely powerful. Besides allowing you to tailor what dates are
selectable, it also allows you to configure the cell where the date is located through the e.Cell
property. (The calendar is displayed using an HTML table.) For example, you could highlight
an important date or even add information. Here’s an example that highlights a single day—
the fifth of May—by adding a new Label control in the table cell for that day:

protected void MyCalendar_DayRender(Object source, DayRenderEventArgs e)
{

// Check for May 5 in any year, and format it.
if (e.Day.Date.Day == 5 && e.Day.Date.Month == 5)
{

e.Cell.BackColor = System.Drawing.Color.Yellow;

CHAPTER 11 ■ RICH CONTROLS 359

8911CH11.qxd 10/17/07 5:03 PM Page 359

// Add some static text to the cell.
Label lbl = new Label();
lbl.Text = "
My Birthday!";
e.Cell.Controls.Add(lbl);

}
}

Figure 11-4 shows the resulting calendar display.

Figure 11-4. Highlighting a day

The Calendar control provides two other useful events: SelectionChanged and
VisibleMonthChanged. These occur immediately after the user selects a new day or browses to
a new month (using the next month and previous month links). You can react to these events
and update other portions of the web page to correspond to the current calendar month. For
example, you could design a page that lets you schedule a meeting in two steps. First, you
choose the appropriate day. Then, you choose one of the available times on that day.

The following code demonstrates this approach, using a different set of time values if a
Monday is selected in the calendar than it does for other days:

protected void MyCalendar_SelectionChanged(Object source, EventArgs e)
{

lstTimes.Items.Clear();

switch (MyCalendar.SelectedDate.DayOfWeek)
{

case DayOfWeek.Monday:
// Apply special Monday schedule.
lstTimes.Items.Add("10:00");
lstTimes.Items.Add("10:30");

CHAPTER 11 ■ RICH CONTROLS360

8911CH11.qxd 10/17/07 5:03 PM Page 360

lstTimes.Items.Add("11:00");
break;
default:

lstTimes.Items.Add("10:00");
lstTimes.Items.Add("10:30");
lstTimes.Items.Add("11:00");
lstTimes.Items.Add("11:30");
lstTimes.Items.Add("12:00");
lstTimes.Items.Add("12:30");
break;

}
}

To try these features of the Calendar control, run the Appointment.aspx page from the
online samples. This page provides a formatted Calendar control that restricts some dates, for-
mats others specially, and updates a corresponding list control when the selection changes.

Table 11-3 gives you an at-a-glance look at almost all the members of the Calendar con-
trol class.

Table 11-3. Calendar Members

Member Description

Caption and CaptionAlign Gives you an easy way to add a title to the calendar. By
default, the caption appears at the top of the title area,
just above the month heading. However, you can
control this to some extent with the CaptionAlign
property. Use Left or Right to keep the caption at the
top but move it to one side or the other, and use Bottom
to place the caption under the calendar.

CellPadding ASP.NET creates a date in a separate cell of an invisible
table. CellPadding is the space, in pixels, between the
border of each cell and its contents.

CellSpacing The space, in pixels, between cells in the same table.

DayNameFormat Determines how days are displayed in the calendar
header. Valid values are Full (as in Sunday), FirstLetter
(S), FirstTwoLetters (Su), and Short (Sun), which is the
default.

FirstDayOfWeek Determines which day is displayed in the first column
of the calendar. The values are any day name from the
FirstDayOfWeek enumeration (such as Sunday).

NextMonthText and PrevMonthText Sets the text that the user clicks to move to the next or
previous month. These navigation links appear at the
top of the calendar and are the greater-than (>) and
less-than (<) signs by default. This setting is applied
only if NextPrevFormat is set to CustomText.

NextPrevFormat Sets the text that the user clicks to move to the next or
previous month. This can be FullMonth (for example,
December), ShortMonth (Dec), or CustomText, in
which case the NextMonthText and PrevMonthText
properties are used. CustomText is the default.

Continued

CHAPTER 11 ■ RICH CONTROLS 361

8911CH11.qxd 10/17/07 5:03 PM Page 361

Table 11-3. Continued

Member Description

SelectedDate and SelectedDates Sets or gets the currently selected date as a DateTime
object. You can specify this in the control tag in a
format like this: “12:00:00 AM, 12/31/2010” (depending
on your computer’s regional settings). If you allow
multiple date selection, the SelectedDates property will
return a collection of DateTime objects, one for each
selected date. You can use collection methods such as
Add, Remove, and Clear to change the selection.

SelectionMode Determines how many dates can be selected at once.
The default is Day, which allows one date to be selected.
Other options include DayWeek (a single date or an
entire week) or DayWeekMonth (a single date, an entire
week, or an entire month). You have no way to allow the
user to select multiple noncontiguous dates. You also
have no way to allow larger selections without also
including smaller selections. (For example, if you allow
full months to be selected, you must also allow week
selection and individual day selection.)

SelectMonthText and SelectWeekText The text shown for the link that allows the user to select
an entire month or week. These properties don’t apply if
the SelectionMode is Day.

ShowDayHeader, ShowGridLines, These Boolean properties allow you to configure
ShowNextPrevMonth, and ShowTitle whether various parts of the calendar are shown,

including the day titles, gridlines between every day,
the previous/next month navigation links, and the title
section. Note that hiding the title section also hides the
next and previous month navigation controls.

TitleFormat Configures how the month is displayed in the title area.
Valid values include Month and MonthYear (the
default).

TodaysDate Sets which day should be recognized as the current date
and formatted with the TodayDayStyle. This defaults to
the current day on the web server.

VisibleDate Gets or sets the date that specifies what month will be
displayed in the calendar. This allows you to change the
calendar display without modifying the current date
selection.

DayRender event Occurs once for each day that is created and added to
the currently visible month before the page is rendered.
This event gives you the opportunity to apply special
formatting, add content, or restrict selection for an
individual date cell. Keep in mind that days can appear
in the calendar even when they don’t fall in the current
month, provided they fall close to the end of the
previous month or close to the start of the following
month.

SelectionChanged event Occurs when the user selects a day, a week, or an entire
month by clicking the date selector controls.

VisibleMonthChanged event Occurs when the user clicks the next or previous month
navigation controls to move to another month.

CHAPTER 11 ■ RICH CONTROLS362

8911CH11.qxd 10/17/07 5:03 PM Page 362

The AdRotator
The basic purpose of the AdRotator is to provide a graphic on a page that is chosen randomly
from a group of possible images. In other words, every time the page is requested, an image is
selected at random and displayed, which is the “rotation” indicated by the name AdRotator.
One use of the AdRotator is to show banner-style advertisements on a page, but you can use it
any time you want to vary an image randomly.

Using ASP.NET, it wouldn’t be too difficult to implement an AdRotator type of design on
your own. You could react to the Page.Load event, generate a random number, and then use
that number to choose from a list of predetermined image files. You could even store the list in
the web.config file so that it can be easily modified separately as part of the application’s con-
figuration. Of course, if you wanted to enable several pages with a random image, you would
either have to repeat the code or create your own custom control. The AdRotator provides
these features for free.

The Advertisement File
The AdRotator stores its list of image files in an XML file. This file uses the format shown here:

<Advertisements>
<Ad>
<ImageUrl>prosetech.jpg</ImageUrl>
<NavigateUrl>http://www.prosetech.com</NavigateUrl>
<AlternateText>ProseTech Site</AlternateText>
<Impressions>1</Impressions>
<Keyword>Computer</Keyword>

</Ad>
</Advertisements>

■Tip As you’ll see in Chapter 19, an XML file is just a text file with specific tags (as shown previously).
You can create an XML file using nothing more than a text editor such as Notepad, but you can also use the
Visual Studio text editor. Just select Website ➤ Add New Item from the menu, and choose XML File. It’s up to
you to fill in the right tags and content. You can place the advertisements file wherever you’d like—either in
the main website folder or in a subfolder that you’ve created.

This example shows a single possible advertisement. To add more advertisements, you
would create multiple <Ad> elements and place them all inside the root <Advertisements>
element:

<Advertisements>
<Ad>
<!-- First ad here. -->

</Ad>

CHAPTER 11 ■ RICH CONTROLS 363

8911CH11.qxd 10/17/07 5:03 PM Page 363

http://www.prosetech.com</NavigateUrl

<Ad>
<!-- Second ad here. -->

</Ad>
</Advertisements>

Each <Ad> element has a number of other important properties that configure the link,
the image, and the frequency, as described in Table 11-4.

Table 11-4. Advertisement File Elements

Element Description

ImageUrl The image that will be displayed. This can be a relative link (a file in the current
directory) or a fully qualified Internet URL.

NavigateUrl The link that will be followed if the user clicks the banner.

AlternateText The text that will be displayed instead of the picture if it cannot be displayed.
This text will also be used as a tooltip in some newer browsers.

Impressions A number that sets how often an advertisement will appear. This number is
relative to the numbers specified for other ads. For example, a banner with the
value 10 will be shown twice as often (on average) as the banner with the value 5.

Keyword A keyword that identifies a group of advertisements. You can use this for filtering.
For example, you could create ten advertisements and give half of them the key-
word Retail and the other half the keyword Computer. The web page can then
choose to filter the possible advertisements to include only one of these groups.

The AdRotator Class
The actual AdRotator class provides a limited set of properties. You specify both the appropri-
ate advertisement file in the AdvertisementFile property and the type of window that the link
should follow (the Target window). The target can name a specific frame, or it can use one of
the values defined in Table 11-5.

Table 11-5. Special Frame Targets

Target Description

_blank The link opens a new unframed window.

_parent The link opens in the parent of the current frame.

_self The link opens in the current frame.

_top The link opens in the topmost frame of the current window (so the link appears
in the full window).

Optionally, you can set the KeywordFilter property so that the banner will be chosen from
a specific keyword group. This is a fully configured AdRotator tag:

<asp:AdRotator id="Ads" runat="server" AdvertisementFile="MainAds.xml"
Target="_blank" KeywordFilter="Computer" />

CHAPTER 11 ■ RICH CONTROLS364

8911CH11.qxd 10/17/07 5:03 PM Page 364

■Note The target attribute isn’t allowed in XHTML strict. If you decide to use it, make sure you use the
XHTML 1.0 transitional doctype, as described in Chapter 4. (This is the default doctype for new web pages
that you create in Visual Studio.)

Additionally, you can react to the AdRotator.AdCreated event. This occurs when the page
is being created and an image is randomly chosen from the advertisements file. This event
provides you with information about the image that you can use to customize the rest of your
page. For example, you might display some related content or a link, as shown in Figure 11-5.

Figure 11-5. An AdRotator with synchronized content

The event-handling code for this example simply configures a HyperLink control named
lnkBanner based on the randomly selected advertisement:

protected void Ads_AdCreated(Object sender, AdCreatedEventArgs e)
{

// Synchronize the Hyperlink control.
lnkBanner.NavigateUrl = e.NavigateUrl;

// Syncrhonize the text of the link.
lnkBanner.Text = "Click here for information about our sponsor: ";
lnkBanner.Text += e.AlternateText;

}

As you can see, rich controls such as the Calendar and AdRotator don’t just add a sophisti-
cated HTML output, they also include an event framework that allows you to take charge of
the control’s behavior and integrate it into your application.

CHAPTER 11 ■ RICH CONTROLS 365

8911CH11.qxd 10/17/07 5:03 PM Page 365

Pages with Multiple Views
In a typical website, you’ll surf through many separate pages. For example, if you want to add
an item to your shopping cart and take it to the checkout in an e-commerce site, you’ll need to
jump from one page to another. This design has its advantages—namely, it lets you carefully
separate different tasks into different code files. It also presents some challenges; for example,
you need to come up with a way to transfer information from one page to another (a topic
that’s covered in detail in Chapter 8).

However, in some cases it makes more sense to create a single page that can handle sev-
eral different tasks. For example, you might want to provide several views of the same data
(such as a grid-based view and a chart-based view) and allow the user to switch from one view
to the other without leaving the page. Or, you might want to handle a small multistep task in
one place (such as supplying user information for an account sign-up process). In these
examples, you need a way to create dynamic pages that provide more than one possible view.
Essentially, the page hides and shows different controls depending on which view you want to
present.

The simplest way to understand this technique is to create a page with several Panel con-
trols. Each panel can hold a group of ASP.NET controls. For example, imagine you’re creating a
simple three-step wizard. You’ll start by adding three panels to your page, one for each step—
say, panelStep1, panelStep2, and panelStep3. You can place the panels one after the other,
because you’ll show only one at a time. Once you’ve added the panels, you can place the
appropriate controls inside each panel. To start, the Visible property of each panel should be
false, except for panelStep1, which appears the first time the user requests the page.

Here’s an example that shows the way you can arrange your panels:

<asp:Panel ID="panelStep1" runat="server">...</asp:Panel>
<asp:Panel ID="panelStep2" Visible="False" runat="server">...</asp:Panel>
<asp:Panel ID="panelStep3" Visible="False" runat="server">...</asp:Panel>

■Note When you set the Visible property of a control to false, the control won’t appear in the page at run-
time. Any controls inside an invisible panel are also hidden from sight, and they won’t be present in the
rendered HTML for the page. However, these controls will still appear in the Visual Studio design surface so
that you can still select them and configure them.

Finally, you’ll add one or more navigation buttons outside the panels. For example, the
following code handles the click of a Next button, which is placed just after panelStep3 (so it
always appears at the bottom of the page). The code checks which step the user is currently
on, hides the current panel, and shows the following panel. This way the user is moved to the
next step.

protected void cmdNext_Click(object sender, EventArgs e)
{

if (panelStep1.Visible)
{

// Move to step 2.

CHAPTER 11 ■ RICH CONTROLS366

8911CH11.qxd 10/17/07 5:03 PM Page 366

panelStep1.Visible = false;
panelStep2.Visible = true;

}
else if (panelStep2.Visible)
{

// Move to step 3.
panelStep2.Visible = false;
panelStep3.Visible = true;

// Change text of button from Next to Finish.
cmdNext.Text = "Finish";

}
else if (panelStep3.Visible)
{

// The wizard is finished.
panelStep3.Visible = false;

// Add code here to perform the appropriate task
// with the information you've collected.

}
}

This approach works relatively well. Even when the panels are hidden, you can still inter-
act with all the controls on each panel and retrieve the information they contain. The problem
is that you need to write all the code for controlling which panel is visible. If you make your
wizard much more complex—for example, you want to add a button for returning to a previ-
ous step—it becomes more difficult to keep track of what’s happening. At best, this approach
clutters your page with the code for managing the panels. At worst, you’ll make a minor mis-
take and end up with two panels showing at the same time.

Fortunately, ASP.NET gives you a more robust option. You can use two controls that are
designed for the job—the MultiView and the Wizard. In the following sections, you’ll see how
you can use both of these controls with the GreetingCardMaker example developed in
Chapter 5.

The MultiView Control
The MultiView is the simpler of the two multiple-view controls. Essentially, the MultiView
gives you a way to declare multiple views and show only one at a time. It has no default user
interface—you get only whatever HTML and controls you add. The MultiView is equivalent to
the custom panel approach explained earlier.

Creating a MultiView is suitably straightforward. You add the <asp:MultiView> tag to your
.aspx page file and then add one <asp:View> tag inside it for each separate view:

<asp:MultiView ID="MultiView1" runat="server">
<asp:View ID="View1" runat="server">...</asp:View>
<asp:View ID="View2" runat="server">...</asp:View>
<asp:View ID="View3" runat="server">...</asp:View>

</asp:MultiView>

CHAPTER 11 ■ RICH CONTROLS 367

8911CH11.qxd 10/17/07 5:03 PM Page 367

In Visual Studio, you create these tags by first dropping a MultiView control onto your
form and then using the Toolbox to add as many View controls inside it as you want. This
drag-and-drop process can be a bit tricky. When you add the first View control, you must make
sure to drop it in the blank area inside the MultiView (not next to the MultiView, or on the
MultiView’s title bar). When you add more View controls, you must drop each one on one of
the gray header bars of one of the existing views. The gray header has the View title (such as
“View1” or “View2”).

The View control plays the same role as the Panel control in the previous example, and
the MultiView takes care of coordinating all the views so that only one is visible at a time.

Inside each view, you can add HTML or web controls. For example, consider the
GreetingCardMaker example demonstrated in Chapter 5, which allows the user to create a
greeting card by supplying some text and choosing colors, a font, and a background. As the
GreetingCardMaker grows more complex, it requires more controls, and it becomes increas-
ingly difficult to fit all those controls on the same page. One possible solution is to divide
these controls into logical groups and place each group in a separate view.

Creating Views
Here’s the full markup for a MultiView that splits the greeting card controls into three views
named View1, View2, and View3:

<asp:MultiView id="MultiView1" runat="server" >

<asp:View ID="View1" runat="server">
Choose a foreground (text) color:

<asp:DropDownList ID="lstForeColor" runat="server" AutoPostBack="True"
OnSelectedIndexChanged="ControlChanged" />

Choose a background color:

<asp:DropDownList ID="lstBackColor" runat="server" AutoPostBack="True"
OnSelectedIndexChanged="ControlChanged" />

</asp:View>

<asp:View ID="View2" runat="server">
Choose a border style:

<asp:RadioButtonList ID="lstBorder" runat="server" AutoPostBack="True"
OnSelectedIndexChanged="ControlChanged" RepeatColumns="2" />

<asp:CheckBox ID="chkPicture" runat="server" AutoPostBack="True"
OnCheckedChanged="ControlChanged" Text="Add the Default Picture" />

</asp:View>

<asp:View ID="View3" runat="server">
Choose a font name:

<asp:DropDownList ID="lstFontName" runat="server" AutoPostBack="True"
OnSelectedIndexChanged="ControlChanged" />

CHAPTER 11 ■ RICH CONTROLS368

8911CH11.qxd 10/17/07 5:03 PM Page 368

Specify a font size:

<asp:TextBox ID="txtFontSize" runat="server" AutoPostBack="True"
OnTextChanged="ControlChanged" />

Enter the greeting text below:

<asp:TextBox ID="txtGreeting" runat="server" AutoPostBack="True"
OnTextChanged="ControlChanged" TextMode="MultiLine" />

</asp:View>

</asp:MultiView>

Visual Studio shows all your views at design time, one after the other (see Figure 11-6).
You can edit these regions in the same way you design any other part of the page.

Figure 11-6. Designing multiple views

CHAPTER 11 ■ RICH CONTROLS 369

8911CH11.qxd 10/17/07 5:03 PM Page 369

Showing a View
If you run this example, you won’t see what you expect. The MultiView will appear empty on
the page, and all the controls in all your views will be hidden.

The reason this happens is because the MultiView.ActiveViewIndex property is, by
default, set to –1. The ActiveViewIndex property determines which view will be shown. If you
set the ActiveViewIndex to 0, however, you’ll see the first view. Similarly, you can set it to 1 to
show the second view, and so on. You can set this property using the Properties window or
using code:

// Show the first view.
MultiView1.ActiveViewIndex = 0;

This example shows the first view (View1) and hides whatever view is currently being dis-
played, if any.

■Tip To make more readable code, you can create an enumeration that defines a name for each view. That
way, you can set the ActiveViewIndex using the descriptive name from the enumeration rather than an ordi-
nary number. Refer to Chapter 3 for a refresher on enumerations.

You can also use the SetActiveView() method, which accepts any one of the view objects
you’ve created. This may result in more readable code (if you’ve chosen descriptive IDs for
your view controls), and it ensures that any errors are caught earlier (at compile time instead
of runtime).

MultiView1.SetActiveView(View1);

This gives you enough functionality that you can create previous and next navigation but-
tons. However, it’s still up to you to write the code that checks which view is visible and
changes the view. This code is a little simpler, because you don’t need to worry about hiding
views any longer, but it’s still less than ideal.

Fortunately, the MultiView includes some built-in smarts that can save you a lot of trou-
ble. Here’s how it works: the MultiView recognizes button controls with specific command
names. (Technically, a button control is any control that implements the IButtonControl inter-
face, including the Button, ImageButton, and LinkButton.) If you add a button control to the
view that uses one of these recognized command names, the button gets some automatic
functionality. Using this technique, you can create navigation buttons without writing any
code.

Table 11-6 lists all the recognized command names. Each command name also has a cor-
responding static field in the MultiView class, so you can easily get the right command name if
you choose to set it programmatically.

CHAPTER 11 ■ RICH CONTROLS370

8911CH11.qxd 10/17/07 5:03 PM Page 370

Table 11-6. Recognized Command Names for the MultiView

Command Name MultiView Field Description

PrevView PreviousViewCommandName Moves to the previous view.

NextView NextViewCommandName Moves to the next view.

SwitchViewByID SwitchViewByIDCommandName Moves to the view with a
specific ID (string name).
The ID is taken from the
CommandArgument property
of the button control.

SwitchViewByIndex SwitchViewByIndexCommandName Moves to the view with a
specific numeric index. The
index is taken from the
CommandArgument property
of the button control.

To try this, add this button to the first view:

<asp:Button ID="Button1" runat="server" CommandArgument="View2"
CommandName="SwitchViewByID" Text="Go to View2" />

When clicked, this button sets the MultiView to show the view specified by the
CommandArgument (View2).

Rather than create buttons that take the user to a specific view, you might want a button
that moves forward or backward one view. To do this, you use the PrevView and NextView
command names. Here’s an example that defines previous and next buttons in the second
View:

<asp:Button ID="Button1" runat="server" Text="< Prev" CommandName="PrevView" />
<asp:Button ID="Button2" runat="server" Text="Next >" CommandName="NextView" />

Once you add these buttons to your view, you can move from view to view easily.
Figure 11-7 shows the previous example with the second view currently visible.

■Tip Be careful how many views you cram into a single page. When you use the MultiView control, the
entire control model—including the controls from every view—is created on every postback and persisted
to view state. In most situations, this won’t be a significant factor. However, it increases the overall page
size, especially if you’re tweaking controls programmatically (which increases the amount of information
they need to store in view state).

CHAPTER 11 ■ RICH CONTROLS 371

8911CH11.qxd 10/17/07 5:03 PM Page 371

Figure 11-7. Moving from one view to another

The Wizard Control
The Wizard control is a more glamorous version of the MultiView control. It also supports
showing one of several views at a time, but it includes a fair bit of built-in yet customizable
behavior, including navigation buttons, a sidebar with step links, styles, and templates.

Usually, wizards represent a single task, and the user moves linearly through them,
moving from the current step to the one immediately following it (or the one immediately
preceding it in the case of a correction). The ASP.NET Wizard control also supports nonlinear
navigation, which means it allows you to decide to ignore a step based on the information the
user supplies.

By default, the Wizard control supplies navigation buttons and a sidebar with links for
each step on the left. You can hide the sidebar by setting the Wizard.DisplaySideBar property
to false. Usually, you’ll take this step if you want to enforce strict step-by-step navigation and
prevent the user from jumping out of sequence. You supply the content for each step using
any HTML or ASP.NET controls. Figure 11-8 shows the region where you can add content to
an out-of-the-box Wizard instance.

CHAPTER 11 ■ RICH CONTROLS372

8911CH11.qxd 10/17/07 5:03 PM Page 372

Figure 11-8. The region for step content

Wizard Steps
To create a wizard in ASP.NET, you simply define the steps and their content using
<asp:WizardStep> tags. Here’s the basic structure you’ll use:

<asp:Wizard ID="Wizard1" runat="server" ... >
<WizardSteps>

<asp:WizardStep runat="server" Title="Step 1 ">
...

</asp:WizardStep>

<asp:WizardStep runat="server" Title="Step 1 ">
...

</asp:WizardStep>

...
<WizardSteps>

</asp:Wizard>

You can add as many WizardStep controls inside the Wizard as you want. Conceptually,
the WizardStep plays the same role as the View in a MultiView (or the basic Panel in the first
example that you considered). You place the content for each step inside the WizardStep
control.

Before you start adding the content to your wizard, it’s worth reviewing Table 11-7, which
shows a few basic pieces of information that you can define for each step.

CHAPTER 11 ■ RICH CONTROLS 373

8911CH11.qxd 10/17/07 5:03 PM Page 373

Table 11-7. WizardStep Properties

Property Description

Title The descriptive name of the step. This name is used for the text of the links in the
sidebar.

StepType The type of step, as a value from the WizardStepType enumeration. This value
determines the type of navigation buttons that will be shown for this step.
Choices include Start (shows a Next button), Step (shows Next and Previous
buttons), Finish (shows Finish and Previous buttons), Complete (shows no
buttons and hides the sidebar, if it’s enabled), and Auto (the step type is inferred
from the position in the collection). The default is Auto, which means the first
step is Start, the last step is Finish, and all other steps are Step.

AllowReturn Indicates whether the user can return to this step. If false, once the user has
passed this step, the user will not be able to return. The sidebar link for this step
will have no effect, and the Previous button of the following step will either skip
this step or be hidden completely (depending on the AllowReturn value of the
preceding steps).

To see how this works, consider a wizard that again uses the GreetingCardMaker example.
It guides the user through four steps. The first three steps allow the user to configure the greeting
card, and the final step shows the generated card. The entire process is shown in Figure 11-9.

<asp:Wizard ID="Wizard1" runat="server" ActiveStepIndex="0"
BackColor="LemonChiffon" BorderStyle="Groove" BorderWidth="2px" CellPadding="10">

<WizardSteps>
<asp:WizardStep runat="server" Title="Step 1 - Colors">
Choose a foreground (text) color:

<asp:DropDownList ID="lstForeColor" runat="server" />

Choose a background color:

<asp:DropDownList ID="lstBackColor" runat="server" />

</asp:WizardStep>

<asp:WizardStep runat="server" Title="Step 2 - Background">
Choose a border style:

<asp:RadioButtonList ID="lstBorder" runat="server" RepeatColumns="2" />

<asp:CheckBox ID="chkPicture" runat="server"
Text="Add the Default Picture" />

</asp:WizardStep>

<asp:WizardStep runat="server" Title="Step 3 - Text">
Choose a font name:

<asp:DropDownList ID="lstFontName" runat="server" />

Specify a font size:

<asp:TextBox ID="txtFontSize" runat="server" />

Enter the greeting text below:

<asp:TextBox ID="txtGreeting" runat="server"
TextMode="MultiLine" />

</asp:WizardStep>

CHAPTER 11 ■ RICH CONTROLS374

8911CH11.qxd 10/17/07 5:03 PM Page 374

<asp:WizardStep runat="server" StepType="Complete" Title="Greeting Card">
<asp:Panel ID="pnlCard" runat="server" HorizontalAlign="Center">

<asp:Label ID="lblGreeting" runat="server" />
<asp:Image ID="imgDefault" runat="server" Visible="False" />

</asp:Panel>
</asp:WizardStep>

</WizardSteps>

</asp:Wizard>

CHAPTER 11 ■ RICH CONTROLS 375

Figure 11-9. A wizard with four steps

If you look carefully, you’ll find a few differences from the original page and the
MultiView-based example. First, the controls aren’t set to automatically post back. That’s
because the greeting card isn’t rendered until the final step, at the conclusion of the wizard.
(You’ll learn more about how to handle this event in the next section.) Another change is that
no navigation buttons exist. That’s because the wizard adds these details automatically based
on the step type. For example, you’ll get a Next button for the first two steps, a Previous button
for steps 2 and 3, and a Finish button for step 3. The final step, which shows the complete
card, doesn’t provide any navigation links because the StepType is set to Complete.

8911CH11.qxd 10/17/07 5:03 PM Page 375

Unlike the MultiView control, you can see only one step at a time in Visual Studio. To
choose which step you’re currently designing, select it from the smart tag, as shown in
Figure 11-10. But be warned—every time you do, Visual Studio changes the Wizard.
ActiveStepIndex property to the step you choose. Make sure you set this back to 0 before
you run your application so it starts at the first step.

Figure 11-10. Designing a step

■Note Remember, when you add controls to separate steps on a wizard, the controls are all instantiated
and persisted in view state, regardless of which step is currently shown. If you need to slim down a complex
wizard, you’ll need to split it into separate pages, use the Server.Transfer() method to move from one page to
the next, and tolerate a less elegant programming model.

Wizard Events
You can write the code that underpins your wizard by responding to several events (as listed in
Table 11-8).

Table 11-8. Wizard Events

Event Description

ActiveStepChanged Occurs when the control switches to a new step (either because the user
has clicked a navigation button or your code has changed the
ActiveStepIndex property).

CancelButtonClick Occurs when the Cancel button is clicked. The Cancel button is not
shown by default, but you can add it to every step by setting the
Wizard.DisplayCancelButton property. Usually, a Cancel button exits
the wizard. If you don’t have any cleanup code to perform, just set the
CancelDestinationPageUrl property, and the wizard will take care of the
redirection automatically.

CHAPTER 11 ■ RICH CONTROLS376

8911CH11.qxd 10/17/07 5:03 PM Page 376

Event Description

FinishButtonClick Occurs when the Finish button is clicked.

NextButtonClick and Occurs when the Next or Previous button is clicked on any step.
PreviousButtonClick However, because there is more than one way to move from one step to

the next, it’s often easier to handle the ActiveStepChanged event.

SideBarButtonClick Occurs when a button in the sidebar area is clicked.

On the whole, two wizard programming models exist:

Commit-as-you-go: This makes sense if each wizard step wraps an atomic operation that
can’t be reversed. For example, if you’re processing an order that involves a credit card
authorization followed by a final purchase, you can’t allow the user to step back and edit
the credit card number. To support this model, you set the AllowReturn property to false
on some or all steps. You may also want to respond to the ActiveStepChanged event to
commit changes for each step.

Commit-at-the-end: This makes sense if each wizard step is collecting information for
an operation that’s performed only at the end. For example, if you’re collecting user
information and plan to generate a new account once you have all the information,
you’ll probably allow a user to make changes midway through the process. You execute
your code for generating the new account when the wizard ends by reacting to the
FinishButtonClick event.

To implement commit-at-the-end with the current example, just respond to the
FinishButtonClick event. For example, to implement the greeting card wizard, you simply
need to respond to this event and call UpdateCard(), the private method that refreshes the
greeting card:

protected void Wizard1_FinishButtonClick(object sender,
WizardNavigationEventArgs e)

{
UpdateCard();

}

For the complete code for the UpdateCard() method, which generates the greeting card,
refer to Chapter 5 (or check out the downloadable sample code).

If you decide to use the commit-as-you go model, you would respond to the
ActiveStepChanged event and call UpdateCard() at that point to refresh the card every time
the user moves from one step to another. This assumes the greeting card is always visible. (In
other words, it’s not contained in the final step of the wizard.) The commit-as-you-go model is
similar to the previous example that used the MultiView.

Formatting the Wizard
Without a doubt, the Wizard control’s greatest strength is the way it lets you customize its
appearance. This means if you want the basic model (a multistep process with navigation
buttons and various events), you aren’t locked into the default user interface.

Depending on how radically you want to change the wizard, you have several options. For
less dramatic modifications, you can set various top-level properties of the Wizard control.

CHAPTER 11 ■ RICH CONTROLS 377

8911CH11.qxd 10/17/07 5:03 PM Page 377

For example, you can control the colors, fonts, spacing, and border style, as you can with any
ASP.NET control. You can also tweak the appearance of every button. For example, to change
the Next button, you can use the following properties: StepNextButtonType (use a button,
link, or clickable image), StepNextButtonText (customize the text for a button or link),
StepNextButtonImageUrl (set the image for an image button), and StepNextButtonStyle
(use a style from a style sheet). You can also add a header using the HeaderText property.

More control is available through styles. You can use styles to apply formatting options to
various portions of the Wizard control just as you can use styles to format parts of rich data
controls such as the GridView. Table 11-9 lists all the styles you can use. As with other style-
based controls, more specific style settings (such as SideBarStyle) override more general style
settings (such as ControlStyle) when they conflict. Similarly, StartNextButtonStyle overrides
NavigationButtonStyle on the first step.

Table 11-9. Wizard Styles

Style Description

ControlStyle Applies to all sections of the Wizard control.

HeaderStyle Applies to the header section of the wizard, which is visible only if
you set some text in the HeaderText property.

BorderStyle Applies to the border around the Wizard control. You can use it in
conjunction with the BorderColor and BorderWidth properties.

SideBarStyle Applies to the sidebar area of the wizard.

SideBarButtonStyle Applies to just the buttons in the sidebar.

StepStyle Applies to the section of the control where you define the step
content.

NavigationStyle Applies to the bottom area of the control where the navigation
buttons are displayed.

NavigationButtonStyle Applies to just the navigation buttons in the navigation area.

StartNextButtonStyle Applies to the Next navigation button on the first step (when
StepType is Start).

StepNextButtonStyle Applies to the Next navigation button on intermediate steps (when
StepType is Step).

StepPreviousButtonStyle Applies to the Previous navigation button on intermediate steps
(when StepType is Step).

FinishPreviousButtonStyle Applies to the Previous navigation button on the last step (when
StepType is Finish).

FinishCompleteButtonStyle Applies to the Complete navigation button on the last step (when
StepType is Finish).

CancelButtonStyle Applies to the Cancel button, if you have
Wizard.DisplayCancelButton set to true.

■Note The Wizard control also supports templates, which give you a more radical approach to formatting.
If you can’t get the level of customization you want through properties and styles, you can use templates to
completely define the appearance of each section of the Wizard control, including the headers and naviga-
tion links. Templates require data binding expressions and are discussed in Chapter 16 and Chapter 17.

CHAPTER 11 ■ RICH CONTROLS378

8911CH11.qxd 10/17/07 5:03 PM Page 378

Validation with the Wizard
The FinishButtonClick, NextButtonClick, PreviousButtonClick, and SideBarButtonClick events
are cancellable. That means that you can use code like this to prevent the requested naviga-
tion action from taking place:

protected void Wizard1_NextButtonClick(object sender,
WizardNavigationEventArgs e)

{
// Perform some sort of check.
if (e.NextStepIndex == 1 && txtName.Text == "")
{

// Cancel navigation and display a message elsewhere on the page.
e.Cancel = true;
lblInfo.Text =
"You cannot move to the next step until you supply your name.";

}
}

Here the code checks if the user is trying to move to step 1 using the NextStepIndex prop-
erty. (Alternatively, you could examine the current step using the CurrentStepIndex property.)
If so, the code then checks a text box and cancels the navigation if it doesn’t contain any text,
keeping the user on the current step. Writing this sort of logic gets a little tricky, because you
need to keep in mind that step-to-step navigation can be performed in several ways. To sim-
plify your life, you can write one event handler that deals with the NextButtonClick,
PreviousButtonClick, and SideBarButtonClick events, and performs the same check. You
saw this technique in Chapter 5 with the GreetingCardMaker.

■Note You can also use the ASP.NET validation controls in a Wizard without any problem. If the validation
controls detect invalid data, they will prevent the user from clicking any of the sidebar links (to jump to
another step) and they will prevent the user from continuing by clicking the Next button. However, by default
the Previous button has its CausesValidation property set to false, which means the user will be allowed to
step back to the previous step.

The Last Word
This chapter showed you how the rich Calendar, AdRotator, MultiView, and Wizard controls
can go far beyond the limitations of ordinary HTML elements. When you’re working with
these controls, you don’t need to think about HTML at all. Instead, you can focus on the object
model that’s defined by the control.

Throughout this book, you’ll consider some more examples of rich controls and learn
how to use them to create rich web applications that are a world apart from HTML basics.
Some of the most exciting rich controls that are still ahead include the navigation controls
(Chapter 14), the data controls (Chapter 17), and the security controls (Chapter 21).

CHAPTER 11 ■ RICH CONTROLS 379

8911CH11.qxd 10/17/07 5:03 PM Page 379

■Tip You might also be interested in adding third-party controls to your websites. The Internet contains
many hubs for control sharing. One such location is Microsoft’s own www.asp.net, which provides a control
gallery where developers can submit their own ASP.NET web controls. Some of these controls are free (at
least in a limited version), and others require a purchase.

CHAPTER 11 ■ RICH CONTROLS380

8911CH11.qxd 10/17/07 5:03 PM Page 380

http://www.asp.net

User Controls and Graphics

In this chapter, you’ll consider two ways to extend your web pages another notch.
First, you’ll tackle user controls, which give you an efficient way to reuse a block of user

interface markup—and the code that goes with it. User controls are a key tool for building
modular web applications. They can also help you create consistent website designs and reuse
your hard work.

Next, you’ll explore custom drawing with GDI+. You’ll see how you can paint exactly the
image you need on request. You’ll also learn the best way to incorporate these images into
your web pages.

User Controls
A well-built web application divides its work into discrete, independent blocks. The more
modular your web application is, the easier it is to maintain your code, troubleshoot prob-
lems, and reuse key bits of functionality.

Although it’s easy enough to reuse code (you simply need to pull it out of your pages and
put it into separate classes), it’s not as straightforward to reuse web page markup. You can cut
and paste blocks of HTML and ASP.NET control tags, but this causes endless headaches if you
want to change your markup later. Instead, you need a way to wrap up web page markup in a
reusable package, just as you can wrap up ordinary C# code. The trick is to create a user
control.

User controls look pretty much the same as ASP.NET web forms. Like web forms, they are
composed of a markup portion with HTML and control tags (the .ascx file) and can optionally
use a code-behind file with event-handling logic. They can also include the same range of
HTML content and ASP.NET controls, and they experience the same events as the Page object
(such as Load and PreRender). The only differences between user controls and web pages are
as follows:

• User controls use the file extension .ascx instead of .aspx, and their code-behind files
inherit from the System.Web.UI.UserControl class. In fact, the UserControl class and
the Page class both inherit from the same base classes, which is why they share so many
of the same methods and events, as shown in the inheritance diagram in Figure 12-1.

• The .ascx file for a user control begins with a <%@ Control %> directive instead of a
<%@ Page %> directive.

• User controls can’t be requested directly by a web browser. Instead, they must be
embedded inside other web pages. 381

C H A P T E R 1 2

8911CH12.qxd 9/24/07 2:32 PM Page 381

Figure 12-1. The Page and UserControl inheritance chain

Creating a Simple User Control
You can create a user control in Visual Studio in much the same way you add a web page. Just
select Website ➤ Add New Item, and choose Web User Control from the list.

The following user control contains a single Label control:

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="Footer.ascx.cs" Inherits="Footer" %>

<asp:Label id="lblFooter" runat="server" />

Note that the Control directive uses the same attributes used in the Page directive for a
web page, including Language, AutoEventWireup, and Inherits.

The code-behind class for this sample user control is similarly straightforward. It uses the
UserControl.Load event to add some text to the label:

public partial class Footer : System.Web.UI.UserControl
{

protected void Page_Load(Object sender, EventArgs e)
{

lblFooter.Text = "This page was served at ";

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS382

8911CH12.qxd 9/24/07 2:32 PM Page 382

lblFooter.Text += DateTime.Now.ToString();
}

}

To test this user control, you need to insert it into a web page. This is a two-step process.
First, you need to add a Register directive to the page that will contain the user control. You
place the Register directive immediately after the Page directive. The Register directive identi-
fies the control you want to use and associates it with a unique control prefix, as shown here:

<%@ Register TagPrefix="apress" TagName="Footer" Src="Footer.ascx" %>

The Register directive specifies a tag prefix and name. Tag prefixes group sets of related
controls (for example, all ASP.NET web controls use the tag prefix asp). Tag prefixes are usually
lowercase—technically, they are case-insensitive—and should be unique for your company or
organization. The Src directive identifies the location of the user control template file, not the
code-behind file.

Second, you can now add the user control whenever you want (and as many times as you
want) in the page by inserting its control tag. Consider this page example:

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="FooterHost.aspx.cs" Inherits="FooterHost"%>

<%@ Register TagPrefix="apress" TagName="Footer" Src="Footer.ascx" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title>Footer Host</title>
</head>
<body>

<form id="form1" runat="server">
<div>
<h1>A Page With a Footer</h1><hr />
Static Page Text

<apress:Footer id="Footer1" runat="server" />

</div>
</form>

</body>
</html>

This example (shown in Figure 12-2) demonstrates a simple way that you can create a
header or footer and reuse it in all the pages in your website just by adding a user control. In
the case of your simple footer, you won’t save much code. However, this approach will become
much more useful for a complex control with extensive formatting or several contained
controls.

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS 383

8911CH12.qxd 9/24/07 2:32 PM Page 383

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml

Figure 12-2. A page with a user control footer

Of course, this only scratches the surface of what you can do with a user control. In the
following sections, you’ll learn how to enhance a control with properties, methods, and
events—transforming it from a simple “include file” into a full-fledged object.

■Note The Page class provides a special LoadControl() method that allows you to create a user control
dynamically at runtime from an .ascx file. The user control is returned to you as a control object, which you
can then add to the Controls collection of a container control on the web page (such as PlaceHolder or Panel)
to display it on the page. This technique isn’t a good substitute for declaratively using a user control,
because it’s more complex. However, it does have some interesting applications if you want to generate
a user interface dynamically.

In Visual Studio, you have a useful shortcut for adding a user control to a page without
typing the Register directive by hand. Start by opening the web page you want to use. Then,
find the .ascx file for the user control in the Solution Explorer. Drag it from the Solution
Explorer and drop it onto the visual design area of your web form (not the source view area).
Visual Studio will automatically add the Register directive for the user control, as well as an
instance of the user control tag.

Independent User Controls
Conceptually, two types of user controls exist: independent and integrated. Independent user
controls don’t interact with the rest of the code on your form. The Footer user control is one
such example. Another example might be a LinkMenu control that contains a list of buttons
offering links to other pages. This LinkMenu user control can handle the events for all the but-
tons and then run the appropriate Response.Redirect() code to move to another web page. Or
it can just be an ordinary HyperLink control that doesn’t have any associated server-side code.
Every page in the website can then include the same LinkMenu user control, enabling painless
website navigation with no need to worry about frames.

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS384

8911CH12.qxd 9/24/07 2:32 PM Page 384

■Note You can use the more feature-rich navigation controls to provide website navigation. Creating your
own custom controls gives you a simple, more flexible, but less powerful approach to providing navigation.
You might use custom controls rather than a whole site map for straightforward navigation between a few
pages.

The following sample defines a simple control that presents an attractively formatted list
of links. Note that the style attribute of the <div> tag (which defines fonts and formatting) has
been omitted for clarity.

<%@ Control Language="C#" AutoEventWireup="true"
CodeFile="LinkMenu.ascx.cs" Inherits="LinkMenu" %>

<div>
Products:

<asp:HyperLink id="lnkBooks" runat="server"
NavigateUrl="MenuHost.aspx?product=Books">Books

</asp:HyperLink>

<asp:HyperLink id="lnkToys" runat="server"
NavigateUrl="MenuHost.aspx?product=Toys">Toys

</asp:HyperLink>

<asp:HyperLink id="lnkSports" runat="server"
NavigateUrl="MenuHost.aspx?product=Sports">Sports

</asp:HyperLink>

<asp:HyperLink id="lnkFurniture" runat="server"
NavigateUrl="MenuHost.aspx?product=Furniture">Furniture

</asp:HyperLink>
</div>

The links don’t actually trigger any server-side code—instead, they render themselves as
ordinary HTML anchor tags with a hard-coded URL.

To test this menu, you can use the following MenuHost.aspx web page. It includes two
controls: the Menu control and a Label control that displays the product query string parame-
ter. Both are positioned using a table.

<%@ Page Language="C#" AutoEventWireup="true"
CodeFile="MenuHost.aspx.cs" Inherits="MenuHost"%>

<%@ Register TagPrefix="apress" TagName="LinkMenu" Src="LinkMenu.ascx" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title>Menu Host</title>
</head>
<body>

<form id="form1" runat="server">

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS 385

8911CH12.qxd 9/24/07 2:32 PM Page 385

http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd
http://www.w3.org/1999/xhtml

<div>
<table>
<tr>
<td><apress:LinkMenu id="Menu1" runat="server" /></td>
<td><asp:Label id="lblSelection" runat="server" /></td>

</tr>
</table>

</div>
</form>

</body>
</html>

When the MenuHost.aspx page loads, it adds the appropriate information to the
lblSelection control:

protected void Page_Load(Object sender, EventArgs e)
{

if (Request.Params["product"] != null)
{

lblSelection.Text = "You chose: ";
lblSelection.Text += Request.Params["product"];

}
}

Figure 12-3 shows the end result. Whenever you click a button, the page is posted back,
and the text is updated.

Figure 12-3. The LinkMenu user control

You could use the LinkMenu control to repeat the same menu on several pages. This is
particularly handy in a situation where you can’t use master pages to standardize layout
(possibly because the pages are too different).

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS386

8911CH12.qxd 9/24/07 2:32 PM Page 386

Integrated User Controls
Integrated user controls interact in one way or another with the web page that hosts them.
When you’re designing these controls, the class-based design tips you learned in Chapter 4
really become useful.

A typical example is a user control that allows some level of configuration through prop-
erties. For instance, you can create a footer that supports two different display formats: long
date and short time. To add a further level of refinement, the Footer user control allows the
web page to specify the appropriate display format using an enumeration.

The first step is to create an enumeration in the custom Footer class. Remember, an enu-
meration is simply a type of constant that is internally stored as an integer but is set in code by
using one of the allowed names you specify. Variables that use the FooterFormat enumeration
can take the value FooterFormat.LongDate or FooterFormat.ShortTime:

public enum FooterFormat
{
LongDate,
ShortTime

}

The next step is to add a property to the Footer class that allows the web page to retrieve
or set the current format applied to the footer. The actual format is stored in a private variable
called _format, which is set to the long date format by default when the control is first created.
(You can accomplish the same effect, in a slightly sloppier way, by using a public member
variable named Format instead of a full property procedure.) If you’re hazy on how property
procedures work, feel free to review the explanation in Chapter 3.

private FooterFormat format = FooterFormat.LongDate;

public FooterFormat Format
{

get { return format; }
set { format = value; }

}

Finally, the UserControl.Load event handler needs to take account of the current footer
state and format the output accordingly. The following is the full Footer class code:

public partial class Footer : System.Web.UI.UserControl
{

public enum FooterFormat
{ LongDate, ShortTime }

private FooterFormat format = FooterFormat.LongDate;
public FooterFormat Format
{

get
{ return format; }
set

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS 387

8911CH12.qxd 9/24/07 2:32 PM Page 387

{ format = value; }
}

protected void Page_Load(Object sender, EventArgs e)
{

lblFooter.Text = "This page was served at ";

if (format == FooterFormat.LongDate)
{

lblFooter.Text += DateTime.Now.ToLongDateString();
}
else if (format == FooterFormat.ShortTime)
{

lblFooter.Text += DateTime.Now.ToShortTimeString();
}

}
}

To test this footer, you need to create a page that modifies the Format property of the
Footer user control. Figure 12-4 shows an example page, which automatically sets the Format
property for the user control to match a radio button selection whenever the page is posted
back.

Figure 12-4. The modified footer

Note that the user control property is modified in the Page.Load event handler, not the
cmdRefresh.Click event handler. The reason is that the Load event occurs before the user con-
trol has been rendered each time the page is created. The Click event occurs after the user
control has been rendered, and though the property change is visible in your code, it doesn’t
affect the user control’s HTML output, which has already been added to the page.

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS388

8911CH12.qxd 9/24/07 2:32 PM Page 388

public partial class FooterHost : System.Web.UI.Page
{

protected void Page_Load(Object sender, EventArgs e)
{

if (optLong.Checked)
{

Footer1.Format = Footer.FooterFormat.LongDate;
}
else if (optShort.Checked)
{

Footer1.Format = Footer.FooterFormat.ShortTime;
}
else
{

// The default value in the Footer class will apply.
}

}
}

You can also set the initial appearance of the footer in the control tag:

<apress:Footer Format="ShortTime" id="Footer1" runat="server" />

User Control Events
Another way that communication can occur between a user control and a web page is through
events. With methods and properties, the user control reacts to a change made by the web
page code. With events, the story is reversed: the user control notifies the web page about an
action, and the web page code responds.

Creating a web control that uses events is fairly easy. In the following example, you’ll see a
version of the LinkMenu control that uses events. Instead of navigating directly to the appro-
priate page when the user clicks a button, the control raises an event, which the web page can
choose to handle.

The first step to create this control is to define the events. Remember, to define an event,
you must first choose an event signature. The .NET standard for events specifies that every
event should use two parameters. The first one provides a reference to the control that sent
the event, while the second incorporates any additional information. This additional informa-
tion is wrapped into a custom EventArgs object, which inherits from the System.EventArgs
class. (If your event doesn’t require any additional information, you can just use the prede-
fined EventArgs class, which doesn’t contain any additional data. Many events in ASP.NET,
such as Page.Load or Button.Click, follow this pattern.) You can refer to Chapter 4 for a quick
overview of how to use events in .NET.

The LinkMenu2 control uses a single event, which indicates when a link is clicked:

public partial class LinkMenu2 : System.Web.UI.UserControl
{

public event EventHandler LinkClicked;

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS 389

8911CH12.qxd 9/24/07 2:32 PM Page 389

...
}

This code defines an event named LinkClicked. The LinkClicked event has the signature
specified by the System.EventHandler delegate, which includes two parameters—the event
sender and an ordinary EventArgs object. That means that any event handler you create to
handle the LinkClicked event must look like this:

protected void LinkMenu_LinkClicked(object sender, EventArgs e)
{ ... }

This takes care of defining the event, but what about raising it? This part is easy. To fire the
event, the LinkMenu2 control simply calls the event by name and passes in the two parame-
ters, like this:

// Raise the LinkClicked event, passing a reference to
// the current object (the sender) and an empty EventArgs object.
LinkClicked(this, EventArgs.Empty);

The LinkMenu2 control actually needs a few more changes. The original version used the
HyperLink control. This won’t do, because the HyperLink control doesn’t fire an event when
the link is clicked. Instead, you’ll need to use the LinkButton. The LinkButton fires the Click
event, which the LinkMenu2 control can intercept, and then raises the LinkClicked event to
the web page.

The following is the full user control code:

public partial class LinkMenu2 : System.Web.UI.UserControl
{

public event EventHandler LinkClicked;

protected void lnk_Click(object sender, EventArgs e)
{

// One of the LinkButton controls has been clicked.
// Raise an event to the page.
if (LinkClicked != null)
{

LinkClicked(this, EventArgs.Empty);
}

}
}

Notice that before raising the LinkClicked event, the LinkMenu2 control needs to test the
LickedClick event for a null reference. A null reference exists if no event handlers are attached
to the event. In this case, you shouldn’t try to raise the event, because it would only cause an
error.

You can create a page that uses the LinkMenu2 control and add an event handler. Unfor-
tunately, you won’t be able to connect these event handlers using the Visual Studio Properties
window, because the Properties window won’t show the custom events that the user control
provides. Instead, you’ll need to modify the LinkMenu2 tag directly, as shown here:

<apress:LinkMenu2 id="Menu1" runat="server" OnLinkClicked="LinkClicked" />

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS390

8911CH12.qxd 9/24/07 2:32 PM Page 390

and here’s the event handler that responds in the web page:

protected void LinkClicked(object sender, EventArgs e)
{

lblClick.Text = "Click detected.";
}

Figure 12-5 shows the result.

Figure 12-5. Using the LinkMenu2 user control

Conceptually, this approach should give your web page more power to customize how the
user control works. Unfortunately, that’s not the case at the moment, because a key piece of
information is missing. When the LinkClicked event occurs, the web page has no way of know-
ing what link was clicked, which prevents it from taking any kind of reasonable action. The
only way to solve this problem is to create a more intelligent event that can transmit some
information through event arguments. You’ll see how in the next section.

Passing Information with Events
In the current LinkMenu2 example no custom information is passed along with the event. In
many cases, however, you want to convey additional information that relates to the event. To
do so, you need to create a custom class that derives from EventArgs.

The LinkClickedEventArgs class that follows allows the LinkMenu2 user control to pass
the URL that the user selected through a Url property. It also provides a Cancel property. If set
to true, the user control will stop its processing immediately. But if Cancel remains false (the
default), the user control will send the user to the new page. This way, the user control still
handles the task of redirecting the user, but it allows the web page to plug into this process
and change it or stop it (for example, if there’s unfinished work left on the current page).

public class LinkClickedEventArgs : EventArgs
{

private string url;
public string Url
{

get { return url; }

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS 391

8911CH12.qxd 9/24/07 2:32 PM Page 391

set { url = value; }
}

private bool cancel = false;
public bool Cancel
{

get { return cancel; }
set { cancel = value; }

}

public LinkClickedEventArgs(string url)
{

Url = url;
}

}

To use this EventArgs class, you need to create a new delegate that represents the
LinkClicked event signature. Here’s what it looks like:

public delegate void LinkClickedEventHandler(object sender,
LinkClickedEventArgs e);

Both the LinkClickedEventArgs class and the LinkClickedEventHandler delegate should
be placed in the App_Code directory. That way, these classes will be compiled automatically
and made available to all web pages.

Now you can modify the LinkClicked event to use the LinkClickedEventHandler delegate:

public event LinkClickedEventHandler LinkClicked;

Next, your user control code for raising the event needs to submit the required informa-
tion when calling the event. But how does the user control determine what link was clicked?
The trick is to switch from the LinkButton.Click event to the LinkButton.Command event. The
Command event automatically gets the CommandArgument that’s defined in the tag. So if you
define your LinkButton controls like this:

<asp:LinkButton ID="lnkBooks" runat="server"
CommandArgument="Menu2Host.aspx?product=Books" OnCommand="lnk_Command">Books

</asp:LinkButton>

<asp:LinkButton ID="lnkToys" runat="server"
CommandArgument="Menu2Host.aspx?product=Toys" OnCommand="lnk_Command">Toys

</asp:LinkButton>

<asp:LinkButton ID="lnkSports" runat="server"
CommandArgument="Menu2Host.aspx?product=Sports" OnCommand="lnk_Command">Sports

</asp:LinkButton>

<asp:LinkButton ID="lnkFurniture" runat="server"
CommandArgument="Menu2Host.aspx?product=Furniture" OnCommand="lnk_Command">

Furniture</asp:LinkButton>

you can pass the link along to the web page like this:

LinkClickedEventArgs args = new LinkClickedEventArgs((string)e.CommandArgument);
LinkClicked(this, args);

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS392

8911CH12.qxd 9/24/07 2:32 PM Page 392

Here’s the complete user control code. It implements one more feature. After the event
has been raised and handled by the web page, the LinkMenu2 checks the Cancel property. If
it’s false, it goes ahead and performs the redirect using Reponse.Redirect().

public partial class LinkMenu2 : System.Web.UI.UserControl
{

public event LinkClickedEventHandler LinkClicked;

protected void lnk_Command(object sender, CommandEventArgs e)
{

// One of the LinkButton controls has been clicked.
// Raise an event to the page.
if (LinkClicked != null)
{

// Pass along the link information.
LinkClickedEventArgs args =
new LinkClickedEventArgs((string)e.CommandArgument);

LinkClicked(this, args);

// Perform the redirect.
if (!args.Cancel)
{

// Notice we use the Url from the LinkClickedEventArgs
// object, not the original link. That means the web page
// can change the link if desired before the redirect.
Response.Redirect(args.Url);

}
}

}
}

Finally, you need to update the code in the web page (where the user control is placed) so
that its event handler uses the new signature. In the following code, the LinkClicked event
handler checks the URL and allows it in all cases except one:

protected void LinkClicked(object sender, LinkClickedEventArgs e)
{

if (e.Url == "Menu2Host.aspx?product=Furniture")
{

lblClick.Text = "This link is not allowed.";
e.Cancel = true;

}
else
{

// Allow the redirect, and don't make any changes to the URL.
}

}

If you click the Furniture link, you’ll see the message shown in Figure 12-6.

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS 393

8911CH12.qxd 9/24/07 2:32 PM Page 393

Figure 12-6. Handling a user control event in the page

Dynamic Graphics
One of the features of the .NET Framework is GDI+, a set of classes designed for drawing
images. You can use GDI+ in a Windows or an ASP.NET application to create dynamic graph-
ics. In a Windows application, the graphics you draw would be copied to a window for display.
In ASP.NET, the graphics can be rendered right into the HTML stream and sent directly to the
client browser.

In general, using GDI+ code to draw a graphic is slower than using a ready-made image
file. However, GDI+ gives you much more freedom. For example, you can tailor your image to
suit a particular purpose, incorporating information such as the date or current user name.
You can also mingle text, shapes, and other bitmaps to create a complete picture.

Basic Drawing
You need to follow four basic steps when using GDI+. First, you have to create an in-memory
bitmap. This is the drawing space where you’ll create your masterpiece. To create the bitmap,
declare a new instance of the System.Drawing.Bitmap class. You must specify the height and
width of the image in pixels. Be careful—don’t make the bitmap larger than required, or you’ll
needlessly waste memory.

// Create an in-memory bitmap where you will draw the image.
// The Bitmap is 300 pixels wide and 50 pixels high.
Bitmap image = new Bitmap(300, 50);

The next step is to create a GDI+ graphics context for the image, which is represented by a
System.Drawing.Graphics object. This object provides the methods that allow you to render
content to the in-memory bitmap. To create a Graphics object from an existing Bitmap object,
you just use the static Graphics.FromImage() method, as shown here:

Graphics g = Graphics.FromImage(image);

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS394

8911CH12.qxd 9/24/07 2:32 PM Page 394

■Note The Graphics.FromImage() method works with any Image object. Classes such as Bitmap derive
from Image, so they work fine.

Now comes the interesting part. Using the methods of the Graphics class, you can draw
text, shapes, and images on the bitmap. Table 12-1 lists some of the most fundamental meth-
ods of the Graphics class. The methods that begin with the word Draw draw outlines, while
the methods that begin with the word Fill draw solid regions. The only exceptions are the
DrawString() method, which draws filled-in text using a font you specify, and the methods for
copying bitmap images, such as DrawIcon() and DrawImage().

Table 12-1. Drawing Methods of the Graphics Class

Method Description

DrawArc() Draws an arc representing a portion of an ellipse
specified by a pair of coordinates, a width, and a
height (or some other combination of information, if
you use one of the overloaded versions of this
method).

DrawBezier() and DrawBeziers() Draws the infamous and attractive Bezier curve,
which is defined by four control points.

DrawClosedCurve() Draws a curve and then closes it off by connecting the
end points.

DrawCurve() Draws a curve (technically, a cardinal spline).

DrawEllipse() Draws an ellipse defined by a bounding rectangle
specified by a pair of coordinates, a height, and a
width.

DrawIcon() and DrawIconUnstreched() Draws the icon represented by an Icon object and
(optionally) stretches it to fit a given rectangle.

DrawImage() and DrawImageUnscaled() Draws the image represented by an Image-derived
object (such as a Bitmap object) and (optionally)
stretches it to fit a given rectangle.

DrawLine() and DrawLines() Draws one or more lines. Each line connects the two
points specified by a coordinate pair.

DrawPie() Draws a “piece of pie” shape defined by an ellipse
specified by a coordinate pair, a width, a height, and
two radial lines.

DrawPolygon() Draws a multisided polygon defined by an array of
points.

DrawRectangle() and DrawRectangles() Draws one or more ordinary rectangles. Each
rectangle is defined by a starting coordinate pair,
a width, and a height.

DrawString() Draws a string of text in a given font.

DrawPath() Draws a more complex shape that’s defined by the
Path object.

Continued

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS 395

8911CH12.qxd 9/24/07 2:32 PM Page 395

Table 12-1. Continued

Method Description

FillClosedCurve() Draws a curve, closes it off by connecting the end
points, and fills it.

FillEllipse() Fills the interior of an ellipse.

FillPie() Fills the interior of a “piece of pie” shape.

FillPolygon() Fills the interior of a polygon.

FillRectangle() and FillRectangles() Fills the interior of one or more rectangles.

DrawPath() Fills the interior of a complex shape that’s defined by
the Path object.

When calling the Graphics class methods, you need to specify several parameters to indi-
cate the pixel coordinates for what you want to draw. For example, when drawing a rectangle,
you need to specify the location of the top-left corner and its width and height. Here’s an
example of how you might draw a solid rectangle in yellow:

// Draw a rectangle starting at location (0, 0)
// that is 300 pixels wide and 50 pixels high.
g.FillRectangle(Brushes.Yellow, 0, 0, 300, 50);

When measuring pixels, the point (0, 0) is the top-left corner of your image in (x, y) coor-
dinates. The x coordinate increases as you go farther to the right, and the y coordinate
increases as you go farther down. In the current example, the image is 300 pixels wide and
50 pixels high, which means the point (299, 49) is the bottom-right corner.

■Note This code performs its drawing on the in-memory Bitmap object created earlier. Until this image is
rendered (a skill you’ll pick up shortly), you won’t actually see anything on the web page.

You’ll also notice that you need to specify either a Brush or a Pen object when you draw
most content. (Both of these classes are defined in the System.Drawing namespace, alongside
the Graphics class.) Methods that draw shape outlines require a Pen, while methods that draw
filled-in shapes require a Brush. You can create your own custom Pen and Brush objects, but
.NET provides an easier solution with the Brushes and Pens classes. These classes expose
static properties that provide various Brushes and Pens for different colors. For example,
Brushes.Yellow returns a Brush object that fills shapes using a solid yellow color.

Once the image is complete, you can send it to the browser using the Image.Save()
method. Conceptually, you “save” the image to the browser’s response stream. It then gets
sent to the client and displayed in the browser.

// Render the image to the HTML output stream.
image.Save(Response.OutputStream,
System.Drawing.Imaging.ImageFormat.Gif);

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS396

8911CH12.qxd 9/24/07 2:32 PM Page 396

■Tip You can save an image to any valid stream, including the FileStream class described in Chapter 18.
This technique allows you to save dynamically generated images to disk so you can use them later in other
web pages.

Finally, you should explicitly release your image and graphics context when you’re fin-
ished, because both hold onto some unmanaged resources that might not be released right
away if you don’t:

g.Dispose();
image.Dispose();

Using GDI+ is a specialized technique, and its more advanced features are beyond the
scope of this book. However, you can learn a lot by considering a couple of straightforward
examples.

Drawing a Custom Image
Using the techniques you’ve learned, it’s easy to create a simple web page that uses GDI+. The
next example uses GDI+ to render some text in a bordered rectangle with a happy-face graphic
next to it.

Here’s the code you’ll need:

protected void Page_Load(Object sender, EventArgs e)
{

// Create an in-memory bitmap where you will draw the image.
// The Bitmap is 300 pixels wide and 50 pixels high.
Bitmap image = new Bitmap(300, 50);

// Get the graphics context for the bitmap.
Graphics g = Graphics.FromImage(image);

// Draw a solid yellow rectangle with a red border.
g.FillRectangle(Brushes.LightYellow, 0, 0, 300, 50);
g.DrawRectangle(Pens.Red, 0, 0, 299, 49);

// Draw some text using a fancy font.
Font font = new Font("Alba Super", 20, FontStyle.Regular);
g.DrawString("This is a test.", font, Brushes.Blue, 10, 0);

// Copy a smaller gif into the image from a file.
System.Drawing.Image icon = Image.FromFile(Server.MapPath("smiley.gif"));
g.DrawImageUnscaled(icon, 240, 0);

// Render the entire bitmap to the HTML output stream.
image.Save(Response.OutputStream,
System.Drawing.Imaging.ImageFormat.Gif);

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS 397

8911CH12.qxd 9/24/07 2:32 PM Page 397

// Clean up.
g.Dispose();
image.Dispose();

}

This code is easy to understand. It follows the basic pattern set out earlier—it creates the
in-memory Bitmap, gets the corresponding Graphics object, performs the painting, and then
saves the image to the response stream. This example uses the FillRectangle(), DrawRectangle(),
DrawString(), and DrawImageUnscaled() methods to create the complete drawing shown in
Figure 12-7.

■Tip Because this image is generated on the web server, you can use any font that is installed on the
server. The client doesn’t need to have the same font, because the client receives the text as a rendered
image.

Figure 12-7. Drawing a custom image

Placing Custom Images Inside Web Pages
The Image.Save() approach demonstrated so far has one problem. When you save an image to
the response stream, you overwrite whatever information ASP.NET would otherwise use. If
you have a web page that includes other content and controls, this content won’t appear at all
in the final web page. Instead, the dynamically rendered graphics replace it.

Fortunately, this has a simple solution: you can link to a dynamically generated image
using the HTML tag or the Image web control. But instead of linking your image to a
fixed image file, link it to the .aspx file that generates the picture.

For example, you could create a file named GraphicalText.aspx that writes a dynamically
generated image to the response stream. In another page, you could show the dynamic image
by adding an Image web control and setting the ImageUrl property to GraphicalText.aspx. In
fact, you’ll even see the image appear in Visual Studio’s design-time environment before you
run the web page!

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS398

8911CH12.qxd 9/24/07 2:32 PM Page 398

When you use this technique to embed dynamic graphics in web pages, you also need to
think about how the web page can send information to the dynamic graphic. For example,
what if you don’t want to show a fixed piece of text, but instead you want to generate a
dynamic label that incorporates the name of the current user? (In fact, if you do want to show
a fixed piece of text, it’s probably better to create the graphic ahead of time and store it in a
file, rather than generating it using GDI+ code each time the user requests the page.) One
solution is to pass the information using the query string, as described in Chapter 7. The page
that renders the graphic can then check for the query string information it needs.

Here’s how you’d rewrite the dynamic graphic generator with this in mind:

// Get the user name.
if (Request.QueryString["Name"] == null)
{

// No name was supplied.
// Don't display anything.

}
else
{

string name = Request.QueryString["Name"];

// Create an in-memory bitmap where you will draw the image.
Bitmap image = new Bitmap(300, 50);

// Get the graphics context for the bitmap.
Graphics g = Graphics.FromImage(image);

g.FillRectangle(Brushes.LightYellow, 0, 0, 300, 50);
g.DrawRectangle(Pens.Red, 0, 0, 299, 49);

// Draw some text based on the query string.
Font font = new Font("Alba Super", 20, FontStyle.Regular);
g.DrawString(name, font, Brushes.Blue, 10, 0);

// Render the entire bitmap to the HTML output stream.
image.Save(Response.OutputStream,
System.Drawing.Imaging.ImageFormat.Gif);

g.Dispose();
image.Dispose();

}

Conceptually, this code isn’t much different than the examples you’ve seen before. The
only change is that one piece of information—the string that’s used with the DrawString()
method—is retrieved from the query string.

Figure 12-8 shows a page that uses this dynamic graphic page, along with two Label
controls. The page passes the query string argument Joe Brown to the page. The full
Image.ImageUrl thus becomes GraphicalText.aspx?Name=Joe%20Brown, as shown here:

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS 399

8911CH12.qxd 9/24/07 2:32 PM Page 399

<asp:Label id="Label1" runat="server">Here is some content.</asp:Label>

<asp:Image id="Image1" runat="server"
ImageUrl="GraphicalText2.aspx?Name=Joe%20Brown"></asp:Image>

<asp:Label id="Label2" runat="server">Here is some more content.</asp:Label>

Figure 12-8. Mingling custom images and controls on the same page

It’s possible that you might need to send more information or more complex information
to the page that draws the image. For example, you might want to pass a data object to a page
that draws a pie chart. In this case, the query string isn’t good enough, and you’ll need to use a
different type of state management. One option is session state, as described in Chapter 8.

Image Format and Quality
When you render an image, you can also choose the format you want to use. JPEG offers the
best color support and graphics, although it uses compression that can lose detail and make
text look fuzzy. GIF (the standard used in the examples so far) is often a better choice for
graphics containing text, but it doesn’t offer good support for color. In .NET, every GIF uses a
fixed palette with 256 generic colors. If you use a color that doesn’t map to one of these pre-
sets, the color will be dithered, leading to a less-than-optimal graphic.

However, the best format choice is PNG. PNG is an all-purpose format that always pro-
vides high quality by combining the lossless compression of GIFs with the rich color support
of JPEGs. Unfortunately, browsers such as Internet Explorer often don’t handle it correctly
when you return PNG content directly from a page. Instead of seeing the picture content,
you’ll receive a message prompting you to download the picture content and open it in
another program. To sidestep this problem, you need to use the tag approach shown
in the previous example.

You need to be aware of two more quirks when using PNG. First, some older browsers
(including Netscape 4.x) don’t support PNG. Second, you can’t use the Bitmap.Save() method
shown in earlier examples. If you do, an error will occur. (Technically, the problem is the
Save() method requires a seekable stream—a stream where the position can be changed at
will. That’s because .NET needs to be able to move back and forth through the picture content
while it’s being generated.)

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS400

8911CH12.qxd 9/24/07 2:32 PM Page 400

The solution is easy to implement, if a little awkward. Instead of saving directly to
Response.OutputStream, you can create a System.IO.MemoryStream object, which represents
an in-memory buffer of data. The MemoryStream is always seekable, so you can save the
image to this object. Once you’ve performed this step, you can easily copy the data from the
MemoryStream to the Response.OutputStream. The only disadvantage is that this technique
requires more memory because the complete rendered content of the graphic needs to be
held in memory at once. However, the graphics you use in web pages generally aren’t that
large, so you probably won’t observe any reduction in performance.

To implement this solution, start by importing the System.IO namespace:

using System.IO;

Now you can replace the previous example with this modified code that saves the image
in PNG format. The changed lines are highlighted.

// Get the user name.
if (Request.QueryString["Name"] == null)
{

// No name was supplied.
// Don't display anything.

}
else
{

string name = Request.QueryString["Name"];

// Create an in-memory bitmap where you will draw the image.
Bitmap image = new Bitmap(300, 50);

// Get the graphics context for the bitmap.
Graphics g = Graphics.FromImage(image);

g.FillRectangle(Brushes.LightYellow, 0, 0, 300, 50);
g.DrawRectangle(Pens.Red, 0, 0, 299, 49);

// Draw some text based on the query string.
Font font = new Font("Alba Super", 20, FontStyle.Regular);
g.DrawString(name, font, Brushes.Blue, 10, 0);

Response.ContentType = "image/png";

// Create the PNG in memory.
MemoryStream mem = new MemoryStream();
image.Save(mem, System.Drawing.Imaging.ImageFormat.Png);

// Write the MemoryStream data to the output stream.
mem.WriteTo(Response.OutputStream);

g.Dispose();
image.Dispose();

}

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS 401

8911CH12.qxd 9/24/07 2:32 PM Page 401

■Note You’ll learn more about streams when you tackle file access in Chapter 18.

Quality isn’t just determined by the image format. It also depends on the way you
draw the image content onto the in-memory bitmap. GDI+ allows you to choose between
optimizing your drawing code for appearance or speed. When you choose to optimize for the
best appearance, .NET uses extra rendering techniques such as antialiasing to improve the
drawing.

Antialiasing smooths jagged edges in shapes and text. It works by adding shading at the
border of an edge. For example, gray shading might be added to the edge of a black curve to
make a corner look smoother. Technically, antialiasing blends a curve with its background.
Figure 12-9 shows a close-up of an antialiased ellipse.

Figure 12-9. Antialiasing with an ellipse

To use smoothing in your applications, you set the SmoothingMode property of the
Graphics object. You can choose between None, HighSpeed (the default), AntiAlias, and
HighQuality (which is similar to AntiAlias but uses other, slower optimizations that improve
the display on LCD screens). The Graphics.SmoothingMode property is one of the few stateful
Graphics class members. This means you set it before you begin drawing, and it applies to any
text or shapes you draw in the rest of the paint session (until the Graphics object is released).

g.SmoothingMode = Drawing.Drawing2D.SmoothingMode.AntiAlias;

■Tip Antialiasing makes the most difference when you’re displaying curves. That means it will dramatically
improve the appearance of ellipses, circles, and arcs, but it won’t make any difference with straight lines,
squares, and rectangles.

You can also use antialiasing with fonts to soften jagged edges on text. You can set the
Graphics.TextRenderingHint property to ensure optimized text. You can choose between
SingleBitPerPixelGridFit (fastest performance and lowest quality), AntiAliasGridFit (better
quality but slower performance), and ClearTypeGridFit (the best quality on an LCD display).
Or you can use the SystemDefault value to apply whatever font-smoothing settings the user
has configured. SystemDefault is the default setting, and the default system settings for most
computers enable text antialiasing. Even if you don’t set this, your dynamically rendered text

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS402

8911CH12.qxd 9/24/07 2:32 PM Page 402

will probably be drawn in high quality. However, because you can’t necessarily control the sys-
tem settings of the web server, it’s a good practice to specify this setting explicitly if you need
to draw text in an image.

The Last Word
In this chapter, you put two more tools in your ASP.NET toolkit. First, you saw how user con-
trols allow you to reuse a block of user interface in more than one web page. Next, you
considered how custom drawing allows you to create made-to-measure graphics.

In the following chapter, you’ll learn about themes and master pages—two features that
complement user controls and give you even more ways to standardize the look and feel of
your web pages. Themes are more fine-grained than user controls—they group together for-
matting presets that you can apply to individual controls to ensure a slick, consistent style
throughout your application. Master pages are broader than user controls—they allow you
to define a standardized page template that you can apply to lock down the appearance and
layout of multiple pages, giving you complete consistency. Learning how to mix all these
ingredients is part of the fine art of ASP.NET programming.

CHAPTER 12 ■ USER CONTROLS AND GRAPHICS 403

8911CH12.qxd 9/24/07 2:32 PM Page 403

8911CH12.qxd 9/24/07 2:32 PM Page 404

Styles, Themes, and
Master Pages

Using the techniques you’ve learned so far, you can create polished web pages and let users
surf from one page to another. However, to integrate your web pages into a unified, consistent
website, you need a few more tools. In this chapter, you’ll consider three of the most impor-
tant tools that you can use: styles, themes, and master pages.

Styles are part of the Cascading Style Sheet (CSS) standard. They aren’t directly tied to
ASP.NET, but they’re still a great help in applying consistent formatting across your entire
website. With styles, you can define a set of formatting options once, and reuse it to format
different elements on multiple pages. You can even create styles that apply their magic
automatically—for example, styles that change the font of all the text in your website without
requiring you to modify any of the web page code. Best of all, once you’ve standardized on a
specific set of styles and applied them to multiple pages, you can give your entire website a
face-lift just by editing your style sheet.

Styles are genuinely useful, but there are some things they just can’t do. Because styles are
based on the HTML standard, they have no understanding of ASP.NET concepts like control
properties. To fill the gap, ASP.NET includes a themes feature, which plays a similar role to
styles but works exclusively with server controls. Much as you use styles to automatically set
the formatting characteristics of HTML elements, you use themes to automatically set the
properties of ASP.NET controls.

Another feature for standardizing websites is master pages. Essentially, a master page is
a blueprint for part of your website. Using a master page, you can define web page layout,
complete with all the usual details such as headers, menu bars, and ad banners. Once you’ve
perfected a master page, you can use it to create content pages. Each content page automati-
cally acquires the layout and the content of the linked master page.

By using styles, themes, and master pages, you can ensure that all the pages on your web-
site share a standardized look and layout. In many cases, these details are the difference
between an average website and one that looks truly professional.

Styles
In the early days of the Internet, website designers used the formatting features of HTML to
decorate these pages. These formatting features were limited, inconsistent, and sometimes
poorly supported. Worst of all, HTML formatting led to horribly messy markup, with format-
ting details littered everywhere. 405

C H A P T E R 1 3

8911CH13.qxd 10/16/07 5:36 PM Page 405

The solution is the CSS standard, which is supported in all modern browsers. Essentially,
CSS gives you a wide range of consistent formatting properties that you can apply to any
HTML element. Styles allow you to add borders, set font details, change colors, add margin
space and padding, and so on. Many of the examples you’ve seen so far have in this book have
used CSS formatting.

In the following sections, you’ll learn the basics of the CSS standard. You’ll see how web
controls use CSS to apply their formatting, and you’ll learn how you can explicitly use styles in
your ASP.NET web pages.

Style Types
Web pages can use styles in three different ways:

• Inline style: An inline style is a style that’s placed directly inside an HTML tag. This can
get messy, but it’s a reasonable approach for one-time formatting. You can remove the
style and put it in a style sheet later.

• Internal style sheet: An internal style sheet is a collection of styles that are placed in the
<head> section of your web page markup. You can then use the styles from this style
sheet to format the web controls on that page. By using an internal style sheet, you get
a clear separation between formatting (your styles) and your content (the rest of your
HTML markup). You can also reuse the same style for multiple elements.

• External style sheet: An external style sheet is similar to an internal style sheet, except
it’s placed in a completely separate file. This is the most powerful approach, because it
gives you a way to apply the same style rules to many pages.

You can use all types of styles with ASP.NET web pages. You’ll see how in the following
sections.

Creating a Basic Inline Style
To apply a style to an ordinary HTML element, you set the style attribute. Here’s an example
that gives a blue background to a paragraph:

<p style="background: Blue">This text has a blue background.</p>

Every style consists of a list of one or more formatting properties. In the preceding exam-
ple, the style has a single formatting property, named background, which is set to the value
Blue. To add multiple style properties, you simply separate them with semicolons, as shown
here:

<p style="color:White; background:Blue; font-size:x-large; padding:10px">
This text has a blue background.</p>

This style creates large white text with a blue background and 10 pixels of spacing
between the edge of the element (the blue box) and the text content inside.

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES406

8911CH13.qxd 10/16/07 5:36 PM Page 406

■Note The full list of formatting properties is beyond the scope of this book (although you can get all the
details at www.w3schools.com/css). However, you’ll soon see that Visual Studio includes tools that can
help you build the styles you want, so you don’t need to remember style property names or write styles
by hand.

You can use the same approach to apply formatting to a web control using a style. How-
ever, you don’t need to, because web controls provide formatting properties. For example, if
you create a Label control like this:

<asp:Label ID="MyLabel" runat="server" ForeColor="White" BackColor="Blue"
Font-Size="X-Large">Formatted Text</asp:Label>

it’s actually rendered into this HTML, which uses an inline style:

<span id="MyLabel"
style="color:White; background-color:Blue; font-size:X-Large">
Formatted Text

Incidentally, if you specify a theme and set formatting properties that overlap with your
style, the properties have the final say.

The Style Builder
Visual Studio provides an indispensable style builder that lets you create styles by picking and
choosing your style preferences in a dedicated dialog box. To try it out, begin by creating a new
page in Visual Studio. Then drop a few controls onto your page (for example, a label, text box,
and button).

Every new page starts with an empty <div> element. This <div> is simply a content
container—by default, it doesn’t have any appearance. However, by applying style settings to
the <div>, you can create a bordered content region, and you can change the font and colors
of the content inside. In this example, you’ll see how to use Visual Studio to build a style for
the <div> element.

■Note CSS supports a feature it calls inheritance. With inheritance, some formatting properties (such as
the font family) are passed down from a parent element to other nested elements. In other words, if you set
the font family for a <div> element, all the elements inside will inherit the same font (unless they explicitly
specify otherwise). Other properties, like margin and padding settings, don’t use inheritance. To learn more
about this behavior and the specific properties that use inheritance, you can experiment on your own, con-
sult a dedicated book such as Eric Meyer’s CSS: The Definitive Guide (O’Reilly, 2006), or use the tutorials at
www.w3schools.com/css.

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES 407

8911CH13.qxd 10/16/07 5:36 PM Page 407

http://www.w3schools.com/css
http://www.w3schools.com/css

Before formatting the page, make sure all your controls are nested inside the <div>
element. Your markup should look something like this:

<div>
<asp:Label ID="Label1" runat="server">Type something here:
</asp:Label>
<asp:TextBox ID="TextBox1" runat="server">
</asp:TextBox>

<asp:Button ID="Button1" runat="server" Text="Button">
</asp:Button>

</div>

In the design window, click somewhere inside the <div> (but not on another control).
You’ll know you’re in the right spot when a border appears around your controls, showing you
the outline of the <div>, as shown in Figure 13-1.

Figure 13-1. Adding a style to a <div>

Next, choose Format ➤ New Style from the menu. This opens the New Style dialog box
shown in Figure 13-2. In the Selector box at the top of the window, choose Inline Style to spec-
ify that you’re creating your style directly in the HTML markup.

To specify style settings, you first need to choose one of the categories in the Category list.
For example, if you choose Font you’ll see a list of font-related formatting settings, such as
font family, font size, text color, and so on. You can apply settings from as many different cate-
gories as you want. Table 13-1 provides a brief explanation for each category.

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES408

8911CH13.qxd 10/16/07 5:36 PM Page 408

Figure 13-2. Creating an inline style

Table 13-1. Style Settings in the New Style Dialog Box

Category Description

Font Allows you to choose the font family, font size, and text color, and apply other font
characteristics (like italics and bold).

Block Allows you to fine-tune additional text settings, such as the height of lines in a
paragraph, the way text is aligned, the amount of indent in the first list, and the
amount of spacing between letters and words.

Background Allows you to set a background color or image.

Border Allows you to define borders on one or more edges of the element. You can specify
the border style, thickness, and color of each edge.

Box Allows you to define the margin (the space between the edges of the element and
its container) and the padding (the space between the edges of the element and its
nested content inside).

Position Allows you to set a fixed width and height for your element, and use absolute
positioning to place your element at a specific position on the page. Use these
settings with care. When you make your element a fixed size, there’s a danger that
the content inside can become too big (in which case it leaks out the bottom or
the side). When you position your element using absolute coordinates, there’s a
chance that it can overlap another element.

Continued

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES 409

8911CH13.qxd 10/16/07 5:36 PM Page 409

Table 13-1. Continued

Category Description

Layout Allows you to control a variety of miscellaneous layout settings. You can specify
whether an element is visible or hidden, whether it floats at the side of the page,
and what cursor appears when the user moves the mouse overtop, among other
settings.

List If you’re configuring a list (a or element), you can set the numbering or
bullet style. These settings aren’t commonly used in ASP.NET web pages, because
you’re more likely to use ASP.NET list controls like the BulletedList.

Table Allows you to set details that only apply to table elements (such as <tr> and <td>).
For example, you can control whether borders appear around an empty cell.

■Note Remember, you can build a style for any HTML element, not just the <div> element. You’ll always
get exactly the same New Style dialog box with the same formatting options.

As you make your selections, Visual Studio shows what your style will look like when
applied to some sample text (in the Preview box) and the markup that’s needed to define your
style (in the Description) box. Figure 13-3 shows the New Style dialog box after formatting the
<div> into a nicely shaded and bordered box. In the Category list, all the categories with for-
matting settings are highlighted in bold.

Figure 13-3. Building a styled division

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES410

8911CH13.qxd 10/16/07 5:36 PM Page 410

When you click OK, Visual Studio will add the style information to your element. Here’s
the markup for the formatted <div> box:

<div style="border-style: solid; border-color: inherit; border-width: 1px;
padding: 5px; font-size: smaller; font-family: Verdana;
background-color: #ffffcc">

<asp:Label ID="Label1" runat="server">Type something here:
</asp:Label>
<asp:TextBox ID="TextBox1" runat="server">
</asp:TextBox>

<asp:Button ID="Button1" runat="server" Text="Button">
</asp:Button>

</div>

Figure 13-4 shows the final result—a shaded yellow box with a bit of padding and a differ-
ent font.

Figure 13-4. Using a styled division

■Tip Be careful you don’t give your <div> a fixed size. Ordinarily, the <div> container expands to fit its
content. However, if you drag its border in Visual Studio to make the <div> larger, you’ll actually end up
creating a hard-coded width and height, which are set in the style attribute. The end result is that your
<div> container can’t expand if its content expands or the web browser window changes size. As a result,
your content will leak out of the box.

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES 411

8911CH13.qxd 10/16/07 5:36 PM Page 411

The CSS Properties Window
Once you’ve created a style, you have two easy options for modifying it in Visual Studio. Both
revolve around the CSS Properties window, which allows you to dissect the formatting details
of any style.

To show the CSS Properties window, open a web page in Visual Studio and choose View ➤
CSS Properties. The CSS Properties window is usually grouped with the Toolbox and Server
Explorer windows at the left of the Visual Studio window.

Now that the CSS Properties window is visible, you can use it to view one of your styles.
First, find the element or web control that uses the style attribute. Then, click to select it (in
design view) or click somewhere in the element’s start tag (in source view). Either way, the
style information for that element will appear in the CSS Properties window. For example,
Figure 13-5 shows what you’ll see for the <div> element that was formatted in the previous
section.

Figure 13-5. The CSS Properties window (on the left)

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES412

8911CH13.qxd 10/16/07 5:36 PM Page 412

The CSS Properties window provides an exhaustive list of all the formatting properties
you can use in a style. This list is grouped into categories, and the properties in each category
are sorted alphabetically. The ones that are currently set are displayed in bold.

You can use the CSS Properties window to modify existing style properties or set new
ones, in the same way that you modify the properties for web controls using the Properties
window. For example, in Figure 13-5 the font size is being changed.

Depending on your personal taste, you may find that the CSS Properties window is more
convenient than the style builder because it gives you access to every style property at once.
Or, you may prefer the more organized views in the style builder. (Your preference might also
depend on how much screen real estate you have to devote to the CSS Properties window.) If
you decide that you want to return to the style builder to change a style, the process is fairly
straightforward. First, select the element that has the inline style. Next, look at the Applied
Rules list at the top of the CSS Properties window, which should show the text < inline style >.
Right-click that text and choose Modify Style to open the Modify Style dialog box, which looks
identical to the New Style dialog box you considered earlier.

■Note You can’t use the CSS Properties window to create a style. If you select an element that doesn’t
have a style applied, you won’t see anything in the CSS Properties window (unless you select an element
that’s inside another element, and the containing element uses a style).

Style Inheritance
The CSS Properties window is actually a bit more sophisticated than the current discussion
has let on. Not only does it show the style for the current element, it also shows any styles that
are applied to containing elements. For example, if you look at an element inside the format-
ted <div>, you’ll see the style that’s applied to the <div>. If more than one style is at work (for
example, the <div> is contained in another formatted <div>, or you’ve added a style to the
<body> element), you’ll see all of these styles in the list, with the most general at the top and
the most specific at the bottom. You can select the style you want in the list to modify it.

The CSS Properties shows the styles of nested elements because certain style properties
are passed down the element tree through inheritance, such as font settings. Other style prop-
erties can indirectly affect a nested element—for example, background colors aren’t inherited
but because element backgrounds are blank by default, the background of the containing ele-
ment will show through. It’s easy to see this behavior in action—for example, the font and
background properties that were applied to the <div> element in the previous example affect
the formatting of the elements inside.

When displaying inherited styles, the CSS Properties window will sometimes draw a red
line through a property name. It does this if the property is set in the parent element but
doesn’t apply to the nested element. For example, the nested element may override it with its
own style, or the property may not be inherited. Figure 13-6 shows an example with a styled
<p> paragraph inside a styled <div>. The style that’s inherited from the <div> defines the font-
family property (which is inherited), the font-size property (which is inherited but overridden,
and is crossed out), and various border properties (which are not inherited, and so are also
crossed out).

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES 413

8911CH13.qxd 10/16/07 5:36 PM Page 413

Figure 13-6. Inherited and overridden style properties

Creating a Style Sheet
To really get the value out of CSS, you need to create a style sheet. To create a style sheet in
Visual Studio, choose Website ➤ Add New Item from the Visual Studio menu. Then, pick the
Style Sheet template, specify a file name (like StyleSheet.css), and click Add.

In a style sheet, you define several styles (also known as rules). You can then use these
rules to format ordinary HTML and ASP.NET controls. Each rule defines a collection of format-
ting presets that determines how a single ingredient in your web page should be formatted.

For example, if you want to define a rule for formatting headings, you start by defining a
rule with a descriptive name, like this:

.heading1
{
}

Each rule name has two parts. The portion before the period indicates the HTML element
to which the rule applies. In this example, nothing appears before the period, which means
the rule can apply to any tag. The portion after the period is a unique name (called the CSS
class name) that you choose to identify your rule. CSS class names are case sensitive.

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES414

8911CH13.qxd 10/16/07 5:36 PM Page 414

Once you’ve defined a rule, you can add the appropriate formatting information. Here’s
an example the sets the heading1 style to a large sans-serif font with a green foreground color.
The font is set to Verdana (if it’s available), or Arial (if it’s not), or the browser’s default sans-
serif typeface (if neither Verdana nor Arial is installed).

.heading1
{

font-weight: bold;
font-size: large;
color: limegreen;
font-family: Verdana, Arial, Sans-Serif;

}

As you can see, the syntax for defining a style in a style sheet is exactly the same as it is for
defining an internal style (not including the rule name and curly braces). By convention, each
formatting option in a style is placed on a separate line, but this detail is optional.

You can also create rules that are applied to HTML tags automatically. To do this, specify
the tag name for the rule name. Here’s a rule that affects all <h2> tags on the page that uses the
style sheet:

h2
{ ... }

If you want to apply formatting that applies to the entire web page, you can create a style
sheet rule for the <body> element:

body
{ ... }

This gives you a good way to set the default font name and font size.
Fortunately, you don’t need to hand-write the rules in your style sheet. Visual Studio

allows you to build named styles in a style sheet using the same style builder you used to cre-
ate inline styles earlier. To use this feature, add a blank style with the right rule name, like this:

.myStyle
{
}

Then, right-click between the two curly braces of an existing style and choose Build Style.
You’ll see the familiar Modify Style dialog box, where you can point and click your way to cus-
tom fonts, borders, backgrounds, and alignment. If you want to create a new style from
scratch, simply right-click an empty region of your style sheet and choose Add Style Rule.

A typical style sheet defines a slew of rules. In fact, style sheets are often used to formally
define the formatting for every significant piece of a website’s user interface. The following
style sheet serves this purpose by defining five rules. The first rule sets the font for the <body>
element, which ensures that the entire page shares a consistent default font. The rest of the
rules are class based, and need to be applied explicitly to the elements that use them. Two
rules define size and color formatting for headings, and the final rule configures the format-
ting that’s needed to create a bordered, shaded box of text.

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES 415

8911CH13.qxd 10/16/07 5:36 PM Page 415

body
{

font-family: Verdana, Arial, Sans-Serif;
font-size: small;

}

.heading1
{

font-weight: bold;
font-size: large;
color: lime;

}

.heading2
{

font-weight: bold;
font-size: medium;
font-style: italic;
color: #C0BA72;

}

.blockText
{

padding: 10px;
background-color: #FFFFD9;
border-style: solid;
border-width: thin;

}

The CSS Outline Window
Visual Studio includes a CSS Outline window that shows you an overview of the rules in your
style sheet. It appears automatically when editing a style sheet, and is grouped with the Tool-
box and Server Explorer window (much like the CSS Properties window you considered
earlier). When you’re editing a style sheet shown earlier, you’ll see the outline shown in
Figure 13-7. It clearly indicates that your style sheet includes one element rule (the one that
formats the body) and three class rules. You can jump immediately to a specific rule by click-
ing it in the CSS Outline window.

Rule names are technically known as selectors, because they identify the parts of an HTML
document that should be selected for formatting. You’ve seen how to write selectors that use
element types, and selectors that use class names. CSS also supports a few more options for
building advanced selectors, which aren’t described in this chapter. For example, you can
create selectors that only apply to a specific element type inside a container (for example,
headings in a specific <div> element). Or, you can create selectors that apply formatting to
individual elements that have a specific ID value. (These appear in the CSS Outline window
under the Element IDs group.) To learn more about CSS, consult a dedicated book such as
CSS: The Definitive Guide.

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES416

8911CH13.qxd 10/16/07 5:36 PM Page 416

Figure 13-7. Navigating a style sheet with the CSS Outline window

Applying Style Sheet Rules
To use a rule in a web page, you first need to link the page to the appropriate style sheet. You
do this by adding a <link> element in the <head> section of your page. The <link> element ref-
erences the file with the styles you want to use. Here’s an example that allows the page to use
styles defined in the file StyleSheet.css, assuming it’s in the same folder as the web page:

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
<title>...</title>
<link href="StyleSheet.css" rel="stylesheet" type="text/css" />

</head>

<body>
...

</body>
</html>

There’s no reason that you need to attach style sheets by hand. An easier option is to drag
your style sheet from the Solution Explorer and drop it onto the design surface of your web
page (not the source view). Visual Studio will insert the <link> element you need automati-
cally.

Once you’ve added the <link> element, your style rules are available to use in your web
page. You can bind any ordinary HTML element or ASP.NET control to your style rules. For
example, if you want an ordinary label to use the heading1 format, set the Label.CssClass
property to heading1, as shown here:

<asp:Label ID="Label1" runat="server" Text="This Label Uses heading1"
CssClass="heading1"></asp:Label>

You can also set the CssClass property from the Properties window, in which case you can
choose from the list of styles that are defined in the linked style sheet.

To apply a style to an ordinary piece of HTML, you set the class attribute. Here’s an exam-
ple that applies a style to a <div> element, which groups together a paragraph of text for easy
formatting:

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES 417

8911CH13.qxd 10/16/07 5:36 PM Page 417

http://www.w3.org/1999/xhtml

<div class="blockText" id="paragraph" runat="server" >
<p>This paragraph uses the blockText style.</p>

</div>

The Apply Styles Window
Once again, you don’t need to edit the markup by hand. You can use Visual Studio’s Apply
Styles window to attach your style to the elements in a web page. To show the Apply Styles
window, open your web page and choose View ➤ Apply Styles. The Apply Styles window
appears on the left with the Toolbox and Server Explorer, just like the other CSS windows
you’ve seen so far.

The Apply Styles window shows a list of all the styles that are available in the attached
style sheets, along with a preview of each one (see Figure 13-8). To apply a style, simply select
an element on your web page and then click the appropriate style in the Apply Styles window.

Figure 13-8. Applying a style with the Apply Styles window

Visual Studio is intelligent enough to figure out the appropriate way to apply a style based
on what you’ve selected in your web page:

• If you select a web control, it adds or changes the CssClass property.

• If you select an ordinary HTML element, it adds or changes the class attribute.

• If you select a section of HTML content, it adds a or <div> element (depending
on the type of content you’ve selected) and then sets its class attribute.

■Tip Click the Options button in the Apply Styles window to tweak the way it works. For example, you can
choose to preview styles in a different order, or include just those styles that are being used in the current
page.

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES418

8911CH13.qxd 10/16/07 5:36 PM Page 418

Once you’ve applied a style, you’ll see the result of the new formatting in the design
window.

Using style sheets accomplishes two things. First, it standardizes your layout so that you
can quickly format pages without introducing minor mistakes or idiosyncrasies. Second, it
separates the formatting information so that it doesn’t appear in your web pages at all, allow-
ing you to modify the format without tracking down each page. And although CSS isn’t a
.NET-centric standard, Visual Studio still provides rich support for it.

Themes
With the convenience of CSS styles, you might wonder why developers need anything more.
The problem is that CSS rules are limited to a fixed set of style attributes. They allow you to
reuse specific formatting details (fonts, borders, foreground and background colors, and so
on), but they obviously can’t control other aspects of ASP.NET controls. For example, the
CheckBoxList control includes properties that control how it organizes items into rows and
columns. Although these properties affect the visual appearance of the control, they’re outside
the scope of CSS, so you need to set them by hand. Additionally, you might want to define part
of the behavior of the control along with the formatting. For example, you might want to stan-
dardize the selection mode of a Calendar control or the wrapping in a TextBox. This obviously
isn’t possible through CSS.

The themes feature fills this gap. Like CSS, themes allow you to define a set of style details
that you can apply to controls in multiple pages. However, with CSS, themes aren’t imple-
mented by the browser. Instead, ASP.NET processes your themes when it creates the page.

■Note Themes don’t replace styles. Instead, they complement each other. Styles are particularly useful
when you want to apply the same formatting to web controls and ordinary HTML elements. Themes are
indispensable when you want to configure control properties that can’t be tailored with CSS.

How Themes Work
All themes are application specific. To use a theme in a web application, you need to create a
folder that defines it. This folder needs to be placed in a folder named App_Themes, which
must be placed inside the top-level directory for your web application. In other words, a web
application named SuperCommerce might have a theme named FunkyTheme in the folder
SuperCommerce\App_Themes\FunkyTheme. An application can contain definitions for mul-
tiple themes, as long as each theme is in a separate folder. Only one theme can be active on a
given page at a time.

To actually make your theme accomplish anything, you need to create at least one skin
file in the theme folder. A skin file is a text file with the .skin extension. ASP.NET never serves
skin files directly—instead, they’re used behind the scenes to define a theme.

A skin file is essentially a list of control tags—with a twist. The control tags in a skin file
don’t need to completely define the control. Instead, they need to set only the properties that
you want to standardize. For example, if you’re trying to apply a consistent color scheme, you

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES 419

8911CH13.qxd 10/16/07 5:36 PM Page 419

might be interested in setting only properties such as ForeColor and BackColor. When you add
a control tag for the ListBox in the skin file, it might look like this:

<asp:ListBox runat="server" ForeColor="White" BackColor="Orange"/>

The runat="server" portion is always required. Everything else is optional. You should
avoid setting the ID attribute in your skin, because the page that contains the ListBox needs to
define a unique name for the control in the actual web page.

It’s up to you whether you create multiple skin files or place all your control tags in a single
skin file. Both approaches are equivalent, because ASP.NET treats all the skin files in a theme
directory as part of the same theme definition. Often, it makes sense to put the control tags for
complex controls (such as the data controls) in separate skin files. Figure 13-9 shows the rela-
tionship between themes and skins in more detail.

Figure 13-9. Themes and skins

ASP.NET also supports global themes. These are themes you place in the c:\Inetpub\
wwwroot\aspnet_client\system_web\v2.0.50727\Themes folder. However, it’s recommended
that you use local themes, even if you want to create more than one website that has the same
theme. Using local themes makes it easier to deploy your web application, and it gives you the
flexibility to introduce site-specific differences in the future.

If you have a local theme with the same name as a global theme, the local theme takes
precedence, and the global theme is ignored. The themes are not merged together.

■Tip ASP.NET doesn’t ship with any predefined themes. This means you’ll need to create your own from
scratch or download sample themes from websites such as www.asp.net.

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES420

8911CH13.qxd 10/16/07 5:36 PM Page 420

http://www.asp.net

Applying a Simple Theme
To add a theme to your project, select Website ➤ Add New Item, and choose Skin File. Visual
Studio will warn you that skin files need to be placed in a subfolder of the App_Themes folder
and ask you whether that’s what you intended. If you choose Yes, Visual Studio will create a
folder with the same name as your theme file. You can then rename the folder and the file to
whatever you’d like to use. Figure 13-10 shows an example with a theme that contains a single
skin file.

Figure 13-10. A theme in the Solution Explorer

Unfortunately, Visual Studio doesn’t include any design-time support for creating themes,
so it’s up to you to copy and paste control tags from other web pages.

Here’s a sample skin that sets background and foreground colors for several common
controls:

<asp:ListBox runat="server" ForeColor="White" BackColor="Orange"/>
<asp:TextBox runat="server" ForeColor="White" BackColor="Orange"/>
<asp:Button runat="server" ForeColor="White" BackColor="Orange"/>

To apply the theme in a web page, you need to set the Theme attribute of the Page direc-
tive to the folder name for your theme. (ASP.NET will automatically scan all the skin files in
that theme.)

<%@ Page Language="C#" AutoEventWireup="true" ... Theme="FunkyTheme" %>

You can make this change by hand, or you can select the DOCUMENT object in the Prop-
erties window at design time and set the Theme property (which provides a handy drop-down
list of all your web application’s themes). Visual Studio will modify the Page directive accord-
ingly.

When you apply a theme to a page, ASP.NET considers each control on your web page and
checks your skin files to see whether they define any properties for that control. If ASP.NET
finds a matching tag in the skin file, the information from the skin file overrides the current
properties of the control.

Figure 13-11 shows the result of applying the FunkyTheme to a simple page. You’ll notice
that conflicting settings (such as the existing background for the list box) are overwritten.
However, changes that don’t conflict (such as the custom font for the buttons) are left in place.

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES 421

8911CH13.qxd 10/16/07 5:36 PM Page 421

Figure 13-11. A simple page before and after theming

■Note This example demonstrates default themes. When you use this approach, your theme settings won’t
appear in the Visual Studio design environment. That means you won’t be able to see the true appearance of
your page until you launch it in your browser. If this poses too much of a problem, consider using the SkinID
property (described later in the “Creating Multiple Skins for the Same Control” section) to explicitly configure
each control. When you use this approach, the themed appearance will appear in Visual Studio.

Handling Theme Conflicts
As you’ve seen, when properties conflict between your controls and your theme, the theme
wins. However, in some cases you might want to change this behavior so that your controls
can fine-tune a theme by specifically overriding certain details. ASP.NET gives you this option,
but it’s an all-or-nothing setting that applies to all the controls on the entire page.

To make this change, just use the StyleSheetTheme attribute instead of the Theme attrib-
ute in the Page directive. (The StyleSheet designation indicates that this setting works more
like CSS.) Here’s an example:

<%@ Page Language="C#" AutoEventWireup="true" ... StyleSheetTheme="FunkyTheme" %>

Now the custom yellow background of the ListBox control takes precedence over the
background color specified by the theme. Figure 13-12 shows the result—and a potential
problem. Because the foreground color has been changed to white, the lettering is now diffi-
cult to read. Overlapping formatting specifications can cause glitches like this, which is why
it’s often better to let your themes take complete control by using the Theme attribute.

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES422

8911CH13.qxd 10/16/07 5:36 PM Page 422

Figure 13-12. Giving the control tag precedence over the theme

■Note It’s possible to use both the Theme attribute and the StyleSheetTheme attribute at the same time
so that some settings are always applied (those in the Theme attribute) and others are applied only if they
aren’t already specified in the control (those in the StyleSheetTheme attribute). However, in practice, this
design is terribly confusing and not recommended.

Another option is to configure specific controls so they opt out of the theming process
entirely. To do this, simply set the EnableTheming property of the control on the web page to
false. ASP.NET will still apply the theme to other controls on the page, but it will skip over the
control you’ve configured.

<asp:Button ID="Button1" runat="server" ... EnableTheming="false" />

APPLYING A THEME TO AN ENTIRE WEBSITE

Using the Page directive, you can bind a theme to a single page. However, you might decide that your theme
is ready to be rolled out for the entire web application. The cleanest way to apply this theme is by configuring
the <pages> element in the web.config file for your application, as shown here:

<configuration>
<system.web>
<pages theme="FunkyTheme">
...

</pages>
</system.web>

</configuration>

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES 423

8911CH13.qxd 10/16/07 5:36 PM Page 423

If you want to use the style sheet behavior so that the theme doesn’t overwrite conflicting control prop-
erties, use the StyleSheetTheme attribute instead of Theme:

<configuration>
<system.web>
<pages styleSheetTheme="FunkyTheme">
...

</pages>
</system.web>

</configuration>

Either way, when you specify a theme in the web.config file, the theme will be applied throughout all the
pages in your website, provided these pages don’t have their own theme settings. If a page specifies the
Theme attribute, the page setting will take precedence over the web.config setting. If your page specifies the
Theme or StyleSheetTheme attribute with a blank string (Theme=""), no theme will be applied at all.

Using this technique, it’s just as easy to apply a theme to part of a web application. For example, you
can create a separate web.config file for each subfolder and use the <pages> setting to configure different
themes.

Creating Multiple Skins for the Same Control
Having each control locked into a single format is great for standardization, but it’s probably
not flexible enough for a real-world application. For example, you might have several types of
text boxes that are distinguished based on where they’re used or what type of data they con-
tain. Labels are even more likely to differ, depending on whether they’re being used for
headings or body text. Fortunately, ASP.NET allows you to create multiple declarations for
the same control.

Ordinarily, if you create more than one theme for the same control, ASP.NET will give
you a build error stating that you can have only a single default skin for each control. To get
around this problem, you need to create a named skin by supplying a SkinID attribute. Here’s
an example:

<asp:ListBox runat="server" ForeColor="White" BackColor="Orange" />
<asp:TextBox runat="server" ForeColor="White" BackColor="Orange" />
<asp:Button runat="server" ForeColor="White" BackColor="Orange" />
<asp:TextBox runat="server" ForeColor="White" BackColor="DarkOrange"
Font-Bold="True" SkinID="Dramatic"/>
<asp:Button runat="server" ForeColor="White" BackColor="DarkOrange"
Font-Bold="True" SkinID="Dramatic"/>

The catch is that named skins aren’t applied automatically like default skins. To use a
named skin, you need to set the SkinID of the control on your web page to match. You can
choose this value from a drop-down list that Visual Studio creates based on all your defined
skin names, or you can type it in by hand:

<asp:Button ID="Button1" runat="server" ... SkinID="Dramatic" />

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES424

8911CH13.qxd 10/16/07 5:36 PM Page 424

If you don’t like the opt-in model for themes, you can make all your skins named. That
way, they’ll never be applied unless you set the control’s SkinID.

ASP.NET is intelligent enough to catch it if you try to use a skin name that doesn’t exist,
in which case you’ll get a build warning. The control will then behave as though you set
EnableTheming to false, which means it will ignore the corresponding default skin.

■Tip The SkinID doesn’t need to be unique. It just has to be unique for each control. For example, imagine
you want to create an alternate set of skinned controls that use a slightly smaller font. These controls match
your overall theme, but they’re useful on pages that display a large amount of information. In this case, you
can create new Button, TextBox, and Label controls, and give each one the same skin name (such as
Smaller).

More Advanced Skins
So far, the theming examples have applied relatively simple properties. However, you could
create much more detailed control tags in your skin file. Most control properties support
theming. If a property can’t be declared in a theme, you’ll receive a build error when you
attempt to launch your application.

For example, many controls support styles that specify a range of formatting information.
The data controls are one example, and the Calendar control provides another. Here’s how you
might define Calendar styles in a skin file to match your theme:

<asp:Calendar runat="server" BackColor="White" ForeColor="Black"
BorderColor="Black" BorderStyle="Solid" CellSpacing="1"
Font-Names="Verdana" Font-Size="9pt" Height="250px" Width="500px"
NextPrevFormat="ShortMonth" SelectionMode="Day">
<SelectedDayStyle BackColor="DarkOrange" ForeColor="White" />
<DayStyle BackColor="Orange" Font-Bold="True" ForeColor="White" />
<NextPrevStyle Font-Bold="True" Font-Size="8pt" ForeColor="White" />
<DayHeaderStyle Font-Bold="True" Font-Size="8pt" ForeColor="#333333"
Height="8pt" />
<TitleStyle BackColor="Firebrick" BorderStyle="None" Font-Bold="True"
Font-Size="12pt" ForeColor="White" Height="12pt" />
<OtherMonthDayStyle BackColor="NavajoWhite" Font-Bold="False"
ForeColor="DarkGray" />

</asp:Calendar>

This skin defines the font, colors, and styles of the Calendar control. It also sets the selec-
tion mode, the formatting of the month navigation links, and the overall size of the calendar.
As a result, all you need to use this formatted calendar is the following streamlined tag:

<asp:Calendar ID="Calendar1" runat="server" />

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES 425

8911CH13.qxd 10/16/07 5:36 PM Page 425

■Caution When you create skins that specify details such as sizing, be careful. When these settings are
applied to a page, they could cause the layout to change with unintended consequences. If you’re in doubt,
set a SkinID so that the skin is applied only if the control specifically opts in.

Another powerful technique is to reuse images by making them part of your theme. For
example, imagine you perfect an image that you want to use for OK buttons throughout your
website, and another one for all Cancel buttons. The first step to implement this design is to
add the images to your theme folder. For the best organization, it makes sense to create one
or more subfolders just for holding images. In this example, the images are stored in a folder
named ButtonImages (see Figure 13-13).

Now, you need to create the skins that use these images. In this case, both of these tags
should be named skins. That’s because you’re defining a specific type of standardized button
that should be available to the page when needed. You aren’t defining a default style that
should apply to all buttons.

Figure 13-13. Adding images to a theme

<asp:ImageButton runat="server" SkinID="OKButton"
ImageUrl="ButtonImages/buttonOK.jpg" />
<asp:ImageButton runat="server" SkinID="CancelButton"
ImageUrl="ButtonImages/buttonCancel.jpg" />

When you add a reference to an image in a skin file, always make sure the image URL is
relative to the theme folder, not the folder where the page is stored. When this theme is
applied to a control, ASP.NET automatically inserts the App_Themes\ThemeName portion at
the beginning of the URL.

Now to apply these images, simply create an ImageButton in your web page that refer-
ences the corresponding skin name:

<asp:ImageButton ID="ImageButton1" runat="server" SkinID="OKButton" />
<asp:ImageButton ID="ImageButton2" runat="server" SkinID="CancelButton" />

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES426

8911CH13.qxd 10/16/07 5:36 PM Page 426

You can use the same technique to create skins for other controls that use images. For
example, you can standardize the node pictures of a TreeView, the bullet image used for the
BulletList control, or the icons used in a GridView.

APPLYING THEMES DYNAMICALLY

In some cases, themes aren’t used to standardize website appearance but to make that appearance config-
urable for each user. All you need to do to implement this design is to simply set the Page.Theme or
Page.StyleSheetTheme property dynamically in your code. For example, set Page.Theme to the string
“FunkyTheme” to apply the theme in the FunkyTheme directory. The only caveat is that you need to complete
this step in the Page.Init event stage. After this point, attempting to set the property causes an exception.
Similarly, you can also set the SkinID property of a control dynamically to attach it to a different named skin.
But be careful—if a theme or skin change leads to a control specifying a skin name that doesn’t exist in the
current theme, an exception will be thrown.

Master Page Basics
The best websites don’t look like a series of web pages—instead, they give the illusion of a
continuously running application. For example, try ordering a book on Amazon. While you
search, click through the links, and then head to your shopping cart, you’ll always see a con-
tinuous user interface with a common header at the top and a set of navigation links on
the left.

Creating something that polished with ASP.NET is possible, but it isn’t as easy as it seems.
For example, what if you want a navigation bar on every web page? Not only do you need to
copy the same user interface markup to each page, you also need to make sure it ends up in
the same place. An offset of a couple of pixels will completely ruin the illusion, making it obvi-
ous that the pages aren’t really integrated. And even if you copy your markup perfectly, you’re
still left with an extremely brittle design. If you decide to update your navigation bar later,
you’ll need to modify every web page to apply the same change.

So how can you deal with the complexity of different pages that need to look and act the
same? One option is to subdivide the page into frames. Frames are an HTML feature that lets
the browser show more than one web page alongside another. Unfortunately, frames have
problems of their own, including that each frame is treated as a separate document and
requested separately by the browser. This makes it difficult to create code that communicates
between frames. A better choice is to use ASP.NET’s master pages feature, which allows you to
define page templates and reuse them across your website.

■Note Frames are also out of favor because they limit your layout options. That’s because each frame
occupies a separate, fixed portion of a window. When you scroll one frame, the other frames remain fixed in
place. To create frames that work properly, you need to make assumptions about the target device and its
screen size. Most popular websites (think Google, Amazon, and eBay) don’t use frames.

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES 427

8911CH13.qxd 10/16/07 5:36 PM Page 427

Master pages are similar to ordinary ASP.NET pages. Like ordinary pages, master pages
are text files that can contain HTML, web controls, and code. However, master pages have a
different file extension (.master instead of .aspx), and they can’t be viewed directly by a
browser. Instead, master pages must be used by other pages, which are known as content
pages. Essentially, the master page defines the page structure and the common ingredients.
The content pages adopt this structure and just fill it with the appropriate content.

For example, if a website such as www.amazon.com were created using ASP.NET, a single
master page might define the layout for the entire site. Every page would use that master page,
and as a result, every page would have the same basic organization and the same title, footer,
and so on. However, each page would also insert its specific information, such as product
descriptions, book reviews, or search results, into this template.

A Simple Master Page and Content Page
To see how this works, it helps to create a simple example. To create a master page in Visual
Studio, select Website ➤ Add New Item from the menu. Select Master Page, give it a file name
(such as SiteTemplate.master, used in the next example), and click Add.

When you create a new master page in Visual Studio, you start with a blank page that
includes a ContentPlaceHolder control (see Figure 13-14). The ContentPlaceHolder is the
portion of the master page that a content page can change. Or, to look at it another way, every-
thing else in a master page is unchangeable. If you add a header, that header appears in every
content page. If you want to give the content page the opportunity to supply content in a spe-
cific section of the page, you need to add a ContentPlaceHolder.

Figure 13-14. A new master page

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES428

8911CH13.qxd 10/16/07 5:36 PM Page 428

http://www.amazon.com

When you first create a master page, you’ll start with two ContentPlaceHolder controls.
One is defined in the <head> section, which gives content pages the add page metadata, such
as search keywords and style sheet links. The second, more important ContentPlaceHolder
is defined in the <body> section, and represents the displayed content of the page. It
appears on the page as a faintly outlined box. If you click inside it hover over it, the name of
ContentPlaceHolder appears in a tooltip, as shown in Figure 13-14.

To make this master page example more practical, try adding a header before the
ContentPlaceHolder (using an tag) and a footer after it (using some static text), as
shown in Figure 13-15. You’ll notice that the content area of the page looks very small, but this
appearance is deceptive. The content section will expand to fit the content you place inside.

Figure 13-15. A simple master page with a header and footer

Now you’re ready to create a content page based on this master page. To take this step,
select Website ➤ Add New Item from the menu. Select Web Form, and choose to select a mas-
ter page (see Figure 13-16). Click Add. When you’re prompted to choose a master page, use the
one you created with the header and footer.

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES 429

8911CH13.qxd 10/16/07 5:36 PM Page 429

Figure 13-16. Creating a content page

Now you’ll see something a little more interesting. Your content page will have all the ele-
ments of the master page, but the elements will be shaded in gray, indicating that you can’t
select or change them in any way. However, you can add content or drag and drop new con-
trols into the ContentPlaceHolder region to create a page like the one shown in Figure 13-17.
In fact, this is the only editable portion of your page.

Figure 13-17. A simple content page at design time

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES430

8911CH13.qxd 10/16/07 5:36 PM Page 430

The ContentPlaceHolder section will expand or collapse to fit the content you place in it.
If you’ve added volumes of text, the footer won’t appear until the end. If you’ve included only a
single line of text, you’ll see something more compact, as in Figure 13-17. To get a clearer look
at your web page, you can run it in the browser. Figure 13-18 shows the content page that’s
being designed in Figure 13-17.

Figure 13-18. A simple content page at runtime

The real magic starts when you create multiple pages that use the same master page.
Now, each page will have the same header and footer, creating a seamless look across your
entire website.

How Master Pages and Content Pages Are Connected
Now that you’ve seen a master page example, it’s worth taking a look behind the scenes to see
how you implement the master page.

When you create a master page, you’re building something that looks much like an ordi-
nary ASP.NET web form. The key difference is that although web forms start with the Page
directive, a master page starts with a Master directive that specifies the same information.
Here’s the Master directive for the simple master page shown in the previous example:

<%@ Master Language="C#" AutoEventWireup="true" CodeFile="SiteTemplate.master.cs"
Inherits="SiteTemplate" %>

The ContentPlaceHolder is less interesting. You declare it like any ordinary control. Here’s
the complete code for the simple master page:

<%@ Master Language="C#" AutoEventWireup="true" CodeFile="SiteTemplate.master.cs"
Inherits="SiteTemplate" %>

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

<title>Untitled Page</title>
</head>
<body>

<form id="form1" runat="server">

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES 431

8911CH13.qxd 10/16/07 5:36 PM Page 431

http://www.w3.org/1999/xhtml

<asp:ContentPlaceHolder id="ContentPlaceHolder1" runat="server">
</asp:ContentPlaceHolder>
<i>This is a simple footer.</i>

</form>
</body>
</html>

When you create a content page, ASP.NET links your page to the master page by adding an
attribute to the Page directive. This attribute, named MasterPageFile, indicates the associated
master page. Here’s what it looks like:

<%@ Page Language="C#" MasterPageFile="~/SiteTemplate.master"
AutoEventWireup="true" CodeFile="SimpleContentPage.aspx.cs"
Inherits="SimpleContentPage" Title="Untitled Page" %>

Notice that the MasterPageFile attribute begins with the path ~/ to specify the root web-
site folder. If you specify just the file name, ASP.NET checks a predetermined subfolder
(named MasterPages) for your master page. If you haven’t created this folder, or your master
page isn’t there, ASP.NET checks the root of your web folder next. Using the ~/ syntax is better,
because it indicates unambiguously where ASP.NET can find your master page.

■Note You can use the ~/ characters to create a root-relative path—a path that always starts from the
root folder of your web application. This is a special syntax understood by ASP.NET and its server controls.
You can’t use this syntax with ordinary HTML. For example, this syntax won’t work in an ordinary hyperlink
that isn’t a server control (such as the <a> tag).

The Page directive has another new attribute—Title. That’s because the master page, as
the outermost shell of the page, always defines the <head> section of the page with a default
title. Remember, your content page can’t modify anything that’s in the master page. However,
this is an obvious shortcoming with the title information, so to circumvent it ASP.NET adds the
Title attribute, which you can set to override the title specified in the master page with some-
thing more appropriate.

The rest of the content page looks a little different from an ordinary web form. That’s
because the content page can’t define anything that’s already provided in the master page,
including the <head> section, the root <html> element, the <body> element, and so on. In
fact, the content page can do only one thing—it can supply a Content tag that corresponds to
the ContentPlaceHolder in the master page. This is where you insert the content for this page.
As a result, your content pages are a little bit simpler than ordinary web pages.

Here’s the complete code for the simple content page, with a single line of text and two
line breaks added:

<%@ Page Language="C#" MasterPageFile="~/SiteTemplate.master"
AutoEventWireup="true" CodeFile="SimpleContentPage.aspx.cs"
Inherits="SimpleContentPage" Title="Content Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES432

8911CH13.qxd 10/16/07 5:36 PM Page 432

runat="Server">

Here's some new content!

</asp:Content>

For ASP.NET to process this page successfully, the ContentPlaceHolderID attribute in the
<Content> tag must match the ContentPlaceHolder specified in the master page exactly. This
is how ASP.NET knows where it should insert your content in the master page template.

■Tip If a master page defines a ContentPlaceHolder but your content page doesn’t define a corresponding
Content control, you’ll see a black box in its place when you design the page in Visual Studio. To add the
required Content control, right-click that section of the page, and choose Create Custom Content.

You should realize one important fact by looking at the content page markup. Namely, the
content from the master page (the address bar and the footer) isn’t inserted into the content
file. Instead, ASP.NET grabs these details from the master page when it processes the page.
This has an important effect. It means that if you want to change the header or footer that’s
used in all your content pages, you need to change only one file—the master page. When you
make this change, it will appear in all content pages automatically. In other words, master
pages don’t just let you reuse standard elements; they also make it easy to update these details
later.

■Tip Now that you understand how to hook up master pages and child pages, you can easily take an
existing page and modify it to use your master page. However, you’ll need to remove some of the basic boil-
erplate tags, such as <html>, <head>, and <body>, and wrap all the content in one or more <Content>
tags. Visual Studio won’t add the Content control automatically except when you’re creating a new content
page from scratch.

A Master Page with Multiple Content Regions
Master pages aren’t limited to one ContentPlaceHolder. Instead, you can insert as many as you
need to give the client the ability to intersperse content in various places. All you need to do is
add multiple ContentPlaceHolder controls and arrange them appropriately.

Figure 13-19 shows a master page that needs more careful consideration. It includes an
initial ContentPlaceHolder where the user can insert content, and then a shaded box (created
by a <div> tag) that contains a heading (OTHER LINKS) and a second ContentPlaceHolder. The
idea here is that the page is split into two logical sections. In the content page, you won’t need
to worry about how to format each section or how to position the other links box. Instead, you
simply supply content for each portion, and ASP.NET will insert it into the correct location in
the master page.

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES 433

8911CH13.qxd 10/16/07 5:36 PM Page 433

Figure 13-19. A master page with two content regions

Here’s the code for the master page (with the style portion of the <div> tag omitted to save
space):

<%@ Master Language="C#" AutoEventWireup="true"
CodeFile="MultipleContent.master.cs" Inherits="MultipleContent" %>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>Untitled Page</title>
</head>
<body>

<form id="form1" runat="server">

<asp:ContentPlaceHolder id="MainContent" runat="server">
</asp:ContentPlaceHolder>
<i>

<div style="...">
OTHER LINKS

<asp:ContentPlaceHolder id="OtherLinksContent" runat="server">
</asp:ContentPlaceHolder>

</div>
This is a simple footer.

</i>
</form>

</body>
</html>

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES434

8911CH13.qxd 10/16/07 5:36 PM Page 434

http://www.w3.org/1999/xhtml

■Tip The most underrated part of a master page is the line break, or
 tag. If you forget to include it,
you can easily end up having child content run into your headings. To avoid this problem, make sure you add
the necessary whitespace in your master page. Never rely on adding it in your content pages, because con-
tent pages may not insert the correct amount of space (or insert it in the correct place).

When you create a new content page based on this master page, Visual Studio will start
you with one Content control for each ContentPlaceHolder in the master page, making your
life easy. All you need to do is insert the appropriate information. Here’s a slightly shortened
example:

<%@ Page Language="C#" MasterPageFile="~/MultipleContent.master"
AutoEventWireup="true" CodeFile="MultipleContentPage.aspx.cs"
Inherits="MultipleContentPage" Title="Content Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="MainContent" runat="Server">
This is the generic content for this page. Here you might provide some site
specific text ... </asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="OtherLinksContent"
runat="Server">
Here's a link.

...

</asp:Content>

Figure 13-20 shows the final result. Notice how the two content sections flow into their
designated locations seamlessly.

Figure 13-20. Using the multiple content master page

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES 435

8911CH13.qxd 10/16/07 5:36 PM Page 435

http://www.prosetech.com

Another important trick is at work in this example. The master page doesn’t just define
the structure of the web page; it also supplies some important style characteristics (such as
a default font and background color) through the <div> tag. This is another handy trick to
offload the formatting work to the master page, which allows you to maintain it and modify
it much more easily.

■Caution If you create a master page without any ContentPlaceHolder controls, content pages won’t be
able to supply any content at all, and they’ll always show an exact copy of the master page.

Default Content
So far, you’ve seen master page examples with two types of content: fixed content and page-
supplied content. However, in some cases your situation might not be as clear-cut. You might
have some content that the content page may or may not want to replace. You can deal with
this using default content.

Here’s how it works: You create a master page and create a ContentPlaceHolder for the
content that might change. Inside that tag, you place the appropriate HTML or web controls.
(You can do this by hand using the .aspx markup or just by dragging and dropping controls
into the ContentPlaceHolder.)

For example, here’s a version of the simple header-and-footer master page shown earlier,
with default content:

<%@ Master Language="C#" AutoEventWireup="true" CodeFile="SiteTemplate.master.cs"
Inherits="SiteTemplate" %>

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">

<title>Untitled Page</title>
</head>
<body>

<form id="form1" runat="server">

<asp:ContentPlaceHolder id="ContentPlaceHolder1" runat="server">
This is default content.

</asp:ContentPlaceHolder>
<i>This is a simple footer.</i>

</form>
</body>
</html>

So, what happens when you create a content page based on this master page? If you use
Visual Studio, you won’t see any change. That’s because Visual Studio automatically creates a
<Content> tag for each ContentPlaceHolder. When a content page includes a <Content> tag, it
automatically overrides the default content.

However, something interesting happens if you delete the <Content> tag from the content
page. Now when you run the page, you’ll see the default content. In other words, default

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES436

8911CH13.qxd 10/16/07 5:36 PM Page 436

http://www.w3.org/1999/xhtml

content appears only when the content page chooses not to specify any content for that
placeholder.

You might wonder whether the content pages can use some of the default content or just
edit it slightly. This isn’t possible because the default content is stored only in the master page,
not in the content page. As a result, you need to decide between using the default content as is
or replacing it completely.

■Tip You don’t need to delete the <Content> tag by hand. Instead, you can use the Visual Studio smart tag.
First, click to select the content region in design view. Then, click the arrow that appears in the top-right cor-
ner of the content region to open the smart tag. Finally, choose Default to Master’s Content (to remove the
<Content> tag and use the default content) or Create Custom Content (to add the <Content> tag back).

Master Pages and Relative Paths
One quirk that can catch unsuspecting developers is the way that master pages handle relative
paths. If all you’re using is static text, this issue won’t affect you. However, if you add
tags or any other HTML tag that points to another resource, problems can occur.

The problem shows up if you place the master page in a different directory from the
content page that uses it. This is a recommended best practice for large websites. In fact,
Microsoft encourages you to use a dedicated folder for storing all your master pages. However,
if you’re not suitably careful, this can cause problems when you use relative paths.

For example, imagine you put a master page in a subfolder named MasterPages and add
the following tag to the master page:

Assuming the file \MasterPages\banner.jpg exists, this appears to work fine. The image
will even appear in the Visual Studio design environment. However, if you create a content
page in another subfolder, the image path is interpreted relative to that folder. If the file
doesn’t exist there, you’ll get a broken link instead of your graphic. Even worse, you could
conceivably get the wrong graphic if another image has the same file name.

This problem occurs because the tag is ordinary HTML. As a result, ASP.NET won’t
touch it. Unfortunately, when ASP.NET processes your content page, the relative path in this
tag is no longer appropriate. The same problem occurs with <a> tags that provide relative links
to other pages and with the <link> element that you can use to connect the master page to a
style sheet.

To solve your problem, you could try to think ahead and write your URL relative to the
content page where you want to use it. But this creates confusion and limits where your mas-
ter page can be used. A better fix is to turn your tag into a server-side control, in which
case ASP.NET will fix the mistake:

This works because ASP.NET uses this information to create an HtmlImage server control.
This object is created after the Page object for the master page is instantiated. At this point,
ASP.NET interprets all the paths relative to the location of the master page.

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES 437

8911CH13.qxd 10/16/07 5:36 PM Page 437

And as with all server-side controls, you can further clear things up by using the ~/ char-
acters to create a root-relative path. Here’s an example that clearly points to a picture in an
Images folder in the root web application folder:

Remember, the ~/ syntax is understood only by ASP.NET controls, so you can’t use this
trick with an tag that doesn’t include the runat="server" attribute.

Advanced Master Pages
Using what you’ve learned, you can create and reuse master pages across your website. How-
ever, still more tricks and techniques can help you take master pages to the next level and
make them that much more practical. In the following sections, you’ll look at how tables can
help you organize your layout and how your content pages can interact with the master page
class in code.

Table-Based Layouts
For the most part, HTML uses a flow-based layout. That means as more content is added, the
page is reorganized and other content is bumped out of the way. This layout can make it diffi-
cult to get the result you want with master pages. For example, what happens if you craft the
perfect layout, only to have the structure distorted by a huge block of information that’s
inserted into a <Content> tag?

Although you can’t avoid this problem completely, master pages can use HTML tables to
help control the layout. With an HTML table, a portion of your page is broken into columns
and rows. You can then add a ContentPlaceHolder in a single cell, ensuring that the other con-
tent is aligned more or less the way you want. However, you’ll need to type the HTML table
tags into the .aspx portion of the master page by hand, as Visual Studio doesn’t provide any
way to design an HTML table at design time.

For a good example, consider a traditional web application with a header, footer, and nav-
igation bar. Figure 13-21 shows how this structure is broken up into a table.

In HTML, tables are delineated with the <table> tag. Each row is defined with a nested
<tr> tag, and inside each row you can place a <td> tag for each cell. You place the content
inside the various <td> tags. Content can include any combination of HTML or web controls.

The number of <td> tags you add in a <tr> defines the number of columns in your table. If
you aren’t consistent (and usually you won’t be), the table takes the dimensions of the row
with the most cells.

To create the table shown in Figure 10-8, start by giving it a width of 100% so it fills the
browser window:

<table style="width: 100%">
...

</table>

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES438

8911CH13.qxd 10/16/07 5:36 PM Page 438

Figure 13-21. A table-based layout

The next step is to add the first row. You can use a trick here. The complete table actually
has two columns, but the first row (with the header) and the last row (with the footer) need to
fill the full width of the table. To accomplish this, you add the colspan attribute and set it to 2,
indicating that the header spans two columns:

<table style="width: 100%">
<tr><td colspan="2">My Header</td></tr>
...

</table>

You can fill in the rest of the table in a similar fashion. The second row has two columns.
The first column holds the navigation links (or, in this example, the text Navigation Links) and
has a fixed width of 150 pixels. The second column, which fills the remaining space, holds a
ContentPlaceHolder where the content page can supply information.

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES 439

8911CH13.qxd 10/16/07 5:36 PM Page 439

The following markup shows the complete table, with some added formatting and back-
ground colors that make it easier to distinguish the different sections of the table. Also, the text
in the navigation controls section has been replaced with a TreeView. (The TreeView also has a
few dummy nodes added, just so that it appears in the page. When using this design in a real
website, you’d bind the TreeView to a site map, as described in Chapter 14.)

<table style="width: 100%">
<tr>

<td colspan="2" style="background: #ffccff">
<h1>My Header</h1>

</td>
</tr>
<tr>

<td style="width: 150px; background: #ffffcc">
<asp:TreeView ID="TreeView1" runat="server" Width="150px">
<Nodes>
<asp:TreeNode Text="Root" Value="New Node">

<asp:TreeNode Text="Page 1" Value="Page 1"></asp:TreeNode>
<asp:TreeNode Text="Page 2" Value="Page 2"></asp:TreeNode>

</asp:TreeNode>
</Nodes>

</asp:TreeView>
</td>
<td>

<asp:ContentPlaceHolder id="ContentPlaceHolder1" runat="server">
</asp:ContentPlaceHolder>

</td>
</tr>
<tr>

<td colspan="2" style="background: #ccff33">
<i>My Footer</i>

</td>
</tr>

</table>

■Tip To learn more about HTML tables and how to specify borders, cell sizes, alignment, and more, refer to
the examples at www.w3schools.com/html/html_tables.asp.

Figure 13-22 shows the resulting master page and a content page that uses the master
page (both in Visual Studio).

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES440

8911CH13.qxd 10/16/07 5:36 PM Page 440

http://www.w3schools.com/html/html_tables.asp

Figure 13-22. A master page and a content page using a table

To convert this example into something more practical, just replace the hard-coded text
and TreeView nodes in the master page with the actual header, navigation controls, and footer
you really want. All the child pages will acquire these features automatically. This is the first
step to defining a practical structure for your entire website.

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES 441

8911CH13.qxd 10/16/07 5:36 PM Page 441

NESTING MASTER PAGES

You can nest master pages so that one master page uses another master page. This is not used too often, but
it could allow you to standardize your website to different degrees. For example, you might have two sections
of your website. Each section might require its own navigation controls. However, both sections may need the
same header. In this case, you could create a top-level master page that adds the header. Then, you would
create a second master page that uses the first master page (through the MasterPageFile attribute). This sec-
ond master page would get the header and could add the navigation controls. You would create two versions
of this second master page, one for each section of your website. Finally, your content pages would use one
of the two second-level master pages to standardize their layout.

Be careful when implementing this approach—although it sounds like a nifty way to make a modular
design, it can tie you down more than you realize. For example, you’ll need to rework your master page hier-
archy if you decide later that the two website sections need similar but slightly different headers. Another
problem is that Visual Studio doesn’t support nested master pages, so you’ll need to code them by hand (not
graphically). For these reasons, it’s usually better to use only one level of master pages and copy the few ele-
ments that are in common. In most cases, you won’t be creating many master pages, so this won’t add a
significant amount of duplication.

Code in a Master Page
In all the examples in this chapter, master pages have provided static layout. However, just like
a web page, master pages also include a code portion that can respond to events in the page
life cycle or the constituent controls. For example, you could respond to the Page.Load event
to initialize a master page using code, or you could handle clicks in a set of navigation controls
to direct a user to the right page.

Interacting with a Master Page Programmatically
A master control isn’t limited to event-handling code. It can also provide methods that the
content page can trigger as needed or provide properties that the content page can set accord-
ing to its needs. This allows the content page to interact with the master page.

For example, imagine you want to give the user the ability to collapse the cell with the
navigation controls to have more room to see the page content. You don’t want to implement
this feature in the master page, because you want it to be available only on certain pages.
However, the content page obviously can’t implement this feature on its own, because it
involves modifying a fixed portion of the master page. The solution is to create a way for the
content page to interact with the master page so it can politely ask the master page to collapse
or hide the navigation controls as needed.

One good way to implement this design is by adding a new property named Show-
NavigationControls to the master page class. This property, when set to false, could then auto-
matically hide the navigation controls. Here’s the property you need to add to the master page
class:

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES442

8911CH13.qxd 10/16/07 5:36 PM Page 442

public bool ShowNavigationControls
{

get
{

return TreeVew1.Visible;
}
set
{

TreeView1.Visible = value;
}

}

You should notice a few important facts about this property. First, it’s public so that other
classes (and therefore other pages) can access it. Second, it just wraps the Visible property in
the TreeView control on the master page. Whatever value is passed to ShowNavigationControls
is simply applied to TreeView.Visible. This is useful because ordinarily the TreeView.Visible
property isn’t directly accessible to the content page.

To access this page, the content page uses the built-in Page.Master property. This
page always returns the linked object for the master page. However, you can’t access the
ShowNavigationControls property directly as Page.Master.ShowNavigationControls, because
the Page.Master property uses the base MasterPage class, and doesn’t know anything about
the properties you’ve added to your derived master page class. To get access to the custom
members you’ve added (like ShowNavigationControls), you need to cast the Page.Master
object to the appropriate type.

Here’s the button handling code for a content page that hides or shows the navigation
controls depending on whether a Hide or Show button is clicked. In this example, the master
page class is named TableMaster.

protected void cmdHide_Click(object sender, EventArgs e)
{

TableMaster master = (TableMaster)this.Master;
master.ShowNavigationControls = false;

}

protected void cmdShow_Click(object sender, EventArgs e)
{

TableMaster master = (TableMaster)this.Master;
master.ShowNavigationControls = true;

}

Figure 13-23 shows this content page in action.

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES 443

8911CH13.qxd 10/16/07 5:36 PM Page 443

Figure 13-23. A content page that interacts with its master page

Note that when you navigate from one page to another, all the web page objects are re-
created. Even if you move to another content page that uses the same master page, ASP.NET
creates a different instance of the master page object. As a result, the TreeView.Visible prop-
erty of the navigation controls is reset to its default value (true) every time the user navigates
to a new page. If this isn’t the effect you want, you would need to store the setting somewhere
else (such as in a cookie or in session state). Then you could write code in the master page that
always checks the last saved value. Chapter 7 has more information about the ways you can
store information in an ASP.NET website.

The Last Word
Building a professional web application involves much more than designing individual web
pages. You also need the tools to integrate your web pages in a complete, unified website. In
this chapter, you considered three ways to do exactly that. First, you considered CSS, which
lets you apply consistent formatting to HTML elements and web controls alike. Then, you
considered the ASP.NET themes features, which lets you effortlessly apply a group of property
settings to a control. Finally, you learned to use master pages, which allow you to standardize
the layout of your website. All these features make it easy to bring your pages together into a
well-integrated, consistent web application.

CHAPTER 13 ■ STYLES, THEMES, AND MASTER PAGES444

8911CH13.qxd 10/16/07 5:36 PM Page 444

Website Navigation

You’ve already learned simple ways to send a website visitor from one page to another.
For example, you can add HTML links (or HyperLink controls) to your page to let users surf
through your site. If you want to perform page navigation in response to another action, you
can call the Response.Redirect() method or the Server.Transfer() method in your code. But in
professional web applications, the navigation requirements are more intensive. These applica-
tions need a system that allows users to surf through a hierarchy of pages, without forcing you
to write the same tedious navigation code in every page.

Fortunately, ASP.NET includes a navigation model that makes it easy to let users surf
through your web applications. Before you can use this model, you need to determine the
hierarchy of your website—in other words, how pages are logically organized into groups. You
then define that structure in a dedicated file and bind that information to specialized naviga-
tion controls. Best of all, these navigation controls include nifty widgets such as the TreeView
and Menu.

In this chapter, you’ll learn everything you need to know about the new site map model
and the navigation controls that work with it.

Site Maps
If your website has more than a handful of pages, you’ll probably want some sort of navigation
system to let users move from one page to the next. Obviously, you can use the ASP.NET toolkit
of controls to implement almost any navigation system, but this requires that you perform all
the hard work. Fortunately, ASP.NET has a set of navigation features that can simplify the task
dramatically.

As with all the best ASP.NET features, ASP.NET navigation is flexible, configurable, and
pluggable. It consists of three components:

• A way to define the navigational structure of your website. This part is the XML site
map, which is (by default) stored in a file.

• A convenient way to read the information in the site map file and convert it to an object
model. The SiteMapDataSource control and the XmlSiteMapProvider perform this part.

• A way to use the site map information to display the user’s current position and give the
user the ability to easily move from one place to another. This part takes place through
the navigation controls you bind to the SiteMapDataSource control, which can include
breadcrumb links, lists, menus, and trees.

445

C H A P T E R 1 4

8911CH14.qxd 10/23/07 12:27 PM Page 445

You can customize or extend each of these ingredients separately. For example, if you
want to change the appearance of your navigation controls, you simply need to bind different
controls to the SiteMapDataSource. On the other hand, if you want to read site map informa-
tion from a different type of file or from a different location, you need to change your site map
provider.

Figure 14-1 shows how these pieces fit together.

Figure 14-1. ASP.NET navigation with site maps

Defining a Site Map
The starting point in site map-based navigation is the site map provider. ASP.NET ships with a
single site map provider, named XmlSiteMapProvider, which is able to retrieve site map infor-
mation from an XML file. If you want to retrieve a site map from another location or in a
custom format, you’ll need to create your own site map provider or look for a third-party solu-
tion on the Web.

The XmlSiteMapProvider looks for a file named Web.sitemap in the root of the virtual
directory. Like all site map providers, the task of the XmlSiteMapProvider is to extract the site
map data and create the corresponding SiteMap object. This SiteMap object is then made
available to the SiteMapDataSource, which you place on every page that uses navigation. The
SiteMapDataSource provides the site map information to navigation controls, which are the
final link in the chain.

■Tip To simplify the task of adding navigation to your website, you can use master pages, as described in
Chapter 13. That way, you simply need to place the SiteMapDataSource and navigation controls on the mas-
ter page, rather than on all the individual pages in your website. You’ll use this technique in this chapter.

CHAPTER 14 ■ WEBSITE NAVIGATION446

8911CH14.qxd 10/23/07 12:27 PM Page 446

You can create a site map using a text editor such as Notepad, or you can create it in
Visual Studio by selecting Website ➤ Add New Item and then choosing the Site Map option.
Either way, it’s up to you to enter all the site map information by hand. The only difference is
that if you create it in Visual Studio, the site map will start with a basic structure that consists
of three siteMap nodes.

Before you can fill in the content in your site map file, you need to understand the rules
that all ASP.NET site maps must follow. The following sections break these rules down piece by
piece.

■Note Before you begin creating site maps, it helps to have a basic understanding of XML, the format
that’s used for the site map file. You should understand what an element is, how to start and end an ele-
ment, and why exact capitalization is so important. If you’re new to XML, you may find that it helps to refer
to Chapter 19 for a quick introduction before you read this chapter.

Rule 1: Site Maps Begin with the <siteMap> Element
Every Web.sitemap file begins by declaring the <siteMap> element and ends by closing that
element. You place the actual site map information between the start and end tags (where the
three dots are shown here):

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0">
...

</siteMap>

The xmlns attribute is required, and must be entered exactly as shown here. This tells
ASP.NET that the XML file uses the ASP.NET site map standard.

Rule 2: Each Page Is Represented by a <siteMapNode> Element
So, what does the site map content look like? Essentially, every site map defines an organiza-
tion of web pages. To insert a page into the site map, you add the <siteMapNode> element
with some basic information. Namely, you need to supply the title of the page (which appears
in the navigation controls), a description (which you may or may not choose to use), and the
URL (the link for the page). You add these three pieces of information using three attributes.
The attributes are named title, description, and url, as shown here:

<siteMapNode title="Home" description="Home" url="~/default.aspx" />

Notice that this element ends with the characters />. This indicates it’s an empty element
that represents a start tag and an end tag in one. Empty elements (an XML concept described
in Chapter 19) never contain other nodes.

Here’s a complete, valid site map file that uses this page to define a website with exactly
one page:

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0">
<siteMapNode title="Home" description="Home" url="~/default.aspx" />

</siteMap>

CHAPTER 14 ■ WEBSITE NAVIGATION 447

8911CH14.qxd 10/23/07 12:27 PM Page 447

http://schemas.microsoft.com/AspNet/SiteMap-File-1.0
http://schemas.microsoft.com/AspNet/SiteMap-File-1.0

Notice that the URL for each page begins with the ~/ character sequence. This is quite
important. The ~/ characters represent the root folder of your web application. In other words,
the URL ~/default.aspx points to the default.aspx file in the root folder. This style of URL isn’t
required, but it’s strongly recommended, because it makes sure you always get the right page.
If you were to simply enter the URL default.aspx without the ~/ prefix, ASP.NET would look for
the default.aspx page in the current folder. If you have a web application with pages in more
than one folder, you’ll run into a problem.

For example, if the user browses into a subfolder and clicks the default.aspx link, ASP.NET
will look for the default.aspx page in that subfolder instead of in the root folder. Because the
default.aspx page isn’t in this folder, the navigation attempt will fail with a 404 Not Found
error.

Rule 3: A <siteMapNode> Element Can Contain Other <siteMapNode> Elements
Site maps don’t consist of simple lists of pages. Instead, they divide pages into groups. To rep-
resent this in a site map file, you place one <siteMapNode> inside another. Instead of using
the empty element syntax shown previously, you’ll need to split your <siteMapNode> element
into a start tag and an end tag:

<siteMapNode title="Home" description="Home" url="~/default.aspx">
...

</siteMapNode>

Now you can slip more nodes inside. Here’s an example where a Home group contains
two more pages:

<siteMapNode title="Home" description="Home" url="~/default.aspx">
<siteMapNode title="Products" description="Our products"
url="~/products.aspx" />

<siteMapNode title="Hardware" description="Hardware choices"
url="~/hardware.aspx" />

</siteMapNode>

Essentially, this represents the hierarchical group of links shown in Figure 14-2.
In this case, all three nodes are links. This means the user could surf to one of three pages.

However, when you start to create more complex groups and subgroups, you might want to
create nodes that serve only to organize other nodes but aren’t links themselves. In this case,
just omit the url attribute, as shown here with the Products node:

<siteMapNode title="Products" description="Products">
<siteMapNode title="In Stock" description="Products that are available"
url="~/inStock.aspx" />

<siteMapNode title="Not In Stock" description="Products that are on order"
url="~/outOfStock.aspx" />

</siteMapNode>

When you show this part of the site map in a web page, the Products node will appear as
ordinary text, not a clickable link.

CHAPTER 14 ■ WEBSITE NAVIGATION448

8911CH14.qxd 10/23/07 12:27 PM Page 448

Figure 14-2. Three nodes in a site map

No limit exists for how many layers deep you can nest groups and subgroups. However,
it’s a good rule to go just two or three levels deep; otherwise, it may be difficult for users to
grasp the hierarchy when they see it in a navigation control. If you find that you need more
than two or three levels, you may need to reconsider how you are organizing your pages into
groups.

Rule 4: Every Site Map Begins with a Single <siteMapNode>
Another rule applies to all site maps. A site map must always have a single root node. All the
other nodes must be contained inside this root-level node.

That means the following is not a valid site map, because it contains two top-level nodes:

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0">
<siteMapNode title="In Stock" description="Products that are available"
url="~/inStock.aspx" />

<siteMapNode title="Not In Stock" description="Products that are on order"
url="~/outOfStock.aspx" />

</siteMap>

The following site map is valid, because it has a single top-level node (Home), which con-
tains two more nodes:

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0">
<siteMapNode title="Home" description="Home" url="~/default.aspx">

<siteMapNode title="In Stock"
description="Products that are available" url="~/inStock.aspx" />

<siteMapNode title="Not In Stock"
description="Products that are on order" url="~/outOfStock.aspx" />

</siteMapNode>
</siteMap>

CHAPTER 14 ■ WEBSITE NAVIGATION 449

8911CH14.qxd 10/23/07 12:27 PM Page 449

http://schemas.microsoft.com/AspNet/SiteMap-File-1.0
http://schemas.microsoft.com/AspNet/SiteMap-File-1.0

As long as you use only one top-level node, you can nest nodes as deep as you want in
groups as large or as small as you want.

Rule 5: Duplicate URLs Are Not Allowed
You cannot create two site map nodes with the same URL. This might seem to present a bit of
a problem in cases where you want to have the same link in more than one place—and it does.
However, it’s a requirement because the default SiteMapProvider included with ASP.NET
stores nodes in a collection, with each item indexed by its unique URL.

This limitation doesn’t prevent you from creating more than one URL with minor differ-
ences pointing to the same page. For example, the following two nodes are acceptable, even
though they lead to the same page (products.aspx), because the two URLs have different
query string arguments at the end:

<siteMapNode title="In Stock" description="Products that are available"
url="~/products.aspx?stock=1" />

<siteMapNode title="Not In Stock" description="Products that are on order"
url="~/products.aspx?stock=0" />

This approach works well if you have a single page that will display different information,
depending on the query string. Using the query string argument, you can add both “versions”
of the page to the site map. Chapter 7 describes the query string in more detail.

Seeing a Simple Site Map in Action
A typical site map can be a little overwhelming at first glance. But if you keep the previous five
rules in mind, you’ll be able to sort out exactly what’s taking place.

The following is an example that consists of seven nodes. (Remember, each node is either
a link to an individual page, or a heading used to organize a group of pages.) The example
defines a simple site map for a company named RevoTech.

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0">

<siteMapNode title="Home" description="Home" url="~/default.aspx">

<siteMapNode title="Information" description="Learn about our company">
<siteMapNode title="About Us"
description="How RevoTech was founded"
url="~/aboutus.aspx" />

<siteMapNode title="Investing"
description="Financial reports and investor analysis"
url="~/financial.aspx" />

</siteMapNode>

<siteMapNode title="Products" description="Learn about our products">
<siteMapNode title="RevoStock"
description="Investment software for stock charting"
url="~/product1.aspx" />

<siteMapNode title="RevoAnalyze"

CHAPTER 14 ■ WEBSITE NAVIGATION450

8911CH14.qxd 10/23/07 12:27 PM Page 450

http://schemas.microsoft.com/AspNet/SiteMap-File-1.0

description="Investment software for yield analysis"
url="~/product2.aspx" />

</siteMapNode>

</siteMapNode>
</siteMap>

■Note The URL in the site map is not case sensitive.

In the following section, you’ll bind this site map to the controls in a page, and you’ll see
its structure emerge.

Binding an Ordinary Page to a Site Map
Once you’ve defined the Web.sitemap file, you’re ready to use it in a page. First, it’s a good idea
to make sure you’ve created all the pages that are listed in the site map file, even if you leave
them blank. Otherwise, you’ll have trouble testing whether the site map navigation actually
works.

The next step is to add the SiteMapDataSource control to your page. You can drag and
drop it from the Data tab of the Toolbox. It creates a tag like this:

<asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server" />

The SiteMapDataSource control appears as a gray box on your page in Visual Studio, but
it’s invisible when you run the page.

The last step is to add controls that are linked to the SiteMapDataSource. Although you
can use any of the data controls described in Part 3, in practice you’ll find that you’ll get the
results you want only with the three controls that are available in the Navigation tab of the
Toolbox. That’s because these controls support hierarchical data (data with multiple nested
levels), and the site map is an example of hierarchical data. In any other control, you’ll see
only a single level of the site map at a time, which is impractical.

These are the three navigation controls:

TreeView: The TreeView displays a “tree” of grouped links that shows your whole site map
at a glance.

Menu: The Menu displays a multilevel menu. By default, you’ll see only the first level, but
other levels pop up (thanks to some nifty JavaScript) when you move the mouse over the
subheadings.

SiteMapPath: The SiteMapPath is the simplest navigation control—it displays the full path
you need to take through the site map to get to the current page. For example, it might
show Home > Products > RevoStock if you’re at the product1.aspx page. Unlike the other
navigation controls, the SiteMapPath is useful only for moving up the hierarchy.

CHAPTER 14 ■ WEBSITE NAVIGATION 451

8911CH14.qxd 10/23/07 12:27 PM Page 451

To connect a control to the SiteMapDataSource, you simply need to set its DataSourceID
property to match the name of the SiteMapDataSource. For example, if you added a TreeView,
you should tweak the tag so it looks like this:

<asp:TreeView ID="TreeView1" runat="server" DataSourceID="SiteMapDataSource1" />

Figure 14-3 shows the result—a tree that displays the structure of the site, as defined in
the website. When using the TreeView, the description information doesn’t appear immedi-
ately. Instead, it’s displayed as a tooltip when you hover over an item in the tree.

Figure 14-3. A site map in the TreeView

Best of all, this tree is created automatically. As long as you link it to the SiteMapDataSource
control, you don’t need to write any code.

When you click one of the nodes in the tree, you’ll automatically be taken to the page you
defined in the URL. Of course, unless that page also includes a navigation control such as the
TreeView, the site map will disappear from sight. The next section shows a better approach.

Binding a Master Page to a Site Map
Website navigation works best when combined with another ASP.NET feature—master pages.
That’s because you’ll usually want to show the same navigation controls on every page. The
easiest way to do this is to create a master page that includes the SiteMapDataSource and the
navigation controls. You can then reuse this template for every other page on your site.

Here’s how you might define a basic structure in your master page that puts navigation
controls on the left:
<%@ Master Language="C#" AutoEventWireup="true"
CodeFile="MasterPage.master.cs" Inherits="MasterPage" %>

<html>
<head runat="server">
<title>Navigation Test</title>

</head>
<body>

CHAPTER 14 ■ WEBSITE NAVIGATION452

8911CH14.qxd 10/23/07 12:27 PM Page 452

<form id="form1" runat="server">
<table>
<tr>
<td style="width: 226px;vertical-align: top;">
<asp:TreeView ID="TreeView1" runat="server"
DataSourceID="SiteMapDataSource1" />

</td>
<td style="vertical-align: top;">
<asp:ContentPlaceHolder id="ContentPlaceHolder1" runat="server" />

</td>
</tr>

</table>
<asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server" />

</form>
</body>
</html>

Then, create a child with some simple static content:

<%@ Page Language="C#" MasterPageFile="~/MasterPage.master" AutoEventWireup="true"
CodeFile="default.aspx.cs" Inherits="_default" Title="Home Page" %>

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
runat="Server">

You are currently on the default.aspx page (Home).

</asp:Content>

In fact, while you’re at it, why not create a second page so you can test the navigation
between the two pages?

<%@ Page Language="C#" MasterPageFile="~/MasterPage.master"
AutoEventWireup="true" CodeFile="product1.aspx.cs"
Inherits="product1" Title=" RevoStock Page" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
runat="Server">

You are currently on the product1.aspx page (RevoStock).

</asp:Content>

Now you can jump from one page to another using the TreeView (see Figure 14-4). The
first picture shows the home page as it initially appears, while the second shows the result of
clicking the RevoStock link in the TreeView. Because both pages use the same master, and the
master page includes the TreeView, the site map always remains visible.

CHAPTER 14 ■ WEBSITE NAVIGATION 453

8911CH14.qxd 10/23/07 12:27 PM Page 453

Figure 14-4. Navigating from page to page with the TreeView

You can do a lot more to customize the appearance of your pages and navigation controls.
You’ll consider these topics in the following sections.

Binding Portions of a Site Map
In the previous example, the TreeView shows the structure of the site map file exactly. How-
ever, this isn’t always what you want. For example, you might not like the way the Home node
sticks out because of the XmlSiteMapProvider rule that every site map must begin with a
single root.

One way to clean this up is to configure the properties of the SiteMapDataSource. For
example, you can set the ShowStartingNode property to false to hide the root node:

<asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server"
ShowStartingNode="False" />

Figure 14-5 shows the result.
This example shows how you can hide the root node. Another option is to show just a por-

tion of the complete site map, starting from the current node. For example, you might use a
control such as the TreeView to show everything in the hierarchy starting from the current
node. If the user wants to move up a level, they could use another control (such as the
SiteMapPath).

CHAPTER 14 ■ WEBSITE NAVIGATION454

8911CH14.qxd 10/23/07 12:27 PM Page 454

Figure 14-5. A site map without the root node

Showing Subtrees
By default, the SiteMapDataSource shows a full tree that starts with the root node. However,
the SiteMapDataSource has several properties that can help you configure the navigation tree
to limit the display to just a specific branch. Typically, this is useful if you have a deeply nested
tree. Table 14-1 describes the full set of properties.

Table 14-1. SiteMapDataSource Properties

Property Description

ShowStartingNode Set this property to false to hide the first (top-level) node that would
otherwise appear in the navigation tree. The default is true.

StartingNodeUrl Use this property to change the starting node. Set this value to the URL
of the node that should be the first node in the navigation tree. This
value must match the url attribute in the site map file exactly. For
example, if you specify a StartingNodeUrl of “~/home.aspx”, then the
first node in the tree is the Home node, and you will see nodes only
underneath that node.

StartFromCurrentNode Set this property to true to set the current page as the starting node.
The navigation tree will show only pages beneath the current page
(which allows the user to move down the hierarchy). If the current page
doesn’t exist in the site map file, this approach won’t work.

StartingNodeOffset Use this property to shift the starting node up or down the hierarchy. It
takes an integer that instructs the SiteMapDataSource to move from the
starting node down the tree (if the number is positive) or up the tree (if
the number is negative). The actual effect depends on how you com-
bine this property with other SiteMapDataSource properties. For
example, if StartFromCurrentNode is false, you’ll use a positive number
to move down the tree from the starting node toward the current node.
If StartFromCurrentNode is true, you’ll use a negative number to move
up the tree away from the current node and toward the starting node.

Figuring out these properties can take some work, and you might need to do a bit of
experimenting to decide the right combination of SiteMapDataSource settings you want to
use. To make matters more interesting, you can use more than one SiteMapDataSource on the

CHAPTER 14 ■ WEBSITE NAVIGATION 455

8911CH14.qxd 10/23/07 12:27 PM Page 455

same page. This means you could use two navigation controls to show different sections of the
site map hierarchy.

Before you can see this in practice, you need to modify the site map file used for the previ-
ous few examples into something a little more complex. Currently, the site map has three
levels, but only the first level (the Home node) and the third level (the individual pages) have
URL links. The second-level groupings (Information and Products) are just used as headings,
not links. To get a better feel for how the SiteMapDataSource properties work with multiple
navigation levels, modify the Information node as shown here:

<siteMapNode title="Information" description="Learn about our company"
url="~/information.aspx">

and change the Products node:

<siteMapNode title="Products" description="Learn about our products"
url="~/products.aspx">

Next, create the products.aspx and information.aspx pages.
The interesting feature of the Products node is that not only is it a navigable page, but

it’s a page that has other pages both above it and below it in the navigation hierarchy. This
makes it ideal for testing the SiteMapDataSource properties. For example, you can create a
SiteMapDataSource that shows only the current page and the pages below it like this:

<asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server"
StartFromCurrentNode="True" />

And you can create one that always shows the Information page and the pages under-
neath it like this:

<asp:SiteMapDataSource ID="SiteMapDataSource2" runat="server"
StartingNodeUrl="~/information.aspx" />

■Note For this technique to work, ASP.NET must be able to find a page in the Web.sitemap file that
matches the current URL. Otherwise, it won’t know where the current position is, and it won’t provide any
navigation information to the bound controls.

Now, just bind two navigation controls. In this case, one TreeView is linked to each
SiteMapDataSource:

Pages under the current page:
<asp:TreeView ID="TreeView1" runat="server"
DataSourceID="SiteMapDataSource1" />

The Information group of pages:

<asp:TreeView ID="TreeView2" runat="server"
DataSourceID="SiteMapDataSource2" />

CHAPTER 14 ■ WEBSITE NAVIGATION456

8911CH14.qxd 10/23/07 12:27 PM Page 456

Figure 14-6 shows the result as you navigate from default.aspx down the tree to
products1.aspx. The first TreeView shows the portion of the tree under the current page,
and the second TreeView is always fixed on the Information group.

Figure 14-6. Showing portions of the site map

You’ll need to get used to the SiteMapDataSource.StartingNodeOffset property. It takes an
integer that instructs the SiteMapDataSource to move that many levels down the tree (if the
number is positive) or up the tree (if the number is negative). An important detail that’s often
misunderstood is that when the SiteMapDataSource moves down the tree, it moves toward the
current node. If it’s already at the current node, or your offset takes it beyond the current node,
the SiteMapDataSource won’t know where to go, and you’ll end up with a blank navigation
control.

To understand how this works, it helps to consider an example. Imagine you’re at this
location in a website:

Home > Products > Software > Custom > Contact Us

CHAPTER 14 ■ WEBSITE NAVIGATION 457

8911CH14.qxd 10/23/07 12:27 PM Page 457

If the SiteMapDataSource is starting at the Home node (the default) and you apply a
StartingNodeOffset of 2, it will move down the tree two levels and bind to the tree of pages
that starts at the Software node.

On the other hand, if you’re currently at the Products node, you won’t see anything. That’s
because the starting node is Home, and the offset tries to move it down two levels. However,
you’re only one level deep in the hierarchy. Or, to look at it another way, no node exists
between the top node and the current node that’s two levels deep.

Now, what happens if you repeat the same test but set the site map provider to begin on
another node? Consider what happens if you set StartFromCurrentNode to true and surf to the
Contact Us page. Once again, you won’t see any information, because the site map provider
attempts to move two levels down from the current node—Contact Us—and it has nowhere to
go. On the other hand, if you set StartFromCurrentNode to true and use a StartingNodeOffset
of -2, the SiteMapDataSource will move up two levels from Contact Us and bind the subtree
starting at Software.

Overall, you won’t often use the StartingNodeOffset property. However, it can be useful if
you have a deeply nested site map and you want to keep the navigation display simple by
showing just a few levels up from the current position.

■Note All the examples in this section filtered out higher-level nodes than the starting node. For example,
if you’re positioned at the Home > Products > RevoStock page, you’ve seen how to hide the Home and Prod-
ucts levels. You haven’t seen how to filter out lower-level nodes. For example, if you’re positioned at the
Home page, you’ll always see the full site map, because you don’t have a way to limit the number of levels
you see below the starting node. You have no way to change this behavior with the SiteMapDataSource; but
later, in “The TreeView Control” section, you’ll see that the TreeView.MaxDataBindDepth property serves this
purpose.

Using Different Site Maps in the Same File
Imagine you want to have a dealer section and an employee section on your website. You
might split this into two structures and define them both under different branches in the
same file, like this:

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
<siteMapNode title="Root" description="Root" url="~/default.aspx">
<siteMapNode title="Dealer Home" description="Dealer Home"
url="~/default_dealer.aspx">
...

</siteMapNode>
<siteMapNode title="Employee Home" description="Employee Home"
url="~/default_employee.aspx">
...

</siteMapNode>
</siteMapNode>

</siteMap>

CHAPTER 14 ■ WEBSITE NAVIGATION458

8911CH14.qxd 10/23/07 12:27 PM Page 458

http://schemas.microsoft.com/AspNet/SiteMap-File-1.0

To bind the SiteMapDataSource to the dealer view (which starts at the Dealer Home
page), you simply set the StartingNodeUrl property to “~/default_dealer.aspx”. You can do
this programmatically or, more likely, by creating an entirely different master page and imple-
menting it in all your dealer pages. In your employee pages, you set the StartingNodeUrl
property to “~/default_employee.aspx”. This way, you’ll show only the pages under the
Employee Home branch of the site map.

You can even make your life easier by breaking a single site map into separate files using
the siteMapFile attribute, like this:

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
<siteMapNode title="Root" description="Root" url="~/default.aspx">
<siteMapNode siteMapFile="Dealers.sitemap" />
<siteMapNode siteMapFile="Employees.sitemap" />

</siteMapNode>
</siteMap>

Even with this technique, you’re still limited to a single site map tree, and it always starts
with the Web.sitemap file. But you can manage your site map more easily because you can
factor some of its content into separate files.

However, this seemingly nifty technique is greatly limited because the site map provider
doesn’t allow duplicate URLs. This means you have no way to reuse the same page in more
than one branch of a site map. Although you can try to work around this problem by creating
different URLs that are equivalent (for example, by adding query string parameters on the
end), this raises more headaches. Sadly, this problem has no solution with the default site map
provider that ASP.NET includes.

The SiteMap Class
You aren’t limited to no-code data binding in order to display navigation hierarchies. You can
interact with the navigation information programmatically. This allows you to retrieve the cur-
rent node information and use it to configure details such as the page heading and title. All
you need to do is interact with the objects that are readily available through the Page class.

The site map API is remarkably straightforward. To use it, you need to work with two
classes from the System.Web namespace. The starting point is the SiteMap class, which pro-
vides the static properties CurrentNode (the site map node representing the current page) and
RootNode (the root site map node). Both of these properties return a SiteMapNode object.
Using the SiteMapNode object, you can retrieve information from the site map, including the
title, description, and URL values. You can branch out to consider related nodes using the nav-
igational properties in Table 14-2.

■Note You can also search for nodes using the methods of the current SiteMapProvider object, which is
available through the SiteMap.Provider static property. For example, the SiteMap.Provider.FindSiteMapNode()
method allows you to search for a node by its URL.

CHAPTER 14 ■ WEBSITE NAVIGATION 459

8911CH14.qxd 10/23/07 12:27 PM Page 459

http://schemas.microsoft.com/AspNet/SiteMap-File-1.0

Table 14-2. SiteMapNode Navigational Properties

Property Description

ParentNode Returns the node one level up in the navigation hierarchy, which contains the
current node. On the root node, this returns a null reference.

ChildNodes Provides a collection of all the child nodes. You can check the HasChildNodes
property to determine whether child nodes exist.

PreviousSibling Returns the previous node that’s at the same level (or a null reference if no
such node exists).

NextSibling Returns the next node that’s at the same level (or a null reference if no such
node exists).

To see this in action, consider the following code, which configures two labels on a page
to show the heading and description information retrieved from the current node:

protected void Page_Load(object sender, EventArgs e)
{

lblHead.Text = SiteMap.CurrentNode.Title;
lblDescription.Text = SiteMap.CurrentNode.Description;

}

If you’re using master pages, you could place this code in the code-behind for your master
page, so that every page is assigned its title from the site map.

The next example is a little more ambitious. It implements a Previous/Next set of links,
allowing the user to traverse an entire set of subnodes. The code checks for the existence of
sibling nodes, and if there aren’t any in the required position, it simply hides the links:

protected void Page_Load(object sender, EventArgs e)
{

if (SiteMap.CurrentNode.NextSibling != null)
{

lnkNext.NavigateUrl = SiteMap.CurrentNode.NextSibling.Url;
lnkNext.Visible = true;

}
else
{

lnkNext.Visible = false;
}

}

Figure 14-7 shows the result. The first picture shows the Next link on the product1.aspx
page. The second picture shows how this link disappears when you navigate to product2.aspx
(either by clicking the Next link or the RevoAnalyze link in the TreeView).

CHAPTER 14 ■ WEBSITE NAVIGATION460

8911CH14.qxd 10/23/07 12:27 PM Page 460

Figure 14-7. Creating a Next page link

Mapping URLs
In some situations, you might want to have several URLs lead to the same page. This might be
the case for a number of reasons—maybe you want to implement your logic in one page and
use query string arguments but still provide shorter and easier-to-remember URLs to your
website users (often called friendly URLs). Or maybe you have renamed a page, but you want
to keep the old URL functional so it doesn’t break user bookmarks. Although web servers
sometimes provide this type of functionality, ASP.NET includes its own URL mapping feature.

The basic idea behind ASP.NET URL mapping is that you map a request URL to a different
URL. The mapping rules are stored in the web.config file, and they’re applied before any other
processing takes place. Of course, for ASP.NET to apply the remapping, it must be processing
the request, which means the request URL must use a file type extension that’s mapped to
ASP.NET (such as .aspx).

You define URL mapping in the <urlMappings> section of the web.config file. You supply
two pieces of information—the request URL (as the attribute url) and the new destination
URL (mappedUrl). Here’s an example:

CHAPTER 14 ■ WEBSITE NAVIGATION 461

8911CH14.qxd 10/23/07 12:27 PM Page 461

<configuration>
<system.web>
<urlMappings enabled="true">
<add url="~/category.aspx"
mappedUrl="~/default.aspx?category=default" />
<add url="~/software.aspx"
mappedUrl="~/default.aspx?category=software" />

</urlMappings>
...

</system.web>
</configuration>

In order for ASP.NET to make a match, the URL that the browser submits must match the
URL specified in the web.config file almost exactly. However, there are two exceptions. First,
the matching algorithm isn’t case sensitive, so the capitalization of the request URL is always
ignored. Second, any query string arguments in the URL are disregarded. Unfortunately,
ASP.NET doesn’t support advanced matching rules, such as wildcards or regular expressions.

When you use URL mapping, the redirection takes place in the same way as the
Server.Transfer() method, which means no round-trip happens and the URL in the browser
will still show the original request URL, not the new page. In your code, the Request.Path and
Request.QueryString properties reflect the new (mapped) URL. The Request.RawUrl property
returns the original, friendly request URL.

This can introduce some complexities if you use it in conjunction with site maps—
namely, does the site map provider try to use the original request URL or the destination URL
when looking for the current node in the site map? The answer is both. It begins by trying to
match the request URL (provided by the Request.RawUrl property), and if no value is found, it
then uses the Request.Path property instead. This is the behavior of the XmlSiteMapProvider,
so you could change it in a custom provider if desired.

The SiteMapPath Control
The TreeView shows the available pages, but it doesn’t indicate where you’re currently posi-
tioned. To solve this problem, it’s common to use the TreeView in conjunction with the
SiteMapPath control. Because the SiteMapPath is always used for displaying navigational
information (unlike the TreeView, which can also show other types of data), you don’t even
need to explicitly link it to the SiteMapDataSource:

<asp:SiteMapPath ID="SiteMapPath1" runat="server" />

The SiteMapPath provides breadcrumb navigation, which means it shows the user’s
current location and allows the user to navigate up the hierarchy to a higher level using
links. Figure 14-8 shows an example with a SiteMapPath control when the user is on the
product1.aspx page. Using the SiteMapPath control, the user can return to the default.aspx
page. (If a URL were defined for the Products node, you would also be able to click that por-
tion of the path to move to that page.) Once again, the SiteMapPath has been added to the
master page, so it appears on all the content pages in your site.

CHAPTER 14 ■ WEBSITE NAVIGATION462

8911CH14.qxd 10/23/07 12:27 PM Page 462

Figure 14-8. Breadcrumb navigation with SiteMapPath

The SiteMapPath control is useful because it provides both an at-a-glance view that
shows the current position and a way to move up the hierarchy. However, you always need to
combine it with other navigation controls that let the user move down the site map hierarchy.

Customizing the SiteMapPath
The SiteMapPath has a subtle but important difference from other navigational controls
such as the TreeView and Menu. Unlike these controls, the SiteMapPath works directly with
the ASP.NET navigation model—in other words, it doesn’t need to get its data through the
SiteMapDataSource. As a result, you can use the SiteMapPath on pages that don’t have a
SiteMapDataSource, and changing the properties of the SiteMapDataSource won’t affect
the SiteMapPath. However, the SiteMapPath control provides quite a few properties of its own
that you can use for customization. Table 14-3 lists some of its most commonly configured
properties.

Table 14-3. SiteMapPath Appearance-Related Properties

Property Description

ShowToolTips Set this to false if you don’t want the description text to appear
when the user hovers over a part of the site map path.

ParentLevelsDisplayed This sets the maximum number of levels above the current page
that will be shown at once. By default, this setting is -1, which
means all levels will be shown.

RenderCurrentNodeAsLink If true, the portion of the page that indicates the current page is
turned into a clickable link. By default, this is false because the
user is already at the current page.

PathDirection You have two choices: RootToCurrent (the default) and
CurrentToRoot (which reverses the order of levels in the path).

PathSeparator This indicates the characters that will be placed between each
level in the path. The default is the greater-than symbol (>).
Another common path separator is the colon (:).

CHAPTER 14 ■ WEBSITE NAVIGATION 463

8911CH14.qxd 10/23/07 12:27 PM Page 463

Using SiteMapPath Styles and Templates
For even more control, you can configure the SiteMapPath control with styles or even redefine
the controls and HTML with templates. Table 14-4 lists all the styles and templates that are
available in the SiteMapPath control; and you’ll see how to use both sets of properties in this
section.

Table 14-4. SiteMapPath Styles and Templates

Style Template Applies To

NodeStyle NodeTemplate All parts of the path except the root and
current node.

CurrentNodeStyle CurrentNodeTemplate The node representing the current page.

RootNodeStyle RootNodeTemplate The node representing the root. If the root
node is the same as the current node, the
current node template or styles are used.

PathSeparatorStyle PathSeparatorTemplate The separator in between each node.

Styles are easy enough to grasp—they define formatting settings that apply to one part of
the SiteMapPath control. Templates are a little trickier, because they rely on data-binding
expressions. Essentially, a template is a bit of HTML (that you create) that will be shown for a
specific part of the SiteMapPath control. For example, if you want to configure how the root
node displays in a site map, you could create a SiteMapPath with <RootNodeTemplate> as
follows:

<asp:SiteMapPath ID="SiteMapPath1" runat="server">
<RootNodeTemplate>
Root

</RootNodeTemplate>
</asp:SiteMapPath>

This simple template does not use the title and URL information in the root node of the
sitemap node. Instead, it simply displays the word Root in bold. Clicking the text has no effect.

Usually, you’ll use a data-binding expression to retrieve some site map information—
chiefly, the description, text, or URL that’s defined for the current node in the site map file.
Chapter 16 covers data-binding expressions in detail, but this section will present a simple
example that shows you all you need to know to use them with the SiteMapPath.

Imagine you want to change how the current node is displayed so that it’s shown in italics.
To get the name of the current node, you need to write a data-binding expression that
retrieves the title. This data-binding expression is bracketed between <%# and %> characters
and uses a method named Eval() to retrieve information from a SiteMapNode object that rep-
resents a page. Here’s what the template looks like:

<asp:SiteMapPath ID="SiteMapPath1" runat="server">
<CurrentNodeTemplate>
<i><%# Eval("Title") %></i>

</CurrentNodeTemplate>
</asp:SiteMapPath>

CHAPTER 14 ■ WEBSITE NAVIGATION464

8911CH14.qxd 10/23/07 12:27 PM Page 464

Data binding also gives you the ability to retrieve other information from the site map
node, such as the description. Consider the following example:

<asp:SiteMapPath ID="SiteMapPath1" runat="server">
<PathSeparatorTemplate>
<asp:Image ID="Image1" ImageUrl="~/arrowright.gif"
runat="server" />

</PathSeparatorTemplate>
<RootNodeTemplate>
Root

</RootNodeTemplate>
<CurrentNodeTemplate>
<%# Eval("Title") %>

<small><i><%# Eval("Description") %></i></small>

</CurrentNodeTemplate>
</asp:SiteMapPath>

This SiteMapPath uses several templates. First, it uses the PathSeparatorTemplate to
define a custom arrow image that’s used between each part of the path. This template uses an
Image control instead of an ordinary HTML tag because only the Image control under-
stands the ~/ characters in the image URL, which represent the application’s root folder. If you
don’t include these characters, the image won’t be retrieved successfully if you place your page
in a subfolder.

Next, the SiteMapPath uses the RootNodeTemplate to supply a fixed string of bold text
for the root portion of the site map path. Finally, the CurrentNodeTemplate uses two data-
binding expressions to show two pieces of information—both the title of the node and its
description (in smaller text, underneath). Figure 14-9 shows the final result.

Figure 14-9. A SiteMapPath with templates

Keen eyes will notice that the template-based SiteMapPath not only shows more informa-
tion but is also more interactive. Now you can click any of the page elements that fall between
the root item and the current page. In Figure 14-9, that means you can click Products to move
up a level to the products.aspx page.

CHAPTER 14 ■ WEBSITE NAVIGATION 465

8911CH14.qxd 10/23/07 12:27 PM Page 465

Interestingly, the templates in the SiteMapPath don’t contain any elements that provide
these links. Instead, the SiteMapPath automatically determines what items should be click-
able (by checking if they’re linked to a page in the site map). If an item should be clickable, the
SiteMapPath wraps the entire CurrentNodeTemplate for that item inside a link.

If you don’t want links (or you want to link in a different way, or with a different control),
you can change this behavior. The trick is to modify the NodeTemplate. You’ll learn how to do
this in the next section.

Adding Custom Site Map Information
In the site maps you’ve seen so far, the only information that’s provided for a node is the title,
description, and URL. This is the bare minimum of information you’ll want to use. However,
the schema for the XML site map is open, which means you’re free to insert custom attributes
with your own data.

You might want to insert additional node data for a number of reasons. This additional
information might be descriptive information that you intend to display, or contextual infor-
mation that describes how the link should work. For example, you could add attributes that
specify a target frame or indicate that a link should open in a new window. The only catch is
that it’s up to you to act on the information later. In other words, you need to configure your
user interface so it uses this extra information.

For example, the following code shows a site map that uses a target attribute to indicate
the frame where the link should open. This technique is useful if you’re using frames-based
navigation. In this example, one link is set with a target of _blank so it will open in a new
browser window:

<siteMapNode title="RevoStock"
description="Investment software for stock charting"
url="~/product1.aspx" target="_blank" />

Now in your code, you have several options. If you’re using a template in your navigation
control, you can bind directly to the new attribute. Here’s an example with the SiteMapPath
from the previous section:

<asp:SiteMapPath ID="SiteMapPath1" runat="server" Width="264px" Font-Size="10pt">
<NodeTemplate>
<a href='<%# Eval("Url") %>' target='<%# Eval("[target]") %>'>
<%# Eval("Title") %>

</NodeTemplate>

</asp:SiteMapPath>

This creates a link that uses the node URL (as usual) but also uses the target information.
There’s a slightly unusual detail in this example—the square brackets around the word [tar-
get]. You need to use this syntax to look up any custom attribute you add to the Web.sitemap
file. That’s because this value can’t be retrieved directly from a property of the SiteMapNode
class—instead, you need to look it up by name using the SiteMapNode indexer.

CHAPTER 14 ■ WEBSITE NAVIGATION466

8911CH14.qxd 10/23/07 12:27 PM Page 466

If your navigation control doesn’t support templates, you’ll need to find another
approach. For example, the TreeView doesn’t support templates, but it fires a
TreeNodeDataBound event each time an item is bound to the tree. You can react to this event
to customize the current item. To apply the new target, use this code:

protected void TreeView1_TreeNodeDataBound(object sender, TreeNodeEventArgs e)
{

SiteMapNode node = (SiteMapNode)e.Node.DataItem;
e.Node.Target = node["target"];

}

As in the template, you can’t retrieve the custom attribute from a strongly typed
SiteMapNode property. Instead, you retrieve it by name using the SiteMapNode indexer.

The TreeView Control
You’ve already seen the TreeView at work for displaying navigational information. As you’ve
learned, the TreeView can show a portion of the full site map or the entire site map. Each node
becomes a link that, when clicked, takes the user to the new page. If you hover over a link,
you’ll see the corresponding description information appear in a tooltip.

In the following sections, you’ll learn how to change the appearance of the TreeView. In
later chapters, you’ll learn how to use the TreeView for other tasks, such as displaying data
from a database.

■Note The TreeView is one of the most impressive controls in ASP.NET. Not only does it allow you to show
site maps, but it also supports showing information from a database and filling portions of the tree on
demand (and without refreshing the entire page). But most important, it supports a wide range of styles
that can transform its appearance.

TreeView Properties
The TreeView has a slew of properties that let you change how it’s displayed on the page. One
of the most important properties is ImageSet, which lets you choose a predefined set of node
icons. (Each set includes three icons: one for collapsed nodes, one for expanded nodes, and
one for nodes that have no children and therefore can’t be expanded or collapsed.) The
TreeView offers 16 possible ImageSet values, which are represented by the TreeViewImageSet
enumeration.

For example, Figure 14-10 shows the same RevoStock navigation page you considered
earlier, but this time with an ImageSet value of TreeViewImageSet.Faq. The result is help-style
icons that show a question mark (for nodes that have no children) or a question mark super-
imposed over a folder (for nodes that do contain children).

CHAPTER 14 ■ WEBSITE NAVIGATION 467

8911CH14.qxd 10/23/07 12:27 PM Page 467

Figure 14-10. A TreeView with fancy node icons

You’ll notice that this TreeView makes one more change. It removes the indentation
between different levels of nodes, so all the sitemap entries fit in the same narrow column, no
matter how many levels deep they are. This is accomplished by setting the NodeIndent prop-
erty of the TreeView to 0.

Here’s the complete TreeView markup:

<asp:TreeView ID="TreeView1" runat="server"
DataSourceID="SiteMapDataSource1" ImageSet="Faq" NodeIndent="0" >

</asp:TreeView>

The TreeViewImageSet values are useful if you don’t have a good set of images handy.
Figure 14-11 shows a page with 12 TreeViews, each of which represents one of the options in
the Auto Format window.

CHAPTER 14 ■ WEBSITE NAVIGATION468

8911CH14.qxd 10/23/07 12:27 PM Page 468

Figure 14-11. Different looks for a TreeView

Although the ImageSet and NodeIndent can have a dramatic effect on their own, they
aren’t the only options when configuring a TreeView. Table 14-5 lists some of the most useful
properties of the TreeView.

Table 14-5. Useful TreeView Properties

Property Description

MaxDataBindDepth Determines how many levels the TreeView will show. By
default, MaxDataBindDepth is -1, and you’ll see the
entire tree. However, if you use a value such as 2, you’ll
see only two levels under the starting node. This can help
you pare down the display of long, multileveled site
maps.

ExpandDepth Lets you specify how many levels of nodes will be visible
at first. If you use 0, the TreeView begins completely
closed. If you use 1, only the first level is expanded, and
so on. By default, ExpandDepth is set to the constant
FullyExpand (-1), which means the tree is fully expanded
and all the nodes are visible on the page.

Continued

CHAPTER 14 ■ WEBSITE NAVIGATION 469

8911CH14.qxd 10/23/07 12:27 PM Page 469

Table 14-5. Continued

Property Description

NodeIndent Sets the number of pixels between each level of nodes
in the TreeView. Set this to 0 to create a nonindented
TreeView, which saves space. A nonindented TreeView
allows you to emulate an in-place menu (see, for
example, Figure 14-12).

ImageSet Lets you use a predefined collection of node images for
collapsed, expanded, and nonexpandable nodes. You
specify one of the values in the TreeViewImageSet
enumeration. You can override any node images you
want to change by setting the CollapseImageUrl,
ExpandImageUrl, and NoExpandImageUrl properties.

CollapseImageUrl, ExpandImageUrl, Sets the pictures that are shown next to nodes for
and NoExpandImageUrl collapsed nodes (CollapseImageUrl) and expanded nodes

(ExpandImageUrl). The NoExpandImageUrl is used if the
node doesn’t have any children. If you don’t want to
create your own custom node images, you can use the
ImageSet property instead to use one of several built-in
image collections.

NodeWrap Lets a node text wrap over more than one line when set
to true.

ShowExpandCollapse Hides the expand/collapse boxes when set to false. This
isn’t recommended, because the user won’t have a way
to expand or collapse a level without clicking it (which
causes the browser to navigate to the page).

ShowLines Adds lines that connect every node when set to true.

ShowCheckBoxes Shows a check box next to every node when set to true.
This isn’t terribly useful for site maps, but it is useful with
other types of trees.

Properties give you a fair bit of customizing power, but one of the most interesting for-
matting features comes from TreeView styles, which are described in the next section.

TreeView Styles
Styles are represented by the TreeNodeStyle class, which derives from the more conventional
Style class. As with other rich controls, the styles give you options to set background and fore-
ground colors, fonts, and borders. Additionally, the TreeNodeStyle class adds the node-specific
style properties shown in Table 14-6. These properties deal with the node image and the spac-
ing around a node.

Table 14-6. TreeNodeStyle-Added Properties

Property Description

ImageUrl The URL for the image shown next to the node.

NodeSpacing The space (in pixels) between the current node and the node above and
below.

VerticalPadding The space (in pixels) between the top and bottom of the node text and
border around the text.

CHAPTER 14 ■ WEBSITE NAVIGATION470

8911CH14.qxd 10/23/07 12:27 PM Page 470

Property Description

HorizontalPadding The space (in pixels) between the left and right of the node text and border
around the text.

ChildNodesPadding The space (in pixels) between the last child node of an expanded parent
node and the following node (for example, between the Investing and
Products nodes in Figure 14-10).

Because a TreeView is rendered using an HTML table, you can set the padding of various
elements to control the spacing around text, between nodes, and so on. One other property
that comes into play is TreeView.NodeIndent, which sets the number of pixels of indentation
(from the left) in each subsequent level of the tree hierarchy. Figure 14-12 shows how these
settings apply to a single node.

Figure 14-12. Node spacing

CHAPTER 14 ■ WEBSITE NAVIGATION 471

8911CH14.qxd 10/23/07 12:27 PM Page 471

Clearly, styles give you a lot of control over how different nodes are displayed. To apply a
simple TreeView makeover, and to use the same style settings for each node in the TreeView,
you apply style settings through the TreeView.NodeStyle property. You can do this directly in
the control tag or by using the Properties window.

For example, here’s a TreeView that applies a custom font, font size, text color, padding,
and spacing:

<asp:TreeView ID="TreeView1" runat="server" DataSourceID="SiteMapDataSource1">
<NodeStyle Font-Names="Tahoma" Font-Size="10pt" ForeColor="Blue"
HorizontalPadding="5px" NodeSpacing="0px" VerticalPadding="0px" />

</asp:TreeView>

Usually, this approach doesn’t provide enough fine-tuning. Instead, you’ll want to tweak a
specific part of the tree. In this case, you need to find the style object that applies to the appro-
priate part of the tree, as explained in the following two sections.

Applying Styles to Node Types
The TreeView allows you to individually control the styles for types of nodes—for example,
root nodes, nodes that contain other nodes, selected nodes, and so on. Table 14-7 lists differ-
ent TreeView styles and explains what nodes they affect.

Table 14-7. TreeView Style Properties

Property Description

NodeStyle Applies to all nodes. The other styles may override some or all of the details
that are specified in the NodeStyle.

RootNodeStyle Applies only to the first-level (root) node.

ParentNodeStyle Applies to any node that contains other nodes, except root nodes.

LeafNodeStyle Applies to any node that doesn’t contain child nodes and isn’t a root node.

SelectedNodeStyle Applies to the currently selected node.

HoverNodeStyle Applies to the node the user is hovering over with the mouse. These set-
tings are applied only in up-level clients that support the necessary
dynamic script.

Here’s a sample TreeView that first defines a few standard style characteristics using the
NodeStyle property, and then fine-tunes different sections of the tree using the properties
from Table 14-7:

<asp:TreeView ID="TreeView1" runat="server" DataSourceID="SiteMapDataSource1">
<NodeStyle Font-Names="Tahoma" Font-Size="10pt" ForeColor="Blue"
HorizontalPadding="5px" NodeSpacing="0px" VerticalPadding="0px" />
<ParentNodeStyle Font-Bold="False" />
<HoverNodeStyle Font-Underline="True" ForeColor="#5555DD" />
<SelectedNodeStyle Font-Underline="True" ForeColor="#5555DD" />

</asp:TreeView>

CHAPTER 14 ■ WEBSITE NAVIGATION472

8911CH14.qxd 10/23/07 12:27 PM Page 472

Styles are listed in Table 14-7 in order of most general to most specific. This means the
SelectedNodeStyle settings override any conflicting settings in a RootNodeStyle, for example.
(If you don’t want a node to be selectable, set the TreeNode.SelectAction to None.) However,
the RootNodeStyle, ParentNodeStyle, and LeafNodeStyle settings never conflict, because the
definitions for root, parent, and leaf nodes are mutually exclusive. You can’t have a node that is
simultaneously a parent and a root node, for example—the TreeView simply designates this as
a root node.

Applying Styles to Node Levels
Being able to apply styles to different types of nodes is interesting, but often a more useful fea-
ture is being able to apply styles based on the node level. That’s because many trees use a rigid
hierarchy. (For example, the first level of nodes represents categories, the second level repre-
sents products, the third represents orders, and so on.) In this case, it’s not so important to
determine whether a node has children. Instead, it’s important to determine the node’s depth.

The only problem is that a TreeView can have a theoretically unlimited number of
node levels. Thus, it doesn’t make sense to expose properties such as FirstLevelStyle,
SecondLevelStyle, and so on. Instead, the TreeView has a LevelStyles collection that can have
as many entries as you want. The level is inferred from the position of the style in the collec-
tion, so the first entry is considered the root level, the second entry is the second node level,
and so on. For this system to work, you must follow the same order, and you must include an
empty style placeholder if you want to skip a level without changing the formatting.

For example, here’s a TreeView that differentiates levels by applying different amounts of
spacing and different fonts:

<asp:TreeView runat="server" HoverNodeStyle-Font-Underline="True"
ShowExpandCollapse="False" NodeIndent="3" DataSourceID="SiteMapDataSource1">
<LevelStyles>
<asp:TreeNodeStyle ChildNodesPadding="10" Font-Bold="True" Font-Size="12pt"
ForeColor="DarkGreen"/>
<asp:TreeNodeStyle ChildNodesPadding="5" Font-Bold="True" Font-Size="10pt" />
<asp:TreeNodeStyle ChildNodesPadding="5" Font-UnderLine="True"
Font-Size="10pt" />

</LevelStyles>
</asp:TreeView>

If you apply this to the category and product list shown in earlier examples, you’ll see a
page like the one shown in Figure 14-13.

CHAPTER 14 ■ WEBSITE NAVIGATION 473

8911CH14.qxd 10/23/07 12:27 PM Page 473

Figure 14-13. A TreeView with styles

TREEVIEW AUTO FORMAT

Using the right combination of styles and images can dramatically transform your TreeView. However, for
those less artistically inclined, it’s comforting to know that Microsoft has made many classic designs avail-
able through the TreeView’s Auto Format feature. To use it, start by selecting the TreeView on the design
surface. Then, click the arrow icon that appears next to the top-right corner of the TreeView to show its smart
tag. In the smart tag, click the Auto Format link to show the Auto Format dialog box.

In the Auto Format dialog box, you can pick from a variety of preset formats, each with a small preview.
Click Apply to try the format out on your TreeView, Cancel to back out, and OK to make it official and return to
Visual Studio.

The different formats correspond loosely to the different TreeViewImageSet values. However, the reality
is not quite that simple. When you pick a TreeView format, Visual Studio sets the ImageSet property and
applies a few matching style settings, to help you get that perfect final look.

The Menu Control
The Menu control is another rich control that supports hierarchical data. Like the TreeView,
you can bind the Menu control to a data source, or you can fill it by hand using MenuItem
objects.

To try the Menu control, remove the TreeView from your master page, and add the follow-
ing Menu control tag:

<asp:Menu ID="Menu1" runat="server" DataSourceID="SiteMapDataSource1" />

Notice that this doesn’t configure any properties—it uses the default appearance. The
only step you need to perform is setting the DataSourceID property to link the menu to the
site map information.

CHAPTER 14 ■ WEBSITE NAVIGATION474

8911CH14.qxd 10/23/07 12:27 PM Page 474

When the Menu first appears, you’ll see only the starting node, with an arrow next to it.
When you move your mouse over the starting node, the next level of nodes will pop into dis-
play. You can continue this process to drill down as many levels as you want, until you find the
page you want to click (see Figure 14-14). If you click a menu item, you’ll be transported to the
corresponding page, just as you are when you click a node in the TreeView.

Figure 14-14. Navigating through the menu

Overall, the Menu and TreeView controls expose strikingly similar programming models,
even though they render themselves quite differently. They also have a similar style-based for-
matting model. But a few noteworthy differences exist:

• The Menu displays a single submenu. The TreeView can expand an arbitrary number of
node branches at a time.

• The Menu displays a root level of links in the page. All other items are displayed using
fly-out menus that appear over any other content on the page. The TreeView shows all
its items inline in the page.

• The Menu supports templates. The TreeView does not. (Menu templates are discussed
later in this section.)

• The TreeView supports check boxes for any node. The Menu does not.

• The Menu supports horizontal and vertical layouts, depending on the Orientation
property. The TreeView supports only vertical layout.

CHAPTER 14 ■ WEBSITE NAVIGATION 475

8911CH14.qxd 10/23/07 12:27 PM Page 475

Menu Styles
The Menu control provides an overwhelming number of styles. Like the TreeView, the Menu
adds a custom style class, which is named MenuItemStyle. This style adds spacing properties
such as ItemSpacing, HorizontalPadding, and VerticalPadding. However, you can’t set menu
item images through the style, because it doesn’t have an ImageUrl property.

Much like the TreeView, the Menu supports defining different menu styles for different
menu levels. However, the key distinction that the Menu control encourages you to adopt is
between static items (the root-level items that are displayed in the page when it’s first gener-
ated) and dynamic items (the items in fly-out menus that are added when the user moves the
mouse over a portion of the menu). Most websites have a definite difference in the styling of
these two elements. To support this, the Menu class defines two parallel sets of styles, one that
applies to static items and one that applies to dynamic items, as shown in Table 14-8.

Table 14-8. Menu Styles

Static Style Dynamic Style Description

StaticMenuStyle DynamicMenuStyle Sets the appearance of the overall “box” in
which all the menu items appear. In the
case of StaticMenuStyle, this box appears on
the page, and with DynamicMenuStyle it
appears as a pop-up.

StaticMenuItemStyle DynamicMenuItemStyle Sets the appearance of individual menu
items.

StaticSelectedStyle DynamicSelectedStyle Sets the appearance of the selected item.
Note that the selected item isn’t the item
that’s currently being hovered over; it’s the
item that was previously clicked (and that
triggered the last postback).

StaticHoverStyle DynamicHoverStyle Sets the appearance of the item that the
user is hovering over with the mouse.

Along with these styles, you can set level-specific styles so that each level of menu
and submenu is different. You do this using three collections: LevelMenuItemStyles,
LevelSubMenuStyles, and LevelSelectedStyles. These collections apply to ordinary menus,
menus that contain other items, and selected menu items, respectively.

It might seem like you have to do a fair bit of unnecessary work when separating dynamic
and static styles. The reason for this model becomes obvious when you consider another
remarkable feature of the Menu control—it allows you to choose the number of static levels.
By default, only one static level exists, and everything else is displayed as a fly-out menu when
the user hovers over the corresponding parent. But you can set the Menu.StaticDisplayLevels
property to change all that. If you set it to 2, for example, the first two levels of the menu will
be rendered in the page using the static styles. (You can control the indentation of each level
using the StaticSubMenuIndent property.)

Figure 14-15 shows the menu with StaticDisplayLevels set to 2 (and some styles applied
through the Auto Format link). Each menu item will still be highlighted when you hover over
it, as in a nonstatic menu, and selection will also work the same way as it does in the nonstatic
menu.

CHAPTER 14 ■ WEBSITE NAVIGATION476

8911CH14.qxd 10/23/07 12:27 PM Page 476

Figure 14-15. A menu with two static levels

■Tip The Menu control exposes many more top-level properties for tweaking specific rendering aspects.
For example, you can set the delay before a pop-up menu disappears (DisappearAfter), the default images
used for expansion icons and separators, the scrolling behavior (which kicks into gear when the browser
window is too small to fit a pop-up menu), and much more. Consult MSDN for a full list of properties.

Menu Templates
The Menu control also supports templates through the StaticItemTemplate and
DynamicItemTemplate properties. These templates determine the HTML that’s rendered
for each menu item, giving you complete control.

You’ve already seen how to create templates for the TreeView, but the process of creating
templates for the Menu is a bit different. Whereas each node in the TreeView is bound directly
to a SiteMapNode object, the Menu is bound to something else: a dedicated MenuItem object.

This subtle quirk can complicate life. For one thing, you can’t rely on properties such as
Title, Description, and Url, which are provided by the SiteMapNode object. Instead, you need
to use the MenuItem.Text property to get the information you need to display, as shown here:

<asp:Menu ID="Menu1" runat="server">
<StaticItemTemplate>
<%# Eval("Text") %>

</StaticItemTemplate>
</asp:Menu>

One reason you might want to use the template features of the Menu is to show multiple
pieces of information in a menu item. For example, you might want to show both the title and
the description from the SiteMapNode for this item (rather than just the title). Unfortunately,
that’s not as easy as it is with the TreeView. Once again, the problem is that the Menu binds
directly to MenuItem objects, not the SiteMapNode objects, and MenuItem objects just don’t
provide the information you need.

CHAPTER 14 ■ WEBSITE NAVIGATION 477

8911CH14.qxd 10/23/07 12:27 PM Page 477

If you’re really desperate, there is a workaround using an advanced data-binding tech-
nique. Rather than binding to a property of the MenuItem object, you can bind to a custom
method that you create in your page class. This custom method can then include the code
that’s needed to get the correct SiteMapNode object (based on the current URL) and provide
the extra information you need. In a perfect world, this extra work wouldn’t be necessary, but
unfortunately it’s the simplest workaround in this situation.

For example, consider the following template. It uses two types of data-binding expres-
sions. The first type simply gets the MenuItem text (which is the page title). The second type
uses a custom method named GetDescriptionFromTitle(), which you need to create. This
method receives the page title as an argument, and then returns the corresponding
description:

<asp:Menu ID="Menu1" runat="server" DataSourceID="SiteMapDataSource1">
<StaticItemTemplate>
<%# Eval("Text") %>

<small>
<%# GetDescriptionFromTitle(Eval("Text")) %>
</small>

</StaticItemTemplate>
<DynamicItemTemplate>
<%# Eval("Text") %>

<small>
<%# GetDescriptionFromTitle(Eval("Text")) %>
</small>

</DynamicItemTemplate>
</asp:Menu>

This template is designed to create the more descriptive menu items that are shown in
Figure 14-16.

Figure 14-16. Showing node descriptions in a menu

In order for this example to work, you need to create a method named
GetDescriptionFromTitle() in the code for your page class. It belongs in the page that has

CHAPTER 14 ■ WEBSITE NAVIGATION478

8911CH14.qxd 10/23/07 12:27 PM Page 478

the Menu control, which, in this example, is the master page. The GetDescriptionFromTitle()
method must also have protected (or public) accessibility, so that ASP.NET can call it during
the data-binding process:

protected string GetDescriptionFromTitle(string title)
{... }

The tricky part is filling in the code you need. In this example, there are actually two cus-
tom methods involved. In order to find the node it needs, GetDescriptionFromTitle() calls
another method, named SearchNodes(). The SearchNodes() method calls itself several times
to perform a recursive search through the whole hierarchy of nodes. It ends its search only
when it finds a matching node, which it returns to GetDescriptionFromTitle(). Finally,
GetDescriptionFromTitle() extracts the description information (and anything else you’re
interested in).

Here’s the complete code that makes this example work:

protected string GetDescriptionFromTitle(string title)
{

// This assumes there's only one node with this title.
SiteMapNode startingNode = SiteMap.RootNode;
SiteMapNode matchNode = SearchNodes(startingNode, title);
if (matchNode == null)
{

return null;
}
else
{

return matchNode.Description;
}

}

private SiteMapNode SearchNodes(SiteMapNode node, string title)
{

if (node.Title == title)
{

return node;
}
else
{

// Perform recursive search.
foreach (SiteMapNode child in node.ChildNodes)
{

SiteMapNode matchNode = SearchNodes(child, title);
// Was a match found?
// If so, return it.
if (matchNode != null) return matchNode;

}

CHAPTER 14 ■ WEBSITE NAVIGATION 479

8911CH14.qxd 10/23/07 12:27 PM Page 479

// All the nodes were examined, but no match was found.
return null;

}
}

Once you’ve finished this heavy lifting, you can use the GetDescriptionFromTitle()
method in a template to get the additional information you need.

The Last Word
In this chapter, you explored the new navigation model and learned how to define site maps
and bind the navigation data. You then considered three controls that are specifically designed
for navigation data: the SiteMapPath, TreeView, and Menu. Using these controls, you can add
remarkably rich site maps to your websites with very little coding. But before you begin, make
sure you’ve finalized the structure of your website. Only then will you be able to create the per-
fect site map and choose the best ways to present the site map information in the navigation
controls.

CHAPTER 14 ■ WEBSITE NAVIGATION480

8911CH14.qxd 10/23/07 12:27 PM Page 480

Working with Data

P A R T 4

8911CH15.qxd 10/18/07 4:38 PM Page 481

8911CH15.qxd 10/18/07 4:38 PM Page 482

ADO.NET Fundamentals

At the beginning of this book, you learned that ASP.NET is just one component in Microsoft’s
ambitious .NET platform. As you know, .NET also includes new languages, a new philosophy
for cross-language integration, an easier way to deploy code, and a toolkit of classes that
allows you to do everything from handling errors to analyzing XML documents. In this chap-
ter, you’ll explore another one of the many features in the .NET Framework: the ADO.NET data
access model.

Quite simply, ADO.NET is the technology that .NET applications use to interact with a
database. In this chapter, you’ll learn about ADO.NET and the family of objects that provides
its functionality. You’ll also learn how to put these objects to work by creating simple pages
that retrieve and update database records. However, you won’t learn about the easiest way to
use ADO.NET—with the help of ASP.NET data binding. Although data binding is a powerful
and practical feature, every ASP.NET developer should start with a solid grasp of ADO.NET
fundamentals. That’s because you’ll need to write your own ADO.NET code to optimize
performance-sensitive database routines, to perform data tasks that aren’t covered by the
data binding model, and to craft database components (as described in Chapter 23). Once
you’ve mastered the basics of ADO.NET in this chapter, you’ll be ready to explore the time-
saving shortcuts of the data binding model in Chapter 16 and Chapter 17.

Understanding Data Management
Almost every piece of software ever written works with data. In fact, a typical web application
is often just a thin user interface shell on top of sophisticated data-driven code that reads and
writes information from a database. Often, website users aren’t aware (or don’t care) that the
displayed information originates from a database. They just want to be able to search your
product catalog, place an order, or check their payment records.

The Role of the Database
The most common way to manage data is to use a database. Database technology is particu-
larly useful for business software, which typically requires sets of related information. For
example, a typical database for a sales program consists of a list of customers, a list of prod-
ucts, and a list of sales that draws on information from the other two tables. This type of
information is best described using a relational model, which is the philosophy that underlies
all modern database products, including SQL Server, Oracle, and even Microsoft Access.

483

C H A P T E R 1 5

8911CH15.qxd 10/18/07 4:38 PM Page 483

As you probably know, a relational model breaks information down to its smallest and
most concise units. For example, a sales record doesn’t store all the information about the
products that were sold. Instead, it stores just a product ID that refers to a full record in a
product table, as shown in Figure 15-1.

Figure 15-1. Basic table relationships

Although it’s technically possible to organize data into tables and store it on the hard
drive in one or more files (perhaps using a standard like XML), this approach wouldn’t be very
flexible. Instead, a web application needs a full relational database management system
(RDBMS), such as SQL Server. The RDBMS handles the data infrastructure, ensuring optimum
performance and reliability. For example, the RDBMS takes the responsibility of providing
data to multiple users simultaneously, disallowing invalid data, and committing groups of
actions at once using transactions.

In most ASP.NET applications, you’ll need to use a database for some tasks. Here are some
basic examples of data at work in a web application:

• E-commerce sites (like Amazon) use detailed databases to store product catalogs. They
also track orders, customers, shipment records, and inventory information in a huge
arrangement of related tables.

• Search engines (like Google) use databases to store indexes of page URLs, links, and
keywords.

• Knowledge bases (like Microsoft Support) use less structured databases that store vast
quantities of information or links to various documents and resources.

• Media sites (like The New York Times) store their articles in databases.

You probably won’t have any trouble thinking about where you need to use database
technology in an ASP.NET application. What web application couldn’t benefit from a guest
book that records user comments or a simple e-mail address submission form that uses a

CHAPTER 15 ■ ADO.NET FUNDAMENTALS484

8911CH15.qxd 10/18/07 4:38 PM Page 484

back-end database to store a list of potential customers or contacts? This is where ADO.NET
comes into the picture. ADO.NET is a technology designed to let an ASP.NET program (or any
other .NET program, for that matter) access data.

■Tip If you’re a complete database novice, you can get up to speed on essential database concepts using
the video tutorials at http://msdn.microsoft.com/vstudio/express/sql/learning. There, you’ll find
over nine hours of instruction that describes how to use the free SQL Server 2005 Express Edition with
Visual Studio. The tutorials move from absolute basics—covering topics such as database data types and
table relationships—to more advanced subject matter such as full-text search, reporting services, and net-
work security.

Database Access in the Web World
Accessing a database in a web application is a completely different scenario than accessing a
database in a typical client-server desktop application. Most developers hone their database
skills in the desktop world and run into serious problems when they try to apply what they
have learned with stand-alone applications in the world of the Web. Quite simply, web appli-
cations raise two new considerations: problems of scale and problems of state.

Problems of scale are the problems that can result from the massively multiuser nature of
the Web. A web application has the potential to be used by hundreds or thousands of simulta-
neous users. This means it can’t be casual about using server memory or limited resources
such as database connections. If you design an application that acquires a database connec-
tion and holds it for even a few extra seconds, other users may notice a definite slowdown.
And if you don’t carefully consider database concurrency issues (in other words, what hap-
pens when the changes from different users overlap), you can run into significant headaches,
such as failed updates and inconsistent data.

■Note Problems of scale can occur when developing traditional client-server desktop applications. The dif-
ference is that in most client-server applications they are far less likely to have any negative effect because
the typical load (the number of simultaneous users) is dramatically lower. Database practices that might
slightly hamper the performance of a client-server application can multiply rapidly and cause significant
problems in a web application.

Problems of state are problems that can result from the disconnected nature of the Inter-
net. As you already know, HTTP is a stateless protocol. When a user requests a page in an
ASP.NET application, the web server processes the code, returns the rendered HTML, and
closes the connection immediately. Although users may have the illusion that they are inter-
acting with a continuously running application, they are really just receiving a string of static
pages.

Because of the stateless nature of HTTP, web applications need to perform all their
work in the space of a single request. The typical approach is to connect to a database, read

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 485

8911CH15.qxd 10/18/07 4:38 PM Page 485

http://msdn.microsoft.com/vstudio/express/sql/learning

information, display it, and then close the database connection. This approach runs into diffi-
culties if you want the user to be able to modify the retrieved information. In this scenario, the
application requires a certain amount of intelligence in order to be able to identify the original
record, build a SQL statement to select it, and update it with the new values.

Fortunately, both ASP.NET and ADO.NET are designed with these challenges in mind. As
you work your way through this chapter (and the following two chapters), you’ll learn how to
deal with databases safely and efficiently.

Configuring Your Database
Before you can run any data access code, you need a database server to take your command.
Although there are dozens of good options, all of which work equally well with ADO.NET
(and require essentially the same code), a significant majority of ASP.NET applications use
Microsoft SQL Server.

This chapter includes code that works with SQL Server 7 or later, although you can easily
adapt the code to work with other database products. Ideally you’ll use SQL Server 2005 (with
Service Pack 2) or SQL Server 2008. Microsoft is phasing out older versions, and they don’t
have support for Windows Vista and Windows Server 2008.

If you don’t have a full version of SQL Server, there’s no need to worry—you can simply
install the free SQL Server Express Edition (as described in the next section). It includes all the
database features you need to develop and test a web application.

■Note This chapter (and the following two chapters) use examples drawn from the pubs and Northwind
databases, which are sample databases included with some versions of Microsoft SQL Server. These data-
bases aren’t preinstalled in all versions of SQL Server, and they’re noticeably absent from SQL Server 2005.
However, you can easily install them using the scripts provided with the online samples. See the readme.txt
file for full instructions.

SQL Server Express
If you don’t have a test database server handy, you may want to use SQL Server 2005 Express
Edition, the free data engine included with some versions of Visual Studio and downloadable
separately.

SQL Server Express is a scaled-down version of SQL Server 2005 that’s free to distribute.
SQL Server Express has certain limitations—for example, it can use only one CPU and a maxi-
mum of 1GB of RAM; databases can’t be larger than 4GB; and graphical tools aren’t included.
However, it’s still remarkably powerful and suitable for many midscale websites. Even better,
you can easily upgrade from SQL Server Express to a paid version of SQL Server if you need
more features later. For more information about SQL Server 2005 Express or to download it,
refer to http://www.microsoft.com/sql/editions/express.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS486

8911CH15.qxd 10/18/07 4:38 PM Page 486

http://www.microsoft.com/sql/editions/express

Browsing and Modifying Databases in Visual Studio
As an ASP.NET developer, you may have the responsibility of creating the database required
for a web application. Alternatively, it may already exist, or it may be the responsibility of a
dedicated database administrator. If you’re using a full version of SQL Server, you’ll probably
use a graphical tool such as SQL Server Management Studio to create and manage your
databases.

■Tip SQL Server Express doesn’t include SQL Server Management Studio in the download that you use to
install it. However, you can download it separately. Just search for “SQL Server Management Studio” in your
favorite search engine or surf to http://tinyurl.com/ynl9tv.

If you don’t have a suitable tool for managing your database, or you don’t want to leave
the comfort of Visual Studio, you can perform many of the same tasks using Visual Studio’s
Server Explorer window.

Here’s how you can get started. First, choose View ➤ Server Explorer from the Visual Studio
menu to show the Server Explorer window. Then, using the Data Connections node in the
Server Explorer, you can connect to existing databases or create new ones. Assuming you’ve
installed the pubs database (see the readme.txt file for instructions), you can create a connec-
tion to it by following these steps:

1. Right-click the Data Connections node, and choose Add Connection. If the Choose
Data Source window appears, select Microsoft SQL Server and then click Continue.

2. If you’re using a full version of SQL Server, enter localhost as your server name. This
indicates the database server is the default instance on the local computer. (Replace
this with the name of a remote computer if needed.) If you’re using SQL Server Express,
you’ll need to use the server name localhost\SQLEXPRESS instead, as shown in
Figure 15-2. The SQLEXPRESS part indicates that you’re connecting to a named
instance of SQL Server. By default, this is the way that SQL Server Express configures
itself when you first install it.

3. Click Test Connection to verify that this is the location of your database. If you haven’t
installed a database product yet, this step will fail. Otherwise, you’ll know that your
database server is installed and running.

4. In the Select or Enter a Database Name list, choose the pubs database. (In order for
this to work, the pubs database must already be installed. You can install it using the
database script that’s included with the sample code, as explained in the following sec-
tion.) If you want to see more than one database in Visual Studio, you’ll need to add
more than one data connection.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 487

8911CH15.qxd 10/18/07 4:38 PM Page 487

http://tinyurl.com/ynl9tv

Figure 15-2. Creating a connection in Visual Studio

■Tip Alternatively, you can choose to create a new database by right-clicking the Data Connections node
and choosing Create New SQL Server Database.

5. Click OK. The database connection will appear in the Server Explorer window. You can
now explore its groups to see and edit tables, stored procedures, and more. For exam-
ple, if you right-click a table and choose Show Table Data, you’ll see a grid of records
that you can browse and edit, as shown in Figure 15-3.

■Tip The Server Explorer window is particularly handy if you’re using SQL Server Express Edition, which
gives you the ability to place databases directly in the App_Data folder of your web application (instead of
placing all your databases in a separate, dedicated location). If Visual Studio finds a database in the
App_Data folder, it automatically adds a connection for it to the Data Connections group. To learn more
about this feature, check out the “User Instance Connections” section later in this chapter.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS488

8911CH15.qxd 10/18/07 4:38 PM Page 488

Figure 15-3. Editing table data in Visual Studio

The sqlcmd Command-Line Tool
SQL Server 2005 (and 2008) include a handy command-line tool named sqlcmd.exe that you
can use to perform database tasks from a Windows command prompt. Compared to a man-
agement tool like SQL Server Management Studio, sqlcmd doesn’t offer many frills. It’s just a
quick-and-dirty way to perform a database task. Often, sqlcmd is used in a batch file—for
example, to create database tables as part of an automated setup process.

The sqlcmd tool is installed as part of SQL Server 2005 (and 2008), and it’s found in a
directory like c:\Program Files\Microsoft SQL Server\90\Tools\Binn. The easiest way to run
sqlcmd is to launch the Visual Studio command prompt (open the Start menu and choose
Programs ➤ Microsoft Visual Studio 2008 ➤ Visual Studio Tools ➤ Visual Studio 2008 Com-
mand Prompt). This opens a command window that has the SQL Server directory set in the
path variable. As a result, you can use sqlcmd anywhere you want, without typing its full direc-
tory path.

When running sqlcmd, it’s up to you to supply the right parameters. To see all the possible
parameters, type this command:

sqlcmd -?

Two commonly used sqlcmd parameters are –S (which specifies the location of your data-
base server) and –i (which supplies a script file with SQL commands that you want to run). For
example, the downloadable code samples include a file named InstPubs.sql that contains the
commands you need to create the pubs database and fill it with sample data. If you’re using
SQL Server Express, you can run the InstPubs.sql script using this command:

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 489

8911CH15.qxd 10/18/07 4:38 PM Page 489

sqlcmd -S localhost\SQLEXPRESS -i InstPubs.sql

If you’re using a full version of SQL Server on the local computer, you don’t need to supply
the server name at all:

sqlcmd -i InstPubs.sql

And if your database is on another computer, you need to supply that computer’s name
with the –S parameter (or just run sqlcmd on that computer).

Figure 15-4 shows the feedback you’ll get when you run InstPubs.sql with sqlcmd.

Figure 15-4. Running a SQL script with sqlcmd.exe

In this book, you’ll occasionally see instructions about using sqlcmd to perform some
sort of database configuration. However, you can usually achieve the same result (with a bit
more clicking) using the graphical interface in a tool like SQL Server Management Studio. For
example, to install a database by running a SQL script, you simply need to start SQL Server
Management Studio, open the SQL file (using the File ➤ Open ➤ File command), and then
run it (using the Query ➤ Execute command).

SQL Basics
When you interact with a data source through ADO.NET, you use SQL to retrieve, modify, and
update information. In some cases, ADO.NET will hide some of the details for you or even
generate required SQL statements automatically. However, to design an efficient database
application with a minimal amount of frustration, you need to understand the basic concepts
of SQL.

SQL (Structured Query Language) is a standard data access language used to interact with
relational databases. Different databases differ in their support of SQL or add other features,
but the core commands used to select, add, and modify data are common. In a database prod-
uct such as SQL Server, it’s possible to use SQL to create fairly sophisticated SQL scripts for
stored procedures and triggers (although they have little of the power of a full object-oriented

CHAPTER 15 ■ ADO.NET FUNDAMENTALS490

8911CH15.qxd 10/18/07 4:38 PM Page 490

programming language). When working with ADO.NET, however, you’ll probably use only the
following standard types of SQL statements:

• A Select statement retrieves records.

• An Update statement modifies existing records.

• An Insert statement adds a new record.

• A Delete statement deletes existing records.

If you already have a good understanding of SQL, you can skip the next few sections.
Otherwise, read on for a quick tour of SQL fundamentals.

■Tip To learn more about SQL, use one of the SQL tutorials available on the Internet, such as the one at
http://www.w3schools.com/sql. If you’re working with SQL Server, you can use its thorough Books
Online help to become a database guru.

Running Queries in Visual Studio
If you’ve never used SQL before, you may want to play around with it and create some sample
queries before you start using it in an ASP.NET site. Most database products provide some sort
of tool for testing queries. If you’re using a full version of SQL Server, you can try SQL Server
Management Studio or SQL Query Analyzer. If you don’t want to use an extra tool, you can run
your queries using the Server Explorer window described earlier. Just follow these steps in
Visual Studio:

1. Right-click your connection, and choose New Query.

2. Choose the table (or tables) you want to use in your query from the Add Table dialog
box (as shown in Figure 15-5), click Add, and then click Close.

Figure 15-5. Adding tables to a query

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 491

8911CH15.qxd 10/18/07 4:38 PM Page 491

http://www.w3schools.com/sql

3. You’ll now see a handy query-building window. You can create your query by adding
check marks next to the fields you want, or you can edit the SQL by hand in the
lower portion of the window. Best of all, if you edit the SQL directly, you can type in
anything—you don’t need to stick to the tables you selected in step 2, and you don’t
need to restrict yourself to Select statements.

4. When you’re ready to run the query, select Query Designer ➤ Execute SQL from the
menu. Assuming your query doesn’t have any errors, you’ll get one of two results. If
you’re selecting records, the results will appear at the bottom of the window (see
Figure 15-6). If you’re deleting or updating records, a message box will appear inform-
ing you how many records were affected.

Figure 15-6. Executing a query

■Tip When programming with ADO.NET, it always helps to know your database. If you have information on
hand about the data types it uses, the stored procedures it provides, and the user account you need to use,
you’ll be able to work more quickly and with less chance of error.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS492

8911CH15.qxd 10/18/07 4:38 PM Page 492

The Select Statement
To retrieve one or more rows of data, you use a Select statement. A basic Select statement has
the following structure:

SELECT [columns] FROM [tables] WHERE [search_condition]
ORDER BY [order_expression ASC | DESC]

This format really just scratches the surface of SQL. If you want, you can create more
sophisticated queries that use subgrouping, averaging and totaling, and other options (such
as setting a maximum number of returned rows). By performing this work in a query (instead
of in your application), you can often create far more efficient applications.

The next few sections present sample Select statements. After each example, a series of
bulleted points breaks the SQL down to explain how each part of it works.

A Sample Select Statement
The following is a typical (and rather inefficient) Select statement for the pubs database.
It works with the Authors table, which contains a list of authors:

SELECT * FROM Authors

• The asterisk (*) retrieves all the columns in the table. This isn’t the best approach for a
large table if you don’t need all the information. It increases the amount of data that has
to be transferred and can slow down your server.

• The From clause identifies that the Authors table is being used for this statement.

• The statement doesn’t have a Where clause. This means all the records will be retrieved
from the database, regardless of whether it has 10 or 10 million records. This is a poor
design practice, because it often leads to applications that appear to work fine when
they’re first deployed but gradually slow down as the database grows. In general, you
should always include a Where clause to limit the possible number of rows (unless you
absolutely need them all). Often, queries are limited by a date field (for example,
including all orders that were placed in the last three months).

• The statement doesn’t have an Order By clause. This is a perfectly acceptable approach,
especially if order doesn’t matter or you plan to sort the data on your own using the
tools provided in ADO.NET.

Improving the Select Statement
Here’s another example that retrieves a list of author names:

SELECT au_lname, au_fname FROM Authors WHERE State='CA' ORDER BY au_lname ASC

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 493

8911CH15.qxd 10/18/07 4:38 PM Page 493

• Only two columns are retrieved (au_lname and au_fname). They correspond to the first
and last names of the author.

• A Where clause restricts results to those authors who live in the specified state
(California). Note that the Where clause requires apostrophes around the value you
want to match, because it’s a text value.

• An Order By clause sorts the information alphabetically by the author’s last name.

An Alternative Select Statement
Here’s one last example:

SELECT TOP 100 * FROM Sales ORDER BY ord_date DESC

This example uses the Top clause instead of a Where statement. The database rows will be
sorted by order date, and the first 100 matching results will be retrieved. In this case, it’s the
100 most recent orders. You could also use this type of statement to find the most expensive
items you sell or the best-performing employees.

The Where Clause
In many respects, the Where clause is the most important part of the Select statement. You can
combine multiple conditions with the And keyword, and you can specify greater-than and
less-than comparisons by using the greater-than (>) and less-than (<) operators.

The following is an example with a different table and a more sophisticated Where
statement:

SELECT * FROM Sales WHERE ord_date < '2000/01/01' AND ord_date > '1987/01/01'

This example uses the international date format to compare date values. Although SQL
Server supports many date formats, yyyy/mm/dd is recommended to prevent ambiguity.

If you were using Microsoft Access, you would need to use the U.S. date format,
mm/dd/yyyy, and replace the apostrophes around the date with the number (#) symbol.

String Matching with the Like Operator
The Like operator allows you to perform partial string matching to filter records where a par-
ticular field starts with, ends with, or contains a certain set of characters. For example, if you
want to see all store names that start with B, you could use the following statement:

SELECT * FROM Stores WHERE stor_name LIKE 'B%'

To see a list of all stores ending with B, you would put the percent sign before the B, like
this:

SELECT * FROM Stores WHERE stor_name LIKE '%B'

The third way to use the Like operator is to return any records that contain a certain char-
acter or sequence of characters. For example, suppose you want to see all stores that have the
word book somewhere in the name. In this case, you could use a SQL statement like this:

CHAPTER 15 ■ ADO.NET FUNDAMENTALS494

8911CH15.qxd 10/18/07 4:38 PM Page 494

SELECT * FROM Stores WHERE stor_name LIKE '%book%'

By default, SQL is not case sensitive, so this syntax finds instances of BOOK, book, or any
variation of mixed case.

Finally, you can indicate one of a set of characters, rather than just any character, by
listing the allowed characters within square brackets. Here’s an example:

SELECT * FROM Stores WHERE stor_name LIKE '[abcd]%'

This SQL statement will return stores with names starting with A, B, C, or D.

Aggregate Queries
The SQL language also defines special aggregate functions. Aggregate functions work with a set
of values but return only a single value. For example, you can use an aggregate function to
count the number of records in a table or to calculate the average price of a product. Table 15-1
lists the most commonly used aggregate functions.

Table 15-1. SQL Aggregate Functions

Function Description

Avg(fieldname) Calculates the average of all values in a given numeric field

Sum(fieldname) Calculates the sum of all values in a given numeric field

Min(fieldname) and Max(fieldname) Finds the minimum or maximum value in a number field

Count(*) Returns the number of rows in the result set

Count(DISTINCT fieldname) Returns the number of unique (and non-null) rows in the
result set for the specified field

For example, here’s a query that returns a single value—the number of records in the
Authors table:

SELECT COUNT(*) FROM Authors

And here’s how you could calculate the total quantity of all sales by adding together the
qty field in each record:

SELECT SUM(qty) FROM Sales

The SQL Update Statement
The SQL Update statement selects all the records that match a specified search expression and
then modifies them all according to an update expression. At its simplest, the Update state-
ment has the following format:

UPDATE [table] SET [update_expression] WHERE [search_condition]

Typically, you’ll use an Update statement to modify a single record. The following exam-
ple adjusts the phone column in a single author record. It uses the unique author ID to find
the correct row.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 495

8911CH15.qxd 10/18/07 4:38 PM Page 495

UPDATE Authors SET phone='408 496-2222' WHERE au_id='172-32-1176'

This statement returns the number of affected rows. (See Figure 15-7 for an example in
Visual Studio.) However, it won’t display the change. To do that, you need to request the row by
performing another Select statement:

Figure 15-7. Executing an update query in Visual Studio

SELECT phone FROM Authors WHERE au_id='172-32-1176'

As with a Select statement, you can use an Update statement with several criteria:

UPDATE Authors SET au_lname='Whiteson', au_fname='John'
WHERE au_lname='White' AND au_fname='Johnson'

You can even use the Update statement to update an entire range of matching records.
The following example increases the price of every book in the Titles table that was published
in 1991 by one dollar:

UPDATE Titles SET price=price+1
WHERE pubdate >= '1991/01/01' AND pubdate < '1992/01/01'

CHAPTER 15 ■ ADO.NET FUNDAMENTALS496

8911CH15.qxd 10/18/07 4:38 PM Page 496

The SQL Insert Statement
The SQL Insert statement adds a new record to a table with the information you specify. It
takes the following form:

INSERT INTO [table] ([column_list]) VALUES ([value_list])

You can provide the information in any order you want, as long as you make sure the list
of column names and the list of values correspond exactly:

INSERT INTO Authors (au_id, au_lname, au_fname, zip, contract)
VALUES ('998-72-3566', 'Khan', 'John', 84152, 0)

This example leaves out some information, such as the city and address, in order to pro-
vide a simple example. However, it provides the minimum information that’s required to
create a new record in the Authors table.

Remember, database tables often have requirements that can prevent you from adding a
record unless you fill in all the fields with valid information. Alternatively, some fields may be
configured to use a default value if left blank. In the Authors table, some fields are required,
and a special format is defined for the ZIP code and author ID.

One feature the Authors table doesn’t use is an automatically incrementing identity field.
This feature, which is supported in most relational database products, assigns a unique value
to a specified field when you perform an insert operation. When you insert a record into a
table that has a unique incrementing ID, you shouldn’t specify a value for the ID. Instead,
allow the database to choose one automatically.

AUTO-INCREMENT FIELDS ARE INDISPENSABLE

If you’re designing a database, make sure you add an auto-incrementing identity field to every table. It’s the
fastest, easiest, and least error-prone way to assign a unique identification number to every record. Without
an automatically generated identity field, you’ll need to go to considerable effort to create and maintain your
own unique field. Often programmers fall into the trap of using a data field for a unique identifier, such as a
Social Security number (SSN) or a name. This almost always leads to trouble at some inconvenient time far in
the future, when you need to add a person who doesn’t have an SSN (for example, a foreign national) or you
need to account for an SSN or a name change (which will cause problems for other related tables, such as a
purchase order table that identifies the purchaser by the name or SSN field). A much better approach is to
use a unique identifier and have the database engine assign an arbitrary unique number to every row auto-
matically.

If you create a table without a unique identification column, you’ll have trouble when you need to select
that specific row for deletion or updates. Selecting records based on a text field can also lead to problems if
the field contains special embedded characters (such as apostrophes). You’ll also find it extremely awkward
to create table relationships.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 497

8911CH15.qxd 10/18/07 4:38 PM Page 497

The SQL Delete Statement
The Delete statement is even easier to use. It specifies criteria for one or more rows that you
want to remove. Be careful: once you delete a row, it’s gone for good!

DELETE FROM [table] WHERE [search_condition]

The following example removes a single matching row from the Authors table:

DELETE FROM Authors WHERE au_id='172-32-1176'

■Note If you attempt to run this specific Delete statement, you’ll run into a database error. The problem is
that this author record is linked to one or more records in the TitleAuthor table. The author record can’t be
removed unless the linked records are deleted first. (After all, it wouldn’t make sense to have a book linked
to an author that doesn’t exist.)

The Delete and Update commands return a single piece of information: the number of
affected records. You can examine this value and use it to determine whether the operation is
successful or executed as expected.

The rest of this chapter shows how you can combine SQL with the ADO.NET objects to
retrieve and manipulate data in your web applications.

ADO.NET Basics
ADO.NET relies on the functionality in a small set of core classes. You can divide these classes
into two groups: those that are used to contain and manage data (such as DataSet, DataTable,
DataRow, and DataRelation) and those that are used to connect to a specific data source (such
as Connection, Command, and DataReader).

The data container classes are completely generic. No matter what data source you use,
once you extract the data, it’s stored using the same data container: the specialized DataSet
class. Think of the DataSet as playing the same role as a collection or an array—it’s a package
for data. The difference is that the DataSet is customized for relational data, which means it
understands concepts such as rows, columns, and table relationships natively.

The second group of classes exists in several different flavors. Each set of data interaction
classes is called an ADO.NET data provider. Data providers are customized so that each one
uses the best-performing way of interacting with its data source. For example, the SQL Server
data provider is designed to work with SQL Server 7 or later. Internally, it uses SQL Server’s
TDS (tabular data stream) protocol for communicating, thus guaranteeing the best possible
performance. If you’re using Oracle, you’ll need to use the Oracle provider classes instead.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS498

8911CH15.qxd 10/18/07 4:38 PM Page 498

It’s important to understand that you can use any data provider in almost the same way,
with almost the same code. The provider classes derive from the same base classes, imple-
ment the same interfaces, and expose the same set of methods and properties. In some cases,
a data provider object will provide custom functionality that’s available only with certain data
sources, such as SQL Server’s ability to perform XML queries. However, the basic members
used for retrieving and modifying data are identical.

.NET includes the following four providers:

• SQL Server provider: Provides optimized access to a SQL Server database (version 7.0 or
later)

• OLE DB provider: Provides access to any data source that has an OLE DB driver

• Oracle provider: Provides optimized access to an Oracle database (version 8i or later)

• ODBC provider: Provides access to any data source that has an ODBC (Open Database
Connectivity) driver

In addition, third-party developers and database vendors have released their own
ADO.NET providers, which follow the same conventions and can be used in the same way as
those that are included with the .NET Framework.

When choosing a provider, you should first try to find one that’s customized for your data
source. If you can’t find a suitable provider, you can use the OLE DB provider, as long as you
have an OLE DB driver for your data source. The OLE DB technology has been around for
many years as part of ADO, so most data sources provide an OLE DB driver (including SQL
Server, Oracle, Access, MySQL, and many more). In the rare situation that you can’t find a full
provider or an OLE DB driver, you can fall back on the ODBC provider, which works in con-
junction with an ODBC driver.

■Tip Microsoft includes the OLE DB provider with ADO.NET so you can use your existing OLE DB drivers.
However, if you can find a provider that’s customized specifically for your data source, you should use it
instead. For example, you can connect to SQL Server database using either the SQL Server provider or the
OLE DB provider, but the first approach will perform best.

To help understand the different layers that come into play with ADO.NET, refer to
Figure 15-8.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 499

8911CH15.qxd 10/18/07 4:38 PM Page 499

Figure 15-8. The layers between your code and the data source

Data Namespaces
The ADO.NET components live in several different namespaces in the .NET class library.
Together, these namespaces hold all the functionality of ADO.NET. Table 15-2 describes each
data namespace.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS500

8911CH15.qxd 10/18/07 4:38 PM Page 500

Table 15-2. ADO.NET Namespaces

Namespace Purpose

System.Data Contains fundamental classes with the core ADO.NET functionality.
This includes DataSet and DataRelation, which allow you to
manipulate structured relational data. These classes are totally
independent of any specific type of database or the way you
connect to it.

System.Data.Common Not used directly in your code. These classes are used by other
data provider classes that inherit from them and provide versions
customized for a specific data source.

System.Data.OleDb Contains the classes you use to connect to an OLE DB data source
and execute commands, including OleDbConnection and
OleDbCommand.

System.Data.SqlClient Contains the classes you use to connect to a Microsoft SQL Server
database (version 7.0 or later) and execute commands. These
classes, such as SqlCommand and SqlConnection, provide all
the same properties and methods as their counterparts in the
System.Data.OleDb namespace. The only difference is that they
are optimized for SQL Server and provide better performance by
eliminating the extra OLE DB layer (and by connecting directly to
the optimized TDS interface).

System.Data.SqlTypes Contains structures for SQL Server–specific data types such as
SqlMoney and SqlDateTime. You can use these types to work with
SQL Server data types without needing to convert them into the
standard .NET equivalents (such as System.Decimal and
System.DateTime). These types aren’t required, but they do allow
you to avoid any potential rounding or conversion problems that
could adversely affect data.

System.Data.OracleClient Contains the classes you use to connect to an Oracle database and
execute commands, such as OracleConnection and
OracleCommand.

System.Data.Odbc Contains the classes you use to connect to a data source through
an ODBC driver and execute commands. These classes include
OdbcConnection and OdbcCommand.

The Data Provider Classes
On their own, the data classes can’t accomplish much. Technically, you could create data
objects by hand, build tables and rows in your code, and fill them with information. But in
most cases, the information you need is located in a data source such as a relational database.
To access this information, extract it, and insert it into the appropriate data objects, you need
the data provider classes described in this section. Remember, each one of these classes has a
database-specific implementation. That means you use a different, but essentially equivalent,
object depending on whether you’re interacting with SQL Server, Oracle, or any other
ADO.NET provider.

Regardless of which provider you use, your code will look almost the same. Often the only
differences will be the namespace that’s used and the name of the ADO.NET data access
classes (as listed in Table 15-3).

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 501

8911CH15.qxd 10/18/07 4:38 PM Page 501

Table 15-3. The ADO.NET Data Provider Classes

SQL Server Data
Provider OLE DB Data Provider Oracle Data Provider ODBC Data Provider

Connection SqlConnection OleDbConnection OracleConnection OdbcConnection

Command SqlCommand OleDbCommand OracleCommand OdbcCommand

DataReader SqlDataReader OleDbDataReader OracleDataReader OdbcDataReader

DataAdapter SqlDataAdapter OleDbDataAdapter OracleDataAdapter OdbcDataAdapter

CHAPTER 15 ■ ADO.NET FUNDAMENTALS502

Each provider designates its own prefix for naming classes. Thus, the SQL Server provider
includes SqlConnection and SqlCommand classes, and the Oracle provider includes
OracleConnection and OracleCommand classes. Internally, these classes work quite differ-
ently, because they need to connect to different databases using different low-level protocols.
Externally, however, these classes look quite similar and provide an identical set of basic
methods because they implement the same common interfaces. This means your application
is shielded from the complexity of different standards and can use the SQL Server provider in
the same way the Oracle provider uses it. In fact, you can often translate a block of code for
interacting with a SQL Server database into a block of Oracle-specific code just by editing the
class names in your code.

Remember, though the underlying technical details differ, the classes are almost identical.
The only real differences are as follows:

• The names of the Connection, Command, DataReader, and DataAdapter classes are dif-
ferent in order to help you distinguish them.

• The connection string (the information you use to connect to the database) differs
depending on what data source you’re using, where it’s located, and what type of secu-
rity you’re using.

• Occasionally, a provider may choose to add features, such as methods for specific fea-
tures or classes to represent specific data types. For example, the SQL Server Command
class includes a method for executing XML queries that aren’t part of the SQL standard.
In this chapter, you’ll focus on the standard functionality, which is shared by all
providers and used for the majority of data access operations.

In the rest of this chapter, you’ll consider how to write web page code that uses these
objects. First, you’ll consider the most straightforward approach—direct data access. Then,
you’ll consider disconnected data access, which allows you to retrieve data in the DataSet and
cache it for longer periods of time. Both approaches complement each other, and in most web
applications you’ll use a combination of the two.

8911CH15.qxd 10/18/07 4:38 PM Page 502

Direct Data Access
The easiest way to interact with a database is to use direct data access. When you use direct
data access, you’re in charge of building a SQL command (like the ones you considered earlier
in this chapter) and executing it. You use commands to query, insert, update, and delete infor-
mation.

When you query data with direct data access, you don’t keep a copy of the information in
memory. Instead, you work with it for a brief period of time while the database connection is
open, and then close the connection as soon as possible. This is different than disconnected
data access, where you keep a copy of the data in the DataSet object so you can work with it
after the database connection has been closed.

The direct data model is well suited to ASP.NET web pages, which don’t need to keep a
copy of their data in memory for long periods of time. Remember, an ASP.NET web page is
loaded when the page is requested and shut down as soon as the response is returned to the
user. That means a page typically has a lifetime of only a few seconds (if that).

■Note Although ASP.NET web pages don’t need to store data in memory for ordinary data management
tasks, they just might use this technique to optimize performance. For example, you could get the product
catalog from a database once, and keep that data in memory on the web server so you can reuse it
when someone else requests the same page. This technique is called caching, and you’ll learn to use it
in Chapter 24.

To query information with simple data access, follow these steps:

1. Create Connection, Command, and DataReader objects.

2. Use the DataReader to retrieve information from the database, and display it in a
control on a web form.

3. Close your connection.

4. Send the page to the user. At this point, the information your user sees and the infor-
mation in the database no longer have any connection, and all the ADO.NET objects
have been destroyed.

To add or update information, follow these steps:

1. Create new Connection and Command objects.

2. Execute the Command (with the appropriate SQL statement).

This chapter demonstrates both of these approaches. Figure 15-9 shows a high-level look
at how the ADO.NET objects interact to make direct data access work.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 503

8911CH15.qxd 10/18/07 4:38 PM Page 503

Figure 15-9. Direct data access with ADO.NET

Before continuing, make sure you import the ADO.NET namespaces. In this chapter, we
assume you’re using the SQL Server provider, in which case you need these two namespace
imports:

using System.Data;
using System.Data.SqlClient;

Creating a Connection
Before you can retrieve or update data, you need to make a connection to the data source.
Generally, connections are limited to some fixed number, and if you exceed that number
(either because you run out of licenses or because your database server can’t accommodate
the user load), attempts to create new connections will fail. For that reason, you should try to
hold a connection open for as short a time as possible. You should also write your database
code inside a try/catch error-handling structure so you can respond if an error does occur,
and make sure you close the connection even if you can’t perform all your work.

When creating a Connection object, you need to specify a value for its ConnectionString
property. This ConnectionString defines all the information the computer needs to find the
data source, log in, and choose an initial database. Out of all the details in the examples in this
chapter, the ConnectionString is the one value you might have to tweak before it works for the
database you want to use. Luckily, it’s quite straightforward. Here’s an example that uses a
connection string to connect to SQL Server through the OLE DB provider:

OleDbConnection myConnection = new OleDbConnection();
myConnection.ConnectionString = "Provider=SQLOLEDB.1;Data Source=localhost;" +
"Initial Catalog=Pubs;Integrated Security=SSPI";

CHAPTER 15 ■ ADO.NET FUNDAMENTALS504

8911CH15.qxd 10/18/07 4:38 PM Page 504

For optimum performance, you should use the SqlConnection object from the SQL Server
provider instead. The connection string for the SqlConnection object is quite similar and just
omits the Provider setting:

SqlConnection myConnection = new SqlConnection();
myConnection.ConnectionString = "Data Source=localhost;" +
"Initial Catalog=Pubs;Integrated Security=SSPI";

If you’re using SQL Server 2005 Express Edition, your connection string will include an
instance name, as shown here:

SqlConnection myConnection = new SqlConnection();
myConnection.ConnectionString = @"Data Source=localhost\SQLEXPRESS;" +
"Initial Catalog=Pubs;Integrated Security=SSPI";

■Note When you add the instance name in C#, you must add two backslash characters, as in localhost\\
SQLEXPRESS. This is because a single backslash is interpreted as a special character. However, if you define
the connection string in a configuration file, as described in the next section, you need only one backslash,
because you’re no longer dealing with pure C# code.

The Connection String
The connection string is actually a series of distinct pieces of information separated by semi-
colons (;). Each separate piece of information is known as a connection string property.

The following list describes some of the most commonly used connection string proper-
ties, including the three properties used in the preceding example:

Data source: This indicates the name of the server where the data source is located. If the
server is on the same computer that hosts the ASP.NET site, localhost is sufficient. The
only exception is if you’re using a named instance of SQL Server. For example, if you’ve
installed SQL Server 2005 Express Edition, you’ll need to use the data source localhost\
SQLEXPRESS, because the instance name is SQLEXPRESS. You’ll also see this written with
a period, as .\SQLEXPRESS, which is equivalent.

Initial catalog: This is the name of the database that this connection will be accessing.
It’s only the “initial” database because you can change it later by using the
Connection.ChangeDatabase() method.

Integrated security: This indicates you want to connect to SQL Server using the Windows
user account that’s running the web page code, provided you supply a value of SSPI
(which stands for Security Support Provider Interface). Alternatively, you can supply a
user ID and password that’s defined in the database for SQL Server authentication,
although this method is less secure and generally discouraged.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 505

8911CH15.qxd 10/18/07 4:38 PM Page 505

ConnectionTimeout: This determines how long your code will wait, in seconds, before
generating an error if it cannot establish a database connection. Our example connection
string doesn’t set the ConnectionTimeout, so the default of 15 seconds is used. You can
use 0 to specify no limit, but this is a bad idea. This means that, theoretically, the code
could be held up indefinitely while it attempts to contact the server.

You can set some other, lesser-used options for a connection string. For more informa-
tion, refer to the Visual Studio Help. Look under the appropriate Connection class (such as
SqlConnection or OleDbConnection) because there are subtle differences in connection string
properties for each type of Connection class.

Windows Authentication
The previous example uses integrated Windows authentication, which is the default security
standard for new SQL Server installations. You can also use SQL Server authentication. In this
case, you will explicitly place the user ID and password information in the connection string.
However, SQL Server authentication is disabled by default in SQL Server 2000 and later ver-
sions, because it’s not considered to be as secure.

Here’s the lowdown on both types of authentication:

• With SQL Server authentication, SQL Server maintains its own user account informa-
tion in the database. It uses this information to determine whether you are allowed to
access specific parts of a database.

• With integrated Windows authentication, SQL Server automatically uses the Windows
account information for the currently logged-in process. In the database, it stores infor-
mation about what database privileges each user should have.

■Tip You can set what type of authentication your SQL Server uses using a tool such as SQL Server Man-
agement Studio. Just right-click your server in the tree, and select Properties. Choose the Security tab to
change the type of authentication. You can choose either Windows Only (for the tightest security) or SQL
Server and Windows, which allows both Windows authentication and SQL Server authentication. This option
is also known as mixed-mode authentication.

For Windows authentication to work, the currently logged-on Windows user must have
the required authorization to access the SQL database. This isn’t a problem while you test your
websites, because Visual Studio launches your web applications using your user account.
However, when you deploy your application to a web server running IIS, you might run into
trouble. In this situation, all ASP.NET code is run by a more limited user account that might
not have the rights to access the database. By default, that account is an automatically created
account named ASPNET (for IIS 5.1), or the network service account (for later versions of IIS).
You need to grant database access to this account, or your web pages will receive a security
error whenever they try to connect to the database.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS506

8911CH15.qxd 10/18/07 4:38 PM Page 506

■Note If you’re running IIS 5.1 (the version that’s included with Windows XP), you need to give database
access to the ASPNET user. If you’re running IIS 6 (the version that’s included with Windows Server 2003),
you need to give access to the IIS_WPG group. If you’re running IIS 7 (the version that’s included with Win-
dows Vista and Windows Server 2008), you need to give access to the IIS_USERS group. Chapter 9 has the
full details.

User Instance Connections
Every database server stores a master list of all the databases that you’ve installed on it. This
list includes the name of each database and the location of the files that hold the data. When
you create a database (for example, by running a script or using a management tool), the
information about that database is added to the master list. When you connect to the data-
base, you specify the database name using the Initial Catalog value in the connection string.

■Note If you haven’t made any changes to your database configuration, SQL Server will quietly tuck the
files for newly created databases into a directory like c:\Program Files\Microsoft SQL Server\MSSQL.1\
MSSQL\Data. Each database has at least two files—an .mdf file with the actual data and an .ldf file that
stores the database log. Of course, database professionals have a variety of techniques and tricks for man-
aging database storage, and can easily store databases in different locations, create multiple data files, and
so on. The important detail to realize is that ordinarily your database files are stored by your database server,
and they aren’t a part of your web application directory.

Interestingly, SQL Server Express has a feature that lets you bypass the master list and
connect directly to any database file, even if it’s not in the master list of databases. This feature
is called user instances. Oddly enough, this feature isn’t available in the full edition of SQL
Server 2005.

To use this feature, you need to set the User Instances value to True (in the connection
string) and supply the file name of the database you want to connect to with the
AttachDBFilename value. You don’t supply an Initial Catalog value.

Here’s an example connection string that uses this approach:

myConnection.ConnectionString = @"Data Source=localhost\SQLEXPRESS;" +
@"AttachDBFilename=|DataDirectory|\Northwind.mdf;Integrated Security=True";

There’s another trick here. The file name starts with |DataDirectory|. This automatically
points to the App_Data folder inside your web application directory. This way, you don’t need
to supply a full file path, which might not remain valid when you move the web application to
a web server. Instead, ADO.NET will always look in the App_Data directory for a file named
Northwind.mdf.

User instances is a handy feature if you have a web server that hosts many different web
applications that use databases and these databases are frequently being added and removed.
However, because the database isn’t in the master list, you won’t see it in any administrative

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 507

8911CH15.qxd 10/18/07 4:38 PM Page 507

tools (although most administrative tools will still let you connect to it manually, by pointing
out the right file location). But remember, this quirky but interesting feature is available in
SQL Server Express only—you won’t find it in the full version of SQL Server 2005.

VISUAL STUDIO’S SUPPORT FOR USER INSTANCE DATABASES

Visual Studio provides two handy features that make it easier to work with databases in the App_Data folder.
First, Visual Studio gives you a nearly effortless way to create new databases. Simply choose Website ➤

Add New Item. Then, pick SQL Server Database from the list of templates, choose a file name for your data-
base, and click OK. The .mdf and .ldf files for the new database will be placed in the App_Data folder, and
you’ll see them in the Solution Explorer. Initially, they’ll be blank, so you’ll need to add the tables you want.
(The easiest way to do this is to right-click the Tables group in the Server Explorer, and choose Add Table.)

Visual Studio also simplifies your life with its automatic Server Explorer support. When you open a web
application, Visual Studio automatically adds a data connection to the Server Explorer window for each
database that it finds in the App_Data folder. To jump to a specific data connection in a hurry, just double-
click the .mdf file for the database in the Solution Explorer.

Using the Server Explorer, you can create tables, edit data, and execute commands, all without leaving
the comfort of Visual Studio. (For more information about executing commands with the Server Explorer, refer
to the “SQL Basics” section earlier in this chapter.)

Storing the Connection String
Typically, all the database code in your application will use the same connection string. For
that reason, it usually makes the most sense to store a connection string in a class member
variable or, even better, a configuration file.

You can also create a Connection object and supply the connection string in one step by
using a dedicated constructor:

SqlConnection myConnection = new SqlConnection(connectionString);
// myConnection.ConnectionString is now set to connectionString.

You don’t need to hard-code a connection string. The <connectionStrings> section of the
web.config file is a handy place to store your connection strings. Here’s an example:

<configuration>
<connectionStrings>
<add name="Pubs" connectionString=

"Data Source=localhost;Initial Catalog=Pubs;Integrated Security=SSPI"/>
</connectionStrings>
...

</configuration>

You can then retrieve your connection string by name. First, import the
System.Web.Configuration namespace. Then, you can use code like this:

string connectionString =
WebConfigurationManager.ConnectionStrings["Pubs"].ConnectionString;

CHAPTER 15 ■ ADO.NET FUNDAMENTALS508

8911CH15.qxd 10/18/07 4:38 PM Page 508

This approach helps to ensure all your web pages are using the same connection string. It
also makes it easy for you to change the connection string for an application, without needing
to edit the code in multiple pages. The examples in this chapter all store their connection
strings in the web.config file in this way.

Making the Connection
Once you’ve created your connection (as described in the previous section), you’re ready to
use it.

Before you can perform any database operations, you need to explicitly open your
connection:

myConnection.Open();

To verify that you have successfully connected to the database, you can try displaying
some basic connection information. The following example writes some basic information to
a Label control named lblInfo (see Figure 15-10).

Figure 15-10. Testing your connection

Here’s the code with basic error handling:

// Define the ADO.NET Connection object.
string connectionString =
WebConfigurationManager.ConnectionStrings["Pubs"].ConnectionString;

SqlConnection myConnection = new SqlConnection(connectionString);

try
{

// Try to open the connection.
myConnection.Open();
lblInfo.Text = "Server Version: " + myConnection.ServerVersion;

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 509

8911CH15.qxd 10/18/07 4:38 PM Page 509

lblInfo.Text += "
Connection Is: " +
myConnection.State.ToString();

}
catch (Exception err)
{

// Handle an error by displaying the information.
lblInfo.Text = "Error reading the database. ";
lblInfo.Text += err.Message;

}
finally
{

// Either way, make sure the connection is properly closed.
// (Even if the connection wasn't opened successfully,
// calling Close() won't cause an error.)
myConnection.Close();
lblInfo.Text += "
Now Connection Is: ";
lblInfo.Text += myConnection.State.ToString();

}

Once you use the Open() method, you have a live connection to your database. One of the
most fundamental principles of data access code is that you should reduce the amount of
time you hold a connection open as much as possible. Imagine that as soon as you open the
connection, you have a live, ticking time bomb. You need to get in, retrieve your data, and
throw the connection away as quickly as possible in order to ensure your site runs efficiently.

Closing a connection is just as easy, as shown here:

myConnection.Close();

Another approach is to use the using statement. The using statement declares that you
are using a disposable object for a short period of time. As soon as you finish using that object
and the using block ends, the common language runtime will release it immediately by calling
the Dispose() method. Here’s the basic structure of the using block:

using (object)
{

...
}

It just so happens that calling the Dispose() method of a connection object is equivalent
to calling Close(). That means you can shorten your database code with the help of a using
block. The best part is that you don’t need to write a finally block—the using statement
releases the object you’re using even if you exit the block as the result of an unhandled
exception.

Here’s how you could rewrite the earlier example with a using block:

SqlConnection myConnection = new SqlConnection(connectionString);

try
{

using (myConnection)

CHAPTER 15 ■ ADO.NET FUNDAMENTALS510

8911CH15.qxd 10/18/07 4:38 PM Page 510

{
// Try to open the connection.
myConnection.Open();
lblInfo.Text = "Server Version: " + myConnection.ServerVersion;
lblInfo.Text += "
Connection Is: " +
myConnection.State.ToString();

}
catch (Exception err)
{

// Handle an error by displaying the information.
lblInfo.Text = "Error reading the database. ";
lblInfo.Text += err.Message;

}

lblInfo.Text += "
Now Connection Is: ";
lblInfo.Text += myConnection.State.ToString();

There’s one difference in the way this code is implemented as compared to the previous
example. The error-handling code wraps the using block. As a result, if an error occurs the
database connection is closed first, and then the exception-handling code is triggered. In the
first example, the error-handling code responded first, and then the finally block closed the
connection afterward. Obviously, this rewrite is a bit better, as it’s always good to close data-
base connections as soon as possible.

The Select Command
The Connection object provides a few basic properties that supply information about the con-
nection, but that’s about all. To actually retrieve data, you need a few more ingredients:

• A SQL statement that selects the information you want

• A Command object that executes the SQL statement

• A DataReader or DataSet object to access the retrieved records

Command objects represent SQL statements. To use a Command, you define it, specify
the SQL statement you want to use, specify an available connection, and execute the
command.

You can use one of the earlier SQL statements, as shown here:

SqlCommand myCommand = new SqlCommand();
myCommand.Connection = myConnection;
myCommand.CommandText = "SELECT * FROM Authors ORDER BY au_lname ";

Or you can use the constructor as a shortcut:

SqlCommand myCommand = new SqlCommand(
"SELECT * FROM Authors ORDER BY au_lname ", myConnection);

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 511

8911CH15.qxd 10/18/07 4:38 PM Page 511

■Note It’s also a good idea to dispose of the Command object when you’re finished, although it isn’t as
critical as closing the Connection object.

The DataReader
Once you’ve defined your command, you need to decide how you want to use it. The simplest
approach is to use a DataReader, which allows you to quickly retrieve all your results. The
DataReader uses a live connection and should be used quickly and then closed. The
DataReader is also extremely simple. It supports fast-forward-only read-only access to
your results, which is generally all you need when retrieving information. Because of the
DataReader’s optimized nature, it provides better performance than the DataSet. It should
always be your first choice for direct data access.

Before you can use a DataReader, make sure you’ve opened the connection:

myConnection.Open();

To create a DataReader, you use the ExecuteReader() method of the command object, as
shown here:

// You don't need the new keyword, as the Command will create the DataReader.
SqlDataReader myReader;
myReader = myCommand.ExecuteReader();

These two lines of code define a variable for a DataReader and then create it by executing
the command. Once you have the reader, you retrieve a single row at a time using the Read()
method:

myReader.Read(); // The first row in the result set is now available.

You can then access the values in the current row using the corresponding field names.
The following example adds an item to a list box with the first name and last name for the
current row:

lstNames.Items.Add(myReader["au_lname"] + ", " + myReader["au_fname"]);

To move to the next row, use the Read() method again. If this method returns True, a row
of information has been successfully retrieved. If it returns False, you’ve attempted to read
past the end of your result set. There is no way to move backward to a previous row.

As soon as you’ve finished reading all the results you need, close the DataReader and
Connection:

myReader.Close();
myConnection.Close();

CHAPTER 15 ■ ADO.NET FUNDAMENTALS512

8911CH15.qxd 10/18/07 4:38 PM Page 512

Putting It All Together
The next example demonstrates how you can use all the ADO.NET ingredients together to
create a simple application that retrieves information from the Authors table. You can select
an author record by last name using a drop-down list box, as shown in Figure 15-11.

Figure 15-11. Selecting an author

The full record is then retrieved and displayed in a simple label, as shown in Figure 15-12.

Figure 15-12. Author information

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 513

8911CH15.qxd 10/18/07 4:38 PM Page 513

Filling the List Box
To start, the connection string is defined as a private variable for the page class and retrieved
from the connection string:

private string connectionString =
WebConfigurationManager.ConnectionStrings["Pubs"].ConnectionString;

The list box is filled when the Page.Load event occurs. Because the list box is set to persist
its view state information, this information needs to be retrieved only once—the first time the
page is displayed. It will be ignored on all postbacks.

Here’s the code that fills the list from the database:

protected void Page_Load(Object sender, EventArgs e)
{

if (!this.IsPostBack)
{

FillAuthorList();
}

}

private void FillAuthorList()
{

lstAuthor.Items.Clear();

// Define the Select statement.
// Three pieces of information are needed: the unique id
// and the first and last name.
string selectSQL = "SELECT au_lname, au_fname, au_id FROM Authors";

// Define the ADO.NET objects.
SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand(selectSQL, con);
SqlDataReader reader;

// Try to open database and read information.
try
{

con.Open();
reader = cmd.ExecuteReader();

// For each item, add the author name to the displayed
// list box text, and store the unique ID in the Value property.
while (reader.Read())
{

ListItem newItem = new ListItem();
newItem.Text = reader["au_lname"] + ", " + reader["au_fname"];
newItem.Value = reader["au_id"].ToString();
lstAuthor.Items.Add(newItem);

CHAPTER 15 ■ ADO.NET FUNDAMENTALS514

8911CH15.qxd 10/18/07 4:38 PM Page 514

}
reader.Close();

}
catch (Exception err)
{

lblResults.Text = "Error reading list of names. ";
lblResults.Text += err.Message;

}
finally
{

con.Close();
}

}

This example looks more sophisticated than the previous bite-sized snippets in this chap-
ter, but it really doesn’t introduce anything new. It uses the standard Connection, Command,
and DataReader objects. The Connection is opened inside an error-handling block so your
page can handle any unexpected errors and provide information. A finally block makes sure
the connection is properly closed, even if an error occurs.

The actual code for reading the data uses a loop. With each pass, the Read() method is
called to get another row of information. When the reader has read all the available informa-
tion, this method will return false, the loop condition will evaluate to false, and the loop will
end gracefully.

The unique ID (the value in the au_id field) is stored in the Value property of the list
box for reference later. This is a crucial ingredient that is needed to allow the corresponding
record to be queried again. If you tried to build a query using the author’s name, you would
need to worry about authors with the same name. You would also have the additional
headache of invalid characters (such as the apostrophe in O’Leary) that would invalidate
your SQL statement.

Retrieving the Record
The record is retrieved as soon as the user changes the selection in the list box. To make this
possible, the AutoPostBack property of the list box is set to true so that its change events are
detected automatically.

protected void lstAuthor_SelectedIndexChanged(Object sender, EventArgs e)
{

// Create a Select statement that searches for a record
// matching the specific author ID from the Value property.
string selectSQL;
selectSQL = "SELECT * FROM Authors ";
selectSQL += "WHERE au_id='" + lstAuthor.SelectedItem.Value + "'";

// Define the ADO.NET objects.
SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand(selectSQL, con);
SqlDataReader reader;

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 515

8911CH15.qxd 10/18/07 4:38 PM Page 515

// Try to open database and read information.
try
{

con.Open();
reader = cmd.ExecuteReader();
reader.Read();

// Build a string with the record information,
// and display that in a label.
StringBuilder sb = new StringBuilder();
sb.Append("");
sb.Append(reader["au_lname"]);
sb.Append(", ");
sb.Append(reader["au_fname"]);
sb.Append("
");
sb.Append("Phone: ");
sb.Append(reader["phone"]);
sb.Append("
");
sb.Append("Address: ");
sb.Append(reader["address"]);
sb.Append("
");
sb.Append("City: ");
sb.Append(reader["city"]);
sb.Append("
");
sb.Append("State: ");
sb.Append(reader["state"]);
sb.Append("
");
lblResults.Text = sb.ToString();

reader.Close();
}
catch (Exception err)
{

lblResults.Text = "Error getting author. ";
lblResults.Text += err.Message;

}
finally
{

con.Close();
}

}

CHAPTER 15 ■ ADO.NET FUNDAMENTALS516

8911CH15.qxd 10/18/07 4:38 PM Page 516

The process is similar to the procedure used to retrieve the last names. There are only a
couple of differences:

• The code dynamically creates a SQL statement based on the selected item in the drop-
down list box. It uses the Value property of the selected item, which stores the unique
identifier. This is a common (and useful) technique.

• Only one record is read. The code assumes that only one author has the matching
au_id, which is reasonable since this field is unique.

■Note This example shows how ADO.NET works to retrieve a simple result set. Of course, ADO.NET also
provides handy controls that go beyond this generic level and let you provide full-featured grids with sorting
and editing. These controls are described in Chapter 16 and Chapter 17. For now, you should concentrate on
understanding the fundamentals about ADO.NET and how it works with data.

Updating Data
Now that you understand how to retrieve data, it isn’t much more complicated to perform
simple delete and update operations. Once again, you use the Command object, but this time
you don’t need a DataReader because no results will be retrieved. You also don’t use a SQL
Select command. Instead, you use one of three new SQL commands: Update, Insert, or Delete.

To execute an Update, an Insert, or a Delete statement, you need to create a Command
object. You can then execute the command with the ExecuteNonQuery() method. This
method returns the number of rows that were affected, which allows you to check your
assumptions. For example, if you attempt to update or delete a record and are informed that
no records were affected, you probably have an error in your Where clause that is preventing
any records from being selected. (If, on the other hand, your SQL command has a syntax error
or attempts to retrieve information from a nonexistent table, an exception will occur.)

Displaying Values in Text Boxes
Before you can update and insert records, you need to make a change to the previous exam-
ple. Instead of displaying the field values in a single, fixed label, you need to show each detail
in a separate text box. Figure 15-13 shows the revamped page. It includes two new buttons
that allow you to update the record (Update) or delete it (Delete), and two more that allow you
to begin creating a new record (Create New) and then insert it (Insert New).

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 517

8911CH15.qxd 10/18/07 4:38 PM Page 517

Figure 15-13. A more advanced author manager

The record selection code is identical from an ADO.NET perspective, but it now uses the
individual text boxes:

protected void lstAuthor_SelectedIndexChanged(Object sender, EventArgs e)
{

// Define ADO.NET objects.
string selectSQL;
selectSQL = "SELECT * FROM Authors ";
selectSQL += "WHERE au_id='" + lstAuthor.SelectedItem.Value + "'";
SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand(selectSQL, con);
SqlDataReader reader;

// Try to open database and read information.
try
{

con.Open();
reader = cmd.ExecuteReader();
reader.Read();

CHAPTER 15 ■ ADO.NET FUNDAMENTALS518

8911CH15.qxd 10/18/07 4:38 PM Page 518

// Fill the controls.
txtID.Text = reader["au_id"].ToString();
txtFirstName.Text = reader["au_fname"].ToString();
txtLastName.Text = reader["au_lname"].ToString();
txtPhone.Text = reader["phone"].ToString();
txtAddress.Text = reader["address"].ToString();
txtCity.Text = reader["city"].ToString();
txtState.Text = reader["state"].ToString();
txtZip.Text = reader["zip"].ToString();
chkContract.Checked = (bool)reader["contract"];
reader.Close();
lblStatus.Text = "";

}
catch (Exception err)
{

lblStatus.Text = "Error getting author. ";
lblStatus.Text += err.Message;

}
finally
{

con.Close();
}

}

To see the full code, refer to the online samples for this chapter. If you play with the exam-
ple at length, you’ll notice that it lacks a few niceties that would be needed in a professional
website. For example, when creating a new record, the name of the last selected user is still
visible, and the Update and Delete buttons are still active, which can lead to confusion or
errors. A more sophisticated user interface could prevent these problems by disabling inappli-
cable controls (perhaps by grouping them in a Panel control) or by using separate pages. In
this case, however, the page is useful as a quick way to test some basic data access code.

Adding a Record
To start adding a new record, click Create New to clear all the text boxes. Technically this step
isn’t required, but it simplifies the user’s life:

protected void cmdNew_Click(Object sender, EventArgs e)
{

txtID.Text = "";
txtFirstName.Text = "";
txtLastName.Text = "";
txtPhone.Text = "";
txtAddress.Text = "";
txtCity.Text = "";
txtState.Text = "";
txtZip.Text = "";
chkContract.Checked = false;

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 519

8911CH15.qxd 10/18/07 4:38 PM Page 519

lblStatus.Text = "Click Insert New to add the completed record.";
}

The Insert New button triggers the ADO.NET code that inserts the finished record using a
dynamically generated Insert statement:

protected void cmdInsert_Click(Object sender, EventArgs e)
{

// Perform user-defined checks.
// Alternatively, you could use RequiredFieldValidator controls.
if (txtID.Text == "" || txtFirstName.Text == "" || txtLastName.Text == "")
{

lblStatus.Text = "Records require an ID, first name, and last name.";
return;

}

// Define ADO.NET objects.
string insertSQL;
insertSQL = "INSERT INTO Authors (";
insertSQL += "au_id, au_fname, au_lname, ";
insertSQL += "phone, address, city, state, zip, contract) ";
insertSQL += "VALUES ('";
insertSQL += txtID.Text + "', '";
insertSQL += txtFirstName.Text + "', '";
insertSQL += txtLastName.Text + "', '";
insertSQL += txtPhone.Text + "', '";
insertSQL += txtAddress.Text + "', '";
insertSQL += txtCity.Text + "', '";
insertSQL += txtState.Text + "', '";
insertSQL += txtZip.Text + "', '";
insertSQL += Convert.ToInt16(chkContract.Checked) + "')";

SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand(insertSQL, con);

// Try to open the database and execute the update.
int added = 0;
try
{

con.Open();
added = cmd.ExecuteNonQuery();
lblStatus.Text = added.ToString() + " records inserted.";

}
catch (Exception err)
{

lblStatus.Text = "Error inserting record. ";
lblStatus.Text += err.Message;

}

CHAPTER 15 ■ ADO.NET FUNDAMENTALS520

8911CH15.qxd 10/18/07 4:38 PM Page 520

finally
{

con.Close();
}

// If the insert succeeded, refresh the author list.
if (added > 0)
{

FillAuthorList();
}

}

If the insert fails, the problem will be reported to the user in a rather unfriendly way (see
Figure 15-14). This is typically the result of not specifying valid values. If the insert operation is
successful, the page is updated with the new author list.

Figure 15-14. A failed insertion

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 521

8911CH15.qxd 10/18/07 4:38 PM Page 521

■Note In a more polished application, you would use validators (as shown in Chapter 8) and provide
more useful error messages. You should never display the detailed database error information shown in
Figure 15-14, because it could give valuable information to malicious users.

Creating More Robust Commands
The previous example performed its database work using a dynamically pasted-together SQL
string. This off-the-cuff approach is great for quickly coding database logic, and it’s easy to
understand. However, it has two potentially serious drawbacks:

• Users may accidentally enter characters that will affect your SQL statement. For exam-
ple, if a value contains an apostrophe ('), the pasted-together SQL string will no longer
be valid.

• Users might deliberately enter characters that will affect your SQL statement. Examples
include using the single apostrophe to close a value prematurely and then following the
value with additional SQL code.

The second of these is known as SQL injection attack, and it facilitates an amazingly wide
range of exploits. Crafty users can use SQL injection attacks to do anything from returning
additional results (such as the orders placed by other customers) or even executing additional
SQL statements (such as deleting every record in another table in the same database). In fact,
SQL Server includes a special system stored procedure that allows users to execute arbitrary
programs on the computer, so this vulnerability can be extremely serious.

You could address these problems by carefully validating the supplied input and checking
for dangerous characters such as apostrophes. One approach is to sanitize your input by dou-
bling all apostrophes in the user input (in other words, replace ' with "). Here’s an example:

string authorID = txtID.Text.Replace("'", "''");

A much more robust and convenient approach is to use a parameterized command. A
parameterized command is one that replaces hard-coded values with placeholders. The place-
holders are then added separately and automatically encoded.

For example, this SQL statement:

SELECT * FROM Customers WHERE CustomerID = 'ALFKI'

would become this:

SELECT * FROM Customers WHERE CustomerID = @CustomerID

The syntax used for parameterized commands differs from provider to provider. For the
SQL Server provider, parameterized commands use named placeholders with unique names.
You can use any name you want, as long as it begins with the @ character. Usually, you’ll
choose a parameter name that matches the field name (such as @CustomerID for the
CustomerID value in the previous example). The OLE DB provider uses a different syntax.
It requires that each hard-coded value is replaced with a question mark. Parameters aren’t
identified by name but by their position in the SQL string.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS522

8911CH15.qxd 10/18/07 4:38 PM Page 522

SELECT * FROM Customers WHERE CustomerID = ?

In either case, you need to supply a Parameter object for each parameter, which you
insert in the Command.Parameters collection. In OLE DB, you must make sure you add the
parameters in the same order they appear in the SQL string. In SQL Server this isn’t a require-
ment, because the parameters are matched to the placeholders based on their name.

The following example rewrites the insert code of the author manager example with a
parameterized command:

protected void cmdInsert_Click(Object sender, EventArgs e)
{

// Perform user-defined checks.
if (txtID.Text == "" || txtFirstName.Text == "" || txtLastName.Text == "")
{

lblStatus.Text = "Records require an ID, first name, and last name.";
return;

}

// Define ADO.NET objects.
string insertSQL;
insertSQL = "INSERT INTO Authors (";
insertSQL += "au_id, au_fname, au_lname, ";
insertSQL += "phone, address, city, state, zip, contract) ";
insertSQL += "VALUES (";
insertSQL += "@au_id, @au_fname, @au_lname, ";
insertSQL += "@phone, @address, @city, @state, @zip, @contract)";

SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand(insertSQL, con);

// Add the parameters.
cmd.Parameters.AddWithValue("@au_id", txtID.Text);
cmd.Parameters.AddWithValue("@au_fname", txtFirstName.Text);
cmd.Parameters.AddWithValue("@au_lname", txtLastName.Text);
cmd.Parameters.AddWithValue("@phone", txtPhone.Text);
cmd.Parameters.AddWithValue("@address", txtAddress.Text);
cmd.Parameters.AddWithValue("@city", txtCity.Text);
cmd.Parameters.AddWithValue("@state", txtState.Text);
cmd.Parameters.AddWithValue("@zip", txtZip.Text);
cmd.Parameters.AddWithValue("@contract",
Convert.ToInt16(chkContract.Checked));

// Try to open the database and execute the update.
int added = 0;
try
{

con.Open();
added = cmd.ExecuteNonQuery();

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 523

8911CH15.qxd 10/18/07 4:38 PM Page 523

lblStatus.Text = added.ToString() + " record inserted.";
}
catch (Exception err)
{

lblStatus.Text = "Error inserting record. ";
lblStatus.Text += err.Message;

}
finally
{

con.Close();
}

// If the insert succeeded, refresh the author list.
if (added > 0)
{

FillAuthorList();
}

}

Now that the values have been moved out of the SQL command and to the Parameters
collection, there’s no way that a misplaced apostrophe or scrap of SQL can cause a problem.

■Caution For basic security, always use parameterized commands. Many of the most infamous attacks
on e-commerce websites weren’t fueled by hard-core hacker knowledge but were made using simple SQL
injection by modifying values in web pages or query strings.

Updating a Record
When the user clicks the Update button, the information in the text boxes is applied to the
database as follows:

protected void cmdUpdate_Click(Object sender, EventArgs e)
{

// Define ADO.NET objects.
string updateSQL;
updateSQL = "UPDATE Authors SET ";
updateSQL += "au_fname=@au_fname, au_lname=@au_lname, ";
updateSQL += "phone=@phone, address=@address, city=@city, state=@state, ";
updateSQL += "zip=@zip, contract=@contract ";
updateSQL += "WHERE au_id=@au_id_original";

SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand(updateSQL, con);

CHAPTER 15 ■ ADO.NET FUNDAMENTALS524

8911CH15.qxd 10/18/07 4:38 PM Page 524

// Add the parameters.
cmd.Parameters.AddWithValue("@au_fname", txtFirstName.Text);
cmd.Parameters.AddWithValue("@au_lname", txtLastName.Text);
cmd.Parameters.AddWithValue("@phone", txtPhone.Text);
cmd.Parameters.AddWithValue("@address", txtAddress.Text);
cmd.Parameters.AddWithValue("@city", txtCity.Text);
cmd.Parameters.AddWithValue("@state", txtState.Text);
cmd.Parameters.AddWithValue("@zip", txtZip.Text);
cmd.Parameters.AddWithValue("@contract",
Convert.ToInt16(chkContract.Checked));

cmd.Parameters.AddWithValue("@au_id_original",
lstAuthor.SelectedItem.Value);

// Try to open database and execute the update.
int updated = 0;
try
{

con.Open();
updated = cmd.ExecuteNonQuery();
lblStatus.Text = updated.ToString() + " record updated.";

}
catch (Exception err)
{

lblStatus.Text = "Error updating author. ";
lblStatus.Text += err.Message;

}
finally
{

con.Close();
}

// If the update succeeded, refresh the author list.
if (updated > 0)
{

FillAuthorList();
}

}

The update code is similar to the code for inserting a record. The main differences are as
follows:

• No DataReader is used, because no results are returned.

• A dynamically generated Update command is used for the Command object. This com-
mand finds the current author record in the database and changes all the fields to
correspond to the values entered in the text boxes.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 525

8911CH15.qxd 10/18/07 4:38 PM Page 525

• This example doesn’t attempt to update the ID, because that detail can’t be changed in
the database.

• The ExecuteNonQuery() method returns the number of affected records. This informa-
tion is displayed in a label to confirm to the user that the operation was successful. The
FillAuthorList() method is then called to update the list, just in case the author’s name
information was changed.

Deleting a Record
When the user clicks the Delete button, the author information is removed from the database.
The number of affected records is examined, and if the delete operation was successful, the
FillAuthorList() function is called to refresh the page.

protected void cmdDelete_Click(Object sender, EventArgs e)
{

// Define ADO.NET objects.
string deleteSQL;
deleteSQL = "DELETE FROM Authors ";
deleteSQL += "WHERE au_id=@au_id";

SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand(deleteSQL, con);
cmd.Parameters.AddWithValue("@au_id ", lstAuthor.SelectedItem.Value);

// Try to open the database and delete the record.
int deleted = 0;
try
{

con.Open();
deleted = cmd.ExecuteNonQuery();

}
catch (Exception err)
{

lblStatus.Text = "Error deleting author. ";
lblStatus.Text += err.Message;

}
finally
{

con.Close();
}

// If the delete succeeded, refresh the author list.
if (deleted > 0)
{

FillAuthorList();
}

}

CHAPTER 15 ■ ADO.NET FUNDAMENTALS526

8911CH15.qxd 10/18/07 4:38 PM Page 526

Interestingly, delete operations rarely succeed with the records in the pubs database,
because they have corresponding child records linked in another table of the pubs database.
Specifically, each author can have one or more related book titles. Unless the author’s records
are removed from the TitleAuthor table first, the author cannot be deleted. Because of the
careful error handling used in the previous example, this problem is faithfully reported in your
application (see Figure 15-15) and doesn’t cause any real problems.

Figure 15-15. A failed delete attempt

To get around this limitation, you can use the Create New and Insert New buttons to add a
new record and then delete this record. Because this new record won’t be linked to any other
records, its deletion will be allowed.

Disconnected Data Access
When you use disconnected data access, you keep a copy of your data in memory using the
DataSet. You connect to the database just long enough to fetch your data and dump it into the
DataSet, and then you disconnect immediately.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 527

8911CH15.qxd 10/18/07 4:38 PM Page 527

There are a variety of good reasons to use the DataSet to hold onto data in memory. Here
are a few:

• You need to do something time-consuming with the data. By dumping it into a DataSet
first, you ensure that the database connection is kept open for as little time as possible.

• You want to use ASP.NET data binding to fill a web control (like a grid) with your data.
Although you can use the DataReader, it won’t work in all scenarios. The DataSet
approach is more straightforward.

• You want to navigate backward and forward through your data while you’re processing
it. This isn’t possible with the DataReader, which goes in one direction only—forward.

• You want to navigate from one table to another. Using the DataSet, you can store sev-
eral tables of information. You can even define relationships that allow you to browse
through them more efficiently.

• You want to save the data to a file for later use. In Chapter 19 you’ll learn how any
DataSet object can be saved in XML format in an ordinary file.

• You need a convenient package to send data from one component to another. For
example, in Chapter 23 you’ll learn to build a database component that provides its
data to a web page using the DataSet. A DataReader wouldn’t work in this scenario,
because the database component would need to leave the database connection open,
which is a dangerous design.

• You want to store some data so it can be used for future requests. Chapter 24 demon-
strates how you can use caching with the DataSet to achieve this result.

UPDATING DISCONNECTED DATA

The DataSet tracks the changes you make to the records inside. This allows you to use the DataSet to update
records. The basic principle is simple. You fill a DataSet in the normal way, modify one or more records, and
then apply your update using a DataAdapter.

However, ADO.NET’s disconnected update feature makes far more sense in a desktop application than
in a web application. Desktop applications run for a long time, so they can efficiently store a batch of
changes and perform them all at once. But in a web application, you need to commit your changes the
moment they happen. Furthermore, the point at which you retrieve the data (when a page is first requested)
and the point at which it’s changed (during a postback) are different, which makes it very difficult to use the
same DataSet object, and maintain the change tracking information for the whole process.

For these reasons, the great majority of ASP.NET web applications use the DataSet to store data but
not to make updates. Instead, they use direct commands to commit changes. This is the model you’ll see in
this book.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS528

8911CH15.qxd 10/18/07 4:38 PM Page 528

Selecting Disconnected Data
With disconnected data access, a copy of the data is retained in memory while your code is
running. Figure 15-16 shows a model of the DataSet.

Figure 15-16. The DataSet family of objects

You fill the DataSet in much the same way that you connect a DataReader. However,
although the DataReader holds a live connection, information in the DataSet is always
disconnected.

The following example shows how you could rewrite the FillAuthorList() method from the
earlier example to use a DataSet instead of a DataReader. The changes are highlighted in bold.

private void FillAuthorList()
{

lstAuthor.Items.Clear();

// Define ADO.NET objects.
string selectSQL;
selectSQL = "SELECT au_lname, au_fname, au_id FROM Authors";
SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand(selectSQL, con);

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 529

8911CH15.qxd 10/18/07 4:38 PM Page 529

SqlDataAdapter adapter = new SqlDataAdapter(cmd);
DataSet dsPubs = new DataSet();

// Try to open database and read information.
try
{

con.Open();

// All the information in transferred with one command.
// This command creates a new DataTable (named Authors)
// inside the DataSet.
adapter.Fill(dsPubs, "Authors");

}
catch (Exception err)
{

lblStatus.Text = "Error reading list of names. ";
lblStatus.Text += err.Message;

}
finally
{

con.Close();
}

foreach (DataRow row in dsPubs.Tables["Authors"].Rows)
{

ListItem newItem = new ListItem();
newItem.Text = row["au_lname"] + ", " +
row["au_fname"];

newItem.Value = row["au_id"].ToString();
lstAuthor.Items.Add(newItem);

}
}

If you want to extract records from a database and place them in a DataSet, you need
to use a DataAdapter. Every DataAdapter can hold four commands: SelectCommand,
InsertCommand, UpdateCommand, and DeleteCommand. This allows you to use a single
DataAdapter object for multiple tasks. The Command object supplied in the constructor is
automatically assigned to the DataAdapter.SelectCommand property. Figure 15-17 shows
how the DataAdapter interacts with your web application.

The DataAdapter.Fill() method takes a DataSet and inserts one table of information. In
this case, the table is named Authors, but any name could be used. That name is used later to
access the appropriate table in the DataSet.

To access the individual DataRows, you can loop through the Rows collection of the
appropriate table. Each piece of information is accessed using the field name, as it was with
the DataReader.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS530

8911CH15.qxd 10/18/07 4:38 PM Page 530

Figure 15-17. Using a DataSet with ADO.NET

Selecting Multiple Tables
A DataSet can contain as many tables as you need, and you can even add relationships
between the tables to better emulate the underlying relational data source. Unfortunately, you
have no way to connect tables together automatically based on relationships in the underlying
data source. However, you can add relations with a few extra lines of code, as shown in the
next example.

In the pubs database, authors are linked to titles using three tables. This arrangement
(called a many-to-many relationship, shown in Figure 15-18) allows several authors to be
related to one title and several titles to be related to one author. Without the intermediate
TitleAuthor table, the database would be restricted to a one-to-many relationship, which
would allow only a single author for each title.

In an application, you would rarely need to access these tables individually. Instead, you
would need to combine information from them in some way (for example, to find out what
author wrote a given book). On its own, the Titles table indicates only the author ID. It doesn’t
provide additional information such as the author’s name and address. To link this informa-
tion together, you can use a special SQL Select statement called a Join query. Alternatively, you
can use the features built into ADO.NET, as demonstrated in this section.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 531

8911CH15.qxd 10/18/07 4:38 PM Page 531

Figure 15-18. A many-to-many relationship

The next example provides a simple page that lists authors and the titles they have writ-
ten. The interesting thing about this page is that it’s generated using ADO.NET table linking.

To start, the standard ADO.NET data access objects are created, including a DataSet.
All these steps are performed in a custom CreateList() method, which is called from the
Page.Load event handler so that the output is created when the page is first generated:

// Define ADO.NET objects.
string selectSQL = "SELECT au_lname, au_fname, au_id FROM Authors";
SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand(selectSQL, con);
SqlDataAdapter adapter = new SqlDataAdapter(cmd);
DataSet dsPubs = new DataSet();

Next, the information for all three tables is pulled from the database and placed in the
DataSet. This task could be accomplished with three separate Command objects, but to make
the code a little leaner, this example uses only one and modifies the CommandText property
as needed.

try
{

con.Open();
adapter.Fill(dsPubs, "Authors");

// This command is still linked to the data adapter.
cmd.CommandText = "SELECT au_id, title_id FROM TitleAuthor";
adapter.Fill(dsPubs, "TitleAuthor");

// This command is still linked to the data adapter.
cmd.CommandText = "SELECT title_id, title FROM Titles";
adapter.Fill(dsPubs, "Titles");

}
catch (Exception err)
{

lblList.Text = "Error reading list of names. ";
lblList.Text += err.Message;

CHAPTER 15 ■ ADO.NET FUNDAMENTALS532

8911CH15.qxd 10/18/07 4:38 PM Page 532

}
finally
{

con.Close();
}

Defining Relationships
Now that all the information is in the DataSet, you can create two DataRelation objects to
make it easier to navigate through the linked information. In this case, these DataRelation
objects match the foreign key restrictions that are defined in the database.

■Note A foreign key is a constraint that you can set up in your database to link one table to another. For
example, the TitleAuthor table is linked to the Titles and the Authors tables by two foreign keys. The title_id
field in the TitleAuthor table has a foreign key that binds it to the title_id field in the Titles table. Similarly, the
au_id field in the TitleAuthor table has a foreign key that binds it to the au_id field in the Authors table. Once
these links are established, certain rules come into play. For example, you can’t create a TitleAuthor record
that specifies author or title records that don’t exist.

To create a DataRelation, you need to specify the linked fields from two different tables,
and you need to give your DataRelation a unique name. The order of the linked fields is
important. The first field is the parent, and the second field is the child. (The idea here is that
one parent can have many children, but each child can have only one parent. In other words,
the parent-to-child relationship is another way of saying a one-to-many relationship.) In this
example, each book title can have more than one entry in the TitleAuthor table. Each author
can also have more than one entry in the TitleAuthor table:

DataRelation Titles_TitleAuthor = new DataRelation("Titles_TitleAuthor",
dsPubs.Tables["Titles"].Columns["title_id"],
dsPubs.Tables["TitleAuthor"].Columns["title_id"]);

DataRelation Authors_TitleAuthor = new DataRelation("Authors_TitleAuthor",
dsPubs.Tables["Authors"].Columns["au_id"],
dsPubs.Tables["TitleAuthor"].Columns["au_id"]);

Once you’ve create these DataRelation objects, you must add them to the DataSet:

dsPubs.Relations.Add(Titles_TitleAuthor);
dsPubs.Relations.Add(Authors_TitleAuthor);

The remaining code loops through the DataSet. However, unlike the previous example,
which moved through one table, this example uses the DataRelation objects to branch to the
other linked tables. It works like this:

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 533

8911CH15.qxd 10/18/07 4:38 PM Page 533

1. Select the first record from the Author table.

2. Using the Authors_TitleAuthor relationship, find the child records that correspond to
this author. This step uses the GetChildRows method of the DataRow.

3. For each matching record in TitleAuthor, look up the corresponding Title record to get
the full text title. This step uses the GetParentRows method of the DataRow.

4. Move to the next Author record, and repeat the process.

The code is lean and economical:

foreach (DataRow rowAuthor in dsPubs.Tables["Authors"].Rows)
{

lblList.Text += "
" + rowAuthor["au_fname"];
lblList.Text += " " + rowAuthor["au_lname"] + "
";

foreach (DataRow rowTitleAuthor in
rowAuthor.GetChildRows(Authors_TitleAuthor))
{

foreach (DataRow rowTitle in
rowTitleAuthor.GetParentRows(Titles_TitleAuthor))
{

lblList.Text += " ";
lblList.Text += rowTitle["title"] + "
";

}
}

}

Figure 15-19 shows the final result.
If authors and titles have a simple one-to-many relationship, you could leave out the

inner foreach statement and use simpler code, as follows:

foreach (DataRow rowAuthor in dsPubs.Tables["Authors"].Rows)
{

// Display author.
foreach (DataRow rowTitle in rowAuthor.GetChildRows(Authors_Titles))
{

// Display title.
}

}

Having seen the more complicated example, you’re ready to create and manage multiple
DataRelation objects on your own.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS534

8911CH15.qxd 10/18/07 4:38 PM Page 534

Figure 15-19. Hierarchical information from two tables

■Note Using a DataRelation implies certain restrictions. For example, if you try to create a child row that
refers to a nonexistent parent, ADO.NET will generate an error. Similarly, you can’t delete a parent that has
linked children records. These restrictions are already enforced by the data source, but by adding them to
the DataSet, you ensure that they will be enforced by ADO.NET as well. This technique can allow you to
catch errors as soon as they occur rather than waiting until you attempt to commit changes to the data
source.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS 535

8911CH15.qxd 10/18/07 4:38 PM Page 535

If this isn’t the behavior you want, there’s an easy solution. When you create the
DataRelation, pass an extra parameter to the constructor with the value false:

DataRelation Titles_TitleAuthor = new DataRelation("Titles_TitleAuthor",
dsPubs.Tables["Titles"].Columns["title_id"],
dsPubs.Tables["TitleAuthor"].Columns["title_id"], false);

This tells the DataRelation not to create any constraints in the DataSet. In other words,
you end up with a DataRelation that you can use to navigate between related records, but
won’t impose extra rules. This technique is useful if you’re retrieving only some of the records
in a table. For example, if you’ve retrieved the entire Titles and TitleAuthor tables but only
some of the Authors table, you might have a book that refers to an author that’s not in your
DataSet. This isn’t an error—it’s just a reflection of the fact that you don’t have all the informa-
tion on hand.

The Last Word
This chapter gave you a solid introduction to ADO.NET. You know now how to connect to a
database in your web pages, retrieve the information you need, and execute commands to
update, insert, and delete data.

Although you’ve seen all the core concepts behind ADO.NET, there’s still much more to
learn. For a comprehensive book that focuses exclusively on ADO.NET, you may be interested
in a book such as Microsoft ADO.NET 2.0: Core Reference (Microsoft Press, 2005), which inves-
tigates some of the techniques you can use to optimize ADO.NET data access code, and
demonstrates how to perform batch updates with the DataSet.

In the next two chapters, you’ll learn about ASP.NET’s data-binding features and see how
you can use them to write more practical data-driven web pages.

CHAPTER 15 ■ ADO.NET FUNDAMENTALS536

8911CH15.qxd 10/18/07 4:38 PM Page 536

Data Binding

In the previous chapter, you learned how to use ADO.NET to retrieve information from a
database, how to store it in the DataSet, and how to apply changes using direct commands.
These techniques are flexible and powerful, but they aren’t always convenient.

For example, you can use the DataSet or the DataReader to retrieve rows of information,
format them individually, and add them to an HTML table on a web page. Conceptually, this
isn’t too difficult. However, it still requires a lot of repetitive code to move through the data,
format columns, and display it in the correct order. Repetitive code may be easy, but it’s also
error-prone, difficult to enhance, and unpleasant to read. Fortunately, ASP.NET adds a feature
that allows you to skip this process and pop data directly into HTML elements and fully for-
matted controls. It’s called data binding. In this chapter, you’ll learn how to use data binding
to display data more efficiently. You’ll also learn how you can use the ASP.NET data source
controls to retrieve your data from a database without writing a line of ADO.NET code.

Introducing Data Binding
The basic principle of data binding is this: you tell a control where to find your data and how
you want it displayed, and the control handles the rest of the details. Data binding in ASP.NET
is superficially similar to data binding in the world of desktop or client/server applications,
but in truth, it’s fundamentally different. In those environments, data binding involves creat-
ing a direct connection between a data source and a control in an application window. If the
user changes a value in the on-screen control, the data in the linked database is modified
automatically. Similarly, if the database changes while the user is working with it (for example,
another user commits a change), the display can be refreshed automatically.

This type of data binding isn’t practical in the ASP.NET world, because you can’t effectively
maintain a database connection over the Internet. This “direct” data binding also severely
limits scalability and reduces flexibility. In fact, data binding has acquired a bad reputation for
exactly these reasons.

ASP.NET data binding, on the other hand, has little in common with direct data binding.
ASP.NET data binding works in one direction only. Information moves from a data object into
a control. Then the data objects are thrown away, and the page is sent to the client. If the user
modifies the data in a data-bound control, your program can update the corresponding
record in the database, but nothing happens automatically.

ASP.NET data binding is much more flexible than old-style data binding. Many of the
most powerful data binding controls, such as the GridView and DetailsView, give you unprece-
dented control over the presentation of your data, allowing you to format it, change its layout,

537

C H A P T E R 1 6

8911CH16.qxd 10/1/07 11:35 AM Page 537

embed it in other ASP.NET controls, and so on. You’ll learn about these features and ASP.NET’s
rich data controls in Chapter 17.

Types of ASP.NET Data Binding
Two types of ASP.NET data binding exist: single-value binding and repeated-value binding.
Single-value data binding is by far the simpler of the two, whereas repeated-value binding
provides the foundation for the most advanced ASP.NET data controls.

Single-Value, or “Simple,” Data Binding
You can use single-value data binding to add information anywhere on an ASP.NET page.
You can even place information into a control property or as plain text inside an HTML tag.
Single-value data binding doesn’t necessarily have anything to do with ADO.NET. Instead,
single-value data binding allows you to take a variable, a property, or an expression and insert
it dynamically into a page. Single-value binding also helps you create templates for the rich
data controls you’ll study in Chapter 17.

Repeated-Value, or “List,” Binding
Repeated-value data binding allows you to display an entire table (or just a single field from a
table). Unlike single-value data binding, this type of data binding requires a special control
that supports it. Typically, this will be a list control such as CheckBoxList or ListBox, but it
can also be a much more sophisticated control such as the GridView (which is described in
Chapter 17). You’ll know that a control supports repeated-value data binding if it provides a
DataSource property. As with single-value binding, repeated-value binding doesn’t necessarily
need to use data from a database, and it doesn’t have to use the ADO.NET objects. For exam-
ple, you can use repeated-value binding to bind data from a collection or an array.

How Data Binding Works
Data binding works a little differently depending on whether you’re using single-value or
repeated-value binding. To use single-value binding, you must insert a data binding expres-
sion into the markup in the .aspx file (not the code-behind file). To use repeated-value
binding, you must set one or more properties of a data control. Typically, you’ll perform this
initialization when the Page.Load event fires. You’ll see examples of both these techniques
later in this chapter.

Once you specify data binding, you need to activate it. You accomplish this task by calling
the DataBind() method. The DataBind() method is a basic piece of functionality supplied in
the Control class. It automatically binds a control and any child controls that it contains. With
repeated-value binding, you can use the DataBind() method of the specific list control you’re
using. Alternatively, you can bind the whole page at once by calling the DataBind() method of
the current Page object. Once you call this method, all the data binding expressions in the
page are evaluated and replaced with the specified value.

Typically, you call the DataBind() method in the Page.Load event handler. If you forget to
use it, ASP.NET will ignore your data binding expressions, and the client will receive a page
that contains empty values.

CHAPTER 16 ■ DATA BINDING538

8911CH16.qxd 10/1/07 11:35 AM Page 538

This is a general description of the whole process. To really understand what’s happening,
you need to work with some specific examples.

Single-Value Data Binding
Single-value data binding is really just a different approach to dynamic text. To use it, you add
special data binding expressions into your .aspx files. These expressions have the following
format:

<%# expression_goes_here %>

This may look like a script block, but it isn’t. If you try to write any code inside this tag,
you will receive an error. The only thing you can add is a valid data binding expression. For
example, if you have a public or protected variable named Country in your page, you could
write the following:

<%# Country %>

When you call the DataBind() method for the page, this text will be replaced with the
value for Country (for example, Spain). Similarly, you could use a property or a built-in
ASP.NET object as follows:

<%# Request.Browser.Browser %>

This would substitute a string with the current browser name (for example, IE). In fact,
you can even call a function defined on your page, or execute a simple expression, provided it
returns a result that can be converted to text and displayed on the page. Thus, the following
data binding expressions are all valid:

<%# GetUserName(ID) %>
<%# 1 + (2 * 20) %>
<%# "John " + "Smith" %>

Remember, you place these data binding expressions in the markup portion of your .aspx
file, not your code-behind file.

A Simple Data Binding Example
This section shows a simple example of single-value data binding. The example has been
stripped to the bare minimum amount of detail needed to illustrate the concept.

You start with a variable defined in your Page class, which is called TransactionCount:

public partial class SimpleDataBinding : System.Web.UI.Page
{

protected int TransactionCount;

// (Additional code omitted.)
}

CHAPTER 16 ■ DATA BINDING 539

8911CH16.qxd 10/1/07 11:35 AM Page 539

Note that this variable must be designated as public, protected, or internal, but not pri-
vate. If you make the variable private, ASP.NET will not be able to access it when it’s evaluating
the data binding expression.

Now, assume that this value is set in the Page.Load event handler using some database
lookup code. For testing purposes, the example skips this step and hard-codes a value:

protected void Page_Load(object sender, EventArgs e)
{

// (You could use database code here
// to look up a value for TransactionCount.)
TransactionCount = 10;

// Now convert all the data binding expressions on the page.
this.DataBind();

}

Two actions actually take place in this event handler: the TransactionCount variable is set
to 10, and all the data binding expressions on the page are bound. Currently, no data binding
expressions exist, so this method has no effect. Notice that this example uses the this keyword
to refer to the current page. You could just write DataBind() without the this keyword, because
the default object is the current Page object. However, using the this keyword makes it a bit
clearer what object is being used.

To make this data binding accomplish something, you need to add a data binding expres-
sion. Usually, it’s easiest to add this value directly to the markup in the .aspx file. To do so, click
the Source button at the bottom of the web page designer window. Figure 16-1 shows an
example with a Label control.

Figure 16-1. Source view in the web page designer

CHAPTER 16 ■ DATA BINDING540

8911CH16.qxd 10/1/07 11:35 AM Page 540

To add your expression, find the tag for the Label control. Modify the text inside the label
as shown here:

<asp:Label id="lblDynamic" runat="server" Font-Size="X-Large">
There were <%# TransactionCount %> transactions today.
I see that you are using <%# Request.Browser.Browser %>.
</asp:Label>

This example uses two separate data binding expressions, which are inserted along with
the normal static text. The first data binding expression references the TransactionCount vari-
able, and the second uses the built-in Request object to determine some information about
the user’s browser. When you run this page, the output looks like Figure 16-2.

Figure 16-2. The result of data binding

The data binding expressions have been automatically replaced with the appropriate
values. If the page is posted back, you could use additional code to modify TransactionCount,
and as long as you call the DataBind() method, that information will be popped into the page
in the data binding expression you’ve defined.

If, however, you forget to call the DataBind() method, the data binding expressions will be
ignored, and the user will see a somewhat confusing window that looks like Figure 16-3.

■Note When using single-value data binding, you need to consider when you should call the DataBind()
method. For example, if you made the mistake of calling it before you set the TransactionCount variable, the
corresponding expression would just be converted to 0. Remember, data binding is a one-way street. This
means changing the TransactionCount variable after you’ve used the DataBind() method won’t produce any
visible effect. Unless you call the DataBind() method again, the displayed value won’t be updated.

CHAPTER 16 ■ DATA BINDING 541

8911CH16.qxd 10/1/07 11:35 AM Page 541

Figure 16-3. The non-data-bound page

Simple Data Binding with Properties
The previous example uses a data binding expression to set static text information inside a
label tag. However, you can also use single-value data binding to set other types of informa-
tion on your page, including control properties. To do this, you simply have to know where to
put the data binding expression in the web page markup.

For example, consider the following page, which defines a variable named URL and uses
it to point to a picture in the application directory:

public partial class DataBindingUrl : System.Web.UI.Page
{

public string URL;

protected void Page_Load(Object sender, EventArgs e)
{

URL = "Images/picture.jpg";
this.DataBind();

}
}

You can now use this URL to create a label, as shown here:

<asp:Label id="lblDynamic" runat="server"><%# URL %></asp:Label>

You can also use it for a check box caption:

<asp:CheckBox id="chkDynamic" Text="<%# URL %>" runat="server" />

or you can use it for a target for a hyperlink:

<asp:Hyperlink id="lnkDynamic" Text="Click here!" NavigateUrl="<%# URL %>"
runat="server" />

CHAPTER 16 ■ DATA BINDING542

8911CH16.qxd 10/1/07 11:35 AM Page 542

You can even use it for a picture:

<asp:Image id="imgDynamic" ImageUrl="<%# URL %>" runat="server" />

The only trick is that you need to edit these control tags manually. Figure 16-4 shows what
a page that uses all these elements would look like.

Figure 16-4. Multiple ways to bind the same data

To examine this example in more detail, try the sample code for this chapter.

Problems with Single-Value Data Binding
Before you start using single-value data binding techniques in every aspect of your ASP.NET
programs, you should consider some of the serious drawbacks this approach can present:

Putting code into a page’s user interface: One of ASP.NET’s great advantages is that it allows
developers to separate the user interface code (the HTML and control tags in the .aspx
file) from the actual code used for data access and all other tasks (in the code-behind file).
However, overenthusiastic use of single-value data binding can encourage you to disre-
gard that distinction and start coding function calls and even operations into your page.
If not carefully managed, this can lead to complete disorder.

Fragmenting code: When using data binding expressions, it may not be obvious where the
functionality resides for different operations. This is particularly a problem if you blend
both approaches—for example, if you use data binding to fill a control and also modify
that control directly in code. Even worse, the data binding code may have certain depend-
encies that aren’t immediately obvious. If the page code changes, or a variable or function
is removed or renamed, the corresponding data binding expression could stop providing
valid information without any explanation or even an obvious error. All of these details
make it more difficult to maintain your code, and make it more difficult for multiple
developers to work together on the same project.

CHAPTER 16 ■ DATA BINDING 543

8911CH16.qxd 10/1/07 11:35 AM Page 543

Of course, some developers love the flexibility of single-value data binding and use it to
great effect, making the rest of their code more economical and streamlined. It’s up to you to
be aware of (and avoid) the potential drawbacks.

■Note In one case, single-value data binding is quite useful—when building templates. Templates declare
a block of markup that’s reused for each record in a table. However, they work only with certain rich data
controls, such as the GridView. You’ll learn more about this feature in Chapter 17.

Using Code Instead of Simple Data Binding
If you decide not to use single-value data binding, you can accomplish the same thing using
code. For example, you could use the following event handler to display the same output as
the first label example:

protected void Page_Load(Object sender, EventArgs e)
{

TransactionCount = 10;
lblDynamic.Text = "There were " + TransactionCount.ToString();
lblDynamic.Text += " transactions today. ";
lblDynamic.Text += "I see that you are using " + Request.Browser.Browser;

}

This code dynamically fills in the label without using data binding. The trade-off is
more code.

When you use data binding expressions, you end up complicating your markup with
additional details about your code (such as the names of the variables in your code-behind
class). When you use the code-only approach, you end up doing the reverse—complicating
your code with additional details about the page markup (like the text you want to display). In
many cases, the best approach depends on your specific scenario. Data binding expressions
are great for injecting small bits of information into an otherwise detailed page. The dynamic
code approach gives you more flexibility, and works well when you need to perform more
extensive work to shape the page (for example, interacting with multiple controls, changing
content and formatting, retrieving the information you want to display from different sources,
and so on).

Repeated-Value Data Binding
Although using simple data binding is optional, repeated-value binding is so useful that
almost every ASP.NET application will want to use it somewhere.

Repeated-value data binding works with the ASP.NET list controls (and the rich data con-
trols described in the next chapter). To use repeated-value binding, you link one of these
controls to a data source (such as a field in a data table). When you call DataBind(), the control
automatically creates a full list using all the corresponding values. This saves you from writing
code that loops through the array or data table and manually adds elements to a control.

CHAPTER 16 ■ DATA BINDING544

8911CH16.qxd 10/1/07 11:35 AM Page 544

Repeated-value binding can also simplify your life by supporting advanced formatting and
template options that automatically configure how the data should look when it’s placed in
the control.

To create a data expression for list binding, you need to use a list control that explicitly
supports data binding. Luckily, ASP.NET provides a number of list controls, many of which
you’ve probably already used in other applications or examples:

ListBox, DropDownList, CheckBoxList, and RadioButtonList: These web controls provide a
list for a single field of information.

HtmlSelect: This server-side HTML control represents the HTML <select> element and
works essentially the same way as the ListBox web control. Generally, you’ll use this con-
trol only for backward compatibility.

GridView, DetailsView, FormView, and ListView: These rich web controls allow you to pro-
vide repeating lists or grids that can display more than one field of information at a time.
For example, if you bind one of these controls to a full-fledged table in a DataSet, you can
display the values from multiple fields. These controls offer the most powerful and flexi-
ble options for data binding.

With repeated-value data binding, you can write a data binding expression in your .aspx
file, or you can apply the data binding by setting control properties. In the case of the simpler
list controls, you’ll usually just set properties. Of course, you can set properties in many ways,
such as by using code in a code-behind file or by modifying the control tag in the .aspx file,
possibly with the help of Visual Studio’s Properties window. The approach you take doesn’t
matter. The important detail is that you don’t use any <%# expression %> data binding
expressions.

To continue any further with data binding, it will help to divide the subject into a few
basic categories. You’ll start by looking at data binding with the list controls.

Data Binding with Simple List Controls
In some ways, data binding to a list control is the simplest kind of data binding. You need to
follow only three steps:

1. Create and fill some kind of data object. You have numerous options, including an
array, the basic ArrayList and Hashtable collections, the strongly typed List and Dictio-
nary collections, and the ADO.NET DataTable and DataSet objects. Essentially, you can
use any type of collection that supports the IEnumerable interface, although you’ll dis-
cover each class has specific advantages and disadvantages.

2. Link the object to the appropriate control. To do this, you need to set only a couple of
properties, including DataSource. If you’re binding to a full DataSet, you’ll also need to
set the DataMember property to identify the appropriate table you want to use.

3. Activate the binding. As with single-value binding, you activate data binding by using
the DataBind() method, either for the specific control or for all contained controls at
once by using the DataBind() method for the current page.

CHAPTER 16 ■ DATA BINDING 545

8911CH16.qxd 10/1/07 11:35 AM Page 545

This process is the same whether you’re using the ListBox, the DropDownList, the
CheckBoxList, the RadioButtonList, or even the HtmlSelect control. All these controls provide
the same properties and work the same way. The only difference is in the way they appear on
the final web page.

A Simple List Binding Example
To try this type of data binding, add a ListBox control to a new web page. Next, import the
System.Collections namespace in your code. Finally, use the Page.Load event handler to
create an ArrayList collection to use as a data source as follows:

ArrayList fruit = new ArrayList();
fruit.Add("Kiwi");
fruit.Add("Pear");
fruit.Add("Mango");
fruit.Add("Blueberry");
fruit.Add("Apricot");
fruit.Add("Banana");
fruit.Add("Peach");
fruit.Add("Plum");

Now, you can link this collection to the ListBox control:

lstItems.DataSource = fruit;

Because an ArrayList is a straightforward, unstructured type of object, this is all the infor-
mation you need to set. If you were using a DataTable (which has more than one field) or a
DataSet (which has more than one DataTable), you would have to specify additional
information.

To activate the binding, use the DataBind() method:

this.DataBind();

You could also use lstItems.DataBind() to bind just the ListBox control. Figure 16-5 shows
the resulting web page.

This technique can save quite a few lines of code. This example doesn’t offer a lot of sav-
ings because the collection is created just before it’s displayed. In a more realistic application,
however, you might be using a function that returns a ready-made collection to you:

ArrayList fruit;
fruit = GetFruitsInSeason("Summer");

In this case, it’s extremely simple to add the extra two lines needed to bind and display the
collection in the window:

lstItems.DataSource = fruit;
this.DataBind();

or you could even change it to the following, even more compact, code:

lstItems.DataSource = GetFruitsInSeason("Summer");
this.DataBind();

CHAPTER 16 ■ DATA BINDING546

8911CH16.qxd 10/1/07 11:35 AM Page 546

Figure 16-5. A data-bound list

On the other hand, consider the extra trouble you would have to go through if you didn’t
use data binding. This type of savings compounds rapidly, especially when you start combin-
ing data binding with multiple controls, advanced objects such as DataSets, or advanced
controls that apply formatting through templates.

Strongly Typed Collections
You can use data binding with the Hashtable and ArrayList, two of the more useful collection
classes in the System.Collections namespace. However, as you learned in Chapter 3, .NET
includes a more stringent set of collections in another namespace:
System.Collections.Generic. These collections are ideal in cases where you want your collec-
tion to hold just a single type of object (for example, just strings). When you use the generic
collections, you choose the item type you want to use, and the collection object is “locked in”
to your choice (which is similar to how an array works). This means if you try to add another
type of object that doesn’t belong in the collection, you’ll get a compile-time error. Similarly,
when you pull an item out of the collection, you don’t need to write casting code to convert it
to the right type, because the compiler already knows what type of objects you’re using. This
behavior is safer and more convenient, and it’s what you’ll want most of the time.

To use a generic collection, you must import the right namespace:

using System.Collections.Generic

The generic version of the ArrayList class is named List. Here’s how you create a List col-
lection object that can only store strings:

List<string> fruit = new List<string>();
fruit.Add("Kiwi");
fruit.Add("Pear");

The only real difference is that you need to specify the type of data you want to use when
you declare the List object.

CHAPTER 16 ■ DATA BINDING 547

8911CH16.qxd 10/1/07 11:35 AM Page 547

Multiple Binding
You can bind the same data list object to multiple different controls. Consider the following
example, which compares all the types of list controls at your disposal by loading them with
the same information:

protected void Page_Load(Object sender, EventArgs e)
{

// Create and fill the collection.
List<string> fruit = new List<string>();
fruit.Add("Kiwi");
fruit.Add("Pear");
fruit.Add("Mango");
fruit.Add("Blueberry");
fruit.Add("Apricot");
fruit.Add("Banana");
fruit.Add("Peach");
fruit.Add("Plum");

// Define the binding for the list controls.
MyListBox.DataSource = fruit;
MyDropDownListBox.DataSource = fruit;
MyHtmlSelect.DataSource = fruit;
MyCheckBoxList.DataSource = fruit;
MyRadioButtonList.DataSource = fruit;

// Activate the binding.
this.DataBind();

}

Figure 16-6 shows the rendered page.
This is another area where ASP.NET data binding may differ from what you have experi-

enced in a desktop application. In traditional data binding, all the different controls are
sometimes treated like “views” on the same data source, and you can work with only one
record from the data source at a time. In this type of data binding, when you select Pear in one
list control, the other list controls automatically refresh so that they too have Pear selected (or
the corresponding information from the same row). This isn’t how ASP.NET uses data binding.
If you want this sort of effect, you need to write custom code to pull it off.

CHAPTER 16 ■ DATA BINDING548

8911CH16.qxd 10/1/07 11:35 AM Page 548

Figure 16-6. Multiple bound lists

Data Binding with a Dictionary Collection
A dictionary collection is a special kind of collection in which every item (or definition, to use
the dictionary analogy) is indexed with a specific key (or dictionary word). This is similar to
the way that built-in ASP.NET collections such as Session, Application, and Cache work.

Dictionary collections always need keys. This makes it easier to retrieve the item you
want. In ordinary collections, like the ArrayList or List, you need to find the item you want by
its index number position, or—more often—by traveling through the whole collection until
you come across the right item. With a dictionary collection, you retrieve the item you want
using its key. Generally, ordinary collections make sense when you need to work with all the
items at once, while dictionary collections make sense when you frequently retrieve a single
specific item.

CHAPTER 16 ■ DATA BINDING 549

8911CH16.qxd 10/1/07 11:35 AM Page 549

You can use two basic dictionary-style collections in .NET. The Hashtable collection (in
the System.Collections namespace) allows you to store any type of object and use any type of
object for the key values. The Dictionary collection (in the System.Collections.Generic name-
space) uses generics to provide the same “locking in” behavior as the List collection. You
choose the item type and the key type upfront to prevent errors and reduce the amount of
casting code you need to write.

The following example uses the Dictionary collection class, which it creates once—the
first time the page is requested. You create a Dictionary object in much the same way you
create an ArrayList or a List collection. The only difference is that you need to supply a unique
key for every item. This example uses the lazy practice of assigning a sequential number for
each key:

protected void Page_Load(Object sender, EventArgs e)
{

if (!this.IsPostBack)
{

// Use integers to index each item. Each item is a string.
Dictionary<int, string> fruit = new Dictionary<int, string>();

fruit.Add(1, "Kiwi");
fruit.Add(2, "Pear");
fruit.Add(3, "Mango");
fruit.Add(4, "Blueberry");
fruit.Add(5, "Apricot");
fruit.Add(6, "Banana");
fruit.Add(7, "Peach");
fruit.Add(8, "Plum");

// Define the binding for the list controls.
MyListBox.DataSource = fruit;

// Choose what you want to display in the list.
MyListBox.DataTextField = "Value";

// Activate the binding.
this.DataBind();

}
}

There’s one new detail here. It’s this line:

MyListBox.DataTextField = "Value";

Each item in a dictionary-style collection has both a key and a value associated with it.
If you don’t specify which property you want to display, ASP.NET simply calls the ToString()
method on each collection item. This may or may not produce the result you want. However,
by inserting this line of code, you control exactly what appears in the list. The page will now
appear as expected, with all the fruit names.

CHAPTER 16 ■ DATA BINDING550

8911CH16.qxd 10/1/07 11:35 AM Page 550

■Note Notice that you need to enclose the property name in quotation marks. ASP.NET uses reflection to
inspect your object and find the property that has the name Value at runtime.

You might want to experiment with what other types of collections you can bind to a list
control. One interesting option is to use a built-in ASP.NET control such as the Session object.
An item in the list will be created for every currently defined Session variable, making this trick
a nice little debugging tool to quickly check current session information.

Using the DataValueField Property
Along with the DataTextField property, all list controls that support data binding also provide
a DataValueField property, which adds the corresponding information to the value attribute in
the control element. This allows you to store extra (undisplayed) information that you can
access later. For example, you could use these two lines to define your data binding with the
previous example:

MyListBox.DataTextField = "Value";
MyListBox.DataValueField = "Key";

The control will appear the same, with a list of all the fruit names in the collection. How-
ever, if you look at the rendered HTML that’s sent to the client browser, you’ll see that value
attributes have been set with the corresponding numeric key for each item:

<select name="MyListBox" id="MyListBox" >
<option value="1">Kiwi</option>
<option value="2">Pear</option>
<option value="3">Mango</option>
<option value="4">Blueberry</option>
<option value="5">Apricot</option>
<option value="6">Banana</option>
<option value="7">Peach</option>
<option value="8">Plum</option>

</select>

You can retrieve this value later using the SelectedItem property to get additional infor-
mation. For example, you could set the AutoPostBack property of the list control to true, and
add the following code:

protected void MyListBox_SelectedIndexChanged(Object sender,
EventArgs e)
{

lblMessage.Text = "You picked: " + MyListBox.SelectedItem.Text;
lblMessage.Text += " which has the key: " + MyListBox.SelectedItem.Value;

}

CHAPTER 16 ■ DATA BINDING 551

8911CH16.qxd 10/1/07 11:35 AM Page 551

Figure 16-7 demonstrates the result. This technique is particularly useful with a database.
You could embed a unique ID into the value property and be able to quickly look up a corre-
sponding record depending on the user’s selection by examining the value of the SelectedItem
object.

Figure 16-7. Binding to the key and value properties

Note that for this to work, you can’t regenerate the list after every postback. If you do, the
selected item information will be lost and an error will occur. The preceding example handles
this by checking the Page.IsPostBack property. If it’s false (which indicates that the page is
being requested for the first time), the page builds the list. When the page is rendered, the cur-
rent list of items is stored in view state. When the page is posted back, the list of items already
exists and doesn’t need to be re-created.

Data Binding with ADO.NET
So far, the examples in this chapter have dealt with data binding that doesn’t involve data-
bases or any part of ADO.NET. Although this is an easy way to familiarize yourself with the
concepts, and a useful approach in its own right, you get the greatest advantage of data bind-
ing when you use it in conjunction with a database.

When you’re using data binding with the information drawn from a database, the data
binding process takes place in the same three steps. First you create your data source, which
will be a DataReader or DataSet object. A DataReader generally offers the best performance,
but it limits your data binding to a single control because it is a forward-only reader. As it fills a
control, it traverses the results from beginning to end. Once it’s finished, it can’t go back to the
beginning; so it can’t be used in another data binding operation. For this reason, a DataSet is a
more common choice.

The next example creates a DataSet and binds it to a list. In this example, the DataSet is
filled by hand, but it could just as easily be filled using a DataAdapter object, as you saw in the
previous chapter.

CHAPTER 16 ■ DATA BINDING552

8911CH16.qxd 10/1/07 11:35 AM Page 552

To fill a DataSet by hand, you need to follow several steps:

1. First, create the DataSet.

2. Next, create a new DataTable, and add it to the DataSet.Tables collection.

3. Next, define the structure of the table by adding DataColumn objects (one for each
field) to the DataTable.Colums collection.

4. Finally, supply the data. You can get a new, blank row that has the same structure as
your DataTable by calling the DataTable.NewRow() method. You must then set the data
in all its fields, and add the DataRow to the DataTable.Rows collection.

Here’s how the code unfolds:

// Define a DataSet with a single DataTable.
DataSet dsInternal = new DataSet();
dsInternal.Tables.Add("Users");

// Define two columns for this table.
dsInternal.Tables["Users"].Columns.Add("Name");
dsInternal.Tables["Users"].Columns.Add("Country");

// Add some actual information into the table.
DataRow rowNew = dsInternal.Tables["Users"].NewRow();
rowNew["Name"] = "John";
rowNew["Country"] = "Uganda";
dsInternal.Tables["Users"].Rows.Add(rowNew);

rowNew = dsInternal.Tables["Users"].NewRow();
rowNew["Name"] = "Samantha";
rowNew["Country"] = "Belgium";
dsInternal.Tables["Users"].Rows.Add(rowNew);

rowNew = dsInternal.Tables["Users"].NewRow();
rowNew["Name"] = "Rico";
rowNew["Country"] = "Japan";
dsInternal.Tables["Users"].Rows.Add(rowNew);

Next, you bind the DataTable from the DataSet to the appropriate control. Because list
controls can only show a single column at a time, you also need to choose the field you want
to display for each item by setting the DataTextField property:

// Define the binding.
lstUser.DataSource = dsInternal.Tables["Users"];
lstUser.DataTextField = "Name";

Alternatively, you could use the entire DataSet for the data source, instead of just the
appropriate table. In that case, you would have to select a table by setting the control’s
DataMember property. This is an equivalent approach, but the code is slightly different:

CHAPTER 16 ■ DATA BINDING 553

8911CH16.qxd 10/1/07 11:35 AM Page 553

// Define the binding.
lstUser.DataSource = dsInternal;
lstUser.DataMember = "Users";
lstUser.DataTextField = "Name";

As always, the last step is to activate the binding:

this.DataBind();

The final result is a list with the information from the specified database field, as shown
in Figure 16-8. The list box will have an entry for every single record in the table, even if it
appears more than once, from the first row to the last.

Figure 16-8. DataSet binding

■Tip The simple list controls require you to bind their Text or Value property to a single data field in the
data source object. However, much more flexibility is provided by the more advanced data binding controls
examined in the next chapter. They allow fields to be combined in just about any way you can imagine.

Creating a Record Editor
The next example is more practical. It’s a good example of how you might use data binding in
a full ASP.NET application. This example allows the user to select a record and update one
piece of information by using data-bound list controls.

The first step is to add the connection string to your web.config file. This example uses the
Products table from the Northwind database included with many versions of SQL Server.
Here’s how you can define the connection string for SQL Server Express:

<configuration>
<connectionStrings>
<add name="Northwind" connectionString=

CHAPTER 16 ■ DATA BINDING554

8911CH16.qxd 10/1/07 11:35 AM Page 554

"Data Source=localhost\SQLEXPRESS;Initial Catalog=Northwind;Integrated
Security=SSPI" />
</connectionStrings>
...

</configuration>

To use the full version of SQL Server, remove the \SQLEXPRESS portion. To use a database
server on another computer, supply the computer name for the Data Source connection string
property. (For more details about connection strings, refer to Chapter 15.)

The next step is to retrieve the connection string and store it in a private variable in the
Page class so that every part of your page code can access it easily. Once you’ve imported the
System.Web.Configuration namespace, you can create a member variable in your code-
behind class that’s defined like this:

private string connectionString =
WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;

The next step is to create a drop-down list that allows the user to choose a product for
editing. The Page.Load event handler takes care of this task—retrieving the data, binding it to
the drop-down list control, and then activating the binding. Before you go any further, make
sure you’ve imported the System.Data.SqlClient namespace, which allows you to use the SQL
Server provider to retrieve data.

protected void Page_Load(Object sender, EventArgs e)
{

if (!this.IsPostBack)
{

// Define the ADO.NET objects for selecting products from the database.
string selectSQL = "SELECT ProductName, ProductID FROM Products";
SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand(selectSQL, con);

// Open the connection.
con.Open();

// Define the binding.
lstProduct.DataSource = cmd.ExecuteReader();
lstProduct.DataTextField = "ProductName";
lstProduct.DataValueField = "ProductID";

// Activate the binding.
this.DataBind();

con.Close();

// Make sure nothing is currently selected in the list box.
lstProduct.SelectedIndex = -1;

}
}

CHAPTER 16 ■ DATA BINDING 555

8911CH16.qxd 10/1/07 11:35 AM Page 555

Once again, the list is only filled the first time the page is requested (and stored in view
state automatically). If the page is posted back, the list keeps its current entries. This reduces
the amount of database work, and keeps the page working quickly and efficiently. You should
also note that this page doesn’t attempt to deal with errors. If you were using it in a real appli-
cation, you’d need to use the exception-handling approach demonstrated in Chapter 15.

The actual database code is similar to what was used in the previous chapter. The example
uses a Select statement but carefully limits the returned information to just the ProductName
and ProductID fields, which are the only pieces of information it will use. The resulting win-
dow lists all the products defined in the database, as shown in Figure 16-9.

Figure 16-9. Product choices

The drop-down list enables AutoPostBack, so as soon as the user makes a selection, a
lstProduct.SelectedItemChanged event fires. At this point, your code performs the following
tasks:

• It reads the corresponding record from the Products table and displays additional infor-
mation about it in a label. In this case, a Join query links information from the Products
and Categories tables. The code also determines what the category is for the current
product. This is the piece of information it will allow the user to change.

CHAPTER 16 ■ DATA BINDING556

8911CH16.qxd 10/1/07 11:35 AM Page 556

• It reads the full list of CategoryNames from the Categories table and binds this informa-
tion to a different list control. Initially, this list is hidden in a panel with its Visible
property set to false. The code reveals the content of this panel by setting Visible to true.

• It highlights the row in the category list that corresponds to the current product. For
example, if the current product is a Seafood category, the Seafood entry in the list box
will be selected.

This logic appears fairly involved, but it’s really just an application of what you’ve learned
over the past two chapters. The full listing is as follows:

protected void lstProduct_SelectedIndexChanged(object sender, EventArgs e)
{

// Create a command for selecting the matching product record.
string selectProduct = "SELECT ProductName, QuantityPerUnit, " +
"CategoryName FROM Products INNER JOIN Categories ON " +
"Categories.CategoryID=Products.CategoryID " +
"WHERE ProductID=@ProductID";

// Create the Connection and Command objects.
SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmdProducts = new SqlCommand(selectProduct, con);

// Retrieve the information for the selected product.
using (con)
{

con.Open();
SqlDataReader reader = cmdProducts.ExecuteReader();
reader.Read();

// Update the display.
lblRecordInfo.Text = "Product: " +
reader["ProductName"] + "
";

lblRecordInfo.Text += "Quantity: " +
reader["QuantityPerUnit"] + "
";

lblRecordInfo.Text += "Category: " + reader["CategoryName"];

// Store the corresponding CategoryName for future reference.
string matchCategory = reader["CategoryName"].ToString();

// Close the reader.
reader.Close();

// Create a new Command for selecting categories.
string selectCategory = "SELECT CategoryName, " +
"CategoryID FROM Categories";

SqlCommand cmdCategories = new SqlCommand(selectCategory, con);
cmdProducts.Parameters.AddWithValue("@ProductID",
lstProduct.SelectedItem.Value);

CHAPTER 16 ■ DATA BINDING 557

8911CH16.qxd 10/1/07 11:35 AM Page 557

// Retrieve the category information, and bind it.
lstCategory.DataSource = cmdCategories.ExecuteReader();
lstCategory.DataTextField = "CategoryName";
lstCategory.DataValueField = "CategoryID";
lstCategory.DataBind();

// Highlight the matching category in the list.
lstCategory.Items.FindByText(matchCategory).Selected = true;

}

pnlCategory.Visible = true;
}

You could improve this code in several ways. It probably makes the most sense to remove
these data access routines from this event handler and put them into more generic functions.
For example, you could use a function that accepts a ProductName and returns a single
DataRow with the associated product information. Another improvement would be to use a
stored procedure to retrieve this information.

The end result is a window that updates itself dynamically whenever a new product is
selected, as shown in Figure 16-10.

Figure 16-10. Product information

This example still has one more trick in store. If the user selects a different category and
clicks Update, the change is made in the database. Of course, this means creating new
Connection and Command objects, as follows:

CHAPTER 16 ■ DATA BINDING558

8911CH16.qxd 10/1/07 11:35 AM Page 558

protected void cmdUpdate_Click(object sender, EventArgs e)
{

// Define the Command.
string updateCommand = "UPDATE Products " +
"SET CategoryID=@CategoryID WHERE ProductID=@ProductID";

SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand(updateCommand, con);

cmd.Parameters.AddWithValue("@CategoryID", lstCategory.SelectedItem.Value);
cmd.Parameters.AddWithValue("@ProductID", lstProduct.SelectedItem.Value);

// Perform the update.
using (con)
{

con.Open();
cmd.ExecuteNonQuery();

}
}

You could easily extend this example so that it allows you to edit all the properties in a
product record. But before you try that, you might want to experiment with the rich data con-
trols that are shown in the next chapter. Using these controls, you can create sophisticated
lists and grids that provide automatic features for selecting, editing, and deleting records.

Data Source Controls
In Chapter 15, you saw how to directly connect to a database, execute a query, loop through
the records in the result set, and display them on a page. In this chapter, you’ve already seen a
simpler option—with data binding, you can write your data access logic and then show the
results in the page with no looping or control manipulation required. Now, it’s time to intro-
duce another convenience: data source controls. Amazingly enough, data source controls
allow you to create data-bound pages without writing any data access code at all.

■Note As you’ll soon see, often a gap exists between what you can do and what you should do. In most
professional applications, you’ll need to write and fine-tune your data access code for optimum performance
or access to specific features. That’s why you’ve spent so much time learning how ADO.NET works, rather
than jumping straight to the data source controls.

The data source controls include any control that implements the IDataSource interface.
The .NET Framework includes the following data source controls:

CHAPTER 16 ■ DATA BINDING 559

8911CH16.qxd 10/1/07 11:35 AM Page 559

• SqlDataSource: This data source allows you to connect to any data source that has an
ADO.NET data provider. This includes SQL Server, Oracle, and OLE DB or ODBC data
sources. When using this data source, you don’t need to write the data access code.

• AccessDataSource: This data source allows you to read and write the data in an Access
database file (.mdb).

■Note Access databases do not have a dedicated server engine (like SQL Server) that coordinates the
actions of multiple people and ensures that data won’t be lost or corrupted. For that reason, Access data-
bases are best suited for very small websites, where few people need to manipulate data at the same time.
A much better small-scale data solution is SQL Server Express, which is described in Chapter 15.

• ObjectDataSource: This data source allows you to connect to a custom data access class.
This is the preferred approach for large-scale professional web applications, but it
forces you to write much more code. You’ll tackle the ObjectDataSource in Chapter 23.

• XmlDataSource: This data source allows you to connect to an XML file. You’ll learn
more in Chapter 19.

• SiteMapDataSource: This data source allows you to connect to a .sitemap file that
describes the navigational structure of your website. You saw this data source in
Chapter 14.

You can find all the data source controls in the Data tab of the Toolbox in Visual Studio.
When you drop a data source control onto your web page, it shows up as a gray box in

Visual Studio. However, this box won’t appear when you run your web application and request
the page (see Figure 16-11).

Figure 16-11. A data source control at design time and runtime

If you perform more than one data access task in the same page (for example, if you need
to be able to query two different tables), you’ll need more than one data access control.

CHAPTER 16 ■ DATA BINDING560

8911CH16.qxd 10/1/07 11:35 AM Page 560

The Page Life Cycle with Data Binding
Data source controls can perform two key tasks:

• They can retrieve data from a data source and supply it to bound controls. When you
use this feature, your bound controls are automatically filled with data. You don’t even
need to call DataBind().

• They can update the data source when edits take place. In order to use this feature, you
must use one of ASP.NET’s rich data controls, like the GridView or DetailsView. For
example, if you make an edit in the GridView and click Update, the GridView will trigger
the update in the data source control, and the data source control will then update the
database.

Before you can use the data source controls, you need to understand the page life cycle.
The following steps explain the sequence of stages your page goes through in its lifetime. The
two steps in bold (4 and 6) are the steps where the data source controls will spring into action:

1. The page object is created (based on the .aspx file).

2. The page life cycle begins, and the Page.Init and Page.Load events fire.

3. All other control events fire.

4. If the user is applying a change, the data source controls perform their update oper-
ations now. If a row is being updated, the Updating and Updated events fire. If a row
is being inserted, the Inserting and Inserted events fire. If a row is being deleted, the
Deleting and Deleted events fire.

5. The Page.PreRender event fires.

6. The data source controls perform their queries and insert the data they retrieve into
the bound controls. This step happens the first time your page is requested and
every time the page is posted back, ensuring you always have the most up-to-date
data. The Selecting and Selected events fire at this point.

7. The page is rendered and disposed.

In the rest of this chapter, you’ll take a closer look at the SqlDataSource control, and you’ll
use it to build the record editor example demonstrated earlier—with a lot less code.

The SqlDataSource
Data source controls turn up in the .aspx markup portion of your web page like ordinary con-
trols. Here’s an example:

<asp:SqlDataSource ID="SqlDataSource1" runat="server" ... />

The SqlDataSource represents a database connection that uses an ADO.NET provider.
However, this has a catch. The SqlDataSource needs a generic way to create the Connection,
Command, and DataReader objects it requires. The only way this is possible is if your data
provider includes something called a data provider factory. The factory has the responsibility

CHAPTER 16 ■ DATA BINDING 561

8911CH16.qxd 10/1/07 11:35 AM Page 561

of creating the provider-specific objects that the SqlDataSource needs to access the data
source. Fortunately, .NET includes a data provider factory for each of its four data providers:

• System.Data.SqlClient

• System.Data.OracleClient

• System.Data.OleDb

• System.Data.Odbc

You can use all of these providers with the SqlDataSource. You choose your data source by
setting the provider name. Here’s a SqlDataSource that connects to a SQL Server database
using the SQL Server provider:

<asp:SqlDataSource ProviderName="System.Data.SqlClient" ... />

■Tip Technically, you can omit this piece of information, because the System.Data.SqlClient provider
factory is the default.

The next step is to supply the required connection string—without it, you cannot make
any connections. Although you can hard-code the connection string directly in the
SqlDataSource tag, it’s always better to keep it in the <connectionStrings> section of the
web.config file to guarantee greater flexibility and ensure you won’t inadvertently change
the connection string.

To refer to a connection string in your .aspx markup, you use a special syntax in this
format:

<%$ ConnectionStrings:[NameOfConnectionString] %>

This looks like a data binding expression, but it’s slightly different. (For one thing, it
begins with the character sequence <%$ instead of <%#.)

For example, if you have a connection string named Northwind in your web.config file
that looks like this:

<configuration>
<connectionStrings>
<add name="Northwind" connectionString=

"Data Source=localhost\SQLEXPRESS;Initial Catalog=Northwind;Integrated
Security=SSPI" />
</connectionStrings>
...

</configuration>

you would specify it in the SqlDataSource using this syntax:

<asp:SqlDataSource ConnectionString="<%$ ConnectionStrings:Northwind %>" ... />

Once you’ve specified the provider name and connection string, the next step is to add
the query logic that the SqlDataSource will use when it connects to the database.

CHAPTER 16 ■ DATA BINDING562

8911CH16.qxd 10/1/07 11:35 AM Page 562

■Tip If you want some help creating your connection string, select the SqlDataSource, open the Properties
window, and select the ConnectionString property. A drop-down arrow will appear at the right side of the
value. If you click that drop-down arrow, you’ll see a list of all the connection strings in your web.config file.
You can pick one of these connections, or you can choose New Connection (at the bottom of the list) to open
the Add Connection dialog box, where you can pick the database you want. Best of all, if you create a new
connection Visual Studio copies the connection string into your web.config file, so you can reuse it with other
SqlDataSource objects.

Selecting Records
You can use each SqlDataSource control you create to retrieve a single query. Optionally, you
can also add corresponding commands for deleting, inserting, and updating rows. For exam-
ple, one SqlDataSource is enough to query and update the Customers table in the Northwind
database. However, if you need to independently retrieve or update Customers and Orders
information, you’ll need two SqlDataSource controls.

The SqlDataSource command logic is supplied through four properties—SelectCommand,
InsertCommand, UpdateCommand, and DeleteCommand—each of which takes a string. The
string you supply can be inline SQL (in which case the corresponding SelectCommandType,
InsertCommandType, UpdateCommandType, or DeleteCommandType property should be
Text, the default) or the name of a stored procedure (in which case the command type is
StoredProcedure). You need to define commands only for the types of actions you want to
perform. In other words, if you’re using a data source for read-only access to a set of records,
you need to define only the SelectCommand property.

■Note If you configure a command in the Properties window, you’ll see a property named SelectQuery
instead of SelectCommand. The SelectQuery is actually a virtual property that’s displayed as a design-time
convenience. When you edit the SelectQuery (by clicking the ellipsis next to the property name), you can use
a special designer to write the command text (the SelectCommand) and add the command parameters (the
SelectParameters) at the same time. However, this tool works best once you’ve reviewed the examples in
this section, and you understand the way the SelectCommand and SelectParameters properties really work.

Here’s a complete SqlDataSource that defines a Select command for retrieving product
information from the Products table:

<asp:SqlDataSource ID="sourceProducts" runat="server"
ProviderName="System.Data.SqlClient"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT ProductName, ProductID FROM Products"

/>

CHAPTER 16 ■ DATA BINDING 563

8911CH16.qxd 10/1/07 11:35 AM Page 563

■Tip You can write the data source logic by hand or by using a design-time wizard that lets you create a
connection and create the command logic in a graphical query builder. To launch this tool, select the data
source control, and choose Configure Data Source from the smart tag.

This is enough to build the first stage of the record editor example shown earlier—namely,
the drop-down list box that shows all the products. All you need to do is set the DataSourceID
property to point to the SqlDataSource you’ve created. The easiest way to do this is using the
Properties window, which provides a drop-down list of all the data sources on your current
web page. At the same time, make sure you set the DataTextField and DataValueField proper-
ties. Once you make these changes, you’ll wind up with a control tag like this:

<asp:DropDownList ID="lstProduct" runat="server" AutoPostBack="True"
DataSourceID="sourceProducts" DataTextField="ProductName"
DataValueField="ProductID" />

The best part about this example is that you don’t need to write any code. When you run
the page, the DropDownList control asks the SqlDataSource for the data it needs. At this point,
the SqlDataSource executes the query you defined, fetches the information, and binds it to the
DropDownList. The whole process unfolds automatically.

How the Data Source Controls Work
As you learned earlier in this chapter, you can bind to a DataReader or a DataSet. So it’s worth
asking—which approach does the SqlDataSource control use? It’s actually your choice,
depending on whether you set the DataSourceMode to SqlDataSourceMode.DataSet (the
default) or to SqlDataSourceMode.DataReader. The DataSet mode is almost always better,
because it supports advanced sorting, filtering, and caching settings that depend on the
DataSet. All these features are disabled in DataReader mode. However, you can use the
DataReader mode with extremely large grids, because it’s more memory-efficient. That’s
because the DataReader holds only one record in memory at a time—just long enough to
copy the record’s information to the linked control.

Another important fact to understand about the data source controls is that when you
bind more than one control to the same data source, you cause the query to be executed mul-
tiple times. For example, if two controls are bound to the same data source, the data source
control performs its query twice—once for each control. This is somewhat inefficient—after
all, if you wrote the data binding code yourself by hand, you’d probably choose to perform the
query once and then bind the returned DataSet twice. Fortunately, this design isn’t quite as
bad as it might seem. First, you can avoid this multiple-query overhead using caching, which
allows you to store the retrieved data in a temporary memory location where it will be reused
automatically. The SqlDataSource supports automatic caching if you set EnableCaching to
true. Chapter 26 provides a full discussion of how caching works and how you can use it with
the SqlDataSource.

Second, contrary to what you might expect, most of the time you won’t be binding more
than one control to a data source. That’s because the rich data controls you’ll learn about in
Chapter 17—the GridView, DetailsView, and FormsView—have the ability to present multiple

CHAPTER 16 ■ DATA BINDING564

8911CH16.qxd 10/1/07 11:35 AM Page 564

pieces of data in a flexible layout. If you use these controls, you’ll need to bind only one con-
trol, which allows you to steer clear of this limitation.

It’s also important to remember that data binding is performed at the end of your web
page processing, just before the page is rendered. This means the Page.Load event will fire, fol-
lowed by any control events, followed by the Page.PreRender event, and only then will the data
binding take place. Data binding is performed on every postback (unless you redirect to
another page).

Parameterized Commands
In the previous example (which used the SqlDataSource to retrieve a list of products), the
complete query was hard-coded. Often, you won’t have this flexibility. Instead, you’ll want to
retrieve a subset of data, such as all the products in a given category or all the employees in a
specific city.

The record editor that you considered earlier offers an ideal example. Once you select a
product, you want to execute another command to get the full details for that product. (You
might just as easily execute another command to get records that are related to this product.)
To make this work, you need two data sources. You’ve already created the first SqlDataSource,
which fetches limited information about every product. Here’s the second SqlDataSource,
which gets more extensive information about a single product (the following query is split
over several lines to fit the printed page):

<asp:SqlDataSource ID="sourceProductDetails" runat="server"
ProviderName="System.Data.SqlClient"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT * FROM Products WHERE ProductID=@ProductID"

/>

But this example has a problem. It defines a parameter (@ProductID) that identifies the
ID of the product you want to retrieve. How do you fill in this piece of information? It turns
out you need to add a <SelectParameters> section to the SqlDataSource tag. Inside this sec-
tion, you must define each parameter that’s referenced by your SelectCommand and tell the
SqlDataSource where to find the value it should use. You do that by mapping the parameter to
a value in a control.

Here’s the corrected command:

<asp:SqlDataSource ID="sourceProductDetails" runat="server"
ProviderName="System.Data.SqlClient"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT * FROM Products WHERE ProductID=@ProductID">
<SelectParameters>
<asp:ControlParameter ControlID="lstProduct" Name="ProductID"
PropertyName="SelectedValue" />

</SelectParameters>
</asp:SqlDataSource>

You always indicate parameters with an @ symbol, as in @City. You can define as many
symbols as you want, but you must map each provider to another value. In this example, the
value for the @ProductID parameter comes from the lstProduct.SelectedValue property.

CHAPTER 16 ■ DATA BINDING 565

8911CH16.qxd 10/1/07 11:35 AM Page 565

In other words, you are binding a value that’s currently in a control to place it into a database
command. (You could also use the SelectedText property to get the currently displayed text,
which is the ProductName in this example.)

Now all you need to do is bind the SqlDataSource to the remaining controls where you
want to display information. This is where the example takes a slightly different turn. In the
previous version of the record editor, you took the information and used a combination of
values to fill in details in a label and a list control. This type of approach doesn’t work well with
data source controls. First, you can bind only a single data field to most simple controls such
as lists. Second, each bound control makes a separate request to the SqlDataSource, triggering
a separate database query. This means if you bind a dozen controls, you’ll perform the same
query a dozen times, with terrible performance. You can alleviate this problem with data
source caching (see Chapter 26), but it indicates you aren’t designing your application in a
way that lends itself well to the data source control model.

The solution is to use one of the rich data controls, such as the GridView, DetailsView, or
FormView. These controls have the smarts to show multiple fields at once, in a highly flexible
layout. You’ll learn about these three controls in detail in the next chapter, but the following
example shows a simple demonstration of how to use the DetailsView.

The DetailsView is a rich data control that’s designed to show multiple fields in a data
source. As long as its AutoGenerateRows is true (the default), it creates a separate row for each
field, with the field caption and value. Figure 16-12 shows the result.

Figure 16-12. Displaying full product information in a DetailsView

Here’s the basic DetailsView tag that makes this possible:

<asp:DetailsView ID="detailsProduct" runat="server"
DataSourceID="sourceProductDetails" />

CHAPTER 16 ■ DATA BINDING566

8911CH16.qxd 10/1/07 11:35 AM Page 566

As you can see, the only property you need to set is DataSourceID. That binds the
DetailsView to the SqlDataSource you created earlier. This SqlDataSource gets the full product
information for a single row, based on the selection in the list control. Best of all, this whole
example still hasn’t required a line of code.

Other Types of Parameters
In the previous example, the @ProductID parameter in the second SqlDataSource is config-
ured based on the selection in a drop-down list. This type of parameter, which links to a
property in another control, is called a control parameter. But parameter values aren’t neces-
sarily drawn from other controls. You can map a parameter to any of the parameter types
defined in Table 16-1.

Table 16-1. Parameter Types

Source Control Tag Description

Control property <asp:ControlParameter> A property from another control on the
page.

Query string value <asp:QueryStringParameter> A value from the current query string.

Session state value <asp:SessionParameter> A value stored in the current user’s
session.

Cookie value <asp:CookieParameter> A value from any cookie attached to the
current request.

Profile value <asp:ProfileParameter> A value from the current user’s profile
(see Chapter 20 for more about profiles).

A form variable <asp:FormParameter> A value posted to the page from an input
control. Usually, you’ll use a control prop-
erty instead, but you might need to grab a
value straight from the Forms collection if
you’ve disabled view state for the corre-
sponding control.

For example, you could split the earlier example into two pages. In the first page, define a
list control that shows all the available products:

<asp:SqlDataSource ID="sourceProducts" runat="server"
ProviderName="System.Data.SqlClient"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT ProductName, ProductID FROM Products"

/>
<asp:DropDownList ID="lstProduct" runat="server" AutoPostBack="True"
DataSourceID="sourceProducts" DataTextField="ProductName"
DataValueField="ProductID" />

Now, you’ll need a little extra code to copy the selected city to the query string and redi-
rect the page. Here’s a button that does just that:

CHAPTER 16 ■ DATA BINDING 567

8911CH16.qxd 10/1/07 11:35 AM Page 567

protected void cmdGo_Click(object sender, EventArgs e)
{

if (lstProduct.SelectedIndex != -1)
{

Response.Redirect(
"QueryParameter2.aspx?prodID=" + lstProduct.SelectedValue);

}
}

Finally, the second page can bind the DetailsView according to the ProductID value that’s
supplied in the query string:

<asp:SqlDataSource ID="sourceProductDetails" runat="server"
ProviderName="System.Data.SqlClient"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT * FROM Products WHERE ProductID=@ProductID">

<SelectParameters>
<asp:QueryStringParameter Name="ProductID" QueryStringField="prodID" />

</SelectParameters>
</asp:SqlDataSource>

<asp:DetailsView ID="detailsProduct" runat="server"
DataSourceID="sourceProductDetails" />

Setting Parameter Values in Code
Sometimes you’ll need to set a parameter with a value that isn’t represented by any of the
parameter classes in Table 16-1. Or, you might want to manually modify a parameter value
before using it. In both of these scenarios, you need to use code to set the parameter value just
before the database operation takes place.

For example, consider the page shown in Figure 16-13. It includes two data-bound con-
trols. The first is a list of all the customers in the database. Here’s the markup that defines the
list and its data source:

<asp:SqlDataSource ID="sourceCustomers" runat="server"
ProviderName="System.Data.SqlClient"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT CustomerID, ContactName FROM Customers"

/>
<asp:DropDownList ID="lstCustomers" runat="server"
DataSourceID="sourceCustomers" DataTextField="ContactName"
DataValueField="CustomerID" AutoPostBack="True">

</asp:DropDownList>

CHAPTER 16 ■ DATA BINDING568

8911CH16.qxd 10/1/07 11:35 AM Page 568

Figure 16-13. Using parameters in a master-details page

When the user picks a customer from the list, the page is posted back (because
AutoPostBack is set to true) and the matching orders are shown in a GridView underneath,
using a second data source. This data source pulls the CustomerID for the currently selected
customer from the drop-down list using a ControlParameter:

<asp:SqlDataSource ID="sourceOrders" runat="server"
ProviderName="System.Data.SqlClient"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT OrderID,OrderDate,ShippedDate FROM Orders WHERE
CustomerID=@CustomerID">
<SelectParameters>
<asp:ControlParameter Name="CustomerID"
ControlID="lstCustomers" PropertyName="SelectedValue" />

</SelectParameters>
</asp:SqlDataSource>

<asp:GridView ID="gridOrders" runat="server" DataSourceID="sourceOrders">
</asp:GridView>

Now, imagine you want to limit the order list so it only shows orders made in the last
week. This is easy enough to accomplish with a Where clause that examines the OrderDate
field. But there’s a catch. It doesn’t make sense to hard-code the OrderDate value in the query
itself, because the range is set based on the current date. And there’s no parameter that pro-
vides exactly the information you need. The easiest way to solve this problem is to add a new
parameter—one that you’ll be responsible for setting yourself:

<asp:SqlDataSource ID="sourceOrders" runat="server"
ProviderName="System.Data.SqlClient"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT OrderID,OrderDate,ShippedDate FROM Orders WHERE
CustomerID=@CustomerID AND OrderDate>=@EarliestOrderDate"
OnSelecting="sourceOrders_Selecting">

CHAPTER 16 ■ DATA BINDING 569

8911CH16.qxd 10/1/07 11:35 AM Page 569

<SelectParameters>
<asp:ControlParameter Name="CustomerID"
ControlID="lstCustomers" PropertyName="SelectedValue" />
<asp:Parameter Name="EarliestOrderDate" DefaultValue="1900/01/01" />

</SelectParameters>
</asp:SqlDataSource>

Although you can modify the value of any parameter, if you aren’t planning to pull the
value out of any of the places listed in Table 16-1, it makes sense to use an ordinary Parameter
object, as represented by the <asp:Parameter> element. You can set the data type (if required)
and the default value (as demonstrated in this example).

Now that you’ve created the parameter, you need to set its value before the command
takes place. The SqlDataSource has a number of events that are perfect for setting parameter
values. You can fill in parameters for a select operation by reacting to the Selecting event. Simi-
larly, you can use the Updating, Deleting, and Inserting events when updating, deleting, or
inserting a record. In these event handlers, you can access the command that’s about to be
executed through the SqlDataSourceSelectingEventArgs.Command property, and modify its
parameter values by hand. (The SqlCommand also provides similarly named Selected,
Updated, Deleted, and Inserted events, but these take place after the operation has been
completed, so it’s too late to change the parameter value.)

Here’s the code that’s needed to set the parameter value to a date that’s seven days in the
past, ensuring you see one week’s worth of records:

protected void sourceOrders_Selecting(object sender,
SqlDataSourceSelectingEventArgs e)

{
e.Command.Parameters["@EarliestOrderDate"].Value =
DateTime.Today.AddDays(-7);

}

■Note You’ll have to tweak this code slightly if you’re using it with the standard Northwind database. The
data in the Northwind database is historical, and most orders bear dates around 1997. As a result, the previ-
ous code won’t actually retrieve any records. But if you use the AddYears() method instead of AddDays(), you
can easily move back ten years to the place you need to be.

Handling Errors
When you deal with an outside resource such as a database, you need to protect your code
with a basic amount of error-handling logic. Even if you’ve avoided every possible coding
mistake, you still need to defend against factors outside your control—for example, if the
database server isn’t running or the network connection is broken.

You can count on the SqlDataSource to properly release any resources (such as connec-
tions) if an error occurs. However, the underlying exception won’t be handled. Instead, it will
bubble up to the page and derail your processing. As with any other unhandled exception, the

CHAPTER 16 ■ DATA BINDING570

8911CH16.qxd 10/1/07 11:35 AM Page 570

mailto:Parameters["@EarliestOrderDate"].Value

user will receive a cryptic error message or an error page. This design is unavoidable—if the
SqlDataSource suppressed exceptions, it could hide potential problems and make debugging
extremely difficult. However, it’s a good idea to handle the problem in your web page and
show a more suitable error message.

To do this, you need to handle the data source event that occurs immediately after the
error. If you’re performing a query, that’s the Selected event. If you’re performing an update,
a delete, or an insert operation, you would handle the Updated, Deleted, or Inserted event
instead. (If you don’t want to offer customized error messages, you could handle all these
events with the same event handler.)

In the event handler, you can access the exception object through the
SqlDataSourceStatusEventArgs.Exception property. If you want to prevent the error from
spreading any further, simply set the SqlDataSourceStatusEventArgs.ExceptionHandled prop-
erty to true. Then, make sure you show an appropriate error message on your web page to
inform the user that the command was not completed.

Here’s an example:

protected void sourceProducts_Selected(object sender,
SqlDataSourceStatusEventArgs e)
{

if (e.Exception != null)
{

lblError.Text = "An exception occurred performing the query.";

// Consider the error handled.
e.ExceptionHandled = true;

}
}

Updating Records
Selecting data is only half the equation. The SqlDataSource can also apply changes. The only
catch is that not all controls support updating. For example, the humble ListBox doesn’t pro-
vide any way for the user to edit values, delete existing items, or insert new ones. Fortunately,
ASP.NET’s rich data controls—including the GridView, DetailsView, and FormView—all have
editing features you can switch on.

Before you can switch on the editing features in a given control, you need to define suit-
able commands for the operations you want to perform in your data source. That means
supplying commands for inserting (InsertCommand), deleting (DeleteCommand), and updat-
ing (UpdateCommand). If you know you will allow the user to perform only certain operations
(such as updates) but not others (such as insertions and deletions), you can safely omit the
commands you don’t need.

You define the InsertCommand, DeleteCommand, and UpdateCommand in the same
way you define the command for the SelectCommand property—by using a parameterized
query. For example, here’s a revised version of the SqlDataSource for product information that
defines a basic update command to update every field:

CHAPTER 16 ■ DATA BINDING 571

8911CH16.qxd 10/1/07 11:35 AM Page 571

<asp:SqlDataSource ID="sourceProductDetails" runat="server"
ProviderName="System.Data.SqlClient"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT ProductID, ProductName, UnitPrice, UnitsInStock,

UnitsOnOrder, ReorderLevel, Discontinued FROM Products WHERE ProductID=@ProductID"
UpdateCommand="UPDATE Products SET ProductName=@ProductName, UnitPrice=@UnitPrice,

UnitsInStock=@UnitsInStock, UnitsOnOrder=@UnitsOnOrder, ReorderLevel=@ReorderLevel,
Discontinued=@Discontinued WHERE ProductID=@ProductID">
<SelectParameters>
<asp:ControlParameter ControlID="lstProduct" Name="ProductID"
PropertyName="SelectedValue" />

</SelectParameters>
</asp:SqlDataSource>

In this example, the parameter names aren’t chosen arbitrarily. As long as you give
each parameter the same name as the field it affects, and preface it with the @ symbol (so
ProductName becomes @ProductName), you don’t need to define the parameter. That’s
because the ASP.NET data controls automatically submit a collection of parameters with the
new values before triggering the update. Each parameter in the collection uses this naming
convention, which is a major time-saver.

You also need to give the user a way to enter the new values. Most rich data controls
make this fairly easy—with the DetailsView, it’s simply a matter of setting the
AutoGenerateEditButton property to true, as shown here:

<asp:DetailsView ID="DetailsView1" runat="server"
DataSourceID="sourceProductDetails" AutoGenerateEditButton="True" />

Now when you run the page, you’ll see an edit link. When clicked, this link switches the
DetailsView into edit mode. All fields are changed to edit controls (typically text boxes), and
the Edit link is replaced with an Update link and a Cancel link (see Figure 16-14).

Clicking the Cancel link returns the row to its initial state. Clicking the Update link trig-
gers an update. The DetailsView extracts the field values, uses them to set the parameters in
the SqlDataSource.UpdateParameters collection, and then triggers the
SqlDataSource.UpdateCommand to apply the change to the database. Once again, you don’t
have to write any code.

You can create similar parameterized commands for the DeleteCommand and
InsertCommand. To enable deleting and inserting, you need to set the
AutoGenerateDeleteButton and AutoGenerateInsertButton properties of the DetailsView
to true. To see a sample page that allows updating, deleting, and inserting, refer to the
UpdateDeleteInsert.aspx page that’s included with the downloadable samples for this
chapter.

CHAPTER 16 ■ DATA BINDING572

8911CH16.qxd 10/1/07 11:35 AM Page 572

Figure 16-14. Editing with the DetailsView

Strict Concurrency Checking
The update command in the previous example matches the record based on its ID. You can
tell this by examining the Where clause:

UpdateCommand="UPDATE Products SET ProductName=@ProductName, UnitPrice=@UnitPrice,
UnitsInStock=@UnitsInStock, UnitsOnOrder=@UnitsOnOrder, ReorderLevel=@ReorderLevel,
Discontinued=@Discontinued WHERE ProductID=@ProductID"

The problem with this approach is that it opens the door to an update that overwrites the
changes of another user, if these changes are made between the time your page is requested
and the time your page commits its update.

For example, imagine Chen and Lucy are viewing the same table of product records.
Lucy commits a change to the price of a product. A few seconds later, Chen commits a name
change to the same product record. Chen’s update command not only applies the new name
but it also overwrites all the other fields with the values from Chen’s page—replacing the price
Lucy entered with the price from the original page.

This is the same sort of concurrency problem you considered in Chapter 13 with the
DataSet. The difference is that the DataSet uses automatically generated updating commands
created with the CommandBuilder. The CommandBuilder uses a different approach. It always
attempts to match every field. As a result, if the original is changed, the update command
won’t find it and the update won’t be performed at all. So in the scenario described previously,
using the CommandBuilder, Chen would receive an error when he attempts to apply the new
product name, and he would need to edit the record and apply the change again.

CHAPTER 16 ■ DATA BINDING 573

8911CH16.qxd 10/1/07 11:35 AM Page 573

You can use the same approach that the CommandBuilder uses with the SqlDataSource.
All you need to do is write your commands a little differently so that the Where clause tries to
match every field. Here’s what the modified command would look like:

UpdateCommand="UPDATE Products SET ProductName=@ProductName, UnitPrice=@UnitPrice,
UnitsInStock=@UnitsInStock, UnitsOnOrder=@UnitsOnOrder, ReorderLevel=@ReorderLevel,
Discontinued=@Discontinued WHERE ProductID=@ProductID AND
ProductName=@original_ProductName AND UnitPrice=@original_UnitPrice AND
UnitsInStock=@original_UnitsInStock AND UnitsOnOrder=@original_UnitsOnOrder AND
ReorderLevel=@original_ReorderLevel AND Discontinued=@original_Discontinued"

Although this makes sense conceptually, you’re not finished yet. Before this command
can work, you need to tell the SqlDataSource to maintain the old values from the data source
and to give them parameter names that start with original_. You do this by setting two proper-
ties. First, set the SqlDataSource.ConflictDetection property to
ConflictOptions.CompareAllValues instead of ConflictOptions.OverwriteChanges (the
default). Next, set the long-winded OldValuesParameterFormatString property to the text
“original_{0}”. This tells the SqlDataSource to insert the text original_ before the field name to
create the parameter that stores the old value. Now your command will work as written.

The SqlDataSource doesn’t raise an exception to notify you if no update is performed. So,
if you use the command shown in this example, you need to handle the SqlDataSource.Updated
event and check the SqlDataSourceStatusEventArgs.AffectedRows property. If it’s 0, no records
have been updated, and you should notify the user about the concurrency problem so the
update can be attempted again, as shown here:

protected void sourceProductDetails_Updated(object sender,
SqlDataSourceStatusEventArgs e)

{
if (e.AffectedRows == 0)
{

lblInfo.Text = "No update was performed. " +
"A concurrency error is likely, or the command is incorrectly written.";

}
else
{

lblInfo.Text = "Record successfully updated.";
}

}

Figure 16-15 shows the result you’ll get if you run two copies of this page in two separate
browser windows, begin editing in both of them, and then try to commit both updates.

CHAPTER 16 ■ DATA BINDING574

8911CH16.qxd 10/1/07 11:35 AM Page 574

Figure 16-15. A concurrency error in action

Matching every field is an acceptable approach for small records, but it isn’t the most effi-
cient strategy if you have tables with huge amounts of data. In this situation, you have two
possible solutions: you can match some of the fields (leaving out the ones with really big val-
ues) or you can add a timestamp field to your database table, and use that for concurrency
checking.

Timestamps are special fields that the database uses to keep track of the state of a record.
Whenever any change is made to a record, the database engine updates the timestamp field,
giving it a new, automatically generated value. The purpose of a timestamp field is to make
strict concurrency checking easier. When you attempt to perform an update to a table that
includes a timestamp field, you use a Where clause that matches the appropriate unique ID
value (like ProductID) and the timestamp field:

UpdateCommand="UPDATE Products SET ProductName=@ProductName, UnitPrice=@UnitPrice,
UnitsInStock=@UnitsInStock, UnitsOnOrder=@UnitsOnOrder,
ReorderLevel=@ReorderLevel, Discontinued=@Discontinued
WHERE ProductID=@ProductID AND RowTimestamp=@RowTimestamp"

The database engine uses the ProductID to look up the matching record. Then, it
attempts to match the timestamp in order to update the record. If the timestamp matches,
you know the record hasn’t been changed. The actual value of the timestamp isn’t important,
because that’s controlled by the database. You just need to know whether it’s changed.

Creating a timestamp is easy. In SQL Server, you create a timestamp field using the time-
stamp data type. In other database products, timestamps are sometimes called row versions.

CHAPTER 16 ■ DATA BINDING 575

8911CH16.qxd 10/1/07 11:35 AM Page 575

The Last Word
This chapter presented a thorough overview of data binding in ASP.NET. First, you learned an
interesting way to create dynamic text with simple data binding. Although this is a reasonable
approach to get information into your page, it doesn’t surpass what you can already do with
pure code. You also learned how ASP.NET builds on this infrastructure with much more useful
features, including repeated-value binding for quick-and-easy data display in a list control,
and data source controls, which let you create code-free bound pages.

Using the techniques in this chapter, you can create a wide range of data-bound pages.
However, if you want to create a page that incorporates record editing, sorting, and other more
advanced tricks, the data binding features you’ve learned about so far are just the first step.
You’ll also need to turn to specialized controls, such as the DetailsView and the GridView,
which build upon these data binding features. You’ll learn how to master these controls in the
next chapter. In Chapter 23 you’ll learn how to extend your data binding skills to work with
data access components.

CHAPTER 16 ■ DATA BINDING576

8911CH16.qxd 10/1/07 11:35 AM Page 576

The Data Controls

When it comes to data binding, not all ASP.NET controls are created equal. In the previous
chapter, you saw how data binding could help you automatically insert single values and lists
into all kinds of common controls. In this chapter, you’ll concentrate on three more advanced
controls—GridView, DetailsView, and FormView—that allow you to bind entire tables of data.

The rich data controls are quite a bit different from the simple list controls—for one thing,
they are designed exclusively for data binding. They also have the ability to display more than
one field at a time, often in a table-based layout, or according to what you’ve defined. They
also support higher-level features such as selecting, editing, and sorting.

The rich data controls include the following:

• GridView: The GridView is an all-purpose grid control for showing large tables of infor-
mation. The GridView is the heavyweight of ASP.NET data controls.

• DetailsView: The DetailsView is ideal for showing a single record at a time, in a table
that has one row per field. The DetailsView also supports editing.

• FormView: Like the DetailsView, the FormView shows a single record at a time and sup-
ports editing. The difference is that the FormView is based on templates, which allow
you to combine fields in a flexible layout that doesn’t need to be table-based.

• ListView: The ListView plays the same role as the GridView—it allows you to show mul-
tiple records. The difference is that the ListView is based on templates. As a result, using
the ListView requires a bit more work and gives you slightly more layout flexibility. The
ListView isn’t described in this book, although you can learn more about it in the Visual
Studio Help, or in the book Pro ASP.NET 3.5 in C# (Apress, 2007).

In this chapter, you’ll explore the rich data controls in detail.

The GridView
The GridView is an extremely flexible grid control that displays a multicolumn table. Each
record in your data source becomes a separate row in the grid. Each field in the record
becomes a separate column in the grid.

The GridView is the most powerful of the three rich data controls you’ll learn about in this
chapter, because it comes equipped with the most ready-made functionality. This functionality
includes features for automatic paging, sorting, selecting, and editing. The GridView is also the
only data control you’ll consider in this chapter that can show more than one record at a time.

577

C H A P T E R 1 7

8911CH17.qxd 10/1/07 11:41 AM Page 577

Automatically Generating Columns
The GridView provides a DataSource property for the data object you want to display, much
like the list controls you saw in Chapter 16. Once you’ve set the DataSource property, you call
the DataBind() method to perform the data binding and display each record in the GridView.
However, the GridView doesn’t provide properties, such as DataTextField and DataValueField,
that allow you to choose what column you want to display. That’s because the GridView auto-
matically generates a column for every field, as long as the AutoGenerateColumns property is
true (which is the default).

Here’s all you need to create a basic grid with one column for each field:

<asp:GridView ID="GridView1" runat="server" />

Once you’ve added this GridView tag to your page, you can fill it with data. Here’s an
example that performs a query using the ADO.NET objects and binds the retrieved DataSet:

protected void Page_Load(object sender, EventArgs e)
{

// Define the ADO.NET objects.
string connectionString =
WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;

string selectSQL = "SELECT ProductID, ProductName, UnitPrice FROM Products";
SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand(selectSQL, con);
SqlDataAdapter adapter = new SqlDataAdapter(cmd);

// Fill the DataSet.
DataSet ds = new DataSet();
adapter.Fill(ds, "Products");

// Perform the binding.
GridView1.DataSource = ds;
GridView1.DataBind();

}

Remember, in order for this code to work you must have a connection string named
Northwind in the web.config file (just as you did for the examples in the previous two
chapters).

Figure 17-1 shows the GridView this code creates.
Of course, you don’t need to write this data access code by hand. As you learned in the

previous chapter, you can use the SqlDataSource control to define your query. You can then
link that query directly to your data control, and ASP.NET will take care of the entire data
binding process.

Here’s how you would define a SqlDataSource to perform the query shown in the previous
example:

<asp:SqlDataSource ID="sourceProducts" runat="server"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT ProductID, ProductName, UnitPrice FROM Products" />

CHAPTER 17 ■ THE DATA CONTROLS578

8911CH17.qxd 10/1/07 11:41 AM Page 578

Figure 17-1. The bare-bones GridView

Next, set the GridView.DataSourceID property to link the data source to your grid:

<asp:GridView ID="GridView1" runat="server"
DataSourceID="sourceProducts" />

These two tags duplicate the example in Figure 17-1 but with significantly less effort. Now
you don’t have to write any code to execute the query and bind the DataSet.

Using the SqlDataSource has positive and negative sides. Although it gives you less con-
trol, it streamlines your code quite a bit, and it allows you to remove all the database details
from your code-behind class. In this chapter, we’ll focus on the data source approach, because
it’s much simpler when creating complex data-bound pages that support features such as
editing. In Chapter 23, you’ll learn how to adapt these examples to use the ObjectDataSource
instead of the SqlDataSource. The ObjectDataSource is a great compromise—it allows you to
write customized data access code in a database component without giving up the convenient
design-time features of the data source controls.

Defining Columns
By default, the GridView.AutoGenerateColumns property is true, and the GridView creates
a column for each field in the bound DataTable. This automatic column generation is good
for creating quick test pages, but it doesn’t give you the flexibility you’ll usually want. For
example, what if you want to hide columns, change their order, or configure some aspect
of their display, such as the formatting or heading text? In all these cases, you need to set
AutoGenerateColumns to false and define the columns in the <Columns> section of the
GridView control tag.

CHAPTER 17 ■ THE DATA CONTROLS 579

8911CH17.qxd 10/1/07 11:41 AM Page 579

■Tip It’s possible to have AutoGenerateColumns set to true and define columns in the <Columns> section.
In this case, the columns you explicitly define are added before the autogenerated columns. However, for the
most flexibility, you’ll usually want to explicitly define every column.

Each column can be any of several column types, as described in Table 17-1. The order of
your column tags determines the left-to-right order of columns in the GridView.

Table 17-1. Column Types

Class Description

BoundField This column displays text from a field in the data source.

ButtonField This column displays a button in this grid column.

CheckBoxField This column displays a check box in this grid column. It’s used automatically
for true/false fields (in SQL Server, these are fields that use the bit data type).

CommandField This column provides selection or editing buttons.

HyperLinkField This column displays its contents (a field from the data source or static text) as
a hyperlink.

ImageField This column displays image data from a binary field (providing it can be
successfully interpreted as a supported image format).

TemplateField This column allows you to specify multiple fields, custom controls, and arbi-
trary HTML using a custom template. It gives you the highest degree of control
but requires the most work.

The most basic column type is BoundField, which binds to one field in the data object.
For example, here’s the definition for a single data-bound column that displays the ProductID
field:

<asp:BoundField DataField="ProductID" HeaderText="ID" />

This tag demonstrates how you can change the header text at the top of a column from
ProductID to just ID.

Here’s a complete GridView declaration with explicit columns:

<asp:GridView ID="GridView1" runat="server" DataSourceID="sourceProducts"
AutoGenerateColumns="False">
<Columns>
<asp:BoundField DataField="ProductID" HeaderText="ID" />
<asp:BoundField DataField="ProductName" HeaderText="Product Name" />
<asp:BoundField DataField="UnitPrice" HeaderText="Price" />

</Columns>
</asp:GridView>

Explicitly defining columns has several advantages:

CHAPTER 17 ■ THE DATA CONTROLS580

8911CH17.qxd 10/1/07 11:41 AM Page 580

• You can easily fine-tune your column order, column headings, and other details by
tweaking the properties of your column object.

• You can hide columns you don’t want to show by removing the column tag. (Don’t over-
use this technique, because it’s better to reduce the amount of data you’re retrieving if
you don’t intend to display it.)

• You’ll see your columns in the design environment (in Visual Studio). With automati-
cally generated columns, the GridView simply shows a few generic placeholder
columns.

• You can add extra columns to the mix for selecting, editing, and more.

This example shows how you can use this approach to change the header text. However,
the HeaderText property isn’t the only column property you can change in a column. In the
next section, you’ll learn about a few more.

Configuring Columns
When you explicitly declare a bound field, you have the opportunity to set other properties.
Table 17-2 lists these properties.

Table 17-2. BoundField Properties

Property Description

DataField Identifies the field (by name) that you want to display in this
column.

DataFormatString Formats the field. This is useful for getting the right representation
of numbers and dates.

ApplyFormatInEditMode If true, the DataFormat string is used to format the value even when
the value appears in a text box in edit mode. The default is false,
which means the underlying value will be used (such as 1143.02
instead of $1,143.02).

FooterText, HeaderText, Sets the text in the header and footer region of the grid if this grid
and HeaderImageUrl has a header (GridView.ShowHeader is true) and footer

(GridView.ShowFooter is true). The header is most commonly used
for a descriptive label such as the field name; the footer can contain
a dynamically calculated value such as a summary. To show an
image in the header instead of text, set the HeaderImageUrl
property.

ReadOnly If true, it prevents the value for this column from being changed in
edit mode. No edit control will be provided. Primary key fields are
often read-only.

InsertVisible If true, it prevents the value for this column from being set in insert
mode. If you want a column value to be set programmatically or
based on a default value defined in the database, you can use this
feature.

Visible If false, the column won’t be visible in the page (and no HTML
will be rendered for it). This gives you a convenient way to
programmatically hide or show specific columns, changing the
overall view of the data.

Continued

CHAPTER 17 ■ THE DATA CONTROLS 581

8911CH17.qxd 10/1/07 11:41 AM Page 581

Table 17-2. Continued

Property Description

SortExpression Sorts your results based on one or more columns. You’ll learn about
sorting later in the “Sorting and Paging the GridView” section of
this chapter.

HtmlEncode If true (the default), all text will be HTML encoded to prevent
special characters from mangling the page. You could disable
HTML encoding if you want to embed a working HTML tag (such as
a hyperlink), but this approach isn’t safe. It’s always a better idea to
use HTML encoding on all values and provide other functionality
by reacting to GridView selection events.

NullDisplayText Displays the text that will be shown for a null value. The default is
an empty string, although you could change this to a hard-coded
value, such as “(not specified).”

ConvertEmptyStringToNull If true, converts all empty strings to null values (and uses the
NullDisplayText to display them).

ControlStyle, HeaderStyle, Configures the appearance for just this column, overriding the
FooterStyle, and ItemStyle styles for the row. You’ll learn more about styles throughout this

chapter.

Generating Columns with Visual Studio
As you’ve already learned, you can create a GridView that shows all your fields by setting the
AutoGenerateColumns property to true. Unfortunately, when you use this approach you lose
the ability to control any of the details over your columns, including their order, formatting,
sorting, and so on. To configure these details, you need to set AutoGenerateColumns to false
and define your columns explicitly. This requires more work, and it’s a bit tedious.

However, there is a nifty trick that solves this problem. You can use explicit columns but
get Visual Studio to create the column tags for you automatically. Here’s how it works: select
the GridView control, and click Refresh Schema in the smart tag. At this point, Visual Studio
will retrieve the basic schema information from your data source (for example, the names and
data type of each column) and then add one <BoundField> element for each field.

■Tip If you modify the data source so it returns a different set of columns, you can regenerate the GridView
columns. Just select the GridView, and click the Refresh Schema link in the smart tag. This step will wipe out
any custom columns you’ve added (such as editing controls).

Once you’ve created your columns, you can also use some helpful design-time support to
configure the properties of each column (rather than editing the column tag by hand). To do
this, select the GridView, and click the ellipsis (. . .) next to the Columns property in the Prop-
erties window. You’ll see a Fields dialog box that lets you add, remove, and refine your columns
(see Figure 17-2).

CHAPTER 17 ■ THE DATA CONTROLS582

8911CH17.qxd 10/1/07 11:41 AM Page 582

Figure 17-2. Configuring columns in Visual Studio

Now that you understand the underpinnings of the GridView, you’ve still only started to
explore its higher-level features. In the following sections, you’ll tackle these topics:

Formatting: How to format rows and data values

Selecting: How to let users select a row in the GridView and respond accordingly

Editing: How to let users commit record updates, inserts, and deletes

Sorting: How to dynamically reorder the GridView in response to clicks on a column
header

Paging: How to divide a large result set into multiple pages of data

Templates: How to take complete control of designing, formatting, and editing by defining
templates

Formatting the GridView
Formatting consists of several related tasks. First, you want to ensure that dates, currencies,
and other number values are presented in the appropriate way. You handle this job with the
DataFormatString property. Next, you’ll want to apply the perfect mix of colors, fonts, borders,
and alignment options to each aspect of the grid, from headers to data items. The GridView
supports these features through styles. Finally, you can intercept events, examine row data,
and apply formatting to specific values programmatically. In the following sections, you’ll con-
sider each of these techniques.

CHAPTER 17 ■ THE DATA CONTROLS 583

8911CH17.qxd 10/1/07 11:41 AM Page 583

The GridView also exposes several self-explanatory formatting properties that aren’t
covered here. These include GridLines (for adding or hiding table borders), CellPadding and
CellSpacing (for controlling the overall spacing between cells), and Caption and CaptionAlign
(for adding a title to the top of the grid).

■Tip Want to create a GridView that scrolls—inside a web page? It’s easy. Just place the GridView inside
a Panel control, set the appropriate size for the panel, and set the Panel.Scrollbars property to Auto, Vertical,
or Both.

Formatting Fields
Each BoundField column provides a DataFormatString property you can use to configure the
appearance of numbers and dates using a format string.

Format strings generally consist of a placeholder and a format indicator, which are
wrapped inside curly brackets. A typical format string looks something like this:

{0:C}

In this case, the 0 represents the value that will be formatted, and the letter indicates a
predetermined format style. Here, C means currency format, which formats a number as an
amount of money (so 3400.34 becomes $3,400.34). Here’s a column that uses this format
string:

<asp:BoundField DataField="UnitPrice" HeaderText="Price"
DataFormatString="{0:C}" />

Table 17-3 shows some of the other formatting options for numeric values.

Table 17-3. Numeric Format Strings

Type Format String Example

Currency {0:C} $1,234.50. Brackets indicate negative values:
($1,234.50). The currency sign is locale-specific.

Scientific (Exponential) {0:E} 1.234.50E+004

Percentage {0:P} 45.6%

Fixed Decimal {0:F?} Depends on the number of decimal places you set.
{0:F3} would be 123.400. {0:F0} would be 123.

You can find other examples in the MSDN Help. For date or time values, you’ll find an
extensive list. For example, if you want to write the BirthDate value in the format
month/day/year (as in 12/30/08), you use the following column:

<asp:BoundField DataField="BirthDate" HeaderText="Birth Date"
DataFormatString="{0:MM/dd/yy}" />

Table 17-4 shows some more examples.

CHAPTER 17 ■ THE DATA CONTROLS584

8911CH17.qxd 10/1/07 11:41 AM Page 584

Table 17-4. Time and Date Format Strings

Type Format String Syntax Example

Short Date {0:d} M/d/yyyy 10/30/2008

Long Date {0:D} dddd, MMMM dd, Monday, January 30,
yyyy 2008

Long Date and Short Time {0:f} dddd, MMMM dd, Monday, January 30,
yyyy HH:mm aa 2008 10:00 AM

Long Date and Long Time {0:F} dddd, MMMM dd, Monday, January 30
yyyy HH:mm:ss aa 2008 10:00:23 AM

ISO Sortable Standard {0:s} yyyy-MM-ddTHH:mm:ss 2008-01-30T10:00:23

Month and Day {0:M} MMMM dd January 30

General {0:G} M/d/yyyy HH:mm:ss aa 10/30/2008
(depends on locale- 10:00:23 AM
specific settings)

The format characters are not specific to the GridView. You can use them with other con-
trols, with data-bound expressions in templates (as you’ll see later in the “Using GridView
Templates” section), and as parameters for many methods. For example, the Decimal and
DateTime types expose their own ToString() methods that accept a format string, allowing you
to format values manually.

Using Styles
The GridView exposes a rich formatting model that’s based on styles. Altogether, you can set
eight GridView styles, as described in Table 17-5.

Table 17-5. GridView Styles

Style Description

HeaderStyle Configures the appearance of the header row that contains column titles,
if you’ve chosen to show it (if ShowHeader is true).

RowStyle Configures the appearance of every data row.

AlternatingRowStyle If set, applies additional formatting to every other row. This formatting
acts in addition to the RowStyle formatting. For example, if you set a font
using RowStyle, it is also applied to alternating rows, unless you explicitly
set a different font through AlternatingRowStyle.

SelectedRowStyle Configures the appearance of the row that’s currently selected. This
formatting acts in addition to the RowStyle formatting.

EditRowStyle Configures the appearance of the row that’s in edit mode. This formatting
acts in addition to the RowStyle formatting.

EmptyDataRowStyle Configures the style that’s used for the single empty row in the special
case where the bound data object contains no rows.

FooterStyle Configures the appearance of the footer row at the bottom of the
GridView, if you’ve chosen to show it (if ShowFooter is true).

PagerStyle Configures the appearance of the row with the page links, if you’ve
enabled paging (set AllowPaging to true).

CHAPTER 17 ■ THE DATA CONTROLS 585

8911CH17.qxd 10/1/07 11:41 AM Page 585

Styles are not simple single-value properties. Instead, each style exposes a Style object
that includes properties for choosing colors (ForeColor and BackColor), adding borders
(BorderColor, BorderStyle, and BorderWidth), sizing the row (Height and Width), aligning the
row (HorizontalAlign and VerticalAlign), and configuring the appearance of text (Font and
Wrap). These style properties allow you to refine almost every aspect of an item’s appearance.

Here’s an example that changes the style of rows and headers in a GridView:

<asp:GridView ID="GridView1" runat="server" DataSourceID="sourceProducts"
AutoGenerateColumns="False">
<RowStyle BackColor="#E7E7FF" ForeColor="#4A3C8C" />
<HeaderStyle BackColor="#4A3C8C" Font-Bold="True" ForeColor="#F7F7F7" />
<Columns>
<asp:BoundField DataField="ProductID" HeaderText="ID" />
<asp:BoundField DataField="ProductName" HeaderText="Product Name" />
<asp:BoundField DataField="UnitPrice" HeaderText="Price" />

</Columns>
</asp:GridView>

In this example, every column is affected by the formatting changes. However, you can
also define column-specific styles. To create a column-specific style, you simply need to
rearrange the control tag so that the formatting tag becomes a nested tag inside the appropri-
ate column tag. Here’s an example that formats just the ProductName column:

<asp:GridView ID="GridView2" runat="server" DataSourceID="sourceProducts"
AutoGenerateColumns="False" >
<Columns>
<asp:BoundField DataField="ProductID" HeaderText="ID" />
<asp:BoundField DataField="ProductName" HeaderText="Product Name">
<ItemStyle BackColor="#E7E7FF" ForeColor="#4A3C8C" />
<HeaderStyle BackColor="#4A3C8C" Font-Bold="True" ForeColor="#F7F7F7" />

</asp:BoundField>
<asp:BoundField DataField="UnitPrice" HeaderText="Price" />

</Columns>
</asp:GridView>

Figure 17-3 compares these two examples. You can use a combination of ordinary style
settings and column-specific style settings (which override ordinary style settings if they
conflict).

One reason you might use column-specific formatting is to define specific column
widths. If you don’t define a specific column width, ASP.NET makes each column just wide
enough to fit the data it contains (or, if wrapping is enabled, to fit the text without splitting a
word over a line break). If values range in size, the width is determined by the largest value or
the width of the column header, whichever is larger. However, if the grid is wide enough, you
might want to expand a column so it doesn’t appear to be crowded against the adjacent
columns. In this case, you need to explicitly define a larger width.

CHAPTER 17 ■ THE DATA CONTROLS586

8911CH17.qxd 10/1/07 11:41 AM Page 586

Figure 17-3. Formatting the GridView

Configuring Styles with Visual Studio
There’s no reason to code style properties by hand in the GridView control tag, because the
GridView provides rich design-time support. To set style properties, you can use the Properties
window to modify the style properties. For example, to configure the font of the header,
expand the HeaderStyle property to show the nested Font property, and set that. The only lim-
itation of this approach is that it doesn’t allow you to set the style for individual columns—if
you need that trick, you must first call up the Fields dialog box (shown in Figure 17-2) by edit-
ing the Columns property. Then, select the appropriate column, and set the style properties
accordingly.

You can even set a combination of styles using a preset theme by clicking the Auto Format
link in the GridView smart tag. Figure 17-4 shows the Auto Format dialog box with some of the
preset styles you can choose. Select Remove Formatting to clear all the style settings.

Figure 17-4. Automatically formatting a GridView

CHAPTER 17 ■ THE DATA CONTROLS 587

8911CH17.qxd 10/1/07 11:41 AM Page 587

Once you’ve chosen and inserted styles into your GridView tag, you can tweak them by
hand or by using the Properties window.

Formatting-Specific Values
The formatting you’ve learned so far isn’t that fine-grained. At its most specific, this formatting
applies to a single column of values. But what if you want to change the formatting for a spe-
cific row or even just a single cell?

The solution is to react to the GridView.RowDataBound event. This event is raised for
each row, just after it’s filled with data. At this point, you can access the current row as a
GridViewRow object. The GridViewRow.DataItem property provides the data object for the
given row, and the GridViewRow.Cells collection allows you to retrieve the row content. You
can use the GridViewRow to change colors and alignment, add or remove child controls, and
so on.

The following example handles the RowDataBound event and changes the background
color to highlight high prices (those more expensive than $50):

protected void grid_RowDataBound(object sender, GridViewRowEventArgs e)
{

if (e.Row.RowType == DataControlRowType.DataRow)
{

// Get the price for this row.
decimal price = (decimal)DataBinder.Eval(e.Row.DataItem, "UnitPrice");

if (price > 50)
{

e.Row.BackColor = System.Drawing.Color.Maroon;
e.Row.ForeColor = System.Drawing.Color.White;
e.Row.Font.Bold = true;

}
}

}

First, the code checks whether the item being created is an item or an alternate item. If
neither, it means the item is another interface element, such as the pager, footer, or header,
and the procedure does nothing. If the item is the right type, the code extracts the UnitPrice
field from the data-bound item.

To get a value from the bound data object (provided through the
GridViewRowEventArgs.Row.DataItem property), you need to cast the data object to the cor-
rect type. The trick is that the type depends on the way you’re performing your data binding.
In this example, you’re binding to the SqlDataSource in DataSet mode, which means each data
item will be a DataRowView object. (If you were to bind in DataReader mode, a DbDataRecord
represents each item instead.) To avoid coding these details, which can make it more difficult
to change your data access code, you can rely on the DataBinder.Eval() helper method, which
understands all these types of data objects. That’s the technique used in this example.

Figure 17-5 shows the resulting page.

CHAPTER 17 ■ THE DATA CONTROLS588

8911CH17.qxd 10/1/07 11:41 AM Page 588

Figure 17-5. Formatting individual rows based on values

Selecting a GridView Row
Selecting an item refers to the ability to click a row and have it change color (or become high-
lighted) to indicate that the user is currently working with this record. At the same time, you
might want to display additional information about the record in another control. With the
GridView, selection happens almost automatically once you set up a few basics.

Before you can use item selection, you must define a different style for selected items.
The SelectedRowStyle determines how the selected row or cell will appear. If you don’t set
this style, it will default to the same value as RowStyle, which means the user won’t be able to
tell which row is currently selected. Usually, selected rows will have a different BackColor
property.

To find out what item is currently selected (or to change the selection), you can use the
GridView.SelectedIndex property. It will be -1 if no item is currently selected. Also, you can
react to the SelectedIndexChanged event to handle any additional related tasks. For example,
you might want to update another control with additional information about the selected
record.

CHAPTER 17 ■ THE DATA CONTROLS 589

8911CH17.qxd 10/1/07 11:41 AM Page 589

Adding a Select Button
The GridView provides built-in support for selection. You simply need to add a CommandField
column with the ShowSelectButton property set to true. ASP.NET can render the
CommandField as a hyperlink, a button, or a fixed image. You choose the type using the
ButtonType property. You can then specify the text through the SelectText property or
specify the link to the image through the SelectImageUrl property.

Here’s an example that displays a select button:

<asp:CommandField ShowSelectButton="True" ButtonType="Button"
SelectText="Select" />

And here’s an example that shows a small clickable icon:

<asp:CommandField ShowSelectButton="True" ButtonType="Image"
SelectImageUrl="select.gif" />

Figure 17-6 shows a page with a text select button (and product 14 selected).

Figure 17-6. GridView selection

When you click a select button, the page is posted back, and a series of steps unfolds.
First, the GridView.SelectedIndexChanging event fires, which you can intercept to cancel the
operation. Next, the GridView.SelectedIndex property is adjusted to point to the selected row.
Finally, the GridView.SelectedIndexChanged event fires, which you can handle if you want to

CHAPTER 17 ■ THE DATA CONTROLS590

8911CH17.qxd 10/1/07 11:41 AM Page 590

manually update other controls to reflect the new selection. When the page is rendered, the
selected row is given the selected row style.

■Tip Rather than add the select button yourself, you can choose Enable Selection from the GridView’s
smart tag, which adds a basic select button for you.

Using a Data Field As a Select Button
You don’t need to create a new column to support row selection. Instead, you can turn an
existing column into a link. This technique is commonly implemented to allow users to select
rows in a table by the unique ID value.

To use this technique, remove the CommandField column, and add a ButtonField column
instead. Then, set the DataTextField to the name of the field you want to use.

<asp:ButtonField ButtonType="Button" DataTextField="ProductID" />

This field will be underlined and turned into a button that, when clicked, will post back
the page and trigger the GridView.RowCommand event. You could handle this event, deter-
mine which row has been clicked, and programmatically set the SelectedIndex property of the
GridView. However, you can use an easier method. Instead, just configure the link to raise the
SelectedIndexChanged event by specifying a CommandName with the text Select, as shown
here:

<asp:ButtonField CommandName="Select" ButtonType="Button"
DataTextField="ProductID" />

Now clicking the data field automatically selects the record.

Using Selection to Create Master-Details Pages
As demonstrated in the previous chapter, you can draw a value out of a control and use it to
perform a query in your data source. For example, you can take the currently selected item in
a list, and feed that value to a SqlDataSource that gets more information for the corresponding
record.

This trick is a great way to build master-details pages—pages that let you navigate rela-
tionships in a database. A typical master-details page has two GridView controls. The first
shows the master (or parent) table. When a user selects an item in the first GridView, the sec-
ond GridView is filled with related records from the details (or parent) table. For example, a
typical implementation of this technique might have a customers table in the first GridView.
Select a customer, and the second GridView is filled with the list of orders made by that
customer.

To create a master-details page, you need to extract the SelectedIndex property from the
first GridView and use that to craft a query for the second GridView. However, this approach
has one problem. SelectedIndex returns a zero-based index number that represents where the
row occurs in the grid. This isn’t the information you need to insert into the query that gets
the related records. Instead, you need a unique key field from the corresponding row. For

CHAPTER 17 ■ THE DATA CONTROLS 591

8911CH17.qxd 10/1/07 11:41 AM Page 591

example, if you have a table of products, you need to be able to get the ProductID for the
selected row. In order to get this information, you need to tell the GridView to keep track of the
key field values.

The way you do this is by setting the DataKeyNames property for the GridView. This prop-
erty requires a comma-separated list of one or more key fields. Each name you supply must
match one of the fields in the bound data source. Usually, you’ll have only one key field.
Here’s an example that tells the GridView to keep track of the CustomerID values in a list of
customers:

<asp:GridView ID="gridCustomers" runat="server"
DataKeyNames="CustomerID" ... >

Once you’ve established this link, the GridView is nice enough to keep track of the key
fields for the selected record. It allows you to retrieve this information at any time through the
SelectedDataKey property.

The following example puts it all together. It defines two GridView controls. The first
shows a list of categories. The second shows the products that fall into the currently selected
category (or, if no category has been selected, this GridView doesn’t appear at all).

Here’s the page markup for this example:

Categories:

<asp:GridView ID="gridCategories" runat="server" DataSourceID="sourceCategories"
DataKeyNames="CategoryID">
<Columns>
<asp:CommandField ShowSelectButton="True" />

</Columns>
<SelectedRowStyle BackColor="#FFCC66" Font-Bold="True"
ForeColor="#663399" />

</asp:GridView>
<asp:SqlDataSource ID="sourceCategories" runat="server"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT * FROM Categories"></asp:SqlDataSource>

Products in this category:

<asp:GridView ID="gridProducts" runat="server" DataSourceID="sourceProducts">
<SelectedRowStyle BackColor="#FFCC66" Font-Bold="True" ForeColor="#663399" />

</asp:GridView>
<asp:SqlDataSource ID="sourceProducts" runat="server"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT ProductID, ProductName, UnitPrice FROM Products WHERE

CategoryID=@CategoryID">
<SelectParameters>
<asp:ControlParameter Name="CategoryID" ControlID="gridCategories"
PropertyName="SelectedDataKey.Value" />

</SelectParameters>
</asp:SqlDataSource>

CHAPTER 17 ■ THE DATA CONTROLS592

8911CH17.qxd 10/1/07 11:41 AM Page 592

As you can see, you need two data sources, one for each GridView. The second data
source uses a ControlParameter that links it to the SelectedDataKey property of the first
GridView. Best of all, you still don’t need to write any code or handle the
SelectedIndexChanged event on your own.

Figure 17-7 shows this example in action.

Figure 17-7. A master-details page

Editing with the GridView
The GridView provides support for editing that’s almost as convenient as its support for selec-
tion. To switch a row into select mode, you simply set the SelectedIndex property to the
corresponding row number. To switch a row into edit mode, you set the EditIndex property in
the same way.

Of course, both of these tasks can take place automatically if you use specialized button
types. For selection, you use a CommandField column with the ShowSelectButton property
set to true. To add edit controls, you follow almost the same step—once again, you use the
CommandField column, but now you set ShowEditButton to true.

CHAPTER 17 ■ THE DATA CONTROLS 593

8911CH17.qxd 10/1/07 11:41 AM Page 593

Here’s an example of a GridView that supports editing:

<asp:GridView ID="gridProducts" runat="server" DataSourceID="sourceProducts"
AutoGenerateColumns="False" DataKeyNames="ProductID" >
<Columns>
<asp:BoundField DataField="ProductID" HeaderText="ID" ReadOnly="True" />
<asp:BoundField DataField="ProductName" HeaderText="Product Name"/>
<asp:BoundField DataField="UnitPrice" HeaderText="Price" />
<asp:CommandField ShowEditButton="True" />

</Columns>
</asp:GridView>

And here’s a revised data source control that can commit your changes:

<asp:SqlDataSource id="sourceProducts" runat="server"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT ProductID, ProductName, UnitPrice FROM Products"
UpdateCommand="UPDATE Products SET ProductName=@ProductName,

UnitPrice=@UnitPrice WHERE ProductID=@ProductID" />

■Note If you receive a SqlException that says “Must declare the scalar variable @ProductID,” the most
likely problem is that you haven’t set the GridView.DataKeyNames property. Because the ProductID field
can’t be modified, the GridView won’t pass the ProductID value to the SqlDataSource unless it’s designated
a key field.

Remember, you don’t need to define the update parameters, as long as you make sure
they match the field names (with an at sign [@] at the beginning). Chapter 16 has more infor-
mation about using update commands with the SqlDataSource control.

When you add a CommandField with the ShowEditButton property set to true, the
GridView editing controls appear in an additional column. When you run the page and the
GridView is bound and displayed, the edit column shows an Edit link next to every record
(see Figure 17-8).

CHAPTER 17 ■ THE DATA CONTROLS594

8911CH17.qxd 10/1/07 11:41 AM Page 594

Figure 17-8. The editing controls

When clicked, this link switches the corresponding row into edit mode. All fields are
changed to text boxes, with the exception of read-only fields (which are not editable) and
true/false bit fields (which are shown as check boxes). The Edit link is replaced with an Update
link and a Cancel link (see Figure 17-9).

Figure 17-9. Editing a record

The Cancel link returns the row to its initial state. The Update link passes the values to
the SqlDataSource.UpdateParameters collection (using the field names) and then triggers the
SqlDataSource.Update() method to apply the change to the database. Once again, you don’t
have to write any code, provided you’ve filled in the UpdateCommand for the linked data
source control.

CHAPTER 17 ■ THE DATA CONTROLS 595

8911CH17.qxd 10/1/07 11:41 AM Page 595

You can use a similar approach to add support for record deleting. To enable deleting, you
need to add a column to the GridView that has the ShowDeleteButton property set to true. As
long as your linked SqlDataSource has the DeleteCommand property filled in, these opera-
tions will work automatically. If you want to write your own code that plugs into this process
(for example, updating a label to inform the user the update has been made), consider react-
ing to the GridView event that fires after an update operation is committed, such as
RowDeleted and RowUpdated. You can also prevent changes you don’t like by reacting to the
RowDeleting and RowUpdating events and setting the cancel flag in the event arguments.

The GridView does not support inserting records. If you want that ability, you can use one
of the single-record display controls described later in this chapter, such as the DetailsView or
FormView. For example, a typical ASP.NET page for data entry might show a list of records in a
GridView, and provide a DetailsView that allows the user to add new records.

■Note The basic built-in updating features of the GridView don’t give you a lot of flexibility. You can’t
change the types of controls that are used for editing, format these controls, or add validation. However, you
can add all these features by building your own editing templates, a topic you’ll consider later in the “Using
GridView Templates” section.

Sorting and Paging the GridView
The GridView is a great all-in-one solution for displaying all kinds of data, but it becomes a
little unwieldy as the number of fields and rows in your data source grows. Dense grids con-
tribute to large pages that are slow to transmit over the network and difficult for the user to
navigate. The GridView has two features that address these issues and make data more man-
ageable: sorting and paging.

Both sorting and paging can be performed by the database server, provided you craft
the right SQL using the Order By and Where clauses. In fact, sometimes this is the best
approach for performance. However, the sorting and paging provided by the GridView and
SqlDataSource is easy to implement and thoroughly flexible. These techniques are particularly
useful if you need to show the same data in several ways and you want to let the user decide
how the data should be ordered.

Sorting
The GridView sorting features allow the user to reorder the results in the GridView by clicking
a column header. It’s convenient—and easy to implement.

Although you may not realize it, when you bind to a DataTable, you actually use another
object called the DataView. The DataView sits between the ASP.NET web page binding and
your DataTable. Usually it does little aside from providing the information from the associated
DataTable. However, you can customize the DataView so it applies its own sort order. That
way, you can customize the data that appears in the web page, without needing to actually
modify your data.

You can create a new DataView object by hand and bind the DataView directly to a data
control such as the GridView. However, the GridView and SqlDataSource controls make it even

CHAPTER 17 ■ THE DATA CONTROLS596

8911CH17.qxd 10/1/07 11:41 AM Page 596

easier. They provide several properties you can set to control sorting. Once you’ve configured
these properties, the sorting is automatic, and you still won’t need to write any code in your
page class.

To enable sorting, you must set the GridView.AllowSorting property to true. Next, you
need to define a SortExpression for each column that can be sorted. In theory, a sort expres-
sion can use any syntax that’s understood by the data source control. In practice, a sort
expression almost always takes the form used in the ORDER BY clause of a SQL query. This
means the sort expression can include a single field or a list of comma-separated fields,
optionally with the word ASC or DESC added after the column name to sort in ascending or
descending order.

Here’s how you could define the ProductName column so it sorts by alphabetically order-
ing rows:

<asp:BoundField DataField="ProductName" HeaderText="Product Name"
SortExpression="ProductName" />

Note that if you don’t want a column to be sort-enabled, you simply don’t set its
SortExpression property. Figure 17-10 shows an example with a grid that has sort expressions
for all three columns, and is currently sorted by product name.

Figure 17-10. Sorting the GridView

Once you’ve associated a sort expression with the column and set the AllowSorting prop-
erty to true, the GridView will render the headers with clickable links, as shown in Figure 17-10.
However, it’s up to the data source control to implement the actual sorting logic. How the sort-
ing is implemented depends on the data source you’re using.

Not all data sources support sorting, but the SqlDataSource does, provided the
DataSourceMode property is set to DataSet (the default), not DataReader. In DataReader
mode, the records are retrieved one at a time, and each record is stuffed into the bound con-
trol (such as a GridView) before the SqlDataSource moves to the next one. In DataSet mode,
the entire results are placed in a DataSet and then the records are copied from the DataSet

CHAPTER 17 ■ THE DATA CONTROLS 597

8911CH17.qxd 10/1/07 11:41 AM Page 597

into the bound control. If the data needs to be sorted, the sorting happens between these two
steps—after the records are retrieved but before they’re bound in the web page.

■Note The sort is according to the data type of the column. Numeric and date columns are ordered from
smallest to largest. String columns are sorted alphanumerically without regard to case. Columns that contain
binary data cannot be sorted.

Sorting and Selecting
If you use sorting and selection at the same time, you’ll discover another issue. To see this
problem in action, select a row, and then sort the data by any column. You’ll see that the selec-
tion will remain, but it will shift to a new item that has the same index as the previous item.
In other words, if you select the second row and perform a sort, the second row will still be
selected in the new page, even though this isn’t the record you selected. The only way to solve
this problem is to programmatically change the selection every time a header link is clicked.

The simplest option is to react to the GridView.Sorted event to clear the selection, as
shown here:

protected void GridView1_Sorted(object sender, GridViewSortEventArgs e)
{

// Clear selected index.
GridView1.SelectedIndex = -1;

}

In some cases you’ll want to go even further and make sure a selected row remains
selected when the sorting changes. The trick here is to store the selected value of the key field
in view state each time the selected index changes:

protected void GridView1_SelectedIndexChanged(object sender, EventArgs e)
{

// Save the selected value.
if (GridView1.SelectedIndex != -1)
{

ViewState["SelectedValue"] = GridView1.SelectedValue.ToString();
}

}

Now, when the grid is bound to the data source (for example, after a sort operation), you
can reapply the last selected index:

protected void GridView1_DataBound(object sender, EventArgs e)
{

if (ViewState["SelectedValue"] != null)
{

string selectedValue = (string)ViewState["SelectedValue"];

CHAPTER 17 ■ THE DATA CONTROLS598

8911CH17.qxd 10/1/07 11:41 AM Page 598

// Reselect the last selected row.
foreach (GridViewRow row in GridView1.Rows)
{

string keyValue = GridView1.DataKeys[row.RowIndex].Value.ToString();
if (keyValue == selectedValue)
{

GridView1.SelectedIndex = row.RowIndex;
return;

}
}

}
}

Keep in mind that this approach can be confusing if you also have enabled paging (which
is described in the next section). This is because a sorting operation might move the current
row to another page, rendering it not visible but keeping it selected. This makes sense but is
quite confusing in practice.

Paging
Often, a database search will return too many rows to be realistically displayed in a single
page. If the client is using a slow connection, an extremely large GridView can take a frustrat-
ing amount of time to arrive. Once the data is retrieved, the user may find out it doesn’t
contain the right content anyway or that the search was too broad and they can’t easily wade
through all the results to find the important information.

The GridView handles this scenario with an automatic paging feature. When you use
automatic paging, the full results are retrieved from the data source and placed into a DataSet.
Once the DataSet is bound to the GridView, however, the data is subdivided into smaller
groupings (for example, with 20 rows each), and only a single batch is sent to the user. The
other groups are abandoned when the page finishes processing. When the user moves to the
next page, the same process is repeated—in other words, the full query is performed once
again. The GridView extracts just one group of rows, and the page is rendered.

To allow the user to skip from one page to another, the GridView displays a group of pager
controls at the bottom of the grid. These pager controls could be previous/next links (often
displayed as < and >) or number links (1, 2, 3, 4, 5, . . .) that lead to specific pages. If you’ve
ever used a search engine, you’ve seen paging at work.

By setting a few properties, you can make the GridView control manage the paging for
you. Table 17-6 describes the key properties.

Table 17-6. Paging Members of the GridView

Property Description

AllowPaging Enables or disables the paging of the bound records. It is false by
default.

PageSize Gets or sets the number of items to display on a single page of the
grid. The default value is 10.

Continued

CHAPTER 17 ■ THE DATA CONTROLS 599

8911CH17.qxd 10/1/07 11:41 AM Page 599

Table 17-6. Continued

Property Description

PageIndex Gets or sets the zero-based index of the currently displayed page, if
paging is enabled.

PagerSettings Provides a PagerSettings object that wraps a variety of formatting
options for the pager controls. These options determine where the
paging controls are shown and what text or images they contain.
You can set these properties to fine-tune the appearance of the
pager controls, or you can use the defaults.

PagerStyle Provides a style object you can use to configure fonts, colors, and
text alignment for the paging controls.

PageIndexChanging and Occur when one of the page selection elements is clicked, just
PageIndexChanged events before the PageIndex is changed (PageIndexChanging) and just

after (PageIndexChanged).

To use automatic paging, you need to set AllowPaging to true (which shows the page con-
trols), and you need to set PageSize to determine how many rows are allowed on each page.

Here’s an example of a GridView control declaration that sets these properties:

<asp:GridView ID="GridView1" runat="server" DataSourceID="sourceProducts"
PageSize="10" AllowPaging="True" ...>
...

</asp:GridView>

This is enough to start using paging. Figure 17-11 shows an example with ten records per
page (for a total of eight pages).

Figure 17-11. Paging the GridView

CHAPTER 17 ■ THE DATA CONTROLS600

8911CH17.qxd 10/1/07 11:41 AM Page 600

PAGING AND PERFORMANCE

When you use paging, every time a new page is requested, the full DataSet is queried from the database.
This means paging does not reduce the amount of time required to query the database. In fact, because the
information is split into multiple pages and you need to repeat the query every time the user moves to a new
page, the database load actually increases. However, because any given page contains only a subset of the
total data, the page size is smaller and will be transmitted faster, reducing the client’s wait. The end result is
a more responsive and manageable page.

You can use paging in certain ways without increasing the amount of work the database needs to per-
form. One option is to cache the entire DataSet in server memory. That way, every time the user moves to a
different page, you simply need to retrieve the data from memory and rebind it, avoiding the database alto-
gether. You’ll learn how to use this technique in Chapter 24.

Using GridView Templates
So far, the examples have used the GridView control to show data using separate bound
columns for each field. If you want to place multiple values in the same cell, or you have the
unlimited ability to customize the content in a cell by adding HTML tags and server controls,
you need to use a TemplateField.

The TemplateField allows you to define a completely customized template for a column.
Inside the template you can add control tags, arbitrary HTML elements, and data binding
expressions. You have complete freedom to arrange everything the way you want.

For example, imagine you want to create a column that combines the in stock, on order,
and reorder level information for a product. To accomplish this trick, you can construct an
ItemTemplate like this:

<asp:TemplateField HeaderText="Status">
<ItemTemplate>
In Stock:
<%# Eval("UnitsInStock") %>

On Order:
<%# Eval("UnitsOnOrder") %>

Reorder:
<%# Eval("ReorderLevel") %>

</ItemTemplate>
</asp:TemplateField>

■Note Your template only has access to the fields that are in the bound data object. So if you want to show
the UnitsInStock, UnitsOnOrder, and ReorderLevel fields, you need to make sure the SqlDataSource query
returns this information.

CHAPTER 17 ■ THE DATA CONTROLS 601

8911CH17.qxd 10/1/07 11:41 AM Page 601

To create the data binding expressions, the template uses the Eval() method, which
is a static method of the System.Web.UI.DataBinder class. Eval() is an indispensable
convenience—it automatically retrieves the data item that’s bound to the current row,
uses reflection to find the matching field, and retrieves the value.

■Tip The Eval() method also adds the extremely useful ability to format data fields on the fly. To use this
feature, you must call the overloaded version of the Eval() method that accepts an additional format string
parameter. Here’s an example:

<%# Eval("BirthDate", "{0:MM/dd/yy}") %>

You can use any of the format strings defined in Table 17-3 and Table 17-4 with the Eval() method.

You’ll notice that this example template includes three data binding expressions. These
expressions get the actual information from the current row. The rest of the content in the
template defines static text, tags, and controls.

You also need to make sure the data source provides these three pieces of information. If
you attempt to bind a field that isn’t present in your result set, you’ll receive a runtime error.
If you retrieve additional fields that are never bound to any template, no problem will occur.

Here’s the revised data source with these fields:

<asp:SqlDataSource ID="sourceProducts" runat="server"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT ProductID, ProductName, UnitPrice, UnitsInStock,

UnitsOnOrder,ReorderLevel FROM Products"
UpdateCommand="UPDATE Products SET ProductName=@ProductName,

UnitPrice=@UnitPrice WHERE ProductID=@ProductID">
</asp:SqlDataSource>

When you bind the GridView, it fetches the data from the data source and walks through
the collection of items. It processes the ItemTemplate for each item, evaluates the data
binding expressions, and adds the rendered HTML to the table. You’re free to mix template
columns with other column types. Figure 17-12 shows an example with several normal
columns and the template column at the end.

CHAPTER 17 ■ THE DATA CONTROLS602

8911CH17.qxd 10/1/07 11:41 AM Page 602

Figure 17-12. A GridView with a template column

Using Multiple Templates
The previous example uses a single template to configure the appearance of data items. How-
ever, the ItemTemplate isn’t the only template that the TemplateField provides. In fact, the
TemplateField allows you to configure various aspects of its appearance with a number of
templates. Inside every template column, you can use the templates listed in Table 17-7.

Table 17-7. TemplateField Templates

Mode Description

HeaderTemplate Determines the appearance and content of the header cell.

FooterTemplate Determines the appearance and content of the footer cell (if you set
ShowFooter to true).

ItemTemplate Determines the appearance and content of each data cell.

AlternatingItemTemplate Determines the appearance of even-numbered rows. For example, if
you set the AlternatingItemTemplate to have a shaded background
color, the GridView applies this shading to every second row.

EditItemTemplate Determines the appearance and controls used in edit mode.

InsertItemTemplate Determines the appearance and controls used in edit mode. The
GridView doesn’t support this template, but the DetailsView and
FormView controls (which are described later in this chapter) do.

CHAPTER 17 ■ THE DATA CONTROLS 603

8911CH17.qxd 10/1/07 11:41 AM Page 603

Of the templates listed in Table 17-7, the EditItemTemplate is one of the most useful,
because it gives you the ability to control the editing experience for the field. If you don’t use
template fields, you’re limited to ordinary text boxes, and you won’t have any validation.
The GridView also defines two templates you can use outside any column. These are the
PagerTemplate, which lets you customize the appearance of pager controls, and the
EmptyDataTemplate, which lets you set the content that should appear if the GridView is
bound to an empty data object.

Editing Templates in Visual Studio
Visual Studio 2008 includes solid support for editing templates in the web page designer.
To try this, follow these steps:

1. Create a GridView with at least one template column.

2. Select the GridView, and click Edit Templates in the smart tag. This switches the
GridView into template edit mode.

3. In the smart tag, use the Display drop-down list to choose the template you want to
edit (see Figure 17-13). You can choose either of the two templates that apply to the
whole GridView (EmptyDataTemplate or PagerTemplate), or you can choose a specific
template for one of the template columns.

Figure 17-13. Editing a template in Visual Studio

4. Enter your content in the control. You can enter static content, drag and drop controls,
and so on.

5. When you’re finished, choose End Template Editing from the smart tag.

CHAPTER 17 ■ THE DATA CONTROLS604

8911CH17.qxd 10/1/07 11:41 AM Page 604

Handling Events in a Template
In some cases, you might need to handle events that are raised by the controls you add to a
template column. For example, imagine you want to add a clickable image link by adding an
ImageButton control. This is easy enough to accomplish:

<asp:TemplateField HeaderText="Status">
<ItemTemplate>
<asp:ImageButton ID="ImageButton1" runat="server"
ImageUrl="statuspic.gif" />

</ItemTemplate>
</asp:TemplateField>

The problem is that if you add a control to a template, the GridView creates multiple
copies of that control, one for each data item. When the ImageButton is clicked, you need a
way to determine which image was clicked and to which row it belongs.

The way to resolve this problem is to use an event from the GridView, not the contained
button. The GridView.RowCommand event serves this purpose, because it fires whenever any
button is clicked in any template. This process, where a control event in a template is turned
into an event in the containing control, is called event bubbling.

Of course, you still need a way to pass information to the RowCommand event to identify
the row where the action took place. The secret lies in two string properties that all button
controls provide: CommandName and CommandArgument. CommandName sets a descrip-
tive name you can use to distinguish clicks on your ImageButton from clicks on other button
controls in the GridView. The CommandArgument supplies a piece of row-specific data you
can use to identify the row that was clicked. You can supply this information using a data
binding expression.

Here’s a template field that contains the revised ImageButton tag:

<asp:TemplateField HeaderText="Status">
<ItemTemplate>
<asp:ImageButton ID="ImageButton1" runat="server"
ImageUrl="statuspic.gif"
CommandName="StatusClick" CommandArgument='<%# Eval("ProductID") %>' />

</ItemTemplate>
</asp:TemplateField>

And here’s the code you need in order to respond when an ImageButton is clicked:

protected void GridView1_RowCommand(object sender, GridViewCommandEventArgs e)
{

if (e.CommandName == "StatusClick")
lblInfo.Text = "You clicked product #" + e.CommandArgument.ToString();

}

This example simply displays the ProductID in a label.

CHAPTER 17 ■ THE DATA CONTROLS 605

8911CH17.qxd 10/1/07 11:41 AM Page 605

Editing with a Template
One of the best reasons to use a template is to provide a better editing experience. In the pre-
vious chapter, you saw how the GridView provides automatic editing capabilities—all you
need to do is switch a row into edit mode by setting the GridView.EditIndex property. The easi-
est way to make this possible is to add a CommandField column with the ShowEditButton set
to true. Then, the user simply needs to click a link in the appropriate row to begin editing it. At
this point, every label in every column is replaced by a text box (unless the field is read-only).

The standard editing support has several limitations:

It’s not always appropriate to edit values using a text box: Certain types of data are best
handled with other controls (such as drop-down lists). Large fields need multiline text
boxes, and so on.

You get no validation: It would be nice to restrict the editing possibilities so that currency
figures can’t be entered as negative numbers, for example. You can do that by adding val-
idator controls to an EditItemTemplate.

The visual appearance is often ugly: A row of text boxes across a grid takes up too much
space and rarely seems professional.

In a template column, you don’t have these issues. Instead, you explicitly define the edit
controls and their layout using the EditItemTemplate. This can be a somewhat laborious
process.

Here’s the template column used earlier for stock information with an editing template:

<asp:TemplateField HeaderText="Status">
<ItemStyle Width="100px" />
<ItemTemplate>
In Stock: <%# Eval("UnitsInStock") %>

On Order: <%# Eval("UnitsOnOrder") %>

Reorder: <%# Eval("ReorderLevel") %>

</ItemTemplate>
<EditItemTemplate>
In Stock: <%# Eval("UnitsInStock") %>

On Order: <%# Eval("UnitsOnOrder") %>

Reorder:
<asp:TextBox Text='<%# Bind("ReorderLevel") %>' Width="25px"
runat="server" id="txtReorder" />

</EditItemTemplate>
</asp:TemplateField>

Figure 17-14 shows the row in edit mode.

CHAPTER 17 ■ THE DATA CONTROLS606

8911CH17.qxd 10/1/07 11:41 AM Page 606

Figure 17-14. Using an edit template

When binding an editable value to a control, you must use the Bind() method in your data
binding expression instead of the ordinary Eval() method. Only the Bind() method creates the
two-way link, ensuring that updated values will be returned to the server.

One interesting detail here is that even though the item template shows three fields, the
editing template allows only one of these to be changed. When the GridView commits an
update, it will submit only the bound, editable parameters. In the previous example, this
means the GridView will pass back a @ReorderLevel parameter but not a @UnitsInStock or
@UnitsOnOrder parameter. This is important, because when you write your parameterized
update command, it must use only the parameters you have available. Here’s the modified
SqlDataSource control with the correct command:

<asp:SqlDataSource ID="sourceProducts" runat="server"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT ProductID, ProductName, UnitPrice, UnitsInStock,

UnitsOnOrder,ReorderLevel FROM Products"
UpdateCommand="UPDATE Products SET ProductName=@ProductName, UnitPrice=@UnitPrice,

ReorderLevel=@ReorderLevel WHERE ProductID=@ProductID">
</asp:SqlDataSource>

Editing with Validation
Now that you have your template ready, why not add an extra frill, such as a validator, to catch
editing mistakes? In the following example, a RangeValidator prevents changes that put the
ReorderLevel at less than 0 or more than 100:

CHAPTER 17 ■ THE DATA CONTROLS 607

8911CH17.qxd 10/1/07 11:41 AM Page 607

<asp:TemplateField HeaderText="Status">
<ItemStyle Width="100px" />
<ItemTemplate>
In Stock: <%# Eval("UnitsInStock") %>

On Order: <%# Eval("UnitsOnOrder") %>

Reorder: <%# Eval("ReorderLevel") %>

</ItemTemplate>
<EditItemTemplate>
In Stock: <%# Eval("UnitsInStock") %>

On Order: <%# Eval("UnitsOnOrder") %>

Reorder:
<asp:TextBox Text='<%# Bind("ReorderLevel") %>' Width="25px"
runat="server" id="txtReorder" />
<asp:RangeValidator id="rngValidator" MinimumValue="0" MaximumValue="100"
ControlToValidate="txtReorder" runat="server"
ErrorMessage="Value out of range." Type="Integer"/>

</EditItemTemplate>
</asp:TemplateField>

Figure 17-15 shows the validation at work. If the value isn’t valid, the browser doesn’t
allow the page to be posted back, and no database code runs.

Figure 17-15. Creating an edit template with validation

■Note The SqlDataSource is intelligent enough to handle validation properly even if you disabled client-
side validation (or the browser doesn’t support it). In this situation, the page is posted back, but the
SqlDataSource notices that it contains invalid data and doesn’t attempt to perform its update. For more
information about client-side and server-side validation, refer to Chapter 10.

CHAPTER 17 ■ THE DATA CONTROLS608

8911CH17.qxd 10/1/07 11:41 AM Page 608

Editing Without a Command Column
So far, all the examples you’ve seen have used a CommandField that automatically generates
edit controls. However, now that you’ve made the transition over to a template-based
approach, it’s worth considering how you can add your own edit controls.

It’s actually quite easy. All you need to do is add a button control to the item template and
set the CommandName to Edit. This automatically triggers the editing process, which fires the
appropriate events and switches the row into edit mode.

<ItemTemplate>
In Stock: <%# Eval("UnitsInStock") %>

On Order: <%# Eval("UnitsOnOrder") %>

Reorder: <%# Eval("ReorderLevel") %>

<asp:LinkButton runat="server" Text="Edit"
CommandName="Edit" ID="Linkbutton1" />

</ItemTemplate>

In the edit item template, you need two more buttons with CommandName values of
Update and Cancel:

<EditItemTemplate>
In Stock: <%# Eval("UnitsInStock") %>

On Order: <%# Eval("UnitsOnOrder") %>

Reorder:
<asp:TextBox Text='<%# Bind("ReorderLevel") %>' Width="25px"
runat="server" id="txtReorder" />

<asp:LinkButton runat="server" Text="Update"
CommandName="Update" ID="Linkbutton1" />
<asp:LinkButton runat="server" Text="Cancel"
CommandName="Cancel" ID="Linkbutton2" CausesValidation="False" />

</EditItemTemplate>

Notice that the Cancel button must have its CausesValidation property set to false to
bypass validation. That way, you can cancel the edit even if the current data isn’t valid.

As long as you use these names, the GridView editing events will fire and the data source
controls will react in the same way as if you were using the automatically generated editing
controls. Figure 17-16 shows the custom edit buttons.

CHAPTER 17 ■ THE DATA CONTROLS 609

8911CH17.qxd 10/1/07 11:41 AM Page 609

Figure 17-16. Custom edit controls

The DetailsView and FormView
The GridView excels at showing a dense table with multiple rows of information. However,
sometimes you want to provide a detailed look at a single record. You could work out a solu-
tion using a template column in a GridView, but ASP.NET includes two controls that are
tailored for this purpose: the DetailsView and the FormView. Both show a single record at a
time but can include optional pager buttons that let you step through a series of records
(showing one per page). Both give you an easy way to insert a new record, which the GridView
doesn’t allow. And both support templates, but the FormView requires them. This is the key
distinction between the two controls.

One other difference is the fact that the DetailsView renders its content inside a table,
while the FormView gives you the flexibility to display your content without a table. Thus, if
you’re planning to use templates, the FormView gives you the most flexibility. But if you want
to avoid the complexity of templates, the DetailsView gives you a simpler model that lets you
build a multirow data display out of field objects, in much the same way that the GridView is
built out of column objects.

Now that you understand the features of the GridView, you can get up to speed with the
DetailsView and the FormView quite quickly. That’s because both borrow a portion of the
GridView model.

The DetailsView
The DetailsView displays a single record at a time. It places each field in a separate row of a
table.

CHAPTER 17 ■ THE DATA CONTROLS610

8911CH17.qxd 10/1/07 11:41 AM Page 610

You saw in Chapter 16 how to create a basic DetailsView to show the currently selected
record. The DetailsView also allows you to move from one record to the next using paging con-
trols, if you’ve set the AllowPaging property to true. You can configure the paging controls
using the PagerStyle and PagerSettings properties in the same way as you tweak the pager for
the GridView.

Figure 17-17 shows the DetailsView when it’s bound to a set of product records, with full
product information.

Figure 17-17. The DetailsView with paging

It’s tempting to use the DetailsView pager controls to make a handy record browser.
Unfortunately, this approach can be quite inefficient. One problem is that a separate postback
is required each time the user moves from one record to another (whereas a grid control can
show multiple records on the same page). But the real drawback is that each time the page is
posted back, the full set of records is retrieved, even though only a single record is shown. This
results in needless extra work for the database server. If you choose to implement a record
browser page with the DetailsView, at a bare minimum you must enable caching to reduce the
database work (see Chapter 24).

■Tip It’s almost always a better idea to use another control to let the user choose a specific record (for
example, by choosing an ID from a list box), and then show the full record in the DetailsView using a para-
meterized command that matches just the selected record. Chapter 16 demonstrates this technique.

CHAPTER 17 ■ THE DATA CONTROLS 611

8911CH17.qxd 10/1/07 11:41 AM Page 611

Defining Fields
The DetailsView uses reflection to generate the fields it shows. This means it examines the
data object and creates a separate row for each field it finds, just like the GridView. You can
disable this automatic row generation by setting AutoGenerateRows to false. It’s then up to
you to declare information you want to display.

Interestingly, you use the same field tags to build a DetailsView as you use to design a
GridView. For example, fields from the data item are represented with the BoundField tag,
buttons can be created with the ButtonField, and so on. For the full list, refer to the earlier
Table 17-1.

The following code defines a DetailsView that shows product information. This tag
creates the same grid of information shown in Figure 17-17, when AutoGenerateRows was
set to true.

<asp:DetailsView ID="DetailsView1" runat="server" AutoGenerateRows="False"
DataSourceID="sourceProducts">
<Fields>
<asp:BoundField DataField="ProductID" HeaderText="ProductID"
ReadOnly="True" />
<asp:BoundField DataField="ProductName" HeaderText="ProductName" />
<asp:BoundField DataField="SupplierID" HeaderText="SupplierID" />
<asp:BoundField DataField="CategoryID" HeaderText="CategoryID" />
<asp:BoundField DataField="QuantityPerUnit" HeaderText="QuantityPerUnit" />
<asp:BoundField DataField="UnitPrice" HeaderText="UnitPrice" />
<asp:BoundField DataField="UnitsInStock" HeaderText="UnitsInStock" />
<asp:BoundField DataField="UnitsOnOrder" HeaderText="UnitsOnOrder" />
<asp:BoundField DataField="ReorderLevel" HeaderText="ReorderLevel" />
<asp:CheckBoxField DataField="Discontinued" HeaderText="Discontinued" />

</Fields>
...

</asp:DetailsView>

You can use the BoundField tag to set properties such as header text, formatting string,
editing behavior, and so on (refer to Table 17-2). In addition, you can use the ShowHeader
property. When it’s false, the header text is left out of the row, and the field data takes up
both cells.

■Tip Rather than coding each field by hand, you can use the same shortcut you used with the GridView.
Simply select the control at design time, and select Refresh Schema from the smart tag.

The field model isn’t the only part of the GridView that the DetailsView control adopts. It
also uses a similar set of styles, a similar set of events, and a similar editing model. The only
difference is that instead of creating a dedicated column for editing controls, you simply set
one of the Boolean properties of the DetailsView, such as AutoGenerateDeleteButton,
AutoGenerateEditButton, and AutoGenerateInsertButton. The links for these tasks are added
to the bottom of the DetailsView. When you add or edit a record, the DetailsView always uses

CHAPTER 17 ■ THE DATA CONTROLS612

8911CH17.qxd 10/1/07 11:41 AM Page 612

standard text box controls (see Figure 17-18), just like the GridView does. For more editing
flexibility, you’ll want to use the FormView control.

Figure 17-18. Editing in the DetailsView

The FormView
If you need the ultimate flexibility of templates, the FormView provides a template-only
control for displaying and editing a single record.

The beauty of the FormView template model is that it matches the model of the
TemplateField in the GridView quite closely. This means you can work with the following
templates:

• ItemTemplate

• EditItemTemplate

• InsertItemTemplate

• FooterTemplate

• HeaderTemplate

• EmptyDataTemplate

• PagerTemplate

You can use the same template content you use with a TemplateField in a GridView in the
FormView. Earlier in this chapter, you saw how you can use a template field to combine the
stock information of a product into one column (as shown in Figure 17-12). Here’s how you
can use the same template in the FormView:

CHAPTER 17 ■ THE DATA CONTROLS 613

8911CH17.qxd 10/1/07 11:41 AM Page 613

<asp:FormView ID="FormView1" runat="server" DataSourceID="sourceProducts">
<ItemTemplate>
In Stock:
<%# Eval("UnitsInStock") %>

On Order:
<%# Eval("UnitsOnOrder") %>

Reorder:
<%# Eval("ReorderLevel") %>

</ItemTemplate>
</asp:FormView>

Like the DetailsView, the FormView can show a single record at a time. (If the data source
has more than one record, you’ll see only the first one.) You can deal with this issue by setting
the AllowPaging property to true so that paging links are automatically created. These links
allow the user to move from one record to the next, as in the previous example with the
DetailsView.

Another option is to bind to a data source that returns just one record. Figure 17-19 shows
an example where a drop-down list control lets you choose a product, and a second data
source shows the matching record in the FormView control.

Figure 17-19. A FormView that shows a single record

Here’s the markup you need to define the drop-down list and its data source:

<asp:SqlDataSource ID="sourceProducts" runat="server"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT * FROM Products">

</asp:SqlDataSource>

CHAPTER 17 ■ THE DATA CONTROLS614

8911CH17.qxd 10/1/07 11:41 AM Page 614

<asp:DropDownList ID="lstProducts" runat="server"
AutoPostBack="True" DataSourceID="sourceProducts"
DataTextField="ProductName" DataValueField="ProductID" Width="184px">

</asp:DropDownList>

The FormView uses the template from the previous example (it’s the shaded region on the
page). Here’s the markup for the FormView (not including the template) and the data source
that gets the full details for the selected product.

<asp:SqlDataSource ID="sourceProductFull" runat="server"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT * FROM Products WHERE ProductID=@ProductID">
<SelectParameters>

<asp:ControlParameter Name="ProductID"
ControlID="lstProducts" PropertyName="SelectedValue" />

</SelectParameters>
</asp:SqlDataSource>

<asp:FormView ID="formProductDetails" runat="server"
DataSourceID="sourceProductFull"
BackColor="#FFE0C0" CellPadding="5">
<ItemTemplate>

...
</ItemTemplate>

</asp:FormView>

■Note If you want to support editing with the FormView, you need to add button controls that trigger the
edit and update processes, as described in the “Editing with a Template” section.

The Last Word
In this chapter, you considered everything you need to build rich data-bound pages. You took
a detailed tour of the GridView and considered its support for formatting, selecting, sorting,
paging, using templates, and editing. You also considered the DetailsView and the FormView,
which allow you to display and edit individual records. Using these three controls, you can
build all-in-one pages that display and edit data, without needing to write pages of ADO.NET
code. Best of all, every data control is thoroughly configurable, which means you can tailor it
to fit just about any web application.

CHAPTER 17 ■ THE DATA CONTROLS 615

8911CH17.qxd 10/1/07 11:41 AM Page 615

8911CH17.qxd 10/1/07 11:41 AM Page 616

Files and Streams

There’s a good reason that this book covered ADO.NET before dealing with simpler data
access techniques, such as writing and reading ordinary files. Traditional file access is gener-
ally much less useful in a web application than it is in a desktop program. Databases, on the
other hand, are designed from the ground up to support a large number of simultaneous users
with speed, safety, and efficiency. Most web applications will rely on a database for some fea-
tures, but many won’t have any reason to use direct file access.

Of course, enterprising ASP.NET developers can find a use for almost any technology. If
this book didn’t cover file access, no doubt many developers would be frustrated when design-
ing web applications with legitimate (and innovative) uses for ordinary files. In fact, file access
is so easy and straightforward in .NET that it may be perfect for simple, small-scale solutions
that don’t need a full-fledged database product like SQL Server.

This chapter explains how you can use the classes in .NET to read and change file system
information and even build a simple file browser. You’ll also learn how to create simple text
and binary files of your own. Finally, you’ll consider how you can allow users to upload their
own files to your web server.

Files and Web Applications
Why is it that most web applications don’t use files? There are several limitations to files:

File-naming limitations: When you create a new file, it obviously can’t have the same
name as an existing file in the same directory. That means you’ll probably need to fall
back on some system for randomly generating files names. For example, you might create
a file name based on a random number combined with the current date and time, or cre-
ate a file name that incorporates a GUID (globally unique identifier). With both of these
approaches, file names would be statistically unique, which means duplicates would be
extremely unlikely. However, the file names wouldn’t be very meaningful. In databases,
this problem is solved more neatly with the auto-increment data type, which automati-
cally fills a specific field with a unique number when you create a record.

Multiuser limitations: Relational databases provide features like locking and transactions
to prevent inconsistencies and make sure multiple people can use the same data at the
same time. Comparatively, the web server’s file system is woefully backward. Although
you can allow multiple users to read a file at once, it’s almost impossible to let multiple
users update the same file at the same time without catastrophe.

617

C H A P T E R 1 8

8911CH18.qxd 9/24/07 2:58 PM Page 617

Scalability problems: File operations suffer from some overhead. In a simple scenario, file
access may be faster than connecting to a database and performing a query. But the
cumulative effect in a large web application is very different. When multiple users are
working with files at the same time, your web server may slow down dramatically.

Security risks: If you allow the user to specify a file or path name, the user could devise a
way to trick your application into accessing or overwriting a protected system file. Even
without this ability, a malicious or careless user might use an ASP.NET page that creates
or uploads files to fill up your web server hard drive and cause it to stop working. All of
these problems are preventable, but they require a bit more work than a database-backed
solution.

Of course, file access does have its uses. Maybe you need to access information that
another application has stored in a file. Or maybe you need to store your information in a file
so that other applications can access it. For example, you might be creating an intranet appli-
cation that allows a small set of trusted employees to upload and manage documents. You
could store their documents in a binary field in a database table, but that would make it more
difficult to browse and open those files without using your web front end.

In these situations, you’ll be happy to know that ASP.NET can use all the file access fea-
tures of the .NET Framework. That means your web applications can freely explore the file
system, manage files, and create new files with custom content.

File System Information
The simplest level of file access just involves retrieving information about existing files and
directories and performing typical file system operations such as copying files and creating
directories.

.NET provides five basic classes for retrieving this sort of information. They are all located
in the System.IO namespace (and, incidentally, can be used in desktop applications in exactly
the same way they are used in web applications). They include the following:

• The Directory and File classes, which provide static methods that allow you to retrieve
information about any files and directories visible from your server

• The DirectoryInfo and FileInfo classes, which use similar instance methods and prop-
erties to retrieve the same sort of information

• The DriveInfo class, which provides static methods that allow you to retrieve informa-
tion about a drive and the amount of free space it provides

In Chapter 3, you saw how a class can provide two types of members. Static members are
always available—you just use the name of the class. But instance members are only available
if you have a live object.

With the file access classes, static methods are more convenient to use because they don’t
require you to create an instance of the class. That means you can use a quick one-line code
statement to perform a simple task like checking whether a file exists. On the other hand, if
you need to retrieve several pieces of information from the same file or directory, it’s easier to
use the instance members. That way, you don’t need to keep specifying the name of the direc-
tory or file each time you call a method. The instance approach is also a bit faster in this

CHAPTER 18 ■ FILES AND STREAMS618

8911CH18.qxd 9/24/07 2:58 PM Page 618

situation. That’s because the FileInfo and DirectoryInfo classes perform their security checks
once—when you create the object instance. The Directory and File classes perform a security
check every time you invoke a method, which adds more overhead.

You’ll learn about all of these classes in this chapter. But first, it’s worth taking a detour to
look at another class that can simplify code that deals with the file system: the Path class.

The Path Class
Along with the five classes outlined in the previous section, .NET also includes a helper class
named Path in the same System.IO namespace. The Path class doesn’t include any real file
management functionality. It simply provides a few static methods that are useful when
manipulating strings that contain file and directory paths.

For example, the Path class includes a GetFileName() method that pulls the file name out
of a full string. Here’s an example:

string file = Path.GetFileName(
@"c:\Documents\Upload\Users\JamesX\resume.doc");

// file now contains "resume.doc"

FILE PATHS IN STRINGS

In C#, you need to take special care when creating strings that hold file paths or directory paths. That’s
because in C#, the directory separation character (\) also has another meaning—it indicates the start of a
special character sequence. To indicate that you really want a backward slash and not a special character
sequence, you need two slashes, as shown here:

string myDirectory = "c:\\Temp\\MyFiles";

Another option is to precede your string with the “at” sign (@). This tells C# to interpret the string
exactly as written. Here’s an example of this syntax:

string myDirectory = @"c:\Temp\MyFiles";

The approach you use is entirely up to you, although the @ syntax makes it easier to read long paths
(and easier to avoid typos).

The Path class also includes a Combine() method that can tack a relative path on the end
of an absolute path. Here it is at work, fusing two strings together:

string absolutePath = @"c:\Users\MyDocuments";
string subPath = @"Sarah\worksheet.xls";
string combined = Path.Combine(absolutePath, subPath);
// combined now contains "c:\Users\MyDocuments\Sarah\worksheet.xls"

You could perform all of these tasks on your own, but the Path class is a great way to avoid
errors. Table 18-1 lists the methods of the Path class.

CHAPTER 18 ■ FILES AND STREAMS 619

8911CH18.qxd 9/24/07 2:58 PM Page 619

Table 18-1. Path Methods

Methods Description

Combine() Combines a path with a file name or a subdirectory.

ChangeExtension() Returns a copy of the string with a modified extension. If you
don’t specify an extension, the current extension is removed.

GetDirectoryName() Returns all the directory information, which is the text
between the first and last directory separators (\).

GetFileName() Returns just the file name portion of a path, which is the
portion after the last directory separator.

GetFileNameWithoutExtension() Returns just the file name portion of a path, but omits the file
extension at the end.

GetFullPath() Changes a relative path into an absolute path using the
current directory. For example, if c:\Temp\ is the current
directory, calling GetFullPath() on a file name such as test.txt
returns c:\Temp\test.txt. This method has no effect on an
absolute path.

GetPathRoot() Retrieves a string with the root drive (for example, “c:\”),
provided that information is in the string. For a relative path,
it returns a null reference.

HasExtension() Returns true if the path ends with an extension.

IsPathRooted() Returns true if the path is an absolute path and false if it’s a
relative path.

The Directory and File Classes
The Directory and File classes provide a number of useful static methods. Table 18-2 and
Table 18-3 show an overview of the most important methods. Most of these methods take the
same parameter: a fully qualified path name identifying the directory or file you want the
operation to act on. A few methods, such as Delete() and Move(), take additional parameters.

Table 18-2. Directory Class Members

Method Description

CreateDirectory() Creates a new directory. If you specify a directory
inside another nonexistent directory, ASP.NET will
thoughtfully create all the required directories.

Delete() Deletes the corresponding empty directory. To delete
a directory along with its contents (subdirectories and
files), add the optional second parameter of true.

Exists() Returns true or false to indicate whether the specified
directory exists.

GetCreationTime(), GetLastAccessTime(), Returns a DateTime object that represents the time
and GetLastWriteTime() the directory was created, accessed, or written to.

Each GetXxx() method has a corresponding SetXxx()
method, which isn’t shown in this table.

CHAPTER 18 ■ FILES AND STREAMS620

8911CH18.qxd 9/24/07 2:58 PM Page 620

Method Description

GetDirectories() and GetFiles() Returns an array of strings, one for each subdirectory
or file (depending on the method you’re using) in the
specified directory. These methods can accept a
second parameter that specifies a search expression
(such as ASP*.*).

GetLogicalDrives() Returns an array of strings, one for each drive that’s
defined on the current computer. Drive letters are in
this format: “c:\”.

GetParent() Parses the supplied directory string and tells you what
the parent directory is. You could do this on your own
by searching for the \ character (or, more generically,
the Path.DirectorySeparatorChar), but this function
makes life a little easier.

GetCurrentDirectory() and Allows you to set or retrieve the current directory,
SetCurrentDirectory() which is useful if you need to use relative paths

instead of full paths. Generally, these functions aren’t
necessary.

Move() Accepts two parameters: the source path and the des-
tination path. The directory and all its contents can be
moved to any path, as long as it’s located on the same
drive.

Table 18-3. File Class Members

Method Description

Copy() Accepts two parameters: the fully qualified source file
name and the fully qualified destination file name. To
allow overwriting, use the version that takes a Boolean
third parameter and set it to true.

Delete() Deletes the specified file but doesn’t throw an
exception if the file can’t be found.

Exists() Indicates true or false in regard to whether a specified
file exists.

GetAttributes() and SetAttributes() Retrieves or sets an enumerated value that can
include any combination of the values from the
FileAttributes enumeration.

GetCreationTime(), GetLastAccessTime(), Returns a DateTime object that represents the time
and GetLastWriteTime() the file was created, accessed, or last written to. Each

Get method has a corresponding Set method, which
isn’t shown in this table.

Move() Accepts two parameters: the fully qualified source file
name and the fully qualified destination file name.
You can move a file across drives and even rename it
while you move it (or rename it without moving it).

The File class also includes some methods that allow you to create and open files as
streams. You’ll explore these features in the “Reading and Writing with Streams” section of this

CHAPTER 18 ■ FILES AND STREAMS 621

8911CH18.qxd 9/24/07 2:58 PM Page 621

chapter. The only feature the File class lacks (and the FileInfo class provides) is the ability to
retrieve the size of a specified file.

The File and Directory methods are quite intuitive. For example, consider the code for a
simple page that displays some information about the files in a specific directory. You might
use this code to create a simple admin page that allows you to review the contents of an FTP
directory (see Figure 18-1). Clients could use this page to review their documents and remove
suspicious files.

Figure 18-1. An admin page with file information

You should begin by importing the namespace that has the IO classes:

using System.IO;

The code for this page is as follows:

public partial class ViewFiles : System.Web.UI.Page
{

private string ftpDirectory;
protected void Page_Load(Object sender, EventArgs e)
{

ftpDirectory = Path.Combine(Request.PhysicalApplicationPath, "FTP");
if (!this.IsPostBack)
{

CreateFileList();

CHAPTER 18 ■ FILES AND STREAMS622

8911CH18.qxd 9/24/07 2:58 PM Page 622

}
}

private void CreateFileList()
{

// Retrieve the list of files, and display it in the page.
// This code also disables the delete button, ensuring the
// user must view the file information before deleting it.
string[] fileList = Directory.GetFiles(ftpDirectory);
lstFiles.DataSource = fileList;
lstFiles.DataBind();
lblFileInfo.Text = "";
cmdDelete.Enabled = false;

}

protected void cmdRefresh_Click(Object sender, EventArgs e)
{

CreateFileList();
}

protected void lstFiles_SelectedIndexChanged(Object sender,
EventArgs e)

{
// Display the selected file information.
// Use the StringBuilder for the fastest way to build the string.
System.Text.StringBuilder displayText = new System.Text.StringBuilder();
string fileName = lstFiles.SelectedItem.Text;
displayText.Append("");
displayText.Append(fileName);
displayText.Append("

");
displayText.Append("Created: ");
displayText.Append(File.GetCreationTime(fileName).ToString());
displayText.Append("
Last Accessed: ");
displayText.Append(File.GetLastAccessTime(fileName).ToString());
displayText.Append("
");

// Show attribute information. GetAttributes() can return a combination
// of enumerated values, so you need to evaluate it with the
// bitwise and (&) operator.
FileAttributes attributes = File.GetAttributes(fileName);
if ((attributes & FileAttributes.Hidden) == FileAttributes.Hidden)
{

displayText.Append("This is a hidden file.
");
}
if ((attributes & FileAttributes.ReadOnly) == FileAttributes.ReadOnly)
{

displayText.Append("This is a read-only file.
");

CHAPTER 18 ■ FILES AND STREAMS 623

8911CH18.qxd 9/24/07 2:58 PM Page 623

cmdDelete.Enabled = false;
}
else
{

cmdDelete.Enabled = true;
}

// Show the generated text in a label.
lblFileInfo.Text = displayText.ToString();

}

protected void cmdDelete_Click(Object sender, EventArgs e)
{

File.Delete(lstFiles.SelectedItem.Text);
CreateFileList();

}
}

Dissecting the Code . . .

• Every time the page loads, it sets the ftpDirectory string. The path is set to the FTP
subfolder in the current web application directory (which is provided by the
Request.PhysicalApplicationPath property). These two details (the current web applica-
tion directory and the FTP subfolder) are fused together into one path string using the
Combine() method of the Path class.

• The CreateFileList() procedure is easy to code, because it uses the data-binding feature
of the ListBox. The array returned from the GetFiles() method can be placed in the list
with just a couple of lines of code.

• The AutoPostBack property of the ListBox is set to true. That way, when the user
chooses an item in the list, the ListBox posts the page back immediately so the code
can read the file information and refresh the file details on the page.

• When evaluating the FileAttributes enumeration, you need to use the & operator to per-
form bitwise arithmetic. This is because the value returned from GetAttributes() can
actually contain a combination of more than one attribute. Using bitwise arithmetic,
you can pull out just the attribute that you’re interested in, and then determine whether
it’s set.

• The code that gets the file information builds a long string of text, which is then
displayed in a label. For optimum performance, this code uses the
System.Text.StringBuilder class. Without the StringBuilder, you’d need to use string
concatenation to join the string together. This is much slower, because every time the
code adds a piece of text to the string, .NET creates an entirely new string object
behind the scenes.

CHAPTER 18 ■ FILES AND STREAMS624

8911CH18.qxd 9/24/07 2:58 PM Page 624

• The code that displays file information could benefit by switching to the FileInfo class
(as shown in the next section). As it is, every method needs to specify the same file
name. This is a bit tedious, and it’s a bit slower because each method requires a sepa-
rate security check.

One ingredient this code lacks is error handling. When using any external resource,
including files, it’s essential that you defend yourself with a try/catch block. This way you can
deal with unpredictable occurrences that are beyond your control—for example, if the file isn’t
accessible because it’s already open in another program, or the account running the code
doesn’t have the required permissions. The code in this example is easy to correct—simply
wrap all the file operations into a try/catch block. (You’ll need three—one for the code that
reads the files in the current directory, one for the code that retrieves the information from the
selected file, and one for the code that deletes the file.) To see the code with the added error-
handling logic, refer to the downloadable samples for this chapter.

FILE PERMISSIONS

When you’re testing your application in Visual Studio, you’re unlikely to run into file permission errors.
However, when you deploy your application, life gets more complicated. As you learned in Chapter 9, in a
deployed website ASP.NET runs under an account with carefully limited privileges. If you’re using IIS 5.1, this
is the ASPNET account. Otherwise, it’s the network service account, which is a member of the IIS_WPG group
(in IIS 6) or the IIS_USERS group (in IIS 7).

If you attempt to access a file using an account that doesn’t have the required permissions, you’ll
receive a SecurityException. To solve problems like these, you can modify the permissions for a file or an
entire directory. To do so, right-click the file or directory, select Properties, and choose the Security tab. Here
you can add or remove users and groups and configure what operations they’re allowed to do. Alternatively,
you might find it easier to modify the account ASP.NET uses or change its group membership. For more infor-
mation, refer to Chapter 9.

The DirectoryInfo and FileInfo Classes
The DirectoryInfo and FileInfo classes mirror the functionality in the Directory and File
classes. In addition, they make it easy to walk through directory and file relationships. For
example, you can easily retrieve the FileInfo objects for the files in a directory represented by
a DirectoryInfo object.

Note that while the Directory and File classes expose only methods, DirectoryInfo and
FileInfo provide a combination of properties and methods. For example, while the File class
had separate GetAttributes() and SetAttributes() methods, the FileInfo class includes an
Attributes property.

Another nice thing about the DirectoryInfo and FileInfo classes is that they share a com-
mon set of properties and methods because they derive from the common FileSystemInfo
base class. Table 18-4 describes the members they have in common.

CHAPTER 18 ■ FILES AND STREAMS 625

8911CH18.qxd 9/24/07 2:58 PM Page 625

Table 18-4. DirectoryInfo and FileInfo Members

Member Description

Attributes Allows you to retrieve or set attributes using a combination of
values from the FileAttributes enumeration.

CreationTime, LastAccessTime, Allows you to set or retrieve the creation time, last-access
and LastWriteTime time, and last-write time using a DateTime object.

Exists Returns true or false depending on whether the file or
directory exists. In other words, you can create FileInfo and
DirectoryInfo objects that don’t actually correspond to current
physical directories, although you obviously won’t be able to
use properties such as CreationTime and methods such as
MoveTo().

FullName, Name, Returns a string that represents the fully qualified name, the
and Extension directory or file name (with extension), or the extension on its

own, depending on which property you use.

Delete() Removes the file or directory, if it exists. When deleting a
directory, it must be empty, or you must specify an optional
parameter set to true.

Refresh() Updates the object so it’s synchronized with any file system
changes that have happened in the meantime (for example, if
an attribute was changed manually using Windows Explorer).

Create() Creates the specified directory or file.

MoveTo() Copies the directory and its contents or the file. For a
DirectoryInfo object, you need to specify the new path;
for a FileInfo object, you specify a path and file name.

In addition, the FileInfo and DirectoryInfo classes have a few unique members, as indi-
cated in Table 18-5 and Table 18-6.

Table 18-5. Unique DirectoryInfo Members

Member Description

Parent and Root Returns a DirectoryInfo object that represents the parent or root
directory.

CreateSubdirectory() Creates a directory with the specified name in the directory represented
by the DirectoryInfo object. It also returns a new DirectoryInfo object
that represents the subdirectory.

GetDirectories() Returns an array of DirectoryInfo objects that represent all the sub-
directories contained in this directory.

GetFiles() Returns an array of FileInfo objects that represent all the files contained
in this directory.

CHAPTER 18 ■ FILES AND STREAMS626

8911CH18.qxd 9/24/07 2:58 PM Page 626

Table 18-6. Unique FileInfo Members

Member Description

Directory Returns a DirectoryInfo object that represents the parent directory.

DirectoryName Returns a string that identifies the name of the parent directory.

Length Returns a Long (64-bit integer) with the file size in bytes.

CopyTo() Copies a file to the new path and file name specified as a parameter. It also
returns a new FileInfo object that represents the new (copied) file. You can
supply an optional additional parameter of true to allow overwriting.

When you create a DirectoryInfo or FileInfo object, you specify the full path in the con-
structor:

DirectoryInfo myDirectory = new DirectoryInfo(@"c:\Temp");
FileInfo myFile = new FileInfo(@"c:\Temp\readme.txt");

This path may or may not correspond to a real physical file or directory. If it doesn’t, you
can always use the Create() method to create the corresponding file or directory:

// Define the new directory and file.
DirectoryInfo myDirectory = new DirectoryInfo(@"c:\Temp\Test");
FileInfo myFile = new FileInfo(@"c:\Temp\Test\readme.txt");

// Now create them. Order here is important.
// You can't create a file in a directory that doesn't exist yet.
myDirectory.Create();
myFile.Create();

The DriveInfo Class
The DriveInfo class allows you to retrieve information about a drive on your computer. Just a
few pieces of information will interest you. Typically, the DriveInfo class is merely used to
retrieve the total amount of used and free space.

Table 18-7 shows the DriveInfo members. Unlike the FileInfo and DriveInfo classes,
there’s no Drive class with instance versions of these methods.

Table 18-7. DriveInfo Members

Member Description

TotalSize Gets the total size of the drive, in bytes. This includes allocated and free
space.

TotalFreeSpace Gets the total amount of free space, in bytes.

AvailableFreeSpace Gets the total amount of available free space, in bytes. Available space may
be less than the total free space if you’ve applied disk quotas limiting the
space the ASP.NET process can use.

Continued

CHAPTER 18 ■ FILES AND STREAMS 627

8911CH18.qxd 9/24/07 2:58 PM Page 627

Table 18-7. Continued

Member Description

DriveFormat Returns the name of the file system used on the drive (such as NTFS or
FAT32).

DriveType Returns a value from the DriveType enumeration, which indicates
whether the drive is a Fixed, Network, CDRom, Ram, or Removable
drive (or Unknown if the drive’s type cannot be determined).

IsReady Returns whether the drive is ready for reading or writing operations.
Removable drives are considered “not ready” if they don’t have any media.
For example, if there’s no CD in a CD drive, IsReady will return false. In
this situation, it’s not safe to query the other DriveInfo properties. Fixed
drives are always readable.

Name Returns the drive letter name of the drive (such as c: or e:).

VolumeLabel Gets or sets the descriptive volume label for the drive. In an NTFS-
formatted drive, the volume label can be up to 32 characters. If not set,
this property returns a null reference (Nothing).

RootDirectory Returns a DirectoryInfo object for the root directory in this drive.

GetDrives() Retrieves an array of DriveInfo objects, representing all the logical drives
on the current computer.

■Tip Attempting to read from a drive that’s not ready (for example, a CD drive that doesn’t have a CD in it)
will throw an exception. To avoid this problem, check the DriveInfo.IsReady property, and attempt to read
other properties only if it returns true.

A Sample File Browser
You can use methods such as DirectoryInfo.GetFiles() and DirectoryInfo.GetDirectories() to
create a simple file browser. The following example shows you how. Be warned that, although
this code is a good example of how to use the DirectoryInfo and FileInfo classes, it isn’t a good
example of security. Generally, you wouldn’t want a user to be able to find out so much infor-
mation about the files on your web server.

The sample file browser program allows the user to see information about any file in any
directory in the current drive, as shown in Figure 18-2.

CHAPTER 18 ■ FILES AND STREAMS628

8911CH18.qxd 9/24/07 2:58 PM Page 628

Figure 18-2. A web server file browser

The code for the file browser page is as follows:
public partial class FileBrowser : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

if (!this.IsPostBack)
{

string startingDir = @"c:\";
lblCurrentDir.Text = startingDir;
ShowFilesIn(startingDir);
ShowDirectoriesIn(startingDir);

}
}

private void ShowFilesIn(string dir)
{

lstFiles.Items.Clear();
try

CHAPTER 18 ■ FILES AND STREAMS 629

8911CH18.qxd 9/24/07 2:58 PM Page 629

{
DirectoryInfo dirInfo = new DirectoryInfo(dir);
foreach (FileInfo fileItem in dirInfo.GetFiles())
{

lstFiles.Items.Add(fileItem.Name);
}

}
catch (Exception err)
{

// Ignore the error and leave the list box empty.
}

}

private void ShowDirectoriesIn(string dir)
{

lstDirs.Items.Clear();
try
{

DirectoryInfo dirInfo = new DirectoryInfo(dir);
foreach (DirectoryInfo dirItem in dirInfo.GetDirectories())
{

lstDirs.Items.Add(dirItem.Name);
}

}
catch (Exception err)
{

// Ignore the error and leave the list box empty.
}

}

protected void cmdBrowse_Click(Object sender, EventArgs e)
{

// Browse to the currently selected subdirectory.
if (lstDirs.SelectedIndex != -1)
{

string newDir = Path.Combine(lblCurrentDir.Text,
lstDirs.SelectedItem.Text);

lblCurrentDir.Text = newDir;
ShowFilesIn(newDir);
ShowDirectoriesIn(newDir);

}
}

protected void cmdParent_Click(object sender, EventArgs e)
{

// Browse up to the current directory's parent.
// The Directory.GetParent() method helps us out.

CHAPTER 18 ■ FILES AND STREAMS630

8911CH18.qxd 9/24/07 2:58 PM Page 630

if (Directory.GetParent(lblCurrentDir.Text) == null)
{

// This is the root directory; there are no more levels.
}
else
{

string newDir = Directory.GetParent(lblCurrentDir.Text).FullName;
lblCurrentDir.Text = newDir;
ShowFilesIn(newDir);
ShowDirectoriesIn(newDir);

}
}

protected void cmdShowInfo_Click(object sender, EventArgs e)
{

// Show information for the currently selected file.
if (lstFiles.SelectedIndex != -1)
{

string fileName = Path.Combine(lblCurrentDir.Text,
lstFiles.SelectedItem.Text);

StringBuilder displayText = new StringBuilder();
try
{

FileInfo selectedFile = new FileInfo(fileName);
displayText.Append("");
displayText.Append(selectedFile.Name);
displayText.Append("
Size: ");
displayText.Append(selectedFile.Length);
displayText.Append("
");
displayText.Append("Created: ");
displayText.Append(selectedFile.CreationTime.ToString());
displayText.Append("
Last Accessed: ");
displayText.Append(selectedFile.LastAccessTime.ToString());

}
catch (Exception err)
{

displayText.Append(err.Message);
}

lblFileInfo.Text = displayText.ToString();
}

}
}

CHAPTER 18 ■ FILES AND STREAMS 631

8911CH18.qxd 9/24/07 2:58 PM Page 631

Dissecting the Code . . .

• The list controls in this example don’t post back immediately. Instead, the web page
relies on the Browse to Selected, Up One Level, and Show Info buttons.

• By default, directory names don’t end with a trailing backslash (\) character (for exam-
ple, c:\Temp is used instead of c:\Temp\). However, when referring to the root drive, a
slash is required. This is because of an interesting inconsistency that dates back to the
days of DOS. When using directory names, c:\ refers to the root drive, but c: refers to
the current directory, whatever it may be. This quirk can cause problems when you’re
manipulating strings that contain file names, because you don’t want to add an extra
trailing slash to a path (as in the invalid path c:\\myfile.txt). To solve this problem, the
page uses the Combine() method of the Path class. This method correctly joins any file
and path name together, adding the \ when required.

• The code includes all the necessary error-handling code. If you attempt to read the
information for a file that you aren’t permitted to examine, the error message is
displayed instead of the file details section. If an error occurs when calling
DirectoryInfo.GetFiles() or DirectoryInfo.GetDirectories(), the error is simply ignored
and the files or subdirectories aren’t shown. This error occurs if the account that’s
running your code doesn’t have permission to read the contents of the directory. For
example, this occurs if you try to access the c:\System Volume Information directory
in Windows.

• The ShowFilesIn() and ShowDirectoriesIn() methods loop through the file and directory
collections to build the lists. Another approach is to use data binding instead, as shown
in the following code sample:

// Another way to fill lstFiles.
DirectoryInfo dirInfo = new DirectoryInfo(dir);

lstFiles.DataSource = dirInfo.GetFiles();
lstFiles.DataMember = "Name";
lstFiles.DataBind();

Just remember that when you bind a collection of objects, you need to specify which
property will be used for the list. In this case, it’s the DirectoryInfo.Name or
FileInfo.Name property.

Reading and Writing with Streams
The .NET Framework makes it easy to create simple “flat” files in text or binary format. Unlike
a database, these files don’t have any internal structure (that’s why they’re called flat). Instead,
these files are really just a list of whatever information you want to store.

Text Files
You can write to a file and read from a file using a StreamWriter and a StreamReader—
dedicated classes that abstract away the process of file interaction. There really isn’t much to

CHAPTER 18 ■ FILES AND STREAMS632

8911CH18.qxd 9/24/07 2:58 PM Page 632

it. You can create the StreamWriter and StreamReader classes on your own, or you can use one
of the helpful static methods included in the File class, such as CreateText() or OpenText().

Here’s an example that gets a StreamWriter for writing data to the file c:\myfile.txt:

// Define a StreamWriter (which is designed for writing text files).
StreamWriter w;

// Create the file, and get a StreamWriter for it.
w = File.CreateText(@"c:\myfile.txt");

When you call the CreateText() method, you create the file and receive the StreamWriter
object. At this point, the file is open and ready to receive your content. You need to write your
data to the file, and then close it as soon as possible.

Using the StreamWriter, you can call the WriteLine() method to add information to the
file. The WriteLine() method is overloaded so it can write many simple data types, including
strings, integers, and other numbers. These values are essentially all converted into strings
when they’re written to a file and must be converted back into the appropriate types manually
when you read the file.

w.WriteLine("This file generated by ASP.NET"); // Write a string.
w.WriteLine(42); // Write a number.

When you finish with the file, you must make sure to close it. Otherwise, the changes may
not be properly written to disk, and the file could be locked open. At any time, you can also
call the Flush() method to make sure all data is written to disk, as the StreamWriter will per-
form some in-memory caching to optimize performance.

// Tidy up.
w.Flush();
w.Close();

Finally, when you’re debugging an application that writes to files it’s always a good idea to
look at what you wrote using a text editor like Notepad. Figure 18-3 shows the contents that
are created in c:\myfile.txt with the simple code you’ve considered.

Figure 18-3. A sample text file

CHAPTER 18 ■ FILES AND STREAMS 633

8911CH18.qxd 9/24/07 2:58 PM Page 633

To read the information, you use the corresponding StreamReader class. It provides a
ReadLine() method that gets the next available value and returns it as a string. ReadLine()
starts at the first line and advances the position to the end of the file, one line at a time.

StreamReader r = File.OpenText(@"c:\myfile.txt");
string inputString;
inputString = r.ReadLine(); // = "This file generated by ASP.NET"
inputString = r.ReadLine(); // = "42"

ReadLine() returns a null reference when there is no more data in the file. This means you
can read all the data in a file using code like this:

// Read and display the lines from the file until the end
// of the file is reached.
string line;
do
{

line = r.ReadLine();
if (line != null)
{

// (Process the line here.)
}

} while (line != null);

As when writing to a file, you must close the file once you’re finished:

r.Close();

The code you’ve seen so far opens a file in single-user mode. If a second user tries to
access the same file at the same time, an exception will occur. You can reduce this problem
when opening files using the more generic four-parameter version of the File.Open() method
instead of File.OpenText(). You must specify FileShare.Read for the final parameter. Unlike the
OpenText() method, the Open() method returns a FileStream object, and you must manually
create a StreamReader that wraps it.

Here’s the code you need to create a multiuser-friendly StreamReader:

FileStream fs = File.Open(@"c:\myfile.txt", FileMode.Open, FileAccess.Read,
FileShare.Read);

StreamReader r = new StreamReader(fs);

■Tip In Chapter 7, you saw how you can create a cookie for the current user, which can be persisted to
disk as a simple text file. This is a common technique for storing information in a web application, but it’s
quite a bit different from the file access code you’ve seen in this chapter. Cookies are created on the client
side rather than on the server. This means your ASP.NET code may be able to use them on subsequent
requests from the same user, but they aren’t suitable when storing information you need to review later,
information that’s more permanent, or information that affects more than one user.

CHAPTER 18 ■ FILES AND STREAMS634

8911CH18.qxd 9/24/07 2:58 PM Page 634

Binary Files
You can also read and write to binary files. Binary data uses space more efficiently but also
creates files that aren’t human-readable. If you open a file in Notepad, you’ll see a lot of
extended ASCII characters (politely known as gibberish).

To open a file for binary writing, you need to create a new BinaryWriter object. The con-
structor accepts a stream, which you can retrieve using the File.OpenWrite() method. Here’s
the code to open the file c:\binaryfile.bin for binary writing:

BinaryWriter w = new BinaryWriter(File.OpenWrite(@"c:\binaryfile.bin"));

.NET concentrates on stream objects, rather than the source or destination for the data.
This means you can write binary data to any type of stream, whether it represents a file or
some other type of storage location, using the same code. In addition, writing to a binary file
is almost the same as writing to a text file.

string str = "ASP.NET Binary File Test";
int integer = 42;
w.Write(str);
w.Write(integer);
w.Flush();
w.Close();

Reading data from a binary file is easy, but not quite as easy as reading data from a text
file. The problem is that you need to know the data type of the data you want to retrieve. To
retrieve a string, you use the ReadString() method. To retrieve an integer, you must use
ReadInt32(). That’s why the preceding code example writes variables instead of literal values.
If the value 42 were hard-coded as the parameter for the Write() method, it wouldn’t be clear
if the value would be written as a 16-bit integer, 32-bit integer, decimal, or something else.
Unfortunately, you may need to micromanage binary files in this way to prevent errors.

BinaryReader r = new BinaryReader(File.OpenRead(@"c:\binaryfile.bin"));
string str;
int integer;
str = r.ReadString();
integer = r.ReadInt32();

r.Close();

Once again, if you want to use file sharing, you need to use File.Open() instead of
File.OpenRead(). You can then create a BinaryReader by hand, as shown here:

FileStream fs = File.Open(@"c:\binaryfile.bin", FileMode.Open,
FileAccess.Read, FileShare.Read);

BinaryReader r = new BinaryReader(fs);

CHAPTER 18 ■ FILES AND STREAMS 635

8911CH18.qxd 9/24/07 2:58 PM Page 635

■Note You have no easy way to jump to a location in a text or binary file without reading through all the
information in order. Although you can use methods such as Seek() on the underlying stream, you need to
specify an offset in bytes, which involves some fairly involved calculations based on data type sizes. If you
need to store a large amount of information and move through it quickly, you need a dedicated database, not
a binary file.

Shortcuts for Reading and Writing Files
.NET includes functionality for turbo-charging your file writing and reading. This functionality
comes from several static methods in the File class that let you read or write an entire file in a
single line of code.

For example, here’s a quick code snippet that writes a three-line file and then retrieves it
into a single string:

string[] lines = new string[]{"This is the first line of the file.",
"This is the second line of the file.",
"This is the third line of the file."};

// Write the file in one shot.
File.WriteAllLines(@"c:\testfile.txt", lines);

// Read the file in one shot (into a variable named content).
string content = File.ReadAllLines(@"c:\testfile.txt");

Table 18-8 describes the full set of quick file access methods. All of these are static
methods.

Table 18-8. File Methods for Quick Input/Output

Method Description

ReadAllText() Reads the entire contents of a file and returns it as a single string.

ReadAllLines() Reads the entire contents of a file and returns it as an array of strings, one for
each line.

ReadAllBytes() Reads the entire file and returns its contents as an array of bytes.

WriteAllText() Creates a file, writes a supplied string to the file, and closes it. If the file already
exists, it is overwritten.

WriteAllLines() Creates a file, writes a supplied array of strings to the file (separating each
line with a hard return), and closes the file. If the file already exists, it is
overwritten.

WriteAllBytes() Creates a file, writes a supplied byte array to the file, and closes it. If the file
already exists, it is overwritten.

CHAPTER 18 ■ FILES AND STREAMS636

8911CH18.qxd 9/24/07 2:58 PM Page 636

The quick file access methods are certainly convenient for creating small files. They also
ensure a file is kept only for as short a time as possible, which is always the best approach to
minimize concurrency problems. But are they really practical? It all depends on the size of the
file. If you have a large file (say, one that’s several megabytes), reading the entire content into
memory at once is a terrible idea. It’s much better to read one piece of data at a time and
process the information bit by bit. Even if you’re dealing with medium-sized files (say, several
hundreds of kilobytes), you might want to steer clear of the quick file access methods. That’s
because in a popular website you might have multiple requests dealing with files at the same
time, and the combined overhead of keeping every user’s file data in memory might reduce
the performance of your application.

A Simple Guest Book
The next example demonstrates the file access techniques described in the previous sections
to create a simple guest book. The page actually has two parts. If there are no current guest
entries, the client will see only the controls for adding a new entry, as shown in Figure 18-4.

Figure 18-4. The initial guest book page

When the user clicks Submit, a file will be created for the new guest book entry. As long as
at least one guest book entry exists, a GridView control will appear at the top of the page, as
shown in Figure 18-5.

CHAPTER 18 ■ FILES AND STREAMS 637

8911CH18.qxd 9/24/07 2:58 PM Page 637

Figure 18-5. The full guest book page

The GridView that represents the guest book is constructed using data binding, which
you explored in Chapters 16 and 17. Technically speaking, the GridView is bound to a collec-
tion that contains instances of the BookEntry class. The BookEntry class definition is included
in the code-behind file for the web page and looks like this:

public class BookEntry
{

private string author;
public string Author
{

get { return author; }
set { author = value; }

}

private DateTime submitted;
public DateTime Submitted
{

get { return submitted; }
set { submitted = value; }

}

CHAPTER 18 ■ FILES AND STREAMS638

8911CH18.qxd 9/24/07 2:58 PM Page 638

private string message;
public string Message
{

get { return message; }
set { message = value; }

}
}

The GridView uses a single template column, which fishes out the values it needs to dis-
play. Here’s what it looks like (without the style details):

<asp:GridView ID="GuestBookList" runat="server" AutoGenerateColumns="False">
<Columns>

<asp:TemplateField HeaderText="Guest Book Comments">
<ItemTemplate>
Left By:
<%# Eval("Author") %>

<%# Eval("Message") %>

Left On:
<%# Eval("Submitted") %>

</ItemTemplate>
</asp:TemplateField>

</Columns>
</asp:GridView>

It also adds some style information that isn’t included here (because it isn’t necessary to
understand the logic of the program). In fact, these styles were applied in Visual Studio using
the GridView’s Auto Format feature.

As for the entries, the guest book page uses a special directory (GuestBook) to store a col-
lection of files. Each file represents a separate entry in the guest book. A better approach
would usually be to create a GuestBook table in a database and make each entry a separate
record.

The code for the web page is as follows:

public partial class GuestBook : System.Web.UI.Page
{

private string guestBookName;
protected void Page_Load(Object sender, EventArgs e)
{

guestBookName = Server.MapPath("GuestBook");
if (!this.IsPostBack)
{

GuestBookList.DataSource = GetAllEntries();
GuestBookList.DataBind();

}
}

CHAPTER 18 ■ FILES AND STREAMS 639

8911CH18.qxd 9/24/07 2:58 PM Page 639

protected void cmdSubmit_Click(Object sender, EventArgs e)
{

// Create a new BookEntry object.
BookEntry newEntry = new BookEntry();
newEntry.Author = txtName.Text;
newEntry.Submitted = DateTime.Now;
newEntry.Message = txtMessage.Text;

// Let the SaveEntry procedure create the corresponding file.
try
{

SaveEntry(newEntry);
}
catch (Exception err)
{

// An error occurred. Notify the user and don't clear the
// display.
lblError.Text = err.Message + " File not saved.";
return;

}

// Refresh the display.
GuestBookList.DataSource = GetAllEntries();
GuestBookList.DataBind();
txtName.Text = "";
txtMessage.Text = "";

}

private List<BookEntry> GetAllEntries()
{

// Return an ArrayList that contains BookEntry objects
// for each file in the GuestBook directory.
// This method relies on the GetEntryFromFile() method.
List<BookEntry> entries = new List<BookEntry>();

try
{

DirectoryInfo guestBookDir = new DirectoryInfo(guestBookName);
foreach (FileInfo fileItem in guestBookDir.GetFiles())
{

try
{

entries.Add(GetEntryFromFile(fileItem));
}
catch (Exception err)

CHAPTER 18 ■ FILES AND STREAMS640

8911CH18.qxd 9/24/07 2:58 PM Page 640

{
// An error occurred when calling GetEntryFromFile().
// Ignore this file because it can't be read.

}
}

}
catch (Exception err)
{

// An error occurred when calling GetFiles().
// Ignore this error and leave the entries collection empty.

}
return entries;

}

private BookEntry GetEntryFromFile(FileInfo entryFile)
{

// Turn the file information into a Book Entry object.
BookEntry newEntry = new BookEntry();
StreamReader r = entryFile.OpenText();
newEntry.Author = r.ReadLine();
newEntry.Submitted = DateTime.Parse(r.ReadLine());
newEntry.Message = r.ReadLine();
r.Close();
return newEntry;

}

private void SaveEntry(BookEntry entry)
{

// Create a new file for this entry, with a file name that should
// be statistically unique.
Random random = new Random();
string fileName = guestBookName + @"\";
fileName += DateTime.Now.Ticks.ToString() + random.Next(100).ToString();
FileInfo newFile = new FileInfo(fileName);
StreamWriter w = newFile.CreateText();

// Write the information to the file.
w.WriteLine(entry.Author);
w.WriteLine(entry.Submitted.ToString());
w.WriteLine(entry.Message);
w.Flush();
w.Close();

}
}

CHAPTER 18 ■ FILES AND STREAMS 641

8911CH18.qxd 9/24/07 2:58 PM Page 641

Dissecting the Code . . .

• The code uses text files so you can easily review the information on your own with
Notepad. You could use binary files just as easily, which would save a small amount of
space.

• The file name for each entry is generated using a combination of the current date and
time (in ticks) and a random number. Practically speaking, this makes it impossible for
a file to be generated with a duplicate file name.

• This program uses error handling to defend against possible problems. However, errors
are handled in a different way depending on when they occur. If an error occurs when
saving a new entry in the cmdSubmit_Click() method, the user is alerted to the prob-
lem, but the display is not updated. Instead, the user-supplied information is left in the
controls so the save operation can be reattempted. When reading the existing files in
the cmdGetAllEntries_Click() method, two problems can occur, and they’re dealt with
using separate exception blocks. A problem can happen when the code calls GetFiles()
to retrieve the file list. In this situation, the problem is ignored but no files are found,
and so no guest book entries are shown. If this step succeeds, a problem can still occur
when reading each file in the GetEntryFromFile() method. In this situation, the file that
caused the problem is ignored, but the code continues and attempts to read the
remaining files.

■Note The error-handling code in this example does a good job of recovering from the brink of disaster
and allowing the user to keep working, when it’s possible. However, the error-handling code might not do
enough to alert you that there’s a problem. If the problem is a freak occurrence, this behavior is fine. But if
the problem is a symptom of a deeper issue in your web application, you should know about it.

To make sure that problems aren’t overlooked, you might choose to show an error message on the
page when an exception occurs. Even better, your code could quietly create an entry in the event log that
records the problem (as explained in Chapter 8). That way, you can find out about the problems that have
occurred and correct them later.

• Careful design makes sure this program isolates file writing and reading code in sepa-
rate functions, such as SaveEntry(), GetAllEntries(), and GetEntryFromFile(). For even
better organization, you could move these routines in a separate class or even a sepa-
rate component. This would allow you to use the ObjectDataSource to reduce your data
binding code. For more information, read Chapter 23.

Allowing File Uploads
Although you’ve seen detailed examples of how to work with files and directories on the web
server, you haven’t yet considered the question of how to allow file uploads. The problem with

CHAPTER 18 ■ FILES AND STREAMS642

8911CH18.qxd 9/24/07 2:58 PM Page 642

file uploading is that you need some way to retrieve information from the client—and as you
already know, all ASP.NET code executes on the server.

The FileUpload Control
Fortunately, ASP.NET includes a control that allows website users to upload files to the web
server. Once the web server receives the posted file data, it’s up to your application to examine
it, ignore it, or save it to a back-end database or a file on the web server. The FileUpload con-
trol does this work, and it represents the <input type="file"> HTML tag.

Declaring the FileUpload control is easy. It doesn’t expose any new properties or events
you can use through the control tag:

<asp:FileUpload ID="Uploader" runat="server" />

The <input type="file"> tag doesn’t give you much choice as far as user interface is con-
cerned (it’s limited to a text box that contains a file name and a Browse button). When the user
clicks Browse, the browser presents an Open dialog box and allows the user to choose a file.
This part is hard-wired into the browser, and you can’t change this behavior. Once the user
selects a file, the file name is filled into the corresponding text box. However, the file isn’t
uploaded yet—that happens later, when the page is posted back. At this point, all the data
from all input controls (including the file data) is sent to the server. For that reason, it’s com-
mon to add a button to post back the page.

To get information about the posted file content, you can access the FileUpload.PostedFile
object. You can save the content by calling the PostedFile.SaveAs() method:

Uploader.PostedFile.SaveAs(@"c:\Uploads\newfile");

Figure 18-6 shows a complete web page that demonstrates how to upload a user-specified
file. This example introduces a twist—it allows the upload of only those files with the exten-
sions .bmp, .gif, and .jpg.

Figure 18-6. A simple file uploader

CHAPTER 18 ■ FILES AND STREAMS 643

8911CH18.qxd 9/24/07 2:58 PM Page 643

Here’s the code for the upload page:

public partial class UploadFile : System.Web.UI.Page
{

private string uploadDirectory;

protected void Page_Load(object sender, EventArgs e)
{

// Place files in a website subfolder named Uploads.
uploadDirectory = Path.Combine(
Request.PhysicalApplicationPath, "Uploads");

}

protected void cmdUpload_Click(object sender, EventArgs e)
{

// Check that a file is actually being submitted.
if (Uploader.PostedFile.FileName == "")
{

lblInfo.Text = "No file specified.";
}
else
{

// Check the extension.
string extension = Path.GetExtension(Uploader.PostedFile.FileName);

switch (extension.ToLower())
{

case ".bmp":
case ".gif":
case ".jpg":

break;
default:

lblInfo.Text = "This file type is not allowed.";
return;

}

// Using this code, the saved file will retain its original
// file name when it's placed on the server.
string serverFileName = Path.GetFileName(
Uploader.PostedFile.FileName);

string fullUploadPath = Path.Combine(uploadDirectory,
serverFileName);

try
{

Uploader.PostedFile.SaveAs(fullUploadPath);
lblInfo.Text = "File " + serverFileName;
lblInfo.Text += " uploaded successfully to";

CHAPTER 18 ■ FILES AND STREAMS644

8911CH18.qxd 9/24/07 2:58 PM Page 644

lblInfo.Text += fullUploadPath;
}
catch (Exception err)
{

lblInfo.Text = err.Message;
}

}
}

}

Dissecting the Code . . .

• The saved file keeps its original (client-side) name. The code uses the Path.GetFileName()
static method to transform the fully qualified name provided by FileUpload.Posted-
File.FileName and retrieve just the file, without the path.

• The FileUpload.PostedFile object contains only a few properties. One interesting prop-
erty is ContentLength, which returns the size of the file in bytes. You could examine this
setting and use it to prevent a user from uploading excessively large files.

THE MAXIMUM SIZE OF A FILE UPLOAD

By default, ASP.NET will reject a request that’s larger than 4MB. However, you can alter this maximum by
modifying the maxRequestLength setting in the web.config file. This sets the largest allowed file in kilobytes.
The web server will refuse to process larger requests.

The following sample setting configures the server to accept files up to 8MB:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<!-- Other settings omitted for clarity. -->
<httpRuntime maxRequestLength="8192"
/>

</system.web>
</configuration>

Be careful, though. When you allow an 8MB upload, your code won’t run until that full request has been
received. This means a malicious server could cripple your server by sending large request messages to your
application. Even if your application ultimately rejects these messages, the ASP.NET worker process threads
will still be tied up waiting for the requests to complete. This type of attack is called a denial-of-service
attack, and the larger your allowed request size is, the more susceptible your website becomes.

CHAPTER 18 ■ FILES AND STREAMS 645

8911CH18.qxd 9/24/07 2:58 PM Page 645

The Last Word
Although databases and websites make a perfect fit, nothing is preventing you from using the
classes in the .NET Framework to access other types of data, including files. In fact, the code
you use to interact with the file system is the same as what you would use in a desktop appli-
cation or any .NET program. Thanks to the .NET Framework, you can finally solve common
programming problems in the same way, regardless of the type of application you’re creating.

CHAPTER 18 ■ FILES AND STREAMS646

8911CH18.qxd 9/24/07 2:58 PM Page 646

XML

XML is woven right into the fabric of .NET, and it powers key parts of ASP.NET. In this chap-
ter, you’ll learn why XML comes into play in every ASP.NET web application—whether you
realize it or not.

You’ll also learn how you can create and read XML documents on your own by using the
classes of the .NET library. Along the way, you’ll sort through some of the near-hysteric XML
hype and consider what practical role XML can play in a web application. You may find that
ASP.NET’s built-in XML support is all you need and decide you don’t want to manually create
and manipulate XML data. On the other hand, you might want to use the XML classes to read
data created by other applications, or just as a convenient replacement for simple text files.
But before you can get into the details of XML processing, you need to know the ground rules
of the XML standard. This chapter starts with a whirlwind introduction to XML that explains
how it works and why it exists.

XML’s Hidden Role in .NET
The most useful place for XML isn’t in your web applications but in the infrastructure that
supports them. Microsoft has taken this philosophy to heart with ASP.NET. ASP.NET uses XML
quietly behind the scenes to accomplish a wide range of tasks. If you don’t know much about
XML yet, the first thing you should realize is that you’re already using it.

Configuration Files
ASP.NET stores settings in a human-readable XML format using configuration files such as
machine.config and web.config, which were first introduced in Chapter 6. Arguably, a plain-
text file could be just as efficient. However, that would force the designers of the ASP.NET
platform to create their own proprietary format, which developers would then need to learn.
XML provides an all-purpose syntax for storing any data in a customized yet consistent and
standardized way using tags. Anyone who understands XML will immediately understand how
the ASP.NET configuration files are organized.

XHTML
As you learned in Chapter 4, ASP.NET web controls use XHTML rendering. XHTML is a stricter
version of HTML that’s based on the XML standard. Thus, when you craft the markup for a
web page, you’re actually using XML.

647

C H A P T E R 1 9

8911CH19.qxd 9/24/07 3:11 PM Page 647

ADO.NET Data Access
The ADO.NET DataSet can represent any data as an XML document, without requiring an
error-prone conversion step. This has a number of interesting consequences. For example, it
allows you to easily save the information you’ve retrieved from the database in an XML file so
you can retrieve it for later use. This feature is particularly useful for client applications that
aren’t always connected to the network, but you may choose to use it occasionally in a web
application.

Anywhere Miscellaneous Data Is Stored
Just when you think you’ve identified everywhere XML markup is used, you’ll find it appearing
somewhere new. You’ll find XML when you write an advertisement file that defines the con-
tent for the AdRotator control, when you create an ASP.NET site map, or when you use .NET
serialization to write an object to a file. That these formats use XML probably won’t change the
way they work, but it does open up other possibilities for integrating the data with other appli-
cations and tools. It’s also one more example that the developers of the .NET Framework have
embraced XML in unprecedented ways, abandoning Microsoft’s traditional philosophy of
closed standards and proprietary technologies.

XML Explained
The basic premise of XML is fairly simple, although the possible implementations of it (and
the numerous extensions to it) can get quite complex. XML is designed as an all-purpose for-
mat for organizing data. In many cases, when you decide to use XML, you’re deciding to store
data in a standardized way, rather than creating your own new (and to other developers, unfa-
miliar) format conventions. The actual location of this data—in memory, in a file, in a network
stream—is irrelevant.

The best way to understand the role XML plays is to consider the evolution of a simple file
format without XML. For example, consider a simple program that stores product items as a
list in a file. Say when you first create this program, you decide it will store three pieces of
product information (ID, name, and price), and you’ll use a simple text file format for easy
debugging and testing. The file format you use looks like this:

1
Chair
49.33
2
Car
43399.55
3
Fresh Fruit Basket
49.99

This is the sort of format you might create by using .NET classes such as the StreamWriter.
It’s easy to work with—you just write all the information, in order, from top to bottom. Of
course, it’s a fairly fragile format. If you decide to store an extra piece of information in the file

CHAPTER 19 ■ XML648

8911CH19.qxd 9/24/07 3:11 PM Page 648

(such as a flag that indicates whether an item is available), your old code won’t work. Instead,
you might need to resort to adding a header that indicates the version of the file:

SuperProProductList
Version 2.0
1
Chair
49.33
True
2
Car
43399.55
True
3
Fresh Fruit Basket
49.99
False

Now, you could check the file version when you open it and use different file-reading code
appropriately. Unfortunately, as you add more and more possible versions, the file-reading
code will become incredibly tangled, and you may accidentally break compatibility with one
of the earlier file formats without realizing it. A better approach would be to create a file for-
mat that indicates where every product record starts and stops. Your code would then just set
some appropriate defaults if it finds missing information in an older file format.

Here’s a relatively crude solution that improves the SuperProProductList by adding a spe-
cial sequence of characters (##Start##) to show where each new record begins:

SuperProProductList
Version 3.0
##Start##
1
Chair
49.33
True
##Start##
2
Car
43399.55
True
##Start##
3
Fresh Fruit Basket
49.99
False

All in all, this isn’t a bad effort. Unfortunately, you may as well use the binary file format at
this point—the text file is becoming hard to read, and it’s even harder to guess what piece of
information each value represents. On the code side, you’ll also need some basic error check-
ing abilities of your own. For example, you should make your code able to skip over

CHAPTER 19 ■ XML 649

8911CH19.qxd 9/24/07 3:11 PM Page 649

accidentally entered blank lines, detect a missing ##Start## tag, and so on, just to provide a
basic level of protection.

The central problem with this homegrown solution is that you’re reinventing the wheel.
While you’re trying to write basic file access code and create a reasonably flexible file format
for a simple task, other programmers around the world are creating their own private, ad hoc
solutions. Even if your program works fine and you can understand it, other programmers will
definitely not find it easy.

Improving the List with XML
This is where XML comes into the picture. XML is an all-purpose way to identify any type of
data using elements. These elements use the same sort of format found in an HTML file, but
while HTML elements indicate formatting, XML elements indicate content. (Because an XML
file is just about data, there is no standardized way to display it in a browser, although Internet
Explorer shows a collapsible view that lets you show and hide different portions of the docu-
ment.)

The SuperProProductList could use the following, clearer XML syntax:

<?xml version="1.0"?>
<SuperProProductList>

<Product>
<ID>1</ID>
<Name>Chair</Name>
<Price>49.33</Price>
<Available>True</Available>
<Status>3</Status>

</Product>
<Product>

<ID>2</ID>
<Name>Car</Name>
<Price>43399.55</Price>
<Available>True</Available>
<Status>3</Status>

</Product>
<Product>

<ID>3</ID>
<Name>Fresh Fruit Basket</Name>
<Price>49.99</Price>
<Available>False</Available>
<Status>4</Status>

</Product>
</SuperProProductList>

This format is clearly understandable. Every product item is enclosed in a <Product>
element, and every piece of information has its own element with an appropriate name.
Elements are nested several layers deep to show relationships. Essentially, XML provides the
basic element syntax, and you (the programmer) define the elements you want to use. That’s
why XML is often described as a metalanguage—it’s a language you use to create your own

CHAPTER 19 ■ XML650

8911CH19.qxd 9/24/07 3:11 PM Page 650

language. In the SuperProProductList example, this custom XML language defines elements
such as <Product>, <ID>, <Name>, and so on.

Best of all, when you read this XML document in most programming languages (including
those in the .NET Framework), you can use XML parsers to make your life easier. In other
words, you don’t need to worry about detecting where an element starts and stops, collapsing
whitespace, and so on (although you do need to worry about capitalization, because XML is
case sensitive). Instead, you can just read the file into some helpful XML data objects that
make navigating the entire document much easier.

XML FILES VS. DATABASES

You can perform many tasks with XML—perhaps including some things it was never designed to do. This
book is not intended to teach you XML programming but good ASP.NET application design. For most ASP.NET
programmers, XML file processing is an ideal replacement for custom file access routines and works best in
situations where you need to store a small amount of data for relatively simple tasks.

XML files aren’t a good substitute for a database, because they have the same limitations as any other
type of file access. In a web application, only a single user can update a file at a time without causing serious
headaches, regardless of whether the file contains an XML document or binary content. Database products
provide a far richer set of features for managing multiuser concurrency and providing optimized perform-
ance. Of course, nothing is stopping you from storing XML data in a database, which many database products
actively encourage. In fact, the newest versions of leading database products such as SQL Server and Oracle
even include extended XML features that support some of the standards you’ll see in this chapter.

XML Basics
Part of XML’s popularity is a result of its simplicity. When creating your own XML document,
you need to remember only a few rules:

• XML elements are composed of a start tag (like <Name>) and an end tag (like
</Name>). Content is placed between the start and end tags. If you include a start tag,
you must also include a corresponding end tag. The only other option is to combine the
two by creating an empty element, which includes a forward slash at the end and has
no content (like <Name />). This is similar to the syntax for ASP.NET controls.

• Whitespace between elements is ignored. That means you can freely use tabs and hard
returns to properly align your information.

• You can use only valid characters in the content for an element. You can’t enter special
characters, such as the angle brackets (< >) and the ampersand (&), as content. Instead,
you’ll have to use the entity equivalents (such as < and > for angle brackets, and
& for the ampersand). These equivalents will be automatically converted to the
original characters when you read them into your program with the appropriate .NET
classes.

• XML elements are case sensitive, so <ID> and <id> are completely different elements.

CHAPTER 19 ■ XML 651

8911CH19.qxd 9/24/07 3:11 PM Page 651

• All elements must be nested in a root element. In the SuperProProductList example, the
root element is <SuperProProductList>. As soon as the root element is closed, the docu-
ment is finished, and you cannot add anything else after it. In other words, if you omit
the <SuperProProductList> element and start with a <Product> element, you’ll be able
to enter information for only one product; this is because as soon as you add the clos-
ing </Product>, the document is complete. (HTML has a similar rule and requires that
all page content be nested in a root <html> element, but most browsers let you get
away without following this rule.)

• Every element must be fully enclosed. In other words, when you open a subelement,
you need to close it before you can close the parent. <Product><ID></ID></Product>
is valid, but <Product><ID></Product></ID> isn’t. As a general rule, indent when you
open a new element, because this will allow you to see the document’s structure and
notice if you accidentally close the wrong element first.

• XML documents must start with an XML declaration like <?xml version="1.0"?>. This
signals that the document contains XML and indicates any special text encoding.
However, many XML parsers work fine even if this detail is omitted.

These requirements should sound familiar—they’re the same rules you learned for
XHTML in Chapter 4. After all, XHTML is just another specialized language that’s built using
the standardized rules of XML.

As long as you meet these requirements, your XML document can be parsed and dis-
played as a basic tree. This means your document is well formed, but it doesn’t mean it is
valid. For example, you may still have your elements in the wrong order (for example,
<ID><Product></Product></ID>), or you may have the wrong type of data in a given field (for
example, <ID>Chair</ID><Name>2</Name>). You can impose these additional rules on your
XML documents, as you’ll see later in this chapter when you consider XML schemas.

Elements are the primary units for organizing information in XML (as demonstrated with
the SuperProProductList example), but they aren’t the only option. You can also use attributes.

Attributes
Attributes add extra information to an element. Instead of putting information into a subele-
ment, you can use an attribute. In the XML community, deciding whether to use subelements
or attributes—and what information should go into an attribute—is a matter of great debate,
with no clear consensus.

Here’s the SuperProProductList example with ID and Name attributes instead of ID and
Name subelements:

<?xml version="1.0"?>
<SuperProProductList>

<Product ID="1" Name="Chair">
<Price>49.33</Price>
<Available>True</Available>
<Status>3</Status>

</Product>
<Product ID="2" Name="Car">

<Price>43399.55</Price>

CHAPTER 19 ■ XML652

8911CH19.qxd 9/24/07 3:11 PM Page 652

<Available>True</Available>
<Status>3</Status>

</Product>
<Product ID="3" Name="Fresh Fruit Basket">

<Price>49.99</Price>
<Available>False</Available>
<Status>4</Status>

</Product>
</SuperProProductList>

Of course, you’ve already seen this sort of syntax with HTML elements and ASP.NET
server controls:

<asp:DropDownList id="lstBackColor" AutoPostBack="True"
Width="194px" Height="22px" runat="server" />

Attributes are also common in the configuration file:

<sessionState mode="Inproc" cookieless="false" timeout="20" />

Using attributes in XML is more stringent than in HTML. In XML, attributes must always
have values, and these values must use quotation marks. For example, <Product
Name="Chair" /> is acceptable, but <Product Name=Chair /> or <Product Name /> isn’t.
However, you do have one bit of flexibility—you can use single or double quotes around any
attribute value. It’s convenient to use single quotes if you know the text value inside will con-
tain a double quote (as in <Product Name='Red "Sizzle" Chair' />). If your text value has both
single and double quotes, use double quotes around the value and replace the double quotes
inside the value with the " entity equivalent.

■Tip Order is not important when dealing with attributes. XML parsers treat attributes as a collection of
unordered information relating to an element. On the other hand, the order of elements often is important.
Thus, if you need a way of arranging information and preserving its order, or if you have repeated items with
the same name, then use elements, not attributes.

Comments
You can also add comments to an XML document. Comments go just about anywhere and are
ignored for data-processing purposes. Comments are bracketed by the <!-- and --> character
sequences. The following listing includes three valid comments:

<?xml version="1.0"?>
<SuperProProductList>
<!-- This is a test file. -->

<Product ID="1" Name="Chair">
<Price>49.33<!-- Why so expensive? --></Price>
<Available>True</Available>
<Status>3</Status>

CHAPTER 19 ■ XML 653

8911CH19.qxd 9/24/07 3:11 PM Page 653

</Product>
<!-- Other products omitted for clarity. -->

</SuperProProductList>

The only place you can’t put a comment is embedded within a start or an end tag (as in
<myData <!-- A comment should not go here --></myData>).

The XML Classes
.NET provides a rich set of classes for XML manipulation in several namespaces that start with
System.Xml. One of the most confusing aspects of using XML with .NET is deciding which
combination of classes you should use. Many of them provide similar functionality in a
slightly different way, optimized for specific scenarios or for compatibility with specific
standards.

The majority of the examples you’ll explore use the types in the core System.Xml name-
space. The classes here allow you to read and write XML files, manipulate XML data in
memory, and even validate XML documents.

In this chapter, you’ll look at the following options for dealing with XML data:

• Reading and writing XML directly, just like you read and write text files using
XmlTextWriter and XmlTextReader

• Dealing with XML as a collection of in-memory objects, such as XmlDocument and
XmlNode

• Binding to the XmlDataSource to display XML information with minimum fuss

In addition, you’ll get a preview of three more ways to manipulate XML in the “Still More
Ways to Read XML” sidebar at the end of this chapter.

The XML TextWriter
One of the simplest ways to create or read any XML document is to use the basic
XmlTextWriter and XmlTextReader classes. These classes work like their StreamWriter and
StreamReader relatives, except that they write and read XML documents instead of ordinary
text files. This means you follow the same process you saw in Chapter 18 for creating a file.
First, you create or open the file. Then, you write to it or read from it, moving from top to bot-
tom. Finally, you close it and get to work using the retrieved data in whatever way you’d like.

Before beginning this example, you’ll need to import the namespaces for file handling
and XML processing:

using System.IO;
using System.Xml;

Here’s an example that creates a simple version of the SuperProProductList document:

// Place the file in the App_Data subfolder of the current website.
// The System.IO.Path class makes it easy to build the full file name.
string file = Path.Combine(Request.PhysicalApplicationPath,
@"App_Data\SuperProProductList.xml");

CHAPTER 19 ■ XML654

8911CH19.qxd 9/24/07 3:11 PM Page 654

FileStream fs = new FileStream(file, FileMode.Create);
XmlTextWriter w = new XmlTextWriter(fs, null);

w.WriteStartDocument();
w.WriteStartElement("SuperProProductList");
w.WriteComment("This file generated by the XmlTextWriter class.");

// Write the first product.
w.WriteStartElement("Product");
w.WriteAttributeString("ID", "1");
w.WriteAttributeString("Name", "Chair");

w.WriteStartElement("Price");
w.WriteString("49.33");
w.WriteEndElement();

w.WriteEndElement();

// Write the second product.
w.WriteStartElement("Product");
w.WriteAttributeString("ID", "2");
w.WriteAttributeString("Name", "Car");

w.WriteStartElement("Price");
w.WriteString("43399.55");

w.WriteEndElement();

w.WriteEndElement();

// Write the third product.
w.WriteStartElement("Product");
w.WriteAttributeString("ID", "3");
w.WriteAttributeString("Name", "Fresh Fruit Basket");

w.WriteStartElement("Price");
w.WriteString("49.99");
w.WriteEndElement();

w.WriteEndElement();

// Close the root element.
w.WriteEndElement();
w.WriteEndDocument();
w.Close();

This code is similar to the code used for writing a basic text file. It does have a few advan-
tages, however. You can close elements quickly and accurately, the angle brackets (< >) are

CHAPTER 19 ■ XML 655

8911CH19.qxd 9/24/07 3:11 PM Page 655

included for you automatically, and some errors (such as closing the root element too soon)
are caught automatically, thereby ensuring a well-formed XML document as the final result.

To check that your code worked, open the file in Internet Explorer, which automatically
provides a collapsible view for XML documents (see Figure 19-1).

Figure 19-1. SuperProProductList.xml

FORMATTING YOUR XML

By default, the XmlTextWriter will create an XML file that has all its elements lumped together in a single line
without any helpful carriage returns or indentation. You don’t see this limitation in Figure 19-1, because Inter-
net Explorer uses a style sheet to give the XML a more readable (and more colorful) appearance. However, if
you open the XML document in Notepad, you’ll see the difference.

Although additional formatting isn’t required (and doesn’t change how the data will be processed), it
can make a significant difference if you want to read your XML files in Notepad or another text editor. Fortu-
nately, the XmlTextWriter supports formatting; you just need to enable it, as follows:

// Set it to indent output.
w.Formatting = Formatting.Indented;

// Set the number of indent spaces.
w.Indentation = 5;

CHAPTER 19 ■ XML656

8911CH19.qxd 9/24/07 3:11 PM Page 656

The XML Text Reader
Reading the XML document in your code is just as easy with the corresponding
XmlTextReader class. The XmlTextReader moves through your document from top to bottom,
one node at a time. You call the Read() method to move to the next node. This method returns
true if there are more nodes to read or false once it has read the final node. The current node is
provided through the properties of the XmlTextReader class, such as NodeType and Name.

A node is a designation that includes comments, whitespace, opening tags, closing tags,
content, and even the XML declaration at the top of your file. To get a quick understanding of
nodes, you can use the XmlTextReader to run through your entire document from start to fin-
ish and display every node it encounters. The code for this task is as follows:

FileStream fs = new FileStream(file, FileMode.Open);
XmlTextReader r = new XmlTextReader(fs);

// Use a StringWriter to build up a string of HTML that
// describes the information read from the XML document.
StringWriter writer = new StringWriter();

// Parse the file, and read each node.
while (r.Read())
{

writer.Write("Type: ");
writer.Write(r.NodeType.ToString());
writer.Write("
");

// The name is available when reading the opening and closing tags
// for an element. It's not available when reading the inner content.
if (r.Name != "")
{

writer.Write("Name: ");
writer.Write(r.Name);
writer.Write("
");

}

// The value is when reading the inner content.
if (r.Value != "")
{

writer.Write("Value: ");
writer.Write(r.Value);
writer.Write("
");

}

if (r.AttributeCount > 0)
{

writer.Write("Attributes: ");
for (int i = 0; i < r.AttributeCount; i++)
{

CHAPTER 19 ■ XML 657

8911CH19.qxd 9/24/07 3:11 PM Page 657

writer.Write(" ");
writer.Write(r.GetAttribute(i));
writer.Write(" ");

}
writer.Write("
");

}
writer.Write("
");

}
fs.Close();

// Copy the string content into a label to display it.
lblXml.Text = writer.ToString();

To test this, try the XmlText.aspx page included with the online samples. It produces the
result shown in Figure 19-2.

Figure 19-2. Reading XML structure

CHAPTER 19 ■ XML658

8911CH19.qxd 9/24/07 3:11 PM Page 658

The following is a list of all the nodes that are found, shortened to include only one
product:

Type: XmlDeclaration
Name: xml
Value: version="1.0"
Attributes: 1.0

Type: Element
Name: SuperProProductList

Type: Comment
Value: This file generated by the XmlTextWriter class.

Type: Element
Name: Product
Attributes: 1, Chair

Type: Element
Name: Price

Type: Text
Value: 49.33

Type: EndElement
Name: Price

Type: EndElement
Name: Product

Type: EndElement
Name: SuperProProductList

If you use the indentation trick described earlier (in the “Formatting Your XML” sidebar),
you’ll see additional nodes that represent the bits of whitespace between elements.

In a typical application, you would need to go fishing for the elements that interest you.
For example, you might read information from an XML file such as SuperProProductList.xml
and use it to create Product objects based on the Product class shown here:

public class Product
{

private int id;
private string name;
private decimal price;

public int ID
{

get { return id; }

CHAPTER 19 ■ XML 659

8911CH19.qxd 9/24/07 3:11 PM Page 659

set { id = value; }
}

public string Name
{

get { return name; }
set { name = value; }

}

public decimal Price
{

get { return price; }
set { price = value; }

}
}

Nothing is particularly special about this class—all it does is allow you to store three
related pieces of information (price, name, and ID). Note that this class uses properties rather
than public member variables, so its information can be displayed in a web page with
ASP.NET data binding.

A typical application might read data from an XML file and place it directly into the corre-
sponding objects. The next example (also a part of the XmlWriterTest.aspx page) shows how
you can easily create a group of Product objects based on the SuperProProductList.xml file.
This example uses the generic List collection, so you’ll need to import the
System.Collections.Generic namespace.

// Open a stream to the file.
FileStream fs = new FileStream(file, FileMode.Open);
XmlTextReader r = new XmlTextReader(fs);

// Create a generic collection of products.
List<Product> products = new List<Product>();

// Loop through the products.
while (r.Read())
{

if (r.NodeType == XmlNodeType.Element && r.Name == "Product")
{

Product newProduct = new Product();
newProduct.ID = Int32.Parse(r.GetAttribute(0));
newProduct.Name = r.GetAttribute(1);

// Get the rest of the subtags for this product.
while (r.NodeType != XmlNodeType.EndElement)
{

r.Read();

CHAPTER 19 ■ XML660

8911CH19.qxd 9/24/07 3:11 PM Page 660

// Look for Price subtags.
if (r.Name == "Price")
{

while (r.NodeType != XmlNodeType.EndElement)
{

r.Read();
if (r.NodeType == XmlNodeType.Text)
{

newProduct.Price = Decimal.Parse(r.Value);
}

}
}

// You could check for other Product nodes
// (such as Available, Status, etc.) here.

}

// Add the product to the list.
products.Add(newProduct);

}
}

fs.Close();

// Display the retrieved document.
gridResults.DataSource = products;
gridResults.DataBind();

Dissecting the Code . . .

• This code uses a nested looping structure. The outside loop iterates over all the prod-
ucts, and the inner loop searches through all the child elements of <Product> (in this
case, there is only a possible <Price> element). This keeps the code well organized. The
EndElement node alerts you when a node is complete and the loop can end. Once all
the information is read for a product, the corresponding object is added into the
collection.

• All the information is retrieved from the XML file as a string. Thus, you need to use
methods like Int32.Parse() to convert it to the right data type.

• Data binding is used to display the contents of the collection. A GridView set to gener-
ate columns automatically creates the table shown in Figure 19-3.

CHAPTER 19 ■ XML 661

8911CH19.qxd 9/24/07 3:11 PM Page 661

Figure 19-3. Reading XML content

■Note The XmlTextReader provides many more properties and methods. These additional members don’t
add functionality; they allow for increased flexibility. For example, you can read a portion of an XML docu-
ment into a string using methods such as ReadString(), ReadInnerXml(), and ReadOuterXml(). These
members are all documented in the class library reference in the Visual Studio Help.

Working with XML Documents in Memory
The XmlTextReader and XmlTextWriter use XML as a backing store. These classes are stream-
lined for quickly getting XML data into and out of a file (or some other source). When using
these classes, you open your XML file, retrieve the data you need, and use that data to create
the appropriate objects or fill the appropriate controls. Your goal is to translate the XML into
something more practical and usable. The rest of your code has no way of knowing that the
data was initially extracted from an XML document—and it doesn’t care.

■Note Remember, the terms XML document and XML file are different. An XML document is a collection of
elements structured according to the rules of XML. An XML document can be stored in virtually any way you
want—it can be placed in a file, in a field, or in a database, or it can simply exist in memory.

CHAPTER 19 ■ XML662

8911CH19.qxd 9/24/07 3:11 PM Page 662

This approach is ideal for storing simple blocks of data. For example, you could modify
the guest book page in the previous chapter to store guest book entries in an XML format,
which would provide greater standardization but wouldn’t change how the application works.
Your code for serializing and deserializing the XML data would change, but the rest of the
application would remain untouched.

The XmlDocument class provides a different approach to XML data. It provides an in-
memory model of an entire XML document. You can then browse through the entire
document, reading, inserting, or removing nodes at any location.

When using this approach, you begin by loading XML content from a file (or some other
source) into an XmlDocument object. The XmlDocument holds the entire document at once,
so it isn’t a practical approach if your XML content is several megabytes in size. (If you have a
huge XML document, the XmlTextReader and XmlTextWriter classes offer the best approach.)
However, the XmlDocument really excels with the editing capabilities that it gives you. Using
the XmlDocument object, you can manipulate the content or structure of any part of the
XML document. When you’re finished, you can save the content back to a file. Unlike the
XmlTextReader and XmlTextWriter, the XmlDocument class doesn’t maintain a direct connec-
tion to the file.

■Note In this respect, the XmlDocument is analogous to the DataSet in ADO.NET programming: it’s always
disconnected. The XmlTextWriter and XmlTextReader, on the other hand, are always connected to a stream,
which is usually a file.

When you use the XmlDocument class, your XML document is created as a series of
linked .NET objects in memory. Figure 19-4 shows the object model. (The diagram is slightly
simplified from what you’ll find when you start using the XmlDocument class—namely, it
doesn’t show the attributes, each of which is represented by an XmlAttribute object.)

CHAPTER 19 ■ XML 663

8911CH19.qxd 9/24/07 3:11 PM Page 663

Figure 19-4. An XML document in memory

The following is an example that creates the SuperProProductList document in memory,
using an XmlDocument class. When the document is completely built, the code saves it to a
file using the XmlDocument.Save() method.

CHAPTER 19 ■ XML664

8911CH19.qxd 9/24/07 3:11 PM Page 664

// Start with a blank in-memory document.
XmlDocument doc = new XmlDocument();

// Create some variables that will be useful for
// manipulating XML data.
XmlElement rootElement, productElement, priceElement;
XmlAttribute productAttribute;
XmlComment comment;

// Create the declaration.
XmlDeclaration declaration;
declaration = doc.CreateXmlDeclaration("1.0", null, "yes");

// Insert the declaration as the first node.
doc.InsertBefore(declaration, doc.DocumentElement);

// Add a comment.
comment = doc.CreateComment("Created with the XmlDocument class.");
doc.InsertAfter(comment, declaration);

// Add the root node.
rootElement = doc.CreateElement("SuperProProductList");
doc.InsertAfter(rootElement, comment);

// Add the first product.
productElement = doc.CreateElement("Product");
rootElement.AppendChild(productElement);

// Set and add the product attributes.
productAttribute = doc.CreateAttribute("ID");
productAttribute.Value = "1";
productElement.SetAttributeNode(productAttribute);
productAttribute = doc.CreateAttribute("Name");
productAttribute.Value = "Chair";
productElement.SetAttributeNode(productAttribute);

// Add the price node.
priceElement = doc.CreateElement("Price");
priceElement.InnerText = "49.33";
productElement.AppendChild(priceElement);

// (Code to add two more products omitted.)

// Save the document.
string file = Path.Combine(Request.PhysicalApplicationPath,
@"App_Data\SuperProProductList.xml");

doc.Save(file);

CHAPTER 19 ■ XML 665

8911CH19.qxd 9/24/07 3:11 PM Page 665

One of the best features of the XmlDocument class is that it doesn’t rely on any underlying
file. When you use the Save() method, the file is created, a stream is opened, the information is
written, and the file is closed, all in one line of code. This means this is probably the only line
you need to put inside a try/catch error-handling block.

While you’re manipulating data with the XML objects, your text file isn’t being changed.
Once again, this is conceptually similar to the ADO.NET DataSet.

Dissecting the Code . . .

• Every separate part of the XML document is created as an object. Elements are created
as XmlElement objects, comments are created as XmlComment objects, and attributes
are represented as XmlAttribute objects.

■Tip For leaner code, you can call the SetAttribute() and GetAttribute() methods on an XmlElement object.
This technique allows you to bypass the XmlAttribute objects, and manipulate your attribute values directly.

• To create a new element, comment, or attribute for your XML document, you need to
use one of the methods of the XmlDocument class, such as CreateComment(),
CreateAttribute(), or CreateElement(). This ensures the XML is generated correctly for
your document, but it doesn’t actually place any information into the XmlDocument.

• Once you have created the appropriate object and entered any additional inner infor-
mation (such as text content), you need to add it to the in-memory XmlDocument. You
can do so by adding the new XmlElement object next to an existing XmlElement, using
methods such as InsertBefore() or InsertAfter(). To add a child element (such as the
<Product> element inside the <SuperProProductList> element), you need to find the
appropriate parent object and use a method such as AppendChild(). You can’t write a
child element directly to the document in the same way you could with the
XmlTextWriter.

• You can insert nodes anywhere. While the XmlTextWriter and XmlTextReader forced
you to read every node, from start to finish, the XmlDocument is a much more flexible
collection of objects.

Figure 19-5 shows the file written by this code (as displayed by Internet Explorer).

CHAPTER 19 ■ XML666

8911CH19.qxd 9/24/07 3:11 PM Page 666

Figure 19-5. The XML file

Reading an XML Document
To read information from your XML file, all you need to do is create an XmlDocument object
and use its Load() method. Once you have the XmlDocument in memory, you can extract con-
tent by looping through the collection of linked XmlNode objects. This process is similar to the
XmlTextReader example, but the code is noticeably cleaner.

// Create the document.
XmlDocument doc = new XmlDocument();
doc.Load(file);

// Loop through all the nodes, and create the list of Product objects.
List<Product> products = new List<Product>();

foreach (XmlElement element in doc.DocumentElement.ChildNodes)
{

Product newProduct = new Product();
newProduct.ID = Int32.Parse(element.GetAttribute("ID"));
newProduct.Name = element.GetAttribute("Name");

// If there were more than one child node, you would probably use
// another For Each loop here and move through the
// element.ChildNodes collection.
newProduct.Price = Decimal.Parse(element.ChildNodes[0].InnerText);

CHAPTER 19 ■ XML 667

8911CH19.qxd 9/24/07 3:11 PM Page 667

products.Add(newProduct);
}

// Display the results.
gridResults.DataSource = products;
gridResults.DataBind();

■Tip Whether you use the XmlDocument or the XmlTextReader class depends on a number of factors.
Generally, you use XmlDocument when you want to deal directly with XML, rather than just use XML as a
way to persist some information. It also gives you the ability to modify the structure of an XML document,
and it allows you to browse XML information in a more flexible way (not just from start to finish). On the
other hand, the XmlTextReader is best when dealing with large XML files, because it won’t attempt to load
the entire document into memory at once.

THE DIFFERENCE BETWEEN XMLNODE AND XMLELEMENT

You may have noticed that the XmlDocument is created with specific objects such as XmlComment and
XmlElement but read back as a collection of XmlNode objects. The reason is that XmlComment and
XmlElement are customized classes that inherit their basic functionality from XmlNode.

The ChildNodes collection allows you to retrieve all the content contained inside any portion of an XML
document. Because this content could include comments, elements, and any other types of node, the
ChildNodes collection uses the lowest common denominator. Thus, it provides child nodes as a collection
of standard XmlNode objects. Each XmlNode has basic properties similar to what you saw with the
XmlTextReader, including NodeType, Name, Value, and Attributes. You’ll find that you can do all your XML
processing with XmlNode objects.

You have a variety of other options for manipulating your XmlDocument and extracting
or changing pieces of data. Table 19-1 provides an overview.

Table 19-1. XmlNode Manipulation

Technique Description Example

Finding a node’s relative Every XmlNode leads to other myParentNode =
XmlNode objects. You can use myNode.ParentNode;
properties such as FirstChild,
LastChild, PreviousSibling,
NextSibling, and ParentNode
to return a reference to a
related node.

CHAPTER 19 ■ XML668

8911CH19.qxd 9/24/07 3:11 PM Page 668

Technique Description Example

Cloning a portion of an You can use the CloneNode() newNode =
XmlDocument method with any XmlNode to myNode.Clone(true);

create a duplicate copy. You need
to specify true or false to indicate
whether you want to clone all
children (true) or just the single
node (false).

Removing or adding nodes Find the parent node, and then use myNode.RemoveChild
one of its node-adding methods. (nodeToDelete);
You can use AppendChild() to add
the child to the end of the child list
and PrependChild() to add the node
to the start of the child list. You can
also remove nodes with
RemoveChild(), ReplaceChild(),
and RemoveAll(), which delete
all the children and all the attributes
for the current node.

Adding inner content Find the node, and add a myNode.InnerText =
XmlNodeType.Text child node. "190.99";
One possible shortcut is just to
set the InnerText property of your
node, but that will erase any
existing child nodes.

Manipulating attributes Every node provides an myNode.SetAttribute
XmlAttributeCollection of all its ("Price", "43.99");
attributes through the
XmlNode.Attributes property.
You can add new XmlAttribute
objects to this collection using
methods such as Append(),
Prepend(), InsertBefore(), or
InsertAfter(). However, a simpler
approach is to call the
SetAttribute(), RemoveAttribute(),
and GetAttribute() methods of
the XmlElement that contains
the attribute.

Working with content as You can retrieve or set the content
string data inside a node using properties such

as InnerText, InnerXml, and
OuterXml. Be warned that the inner
content of a node includes all child
nodes. Thus, setting this property
carelessly could wipe out other
information, such as subelements.

The XmlDocument class provides a rich set of events that fire before and after nodes are
inserted, removed, and changed. The likelihood of using these events in an ordinary ASP.NET
application is fairly slim, but it represents an interesting example of the features .NET puts at
your fingertips.

CHAPTER 19 ■ XML 669

8911CH19.qxd 9/24/07 3:11 PM Page 669

Searching an XML Document
One of the nicest features of the XmlDocument is its support of searching, which allows you to
find nodes when you know they are there—somewhere—but you aren’t sure how many
matches exist or where the elements are.

To search an XmlDocument, all you need to do is use the GetElementById() or
GetElementsByTagName() method. The following code example puts the
GetElementsByTagName() method to work and creates the output shown in Figure 19-6:

Figure 19-6. Searching an XML document

XmlDocument doc = new XmlDocument();
doc.Load(file);

// Find the matches.
XmlNodeList results = doc.GetElementsByTagName("Price");

// Display the results.
lblXml.Text = "Found " + results.Count.ToString() + " Matches ";
lblXml.Text += " for the Price tag:

";
foreach (XmlNode result in results)
{

lblXml.Text += result.FirstChild.Value + "
";
}

This technique works well if you want to find an element based on its name. If you want
to use more sophisticated searching, match only part of a name, or examine only part of a
document, you’ll have to fall back on the traditional standard: looping through all the nodes
in the XmlDocument.

CHAPTER 19 ■ XML670

8911CH19.qxd 9/24/07 3:11 PM Page 670

■Tip The search method provided by the XmlDocument class is relatively primitive. For a more advanced
tool, you might want to learn the XPath language, which is a W3C recommendation (defined at http://
www.w3.org/TR/xpath) designed for performing queries on XML data. NET provides XPath support through
the classes in the System.Xml.XPath namespace, which include an XPath parser and evaluation engine. Of
course, these aren’t much use unless you learn the syntax of the XPath language. Another option is to use
LINQ to XML, which is described in the “Still More Ways to Read XML” sidebar at the end of this chapter.

XML Validation
XML has a rich set of supporting standards, many of which are far beyond the scope of this
book. One of the most useful in this family of standards is XSD (XML Schema Definition). XSD
defines the rules to which a specific XML document should conform, such as the allowable
elements and attributes, the order of elements, and the data type of each element.

When you’re creating an XML file on your own, you don’t need to create a corresponding
XSD file—instead, you might just rely on the ability of your code to behave properly. While this
is sufficient for tightly controlled environments, if you want to open your application to other
programmers or allow it to interoperate with other applications, you should create an XSD
document. Think of it this way: XML allows you to create a custom language for storing data,
and XSD allows you to define the syntax of the language you create.

XML Namespaces
Before you can create an XSD document, you’ll need to understand one other XML standard,
called XML namespaces.

The core idea behind XML namespaces is that every XML markup language has its own
namespace, which is used to uniquely identify all related elements. Technically, namespaces
disambiguate elements, by making it clear what markup language they belong to. For exam-
ple, you could tell the difference between your SuperProProductList standard and another
organization’s product catalog because the two XML languages would use different name-
spaces.

Namespaces are particularly useful in compound documents, which contain separate
sections, each with a different type of XML. In this scenario, namespaces ensure that an ele-
ment in one namespace can’t be confused with an element in another namespace, even if it
has the same element name. Namespaces are also useful for applications that support differ-
ent types of XML documents. By examining the namespace, your code can determine what
type of XML document it’s working with, and can then process it accordingly.

■Note XML namespaces aren’t related to .NET namespaces. XML namespaces identify different XML
languages. NET namespaces are a code construct used to organize types.

CHAPTER 19 ■ XML 671

8911CH19.qxd 9/24/07 3:11 PM Page 671

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

Before you can place your XML elements in a namespace, you need to choose an identify-
ing name for that namespace. Most XML namespaces use URIs (Universal Resource
Identifiers). Typically, these URIs look like a web page URL. For example, http://www.
mycompany.com/mystandard is a typical name for a namespace. Though the namespace looks
like it points to a valid location on the Web, this isn’t required (and shouldn’t be assumed).

The reason that URIs are used for XML namespaces is because they are more likely to be
unique. Typically, if you create a new XML markup, you’ll use a URI that points to a domain or
website you control. That way, you can be sure that no one else is likely to use that URI. For
example, the namespace http://www.SuperProProducts.com/SuperProProductList is much
more likely to be unique than just SuperProProductList if you own the domain
www.SuperProProducts.com.

■Tip Namespace names must match exactly. If you change the capitalization in part of a namespace, add
a trailing / character, or modify any other detail, it will be interpreted as a different namespace by the XML
parser.

To specify that an element belongs to a specific namespace, you simply need to add the
xmlns attribute to the start tag, and indicate the namespace. For example, the <Price> element
shown here is part of the http://www.SuperProProducts.com/SuperProProductList namespace:

<Price xmlns="http://www.SuperProProducts.com/SuperProProductList">
49.33
</Price>

If you don’t take this step, the element will not be a part of any namespace.
It would be cumbersome if you needed to type in the full namespace URI every time you

wrote an element in an XML document. Fortunately, when you assign a namespace in this
fashion, it becomes the default namespace for all child elements. For example, in the XML
document shown here, the <SuperProProductList> element and all the elements it contains
are placed in the http://www.SuperProProducts.com/SuperProProductList namespace:

<?xml version="1.0"?>
<SuperProProductList
xmlns="http://www.SuperProProducts.com/SuperProProductList">

<Product>
<ID>1</ID>
<Name>Chair</Name>
<Price>49.33</Price>
<Available>True</Available>
<Status>3</Status>

</Product>

<!-- Other products omitted. -->
</SuperProProductList>

CHAPTER 19 ■ XML672

8911CH19.qxd 9/24/07 3:11 PM Page 672

http://www
http://www.SuperProProducts.com/SuperProProductList
http://www.SuperProProducts.com
http://www.SuperProProducts.com/SuperProProductList
http://www.SuperProProducts.com/SuperProProductList
http://www.SuperProProducts.com/SuperProProductList
http://www.SuperProProducts.com/SuperProProductList

In compound documents, you’ll have markup from more than one XML language, and
you’ll need to place different sections into different namespaces. In this situation, you can use
namespace prefixes to sort out the different namespaces.

Namespace prefixes are short character sequences that you can insert in front of a tag
name to indicate its namespace. You define the prefix in the xmlns attribute by inserting a
colon (:) followed by the characters you want to use for the prefix. Here’s the
SuperProProductList document rewritten to use the prefix super:

<?xml version="1.0"?>
<super:SuperProProductList
xmlns:super="http://www.SuperProProducts.com/SuperProProductList">

<super:Product>
<super:ID>1</super:ID>
<super:Name>Chair</super:Name>
<super:Price>49.33</super:Price>
<super:Available>True</super:Available>
<super:Status>3</super:Status>

</super:Product>

<!-- Other products omitted. -->
</super:SuperProProductList>

Namespace prefixes are simply used to map an element to a namespace. The actual prefix
you use isn’t important as long as it remains consistent throughout the document. By conven-
tion, the attributes that define XML namespace prefixes are usually added to the root element
of an XML document.

Although the xmlns attribute looks like an ordinary XML attribute, it isn’t. The XML parser
interprets it as a namespace declaration. (The reason XML namespaces use XML attributes is
a historical one. This design ensured that old XML parsers that didn’t understand namespaces
could still read newer XML documents that use them.)

■Note Attributes act a little differently than elements when it comes to namespaces. You can use name-
space prefixes with both elements and attributes. However, attributes don’t pay any attention to the default
namespace of a document. That means if you don’t add a namespace prefix to an attribute, the attribute will
not be placed in the default namespace. Instead, it will have no namespace.

XML Schema Definition
An XSD document, or schema, defines what elements and attributes a document should con-
tain and the way these nodes are organized (the structure). It can also identify the appropriate
data types for all the content. XSD documents are written using an XML syntax with specific
element names. All the XSD elements are placed in the http://www.w3.org/2001/XMLSchema
namespace. Often, this namespace uses the prefix xsd: or xs:, as in the following example.

CHAPTER 19 ■ XML 673

8911CH19.qxd 9/24/07 3:11 PM Page 673

http://www.SuperProProducts.com/SuperProProductList
http://www.w3.org/2001/XMLSchema

The full XSD specification is out of the scope of this chapter, but you can learn a lot from
a simple example. The following is a slightly abbreviated SuperProProductList.xsd file that
defines the rules for SuperProProductList documents:

<?xml version="1.0"?>
<xs:schema

targetNamespace="http://www.SuperProProducts.com/SuperProProductList"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" >

<xs:element name="SuperProProductList">
<xs:complexType>
<xs:sequence maxOccurs="unbounded">
<xs:element name="Product">
<xs:complexType>
<xs:sequence>
<xs:element name="Price" type="xs:double" />

</xs:sequence>
<xs:attribute name="ID" use="required" type="xs:int" />
<xs:attribute name="Name" use="required" type="xs:string" />

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

At first glance, this markup looks a bit intimidating. However, it’s actually not as compli-
cated as it looks. Essentially, this schema indicates that a SuperProProductList document
consists of a list of <Product> elements. Each <Product> element is a complex type made up
of a string (Name), a decimal value (Price), and an integer (ID). This example uses the second
version of the SuperProProductList document to demonstrate how to use attributes in a
schema file.

Dissecting the Code . . .
By examining the SuperProProductList.xsd schema, you can learn a few important points:

• Schema documents use their own form of XML markup. In the previous example, you’ll
quickly see that all the elements are placed in the http://www.w3.org/2001/XMLSchema
namespace using the xs: namespace prefix.

• Every schema document starts with a root <schema> element.

• The schema document must specify the namespace of the documents it can validate. It
specifies this detail with the targetNamespace attribute on the root <schema> element.

• The elements inside the <schema> element describe the structure of the target docu-
ment. The <element> element represents an element, while the <attribute> element
represents an attribute. To find out what the name of an element or attribute is, look at
the name attribute. For example, you can tell quite easily that the first <element> has
the name SuperProProductList. This indicates that the first element in the validated
document must be <SuperProProductList>.

CHAPTER 19 ■ XML674

8911CH19.qxd 9/24/07 3:11 PM Page 674

http://www.SuperProProducts.com/SuperProProductList
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema

• If an element can contain other elements or has attributes, it’s considered a complex
type. Complex types are represented in a schema by the <complexType> element. The
simplest complex type is a sequence, which requires that elements are always in the
exact same order (the order that’s set out in the schema document).

• When defining elements, you can define the maximum number of times an element
can appear (using the maxOccurs attribute) and the minimum number of times it must
occur (using the minOccurs attribute). If you leave out these details, the default value of
both is 1, which means that every element must appear exactly once in the target docu-
ment. Use a maxOccurs value of unbounded if you want to allow an unlimited list. For
example, this allows there to be an unlimited number of <Product> elements in the
SuperProProductList catalog. However, the <Price> element must occur exactly once in
each <Product>.

• When defining an attribute, you can use the use attribute with a value of required to
make that attribute mandatory.

• When defining elements and attributes, you can specify the data type using the type
attribute. The XSD standard defines 44 data types that map closely to the basic data
types in .NET, including the double, int, and string data types used in this example.

Validating an XML Document
To validate an XML document against a schema, you need to create an XmlReader that has
validation features built in.

The first step when performing validation is to import the System.Xml.Schema name-
space, which contains types such as XmlSchema and XmlSchemaCollection:

using System.Xml.Schema;

You must perform two steps to create the validating reader. First, you create an
XmlReaderSettings object that specifically indicates you want to perform validation. You
do this by setting the ValidationType property and loading your XSD schema file into the
Schemas collection, as shown here:

// Configure the reader to use validation.
XmlReaderSettings settings = new XmlReaderSettings();
settings.ValidationType = ValidationType.Schema;

// Create the path for the schema file.
string schemaFile = Path.Combine(Request.PhysicalApplicationPath,
@"App_Data\SuperProProductList.xsd");

// Indicate that elements in the namespace
// http://www.SuperProProducts.com/SuperProProductList should be
// validated using the schema file.
settings.Schemas.Add("http://www.SuperProProducts.com/SuperProProductList",
schemaFile);

CHAPTER 19 ■ XML 675

8911CH19.qxd 9/24/07 3:11 PM Page 675

http://www.SuperProProducts.com/SuperProProductList
http://www.SuperProProducts.com/SuperProProductList

Second, you need to create the validating reader using the static XmlReader.Create()
method. This method has several overloads, but the version used here requires a FileStream
(with the XML document) and the XmlReaderSettings object that has your validation settings:

// Open the XML file.
FileStream fs = new FileStream(filePath, FileMode.Open);

// Create the validating reader.
XmlReader r = XmlReader.Create(fs, settings);

The XmlReader in this example works in the same way as the XmlTextReader you’ve been
using up until now, but it adds the ability to verify that the XML document follows the schema
rules. This reader throws an exception (or raises an event) to indicate errors as you move
through the XML file.

The following example shows how you can create a validating reader that uses the
SuperProProductList.xsd file to verify that the XML in SuperProProductList.xml is valid:

// Set the validation settings.
XmlReaderSettings settings = new XmlReaderSettings();
settings.Schemas.Add("http://www.SuperProProducts.com/SuperProProductList",
schemaFile);

settings.ValidationType = ValidationType.Schema;

// Open the XML file.
FileStream fs = new FileStream(filePath, FileMode.Open);

// Create the validating reader.
XmlReader r = XmlReader.Create(fs, settings);

// Read through the document.
while (r.Read())
{

// Process document here.
// If an error is found, an exception will be thrown.

}
fs.Close();

Using the current file, this code will succeed, and you’ll be able to access each node in the
document. However, consider what happens if you make the minor modification shown here:

<Product ID="A" Name="Chair">

Now when you try to validate the document, an XmlSchemaException (from the
System.Xml.Schema namespace) will be thrown, alerting you to the invalid data type, as
shown in Figure 19-7.

CHAPTER 19 ■ XML676

8911CH19.qxd 9/24/07 3:11 PM Page 676

http://www.SuperProProducts.com/SuperProProductList

Figure 19-7. An XmlSchemaException

Instead of catching errors, you can react to the XmlReaderSettings.ValidationEventHandler
event. If you react to this event, you’ll be provided with information about the error, but no
exception will be thrown. To connect an event handler to this event, you can attach an event
handler before you create the XmlReader:

// Connect to the method named ValidateHandler.
settings.ValidationEventHandler += new ValidationEventHandler(ValidateHandler);

The event handler receives a ValidationEventArgs object as a parameter, which contains
the exception, a message, and a number representing the severity:

public void ValidateHandler(Object sender, ValidationEventArgs e)
{

lblStatus.Text += "Error: " + e.Message + "
";
}

To test the validation, you can use the XmlValidation.aspx page in the online samples. It
allows you to validate a valid SuperProProductList, as well as two other versions, one with
incorrect data and one with an incorrect element (see Figure 19-8).

CHAPTER 19 ■ XML 677

8911CH19.qxd 9/24/07 3:11 PM Page 677

Figure 19-8. The validation test page

XML Display and Transforms
Another standard associated with XML is XSLT (XSL Transformations). XSLT allows you to
create style sheets that can extract a portion of a large XML document or transform an XML
document into another type of XML document. An even more popular use of XSLT is to con-
vert an XML document into an HTML document that can be displayed in a browser.

■Note XSL (eXtensible Stylesheet Language) is a family of standards for searching, formatting, and trans-
forming XML documents. XSLT is the specific standard that deals with the transformation step.

XSLT is easy to use from the point of view of the .NET class library. All you need to under-
stand is how to create an XslCompiledTransform object (found in the System.Xml.Xsl
namespace). You use its Load() method to specify a style sheet and its Transform() method to
output the result to a file or stream:

' Define the file paths this code uses. The XSLT file and the
' XML source file already exist, but the XML result file
' will be created by this code.
string xsltFile = Path.Combine(Request.PhysicalApplicationPath,
@"App_Data\SuperProProductList.xml");

string xmlSourceFile = Path.Combine(Request.PhysicalApplicationPath,
@"App_Data\SuperProProductList.xsl");

string xmlResultFile = Path.Combine(Request.PhysicalApplicationPath,
@"App_Data\TransformedFile.xml");

CHAPTER 19 ■ XML678

8911CH19.qxd 9/24/07 3:11 PM Page 678

// Load the XSLT stylesheet.
XslCompiledTransform transformer = new XslCompiledTransform();
transformer.Load(xsltFile);

// Create a transformed XML file.
// SuperProProductList.xml is the starting point.
transformer.Transform(xmlSourceFile, xmlResultFile);

However, this doesn’t spare you from needing to learn the XSLT syntax. Once again, the
intricacies of XSLT aren’t directly related to core ASP.NET programming, so they’re outside the
scope of this book. To get started with XSLT, however, it helps to review a simple style sheet
example. The following example shows an XSLT style sheet that transforms the no-namespace
version of the SuperProProductList document into a formatted HTML table:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0" >

<xsl:template match="SuperProProductList">
<html>
<body>
<table border="1">
<xsl:apply-templates select="Product"/>

</table>
</body>

</html>
</xsl:template>

<xsl:template match="Product">
<tr>
<td><xsl:value-of select="@ID"/></td>
<td><xsl:value-of select="@Name"/></td>
<td><xsl:value-of select="Price"/></td>

</tr>
</xsl:template>

</xsl:stylesheet>

Every XSLT document has a root xsl:stylesheet element. The style sheet can contain one
or more templates (the sample file SuperProProductList.xslt has two). In this example, the first
template searches for the root SuperProProductList element. When it finds it, it outputs the
tags necessary to start an HTML table and then uses the xsl:apply-templates command to
branch off and perform processing for any contained Product elements.

<xsl:template match="SuperProProductList">
<html>
<body>
<table border="1">
<xsl:apply-templates select="Product"/>

CHAPTER 19 ■ XML 679

8911CH19.qxd 9/24/07 3:11 PM Page 679

http://www.w3.org/1999/XSL/Transform

When that process is complete, the HTML tags for the end of the table will be written:

</table>
</body>

</html>
</xsl:template>

When processing each <Product> element, the value from the nested ID attribute, Name
attribute, and <Price> element is extracted and written to the output using the xsl:value-of
command. The at sign (@) indicates that the value is being extracted from an attribute, not a
subelement. Every piece of information is written inside a table row.

<xsl:template match="Product">
<tr>
<td><xsl:value-of select="@ID"/></td>
<td><xsl:value-of select="@Name"/></td>
<td><xsl:value-of select="Price"/></td>

</tr>
</xsl:template>

For more advanced formatting, you could use additional HTML elements to format some
text in bold or italics.

The final result of this process is the HTML file shown here:

<html>
<body>
<table border="1">
<tr>
<td>1</td>
<td>Chair</td>
<td>49.33</td>

</tr>
<tr>
<td>2</td>
<td>Car</td>
<td>43398.55</td>

</tr>
<tr>
<td>3</td>
<td>Fresh Fruit Basket</td>
<td>49.99</td>

</tr>
</table>

</body>
</html>

In the next section, you’ll look at how this output appears in an Internet browser.
Generally speaking, if you aren’t sure you need XSLT, you probably don’t. The .NET Frame-

work provides a rich set of tools for searching and manipulating XML files using objects and
code, which is the best approach for small-scale XML use.

CHAPTER 19 ■ XML680

8911CH19.qxd 9/24/07 3:11 PM Page 680

■Tip To learn more about XSLT, consider Jeni Tennison’s excellent book Beginning XSLT 2.0: From Novice
to Professional (Apress, 2005).

The Xml Web Control
If you use an XLST style sheet such as the one demonstrated in the previous example, you
might wonder what your code should do with the generated HTML. You could try to write it
directly to the browser or save it to the hard drive, but these approaches are awkward, espe-
cially if you want to display the generated HTML inside a normal ASP.NET web page that
contains other controls. The XslCompiledTransform object just converts XML files—it doesn’t
provide any way to insert the output into your web page.

ASP.NET includes an Xml web control that fills the gap and can display XML content. You
can specify the XML content for this control in several ways: by assigning an XmlDocument
object to the Document property, by assigning a string containing the XML content to the
DocumentContent property, or by specifying a string that refers to an XML file using the
DocumentSource property.

// Display the information from an XML file in the Xml control.
Xml.DocumentSource = Path.Combine(Request.PhysicalApplicationPath,
@"App_Data\SuperProProductList.xml");

If you assign the SuperProProductList.xml file to the Xml control, you’re likely to be disap-
pointed. The result is just a string of the inner text (the price for each product), bunched
together without a space (see Figure 19-9).

Figure 19-9. Unformatted XML content

CHAPTER 19 ■ XML 681

8911CH19.qxd 9/24/07 3:11 PM Page 681

However, you can also apply an XSLT style sheet, either by assigning an
XslCompiledTransform object to the Transform property or by using a string that refers to
the XSLT file with the TransformSource property:

// Specify a XSLT file.
Xml.TransformSource = Path.Combine(Request.PhysicalApplicationPath,
@"App_Data\SuperProProductList.xslt")

Now the output is automatically formatted according to your style sheet (see Figure 19-10).

Figure 19-10. Transformed XML content

XML Data Binding
The Xml control is a great way to display XML data in a web page by converting it to HTML.
But what if you want to display data in another type of control, such as a GridView? You could
use the XML classes you learned about earlier, which is definitely the most flexible approach.
However, if you don’t need that much control, you may be interested in the XmlDataSource
control, which allows you to take XML from a file and feed it right into another control.

The XmlDataSource control works much like the SqlDataSource control you learned
about in Chapter 16. However, it has two key differences:

• The XmlDataSource extracts information from an XML file, rather than a database or
data access class. It provides other controls with an XmlDocument object for data
binding.

• XML content is hierarchical and can have an unlimited number of levels. By contrast,
the SqlDataSource returns a flat table of data.

CHAPTER 19 ■ XML682

8911CH19.qxd 9/24/07 3:11 PM Page 682

The XmlDataSource also provides a few features in common with the other data source
controls, including caching.

■Note The XmlDataSource is a more limited approach than the XML classes you’ve learned about so far.
The XmlDataSource assumes you’re using files, doesn’t give you as much flexibility for processing your data,
and doesn’t support updateable binding (saving the changes you make in a control to the original XML file).
However, it also makes some scenarios much simpler.

Nonhierarchical Binding
The simplest way to deal with the hierarchical nature of XML data is to ignore it. In other
words, you can bind the XML data source directly to an ordinary grid control such as the
GridView.

The first step is to define the XML data source and point it to the file with the content you
want to implement using the DataFile property:

<asp:XmlDataSource ID="sourceXml" runat="server"
DataFile="App_Data\SuperProProductList.xml" />

Now you can bind the GridView with automatically generated columns, in the same way
you bind it to any other data source:

<asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="True"
DataSourceID="sourceXml" />

■Note Remember, you don’t need to use automatically generated columns. If you refresh the schema at
design time, Visual Studio will read the linked XML file, determine its structure, and define the corresponding
GridView columns explicitly.

Now, when you run the page, the XmlDataSource will extract the data from the

SuperProProductList.xml file, provide it to the GridView as an XmlDocument object, and

call DataBind(). However, this approach has a catch. As explained earlier, the

XmlDocument.Nodes collection contains only the first level of nodes. Each node can contain

nested nodes through its own XmlNode.Nodes collection. However, the XmlDataSource

doesn’t take this into account. It walks over the upper level of XmlNode objects, and as a result

you’ll see only the top level of elements. In this example, that means you’ll see a row for each

<Product> element, complete with all the attribute information, as shown in Figure 19-11. You

won’t see inner text content or nested elements, such as the <Price> element.

CHAPTER 19 ■ XML 683

8911CH19.qxd 9/24/07 3:11 PM Page 683

Figure 19-11. XML data binding (attributes only)

The problem is even more glaring if you have an XML document with a more deeply
nested structure. For example, imagine you use the following XML that divides its products
into categories:

<?xml version="1.0" standalone="yes"?>
<SuperProProductList xmlns="SuperProProductList" >
<Category Name="Hardware">
<Product ID="1" Name="Chair">
<Price>49.33</Price>

</Product>
<Product ID="2" Name="Car">
<Price>43398.55</Price>

</Product>
</Category>
<Category Name="Produce">
<Product ID="3" Name="Fresh Fruit Basket">
<Price>49.99</Price>

</Product>
</Category>

</SuperProProductList>

Now all you’ll see is the list of categories, because these make up the first level of nodes
(see Figure 19-12).

CHAPTER 19 ■ XML684

8911CH19.qxd 9/24/07 3:11 PM Page 684

Figure 19-12. XML data binding (top-level nodes only)

Clearly, the XmlDataSource has two significant limitations. First, it displays only attribute
values, not the text inside elements (in this case, the product price). Second, it shows only the
top level of nodes, which may not be what you want. To solve these problems, you need to
return to the XML classes, or you need to use one of the following approaches:

• You can use XPath to filter out the important elements, even if they’re several layers
deep.

• You can use an XSLT style sheet to flatten the XML into exactly the structure you want.
Just make sure all the information is in the top level of nodes and in attributes only.

• You can nest one data control inside another (however, this can get quite complex).

• You can use a control that supports hierarchical data. The only ready-made .NET con-
trols that fit are the TreeView and Menu.

All of these options require considerably more work. In the next section, you’ll see how to
use the TreeView.

Hierarchical Binding with the TreeView
Some controls have the built-in smarts to show hierarchical data. In .NET, the principal
example is the TreeView. When you bind the TreeView to an XmlDataSource, it uses the
XmlDataSource.GetHierarchcialView() method and displays the full structure of the XML
document (see Figure 19-13).

CHAPTER 19 ■ XML 685

8911CH19.qxd 9/24/07 3:11 PM Page 685

Figure 19-13. Automatically generated TreeView bindings

The TreeView’s default XML representation still leaves a lot to be desired. It shows
only the document structure (the element names), not the document content (the element
text). It also ignores attributes. To improve this situation, you need to set the
TreeView.AutomaticallyGenerateDataBindings property to false, and you then need to
explicitly map different parts of the XML document to TreeView nodes.

<asp:TreeView ID="TreeView1" runat="server" DataSourceID="sourceXml"
AutoGenerateDataBindings="False">
...

</asp:TreeView>

To create a TreeView mapping, you need to add <TreeNodeDataBinding> elements to the
<DataBindings> section. You must start with the root element in the XML document and then
add a binding for each level you want to show. You cannot skip any levels.

Each <TreeNodeBinding> must name the node it binds to (through the DataMember
property), the text it should display (TextField), and the hidden value for the node (ValueField).
Unfortunately, both TextField and ValueField are designed to bind to attributes. If you want to
bind to element content, you can use an ugly hack and specify the #InnerText code. However,
this shows all the inner text, including text inside other, more deeply nested nodes.

The next example defines a basic set of nodes to show the product information:

<asp:TreeView ID="TreeView1" runat="server" DataSourceID="sourceXml"
AutoGenerateDataBindings="False">
<DataBindings>
<asp:TreeNodeBinding DataMember="SuperProProductList" Text="Product List" />
<asp:TreeNodeBinding DataMember="Category" TextField="Name" />
<asp:TreeNodeBinding DataMember="Product" TextField="Name" />
<asp:TreeNodeBinding DataMember="Price" TextField="#InnerText" />

CHAPTER 19 ■ XML686

8911CH19.qxd 9/24/07 3:11 PM Page 686

</DataBindings>
</asp:TreeView>

Figure 19-14 shows the result.

Figure 19-14. Binding to specific content

■Tip To learn how to format the TreeView, including how to tweak gridlines and node pictures, refer to
Chapter 14.

Binding to XML Content from Other Sources
So far, all the XML data-binding examples you’ve seen have bound to XML content in a file.
This is the standard scenario for the XmlDataSource control, but it’s not your only possibility.
The other option is to supply the XML as text through the XmlDataSource.Data property.

You can set the Data property at any point before the binding takes place. One convenient
time is during the Page.Load event:

protected void Page_Load(object sender, EventArgs e)
{

string xmlContent;

// (Retrieve XML content from another location.)
sourceXml.Data = xmlContent;

}

This allows you to read XML content from another source (such as a database) and still
work with the bound data controls.

CHAPTER 19 ■ XML 687

8911CH19.qxd 9/24/07 3:11 PM Page 687

STILL MORE WAYS TO READ XML

Microsoft has been a bit overenthusiastic in the XML world. In this chapter, you’ve learned about a vast num-
ber of options for reading and writing XML data. However, this isn’t the whole story. There are at least three
more specialized alternatives for dealing with XML in .NET:

• XML serialization: Using this feature, you can pull information out of an XML file and pop it into a cus-
tom class that you’ve created. Best of all, it happens almost automatically, without you needing to write
the code that moves through all the nodes. You can use a similar technique to pull the live information
out of your objects and convert it back to XML. The only disadvantage is flexibility, as the structure of
your class needs to match the structure of your XML document.

• LINQ to XML: LINQ is a set of language extensions that allows you to write query expressions that can
pull information out of various data sources. For example, you can use LINQ to filter the objects in a
collection, to extract data from a SQL Server database, or to pull interesting information out of an XML
file. The advantage is that you only need to learn the LINQ syntax once, and it applies to a wide range
of different types of data and scenarios. (The disadvantage is that you have one more standard to
master.)

• The XmlDataDocument: The XmlDataDocument fuses together two different classes: the
XmlDocument that you learned about in this chapter and the ADO.NET DataSet. By doing so, it allows
you to see your data in two different ways at once—as a DataSet with tables and rows, and as an XML
document that holds a collection of elements. For example, you can fill a DataSet using a database
query, use the DataSet to create an XmlDataDocument, and then use the XmlDataDocument to perform
XML-specific tasks on that data (such as applying an XSLT style sheet). It’s definitely a nifty trick, but
one that isn’t used very often.

To learn more about XML serialization, look up “XML serialization” in the index of the Visual Studio Help.
To get started with LINQ, you can surf to Microsoft’s LINQ developer center at http://msdn.microsoft.
com/data/ref/linq. And to try out the XmlDataDocument, check out the downloadable code for this
chapter, which includes an example that uses it.

The Last Word
Now that your tour of XML and ASP.NET is drawing to a close, you should have a basic under-
standing of what XML is, how it looks, and why you might use it in a web page. XML represents
a new tool for breaking down the barriers between businesses and platforms—it’s nothing less
than a universal model for storing and communicating all types of information.

XML on its own is a remarkable innovation. However, to get the most out of XML, you
need to embrace other standards that allow you to validate XML, transform it, and search it
for specific information. The .NET Framework provides classes for all these tasks in the
namespaces under the System.Xml branch. To continue your exploration, start with a compre-
hensive review of XML standards (such as the one provided at http://www.w3schools.com/xml)
and then dive into the class library.

CHAPTER 19 ■ XML688

8911CH19.qxd 9/24/07 3:11 PM Page 688

http://msdn.microsoft
http://www.w3schools.com/xml

Website Security

P A R T 5

8911CH20.qxd 10/18/07 4:45 PM Page 689

8911CH20.qxd 10/18/07 4:45 PM Page 690

Security Fundamentals

Ordinarily, your ASP.NET website is available to anyone who connects to your web server,
whether over a local network or the Internet. Although this is ideal for many web applications
(and it suits the original spirit of the Internet), it isn’t always an appropriate design choice.
For example, an e-commerce site needs to provide a secure shopping experience to attract
customers. A subscription-based site needs to limit content to extract a fee. And even a wide-
open public site may provide some resources or features that shouldn’t be available to all
users.

ASP.NET provides an extensive security model that makes it easy to protect your web
applications. Although this security model is powerful and profoundly flexible, it can appear
confusing because of the many different layers that it includes. Much of the work in securing
your application isn’t writing code, but determining the appropriate places to implement your
security strategy.

In this chapter, you’ll sort out the tangled ASP.NET security model. You’ll learn two ways
to authenticate users—first, using forms authentication (which is ideal for a public website
that uses a custom database) and then using Windows authentication (which is ideal for an
intranet application on a company network). You’ll also take a brief look at SSL (Secure
Sockets Layer), the standard for secure web communication.

Determining Security Requirements
The first step in securing your applications is deciding where you need security and what it
needs to protect. For example, you may need to block access in order to protect private infor-
mation. Or, maybe you just need to enforce a pay-for-content system. Perhaps you don’t need
any sort of security at all, but you want an optional login feature to provide personalization for
frequent visitors. These requirements will determine the approach you use.

Security doesn’t need to be complex, but it does need to be wide-ranging and multilayered.
For example, consider an e-commerce website that allows users to view reports of their
recently placed orders. You probably already know the first line of defense that this website
should use—a login page that forces users to identify themselves before they can see any per-
sonal information. In this chapter, you’ll learn how to use this sort of authentication system.
However, it’s important to realize that, on its own, this layer of protection is not enough to
truly secure your system. You also need to protect the back-end database with a strong pass-
word, and you might even choose to encrypt sensitive information before you store it
(scrambling so that it’s unreadable without the right key to decrypt it). Steps like these protect
your website from other attacks that get beyond your authentication system. For example,

691

C H A P T E R 2 0

8911CH20.qxd 10/18/07 4:45 PM Page 691

they can deter a disgruntled employee with an account on the local network, a hacker who has
gained access to your network through the company firewall, or a careless technician who dis-
cards a hard drive used for data storage without erasing it first.

Furthermore, you’ll need to hunt carefully for weaknesses in the code you’ve written. A
surprising number of websites fall prey to relatively simple attacks in which a malicious user
simply tampers with a query string argument or a bit of HTML in the rendered page. For
example, in the e-commerce example you need to make sure that a user who successfully logs
in can’t view another user’s recent orders. Imagine you’ve created a ViewOrders.aspx page that
takes a query string argument named userID, like this:

http://localhost/InsecureStore/ViewOrders.aspx?userID=4191

This example is a security nightmare, because any user can easily modify the userID
parameter by editing the URL to see another user’s information. A better solution would be to
design the ViewOrders.aspx page so that it gets the user ID from the currently logged-on user
identity (a trick you’ll learn in this chapter), and then uses that to construct the right database
command.

■Note Another example of a security vulnerability introduced by poor coding is the ever-common SQL
injection attack. You learned to prevent this attack by using parameterized database commands in
Chapter 15.

When designing with security in mind, it’s important to consider the different avenues
for attack. However, you can’t always anticipate potential problems. For that reason, it makes
great sense to layer your security. The mantra of security architects can be summed up like
this: “Don’t force an attacker to do one impossible thing to break into your system—force
them to do several.”

The ASP.NET Security Model
As you’ve seen in previous chapters, web requests are fielded first by the IIS web server, which
examines the file type. If the file type is registered to ASP.NET, the web server passes the
request to ASP.NET. Figure 20-1 shows how these levels interact.

CHAPTER 20 ■ SECURITY FUNDAMENTALS692

8911CH20.qxd 10/18/07 4:45 PM Page 692

http://localhost/InsecureStore/ViewOrders.aspx?userID=4191

Figure 20-1. IIS and ASP.NET interaction

You can apply security at several places in this chain. First, consider the process for an
ordinary (non-ASP.NET) web page request:

1. IIS attempts to authenticate the user. Generally, IIS allows requests from all
anonymous users and automatically logs them in under the IUSR_[ComputerName]
account. IIS security settings are configured on a per-directory basis. (On Windows
Vista, this account is simply named IUSR.)

2. If IIS authenticates the user successfully, it attempts to send the user the appropriate
HTML file. The operating system performs its own security checks to verify that the
authenticated user (typically IUSR) is allowed access to the specified file and directory.

An ASP.NET request requires several additional steps (as shown in Figure 20-2). The first
and last steps are similar, but the process has intermediary layers:

CHAPTER 20 ■ SECURITY FUNDAMENTALS 693

8911CH20.qxd 10/18/07 4:45 PM Page 693

Figure 20-2. Authenticating a request

CHAPTER 20 ■ SECURITY FUNDAMENTALS694

8911CH20.qxd 10/18/07 4:45 PM Page 694

1. IIS attempts to authenticate the user. Generally, IIS allows requests from all anony-
mous users and automatically logs them in under the IUSR account.

2. If IIS authenticates the user successfully, it passes the request to ASP.NET with addi-
tional information about the authenticated user. ASP.NET can then use its own security
services, depending on the settings in the web.config file and the page that was
requested.

3. If ASP.NET authenticates the user, it allows requests to the .aspx page or .asmx web
service. Your code can perform additional custom security checks (for example, manu-
ally asking for another password before allowing a specific operation).

4. When the ASP.NET code requests resources (for example, tries to open a file or connect
to a database), the operating system performs its own security checks. In a live website,
ASP.NET code runs under a fixed account. This account is defined in the machine.config
file (if you’re running IIS 5) or in IIS Manager (if you’re running IIS 6 or IIS 7). As your
code performs various actions, Windows checks to make sure the account has the
required permissions.

One important and easily missed concept is that the ASP.NET code doesn’t run under the
IUSR account, even if you’re using anonymous user access. The reason is the IUSR account
doesn’t have sufficient privileges for ASP.NET code, which needs to be able to create and
delete temporary files in order to manage the compilation process. Instead, the ASP.NET
account is set through the machine.config file (if you’re using IIS 5) or the application pool
identity (under IIS 6 and IIS 7), as described in Chapter 9. When designing ASP.NET pages, you
must keep this in mind and ensure your program can’t be used to make dangerous modifica-
tions or delete important files.

■Note There is one exception to the rules set out in this section. If you enable impersonation (which is
described at the end of this chapter), ASP.NET runs all code under the account of an authenticated user.
Impersonation is rarely used, because it forces you to grant additional permissions to all users so that
ASP.NET can run properly and compile code.

RESTRICTED FILE TYPES

ASP.NET automatically provides a basic level of security by blocking requests for certain file types (such as
configuration and source code files). To accomplish this, ASP.NET registers the file types with IIS but specifi-
cally assigns them to the HttpForbiddenHandler class. This class has a single role in life—it denies every
request it receives.

ASP.NET uses this technique to block access to source code files, Visual Studio project files, and other
resources. Some of the restricted file types include the following:

CHAPTER 20 ■ SECURITY FUNDAMENTALS 695

8911CH20.qxd 10/18/07 4:45 PM Page 695

.asax

.ascx

.config

.vb

.vbproj

.cs

.csproj

.resx

.resources

To see the full list, refer to the web.config.default file in the c:\Windows\Microsoft.NET\Framework\
v2.0.50727\Config folder, and search for the text System.Web.HttpForbiddenHandler.

The Visual Studio Web Server
So far, this discussion assumes you’re using IIS, which is what all live ASP.NET websites use.
However, IIS isn’t involved when you test a web application using the integrated web server in
Visual Studio. Instead, the Visual Studio web server plays the same role.

Conceptually, the Visual Studio web server works in the same way as the IIS web server.
For example, it handles requests for different types of files (such as HTML pages and ASP.NET
web forms) and passes requests on to ASP.NET when required. However, the security model is
simplified. Because the Visual Studio web server is designed to be used by one person at a
time—the current user of the local computer—it doesn’t support anonymous access. Instead,
every time you run the Visual Studio web server it logs you on automatically, using your cur-
rent Windows identity. As a result, your web page code runs with the permissions of your
Windows user account. Typically, this gives your web application code more privileges than it
would have in a deployed website, where it’s forced to run under a more limited account.

Authentication and Authorization
Two concepts form the basis of any discussion about security:

Authentication: This is the process of determining a user’s identity and forcing users to
prove they are who they claim to be. Usually, this involves entering credentials (typically a
user name and password) into some sort of login page or window. These credentials are
then authenticated against the Windows user accounts on a computer, a list of users in a
file, or a back-end database.

Authorization: Once a user is authenticated, authorization is the process of determining
whether that user has sufficient permissions to perform a given action (such as viewing a
page or retrieving information from a database). Windows imposes some authorization
checks (for example, when you open a file), but your code will probably want to impose
its own checks (for example, when a user performs a task in your web application such as
submitting an order, assigning a project, or giving a promotion).

CHAPTER 20 ■ SECURITY FUNDAMENTALS696

8911CH20.qxd 10/18/07 4:45 PM Page 696

Authentication and authorization are the two cornerstones of creating a secure user-
based site. The Windows operating system provides a good analogy. When you first boot up
your computer, you supply a user ID and password, thereby authenticating yourself to the
system. After that point, every time you interact with a restricted resource (such as a file, data-
base, registry key, and so on), Windows quietly performs authorization checks to ensure your
user account has the necessary rights.

You can use two types of authentication to secure an ASP.NET website:

Forms authentication: With forms authentication, IIS is configured to allow anonymous
users (which is its default setting). However, you use ASP.NET’s forms authentication
model to secure parts of your site. This allows you to create a subscription site or
e-commerce store. You can manage the login process easily, and write your own login
code for authenticating users against a database or simple user account list.

Windows authentication: With Windows authentication, IIS forces every user to log in as a
Windows user. (Depending on the specific configuration you use, this login process may
take place automatically, as it does in the Visual Studio test web server, or it may require
that the user type a name and password into a Login dialog box.) This system requires
that all users have Windows user accounts on the server (although users could share
accounts). This scenario is poorly suited for a public web application but is often ideal
with an intranet or company-specific site designed to provide resources for a limited set
of users.

You’ll concentrate on these two approaches in this chapter. First, you’ll explore the forms
authentication model, which is perfect for publicly accessible websites. Then, you’ll consider
Windows authentication, which makes sense in smaller network environments where you
have a group of known users.

Forms Authentication
In traditional ASP programming developers often had to create their own security systems. A
common approach was to insert a little snippet of code at the beginning of every secure page.
This code would check for the existence of a custom cookie. If the cookie didn’t exist, the user
would be redirected to a login page, where the cookie would be created after a successful
login.

ASP.NET uses the same approach in its forms authentication model. You are still respon-
sible for creating the login page (although you can use a set of specially designed controls to
help you, as described in Chapter 21). However, you don’t need to create the security cookie
manually, or check for it in secure pages, because ASP.NET handles these tasks automatically.
You also benefit from ASP.NET’s support for sophisticated validation algorithms, which make
it all but impossible for users to spoof their own cookies or try other hacking tricks to fool your
application into giving them access.

Figure 20-3 shows a simplified security diagram of the forms authentication model in
ASP.NET.

CHAPTER 20 ■ SECURITY FUNDAMENTALS 697

8911CH20.qxd 10/18/07 4:45 PM Page 697

Figure 20-3. ASP.NET forms authentication

To implement forms-based security, you need to follow three steps:

1. Set the authentication mode to forms authentication in the web.config file (or use the
WAT).

2. Restrict anonymous users from a specific page or directory in your application.

3. Create the login page.

You’ll walk through these steps in the following sections.

CHAPTER 20 ■ SECURITY FUNDAMENTALS698

8911CH20.qxd 10/18/07 4:45 PM Page 698

Web.config Settings
You define the type of security in the web.config file by using the <authentication> tag.

The following example configures the application to use forms authentication by using
the <authentication> tag. It also sets several of the most important settings using a nested
<forms> tag. Namely, it sets the name of the security cookie, the length of time it will be con-
sidered valid (in minutes), and the page that allows the user to log in.

<configuration>
<system.web>

...
<authentication mode="Forms">

<forms name="MyAppCookie"
loginUrl="~/Login.aspx"
protection="All"
timeout="30" path="/" />

</authentication>
</system.web>
...

</configuration>

Table 20-1 describes these settings. They all supply default values, so you don’t need to set
them explicitly. For a complete list of supported attributes, consult the Visual Studio Help.

Table 20-1. Forms Authentication Settings

Attribute Description

name The name of the HTTP cookie to use for authentication (defaults to .ASPXAUTH).
If multiple applications are running on the same web server, you should give each
application’s security cookie a unique name.

loginUrl Your custom login page, where the user is redirected if no valid authentication
cookie is found. The default value is Login.aspx.

protection The type of encryption and validation used for the security cookie (can be All, None,
Encryption, or Validation). Validation ensures the cookie isn’t changed during
transit, and encryption (typically Triple-DES) is used to encode its contents. The
default value is All.

timeout The number of minutes before the cookie expires. ASP.NET will refresh the cookie
when it receives a request, as long as half of the cookie’s lifetime has expired. The
default value is 30.

path The path for cookies issued by the application. The default value (/) is recom-
mended, because case mismatches can prevent the cookie from being sent with a
request.

Authorization Rules
If you make these changes to an application’s web.config file and request a page, you’ll notice
that nothing unusual happens, and the web page is served in the normal way. This is because
even though you have enabled forms authentication for your application, you have not

CHAPTER 20 ■ SECURITY FUNDAMENTALS 699

8911CH20.qxd 10/18/07 4:45 PM Page 699

restricted anonymous users. In other words, you’ve chosen the system you want to use for
authentication, but at the moment none of your pages needs authentication.

To control who can and can’t access your website, you need to add access control rules to
the <authorization> section of your web.config file. Here’s an example that duplicates the
default behavior:

<configuration>
<system.web>

...
<authentication mode="Forms">

<forms loginUrl="~/Login.aspx" />
</authentication>

<authorization>
<allow users="*" />

</authorization>
</system.web>
...

</configuration>

The asterisk (*) is a wildcard character that explicitly permits all users to use the applica-
tion, even those who haven’t been authenticated. Even if you don’t include this line in your
application’s web.config file, this is still the behavior you’ll see, because the default settings
inherited from the machine.config file allow all users. To change this behavior, you need to
explicitly add a more restrictive rule, as shown here:

<authorization>
<deny users="?" />

</authorization>

The question mark (?) is a wildcard character that matches all anonymous users. By
including this rule in your web.config file, you specify that anonymous users are not allowed.
Every user must be authenticated, and every user request will require the security cookie. If
you request a page in the application directory now, ASP.NET will detect that the request isn’t
authenticated and attempt to redirect the request to the login page (which will probably cause
an error, unless you’ve already created this file).

Now consider what happens if you add more than one rule to the authorization section:

<authorization>
<allow users="*" />
<deny users="?" />

</authorization>

When evaluating rules, ASP.NET scans through the list from top to bottom and then con-
tinues with the settings in any .config file inherited from a parent directory, ending with the
settings in the base machine.config file. As soon as it finds an applicable rule, it stops its
search. Thus, in the previous case, it will determine that the rule <allow users="*"> applies to
the current request and will not evaluate the second line. This means these rules will allow all
users, including anonymous users.

CHAPTER 20 ■ SECURITY FUNDAMENTALS700

8911CH20.qxd 10/18/07 4:45 PM Page 700

But consider what happens if these two lines are reversed:

<authorization>
<deny users="?" />
<allow users="*" />

</authorization>

Now these rules will deny anonymous users (by matching the first rule) and allow all
other users (by matching the second rule).

Controlling Access to Specific Directories
A common application design is to place files that require authentication in a separate
directory. With ASP.NET configuration files, this approach is easy. Just leave the default
<authorization> settings in the normal parent directory, and add a web.config file that
specifies stricter settings in the secured directory. This web.config simply needs to deny
anonymous users (all other settings and configuration sections can be omitted).

<!-- This web.config file is in a subfolder. -->
<configuration>

<system.web>
<authorization>

<deny users="?" />
</authorization>

</system.web>
</configuration>

■Note You cannot change the <authentication> tag settings in the web.config file of a subdirectory in your
application. Instead, all the directories in the application must use the same authentication system. However,
each directory can have its own authorization rules.

Controlling Access to Specific Files
Generally, setting file access permissions by directory is the cleanest and easiest approach.
However, you also have the option of restricting specific files by adding <location> tags to your
web.config file.

The location tags sit outside the main <system.web> tag and are nested directly in the
base <configuration> tag, as shown here:

<configuration>
<system.web>

...
<authentication mode="Forms">

<forms loginUrl="~/Login.aspx" />
</authentication>

CHAPTER 20 ■ SECURITY FUNDAMENTALS 701

8911CH20.qxd 10/18/07 4:45 PM Page 701

<authorization>
<allow users="*" />

</authorization>
</system.web>
...
<location path="SecuredPage.aspx">

<system.web>
<authorization>

<deny users="?" />
</authorization>

</system.web>
</location>

<location path="AnotherSecuredPage.aspx">
<system.web>

<authorization>
<deny users="?" />

</authorization>
</system.web>

</location>
</configuration>

In this example, all files in the application are allowed, except SecuredPage.aspx and
AnotherSecuredPage.aspx, which have an additional access rule denying anonymous users.
Notice that even when you use multiple <location> sections to supply different sets of authori-
zation rules, you still only include one <authentication> section. That’s because a web
application can use only one type of authentication.

■Tip You can also use the location tags to set rules for a specific subdirectory. It’s up to you whether you
want to use this approach or you prefer to create separate web.config files for each subdirectory, as
described in the previous section.

Controlling Access for Specific Users
The <allow> and <deny> rules don’t need to use the asterisk or question mark wildcards.
Instead, they can specifically identify a user name or a list of comma-separated user names.
For example, the following list specifically restricts access from three users. These users will
not be able to access the pages in this directory. All other authenticated users will be allowed.

<authorization>
<deny users="?" />
<deny users="matthew,sarah" />
<deny users="john" />
<allow users="*" />

</authorization>

CHAPTER 20 ■ SECURITY FUNDAMENTALS702

8911CH20.qxd 10/18/07 4:45 PM Page 702

You’ll notice that the first rule in this example denies all anonymous users. Otherwise, the
following rules won’t have any effect, because users won’t be forced to authenticate them-
selves.

The following rules explicitly allow two users. All other user requests will be denied
access, even if they are authenticated.

<authorization>
<deny users="?" />
<allow users="matthew,sarah" />
<deny users="*" />

</authorization>

Don’t confuse these user names with the Windows user account names that are config-
ured on your web server. When you use forms authentication, your application’s security
model is separate from the Windows user account system. Your application assigns the user
name when a user logs in through the login page. Often, you’ll choose user names that corre-
spond to IDs in a database. The only requirement is that your user names need to be unique.

The WAT
You have another way to set up your authentication and authorization rules. Rather than edit
the web.config file by hand, you can use the WAT (website administration tool) from inside
Visual Studio. The WAT guides you through the process, although you’ll find it’s still important
to understand what changes are actually being made to your web.config file. It’s also often
quicker to enter a list of authorization rules by hand than to use the WAT.

To use the WAT for this type of configuration, select Website ➤ ASP.NET Configuration
from the menu. Next, click the Security tab. You’ll see the window shown in Figure 20-4, which
gives you links to set the authentication type, define authorization rules (using the Access
Rules section), and enable role-based security. (Role-based security is an optional higher-level
feature you can use with forms authentication. You’ll learn more about how it works and how
to enable it in the next chapter.)

To set an application to use forms authentication, follow these steps:

1. Click Select Authentication Type.

2. Choose the From the Internet option. (If you chose From a Local Network instead,
you’d wind up using the built-in Windows authentication approach described later in
the “Windows Authentication” section.)

3. Click Done. The appropriate <authorization> tag will be created in the web.config file.

■Tip The Select Authentication options are worded in a slightly misleading way. It’s true that applications
that have users connecting from all over the Internet are sure to use forms authentication. However, applica-
tions that run on a local network might also use forms authentication—it all depends on how they connect
and whether you want to use the information in existing accounts. In other words, a local intranet gives you
the option to use Windows authentication but doesn’t require it.

CHAPTER 20 ■ SECURITY FUNDAMENTALS 703

8911CH20.qxd 10/18/07 4:45 PM Page 703

Figure 20-4. The Security tab in the WAT

Next, it’s time to define the authorization rules. To do so, click the Create Access Rules
link. (You can also change existing rules by clicking the Manage Access Rules link.) Using the
slightly convoluted page shown in Figure 20-5, you have the ability to create a rule allowing or
restricting specific users to the entire site or a specific page or subfolder. For example, the rule
in Figure 20-5 will deny the user jenny from the entire site once you click OK to add it.

To manage multiple rules, you’ll need to click the Manage Access Rules link. Now you’ll
have the chance to change the order of rules (and hence the priority, as described earlier), as
shown in Figure 20-6. If you have a large number of rules to create, you may find it’s easier to
edit the web.config file by hand. You might just want to create one initial rule to make sure it’s
in the right place and then copy and paste your way to success.

The Security tab is a little overwhelming at first glance because it includes a few features
you haven’t been introduced to yet. For example, the Security tab also allows you to create and
manage user records and roles, as long as you’re willing to use the prebuilt database structure
that ASP.NET requires. You’ll learn more about these details, which are a part of a broad fea-
ture called membership, in the next chapter. For now, you’ll concentrate on the authentication
and authorization process.

CHAPTER 20 ■ SECURITY FUNDAMENTALS704

8911CH20.qxd 10/18/07 4:45 PM Page 704

Figure 20-5. Adding an authorization rule

Figure 20-6. Ordering authorization rules

CHAPTER 20 ■ SECURITY FUNDAMENTALS 705

8911CH20.qxd 10/18/07 4:45 PM Page 705

The Login Page
Once you’ve specified the authentication mode and the authorization rules, you need to build
the actual login page, which is an ordinary .aspx page that requests information from the user
and decides whether the user should be authenticated.

ASP.NET provides a special FormsAuthentication class in the System.Web.Security name-
space, which provides static methods that help manage the process. Table 20-2 describes the
most important methods of this class.

Table 20-2. Members of the FormsAuthentication Class

Member Description

FormsCookieName A read-only property that provides the name of the
forms authentication cookie.

FormsCookiePath A read-only property that provides the path set for the
forms authentication cookie.

Authenticate() Checks a user name and password against a list of
accounts that can be entered in the web.config file.

RedirectFromLoginPage() Logs the user into an ASP.NET application by creating
the cookie, attaching it to the current response, and
redirecting the user to the page originally requested.

SignOut() Logs the user out of the ASP.NET application by
removing the current encrypted cookie.

SetAuthCookie() Logs the user into an ASP.NET application by creating
and attaching the forms authentication cookie. Unlike
the RedirectFromLoginPage() method, it doesn’t
forward the user back to the initially requested page.

GetRedirectUrl() Provides the URL of the originally requested page. You
could use this with SetAuthCookie() to log a user into
an application and make a decision in your code
whether to redirect to the requested page or use a more
suitable default page.

GetAuthCookie() Creates the authentication cookie but doesn’t attach it
to the current response. You can perform additional
cookie customization and then add it manually to the
response, as described in Chapter 7.

HashPasswordForStoringInConfigFile() Encrypts a string of text using the specified algorithm
(SHA1 or MD5). This hashed value provides a secure
way to store an encrypted password in a file or database.

A simple login page can put these methods to work with little code. To try it out, begin by
enabling forms authentication and denying anonymous users in the web.config, as described
earlier:

<configuration>
<system.web>

...
<authentication mode="Forms">

<forms loginUrl="~/Login.aspx" />
</authentication>

CHAPTER 20 ■ SECURITY FUNDAMENTALS706

8911CH20.qxd 10/18/07 4:45 PM Page 706

<authorization>
<deny users="?" />
<allow users="*" />

</authorization>
</system.web>
...

</configuration>

Now, users will be redirected to a login page named Login.aspx that you need to create.
Figure 20-7 shows an example of the simple login page that you might build.

Figure 20-7. A typical login page

When the user clicks the Login button, the page checks whether the user has typed in the
password Secret and then uses the RedirectFromLoginPage() method to log the user in. Here’s
the complete page code:

public partial class Login : System.Web.UI.Page
{

protected void cmdLogin_Click(Object sender, EventArgs e)
{

if (txtPassword.Text.ToLower() == "secret")
{

FormsAuthentication.RedirectFromLoginPage(
txtName.Text, false);

}
else
{

lblStatus.Text = "Try again.";
}

}
}

CHAPTER 20 ■ SECURITY FUNDAMENTALS 707

8911CH20.qxd 10/18/07 4:45 PM Page 707

The RedirectFromLoginPage() method requires two parameters. The first sets the name
of the user. The second is a Boolean variable that creates a persistent forms authentication
cookie when set to true or an ordinary forms authentication cookie when set to false. A per-
sistent cookie will be stored on the user’s hard drive with an expiration date set to 50 years in
the future. This is a convenience that’s sometimes useful when you’re using the forms authen-
tication login for personalization instead of security. It’s also a security risk because another
user could conceivably log in from the same computer, acquiring the cookie and the access to
the secured pages. If you want to allow the user to create a persistent cookie, you should make
it optional, because the user may want to access your site from a public or shared computer.
Generally, sites that use this technique include a check box with text such as Persist Cookie or
Keep Me Logged In.

FormsAuthentication.RedirectFromLoginPage(txtName.Text, chkPersist.Checked);

Obviously, the approach used in the login page isn’t terribly secure—it simply checks that
the user supplies a hard-coded password. In a real application, you’d probably check the user
name and password against the information in a database and sign the user in only if the
information matches exactly. You could write this code easily using the ADO.NET program-
ming you learned in Part 4, although it requires a bit of tedious code. You’ll consider more
practical ways to accomplish this task in the next chapter.

You can test this example with the FormsSecurity sample included with the online code.
If you request the SecuredPage.aspx file, you’ll be redirected to Login.aspx. After entering the
correct password, you’ll return to SecuredPage.aspx.

Retrieving the User’s Identity
Once the user is logged in, you can retrieve the identity through the built-in User property, as
shown here:

protected void Page_Load(Object sender, EventArgs e)
{

lblMessage.Text = "You have reached the secured page, ";
lblMessage.Text += User.Identity.Name + ".";

}

You don’t need to place the code in the login page. Instead, you can use the User object to
examine the current user’s identity anytime you need to.

Figure 20-8 shows the result of running this code.
You can access the User object in your code because it’s a property of the current Page

object. The User object provides information about the currently logged-in user. It’s fairly
simple—in fact, User provides only one property and one method:

• The Identity property lets you retrieve the name of the logged-in user and the type of
authentication that was used.

• The IsInRole() method lets you determine whether a user is a member of a given role
(and thus should be given certain privileges). You’ll use IsInRole() later in this chapter.

CHAPTER 20 ■ SECURITY FUNDAMENTALS708

8911CH20.qxd 10/18/07 4:45 PM Page 708

Figure 20-8. Accessing a secured page

UNDERSTANDING IDENTITIES

The User object is standardized so that it can work with any type of authentication system. One consequence
of this design is that the User.Identity property returns a different type of object depending on the type of
authentication you’re using.

For example, when using forms authentication, the identity object is an instance of the FormsIdentity
class. When using Windows authentication, you get a WindowsIdentity object instead. (Either way, the object
implements the IIdentity interface, which standardizes it.)

Most of the time, you don’t need to worry about this sleight of hand. But occasionally you might want to
cast the User.Identity property to the more specific type to get access to an extra piece of information. For
example, the FormsIdentity object provides the security ticket (in a property named Ticket), which isn’t avail-
able through the standard IIdentity interface. This ticket is an instance of the FormsAuthenticationTicket
class, and it provides a few miscellaneous details, like the time the user logged in and when the ticket will
expire. Similarly, the WindowsIdentity object provides additional information that relates to Windows accounts
(such as whether the current user is using a guest account or a system account). You’ll see an example of
this technique later in this chapter in the “Impersonation” section.

Signing Out
Any web application that uses forms authentication should also feature a prominent logout
button that destroys the forms authentication cookie:

private void cmdSignOut_Click(Object sender, EventArgs e)
{

FormsAuthentication.SignOut();
Response.Redirect("~/Login.aspx");

}

CHAPTER 20 ■ SECURITY FUNDAMENTALS 709

8911CH20.qxd 10/18/07 4:45 PM Page 709

■Tip In the next chapter, you’ll learn how to simplify life with the login controls. These controls allow you to
build login pages (and other types of security-related user interfaces) with no code. However, they require
another feature—membership—in order to work.

Windows Authentication
With Windows authentication, the web server takes care of the authentication process.
ASP.NET simply uses the authenticated IIS user and makes this identity available to your code
for your security checks.

If your virtual directory uses the default settings, users will be authenticated under the
anonymous IUSR account. But when you use Windows authentication, you’ll force users to log
into IIS before they’re allowed to access secure content in your website. The user login infor-
mation can be transmitted in several ways, but the end result is that the user is authenticated
using a local Windows account. Typically, this makes Windows authentication best suited to
intranet scenarios, in which a limited set of known users is already registered on a network
server.

The advantages of Windows authentication are that it can be performed transparently
with no browser prompts (depending on the client’s operating system and browser) and your
ASP.NET code can examine all the account information. For example, you can use the
User.IsInRole() method to check which groups a user belongs to.

To implement Windows-based security with known users, you need to follow three steps:

1. Set the authentication mode to Windows authentication in the web.config file (or use
the WAT).

2. Disable anonymous access for a directory by using an authorization rule (or by dis-
abling access in IIS Manager). You can also choose the protocol that will be used to
transmit the user name and password information with IIS Manager.

3. Configure the Windows user accounts on your web server (if they aren’t already
present).

You’ll walk through these steps in the following sections.

■Note Most of the discussion in this chapter describes how IIS behaves with Windows authentication.
However, when you’re testing a web application, you’re probably not using IIS. Instead, you’re using the
built-in web server that’s included with Visual Studio. For the most part, this web server works the same as
IIS but has one important distinction—it doesn’t support anonymous use. This means Visual Studio always
logs you into the web server using your Windows account. In IIS, you need to force the user to log in by
explicitly denying anonymous access to a page or subdirectory with authorization rules. To see the differ-
ence, you may want to test your application with IIS by creating a virtual directory (as explained in
Chapter 9).

CHAPTER 20 ■ SECURITY FUNDAMENTALS710

8911CH20.qxd 10/18/07 4:45 PM Page 710

Web.config Settings
To use Windows authentication, you need to make sure the <authentication> element is set
accordingly in your web.config file. Here’s how:

<configuration>
<system.web>

...
<authentication mode="Windows" />

<authorization>
<deny users="?" />

</authorization>
</system.web>
...

</configuration>

At the moment, there’s only one authorization rule, which uses the question mark to
refuse all anonymous users. This step is critical for Windows authentication (as it is for forms
authentication). Without this step, the user will never be forced to log in.

Ideally, you won’t even see the login process take place. Instead, Internet Explorer will
pass along the credentials of the current Windows user, which IIS uses automatically. The
Visual Studio integrated web server always works this way. IIS also works this way, provided
you’ve set up integrated Windows authentication (which is described in the next section). In
order for integrated Windows authentication to work, your clients must be using Internet
Explorer, and must already be logged on to a computer or domain on the same network.

You can also add <allow> and <deny> elements to specifically allow or restrict users from
specific files or directories. Unlike with forms authentication, you need to specify the name of
the server or domain where the account exists. For example, this rule allows the user account
matthew, which is defined on the computer named WebServer:

<allow users="WebServer\matthew" />

For a shortcut, you can use localhost (or just a period) to refer to an account on the cur-
rent computer, as shown here:

<allow users=".\matthew" />

You can also restrict certain types of users, provided their accounts are members of the
same Windows group, by using the roles attribute:

<authorization>
<deny users="?" />
<allow roles=".\SalesAdministrator,.\SalesStaff" />
<deny users=".\matthew" />

</authorization>

In this example, all users who are members of the SalesAdministrator or SalesStaff groups
will be automatically authorized to access ASP.NET pages in this directory. Requests from the
user matthew will be denied, unless he is a member of the SalesAdministrator or SalesStaff
group. Remember, ASP.NET examines rules in the order they appear and stops when it finds a

CHAPTER 20 ■ SECURITY FUNDAMENTALS 711

8911CH20.qxd 10/18/07 4:45 PM Page 711

match. Reversing these two authorization lines would ensure that the user matthew was
always denied, regardless of group membership.

You can also examine a user’s group membership programmatically in your code, as
shown here. Since the string includes a backslash, you need to remember to double it, or you
can turn off C# escaping with a preceding at sign (@).

protected void Page_Load(Object sender, EventArgs e)
{

if (User.IsInRole(@"MyDomainName\SalesAdministrators"))
{

// Do nothing; the page should be accessed as normal because
// the user has administrator privileges.

}
else
{

// Don't allow this page. Instead, redirect to the home page.
Response.Redirect("Default.aspx");

}
}

In this example, the code checks for membership in a custom Windows group called
SalesAdministrators. If you want to check whether a user is a member of one of the built-in
groups, you don’t need to specify a computer or domain name. Instead, you use this syntax:

if (User.IsInRole(@"BUILTIN\Administrators"))
{

// (Code goes here.)
}

For more information about the <allow> and <deny> rules and configuring individual
files and directories, refer to the discussion in the “Authorization Rules” section earlier in this
chapter.

Note that you have no way to retrieve a list of available groups on the web server (that
would violate security), but you can find out the names of the default built-in Windows roles
using the System.Security.Principal.WindowsBuiltInRole enumeration. Table 20-3 describes
these roles. Not all will apply to ASP.NET use, although Administrator, Guest, and User
probably will.

Table 20-3. Default Windows Roles

Role Description

AccountOperator Users with the special responsibility of managing the user accounts on a
computer or domain.

Administrator Users with complete and unrestricted access to the computer or domain.

BackupOperator Users who can override certain security restrictions only as part of backing
up or restore operations.

Guest Like the User role but even more restrictive.

PowerUser Similar to Administrator but with some restrictions.

CHAPTER 20 ■ SECURITY FUNDAMENTALS712

8911CH20.qxd 10/18/07 4:45 PM Page 712

Role Description

PrintOperator Like User but with additional privileges for taking control of a printer.

Replicator Like User but with additional privileges to support file replication in a
domain.

SystemOperator Similar to Administrator with some restrictions. Generally, system operators
manage a computer.

User Users are prevented from making systemwide changes and can run only
certified applications (see http://www.microsoft.com/windows2000/
server/evaluation/business/certified.asp for more information).

IIS Settings
When you deploy a web application that uses Windows authentication to a real, live web
server, you need to configure IIS. That’s because IIS supports several different protocols that it
can use when authenticating a user with Windows authentication. Depending on your net-
work and the level of security you want, you need to choose the right one. Table 20-4 describes
your options.

Table 20-4. Windows Authentication Methods

Mode Description

Anonymous Anonymous authentication is technically not a true authentication method,
because the client isn’t required to submit any information. Instead, users are
given free access to the website under a special user account, IUSR. Anonymous
authentication is the default.

Basic Basic authentication is a part of the HTTP 1.0 standard, and almost all browsers
and web servers support it. When using Basic authentication, the browser presents
the user with a login box with a user name and password field. This information is
then transmitted to IIS, where it’s matched with a local Windows user account. The
disadvantage of Basic authentication is that the password is transmitted in clear
text and is visible over the Internet (unless you combine it with SSL technology).

Digest Digest authentication remedies the primary weakness of Basic authentication:
sending passwords in plain text. Digest authentication sends a digest (also known
as a hash) instead of a password over the network. The primary disadvantage is
that Digest authentication is supported only by Internet Explorer 5.0 and later.
Your web server also needs to use Active Directory or have access to an Active
Directory server.

Integrated Integrated Windows authentication is the best choice for most intranet scenarios.
When using Integrated authentication, Internet Explorer can send the required
information automatically using the currently logged-in Windows account on the
client, provided it’s on a trusted domain. Integrated authentication is supported
only on Internet Explorer 2.0 and later and won’t work across proxy servers. In
Windows Vista and Windows Server 2008, this is simply called Windows authenti-
cation.

The IIS documentation has more about these different authentication methods. However,
choosing the one that’s right for your network environment may involve a long discussion
with your friendly neighborhood network administrator.

CHAPTER 20 ■ SECURITY FUNDAMENTALS 713

8911CH20.qxd 10/18/07 4:45 PM Page 713

http://www.microsoft.com/windows2000

To choose your authentication method in IIS 5 (the version included with Windows XP) or
IIS 6 (the version included with Windows Server 2003), follow these steps:

1. Start IIS Manager (select Settings ➤ Control Panel ➤ Administrative Tools ➤ Internet
Information Services).

2. Expand your computer, then the Web Sites group, and then expand the Default Web
Site item to see all the virtual directories on your web server.

3. Right-click the virtual directory you want to configure, and choose Properties.

4. Select the Directory Security tab and click Edit. You’ll see all the options listed in
Table 20-4. Figure 20-9 shows the IIS 5 version of the window. IIS 6 has the same
options, but in a slightly different arrangement.

Figure 20-9. Configuring Windows authentication (in IIS 5)

In IIS 7 (the version included with Windows Vista and Windows Server 2008), the process
is a bit different. If you’re using Windows Vista, you need to make sure you’re using a version
that supports the type of Windows authentication you need. Unfortunately, only the Business
and Ultimate editions support the most useful authentication methods (digest authentication
and Windows integrated authentication). Next, you need to make sure that the support for
that type of authentication is installed. To do so, open Control Panel, choose Programs and
Features, and then click the link “Turn Windows features on or off.” Head to the Internet
Information Services ➤ World Wide Web Services ➤ Security group, which is shown in
Figure 20-10. You’ll find settings named Basic Authentication, Digest Authentication, and
Windows Authentication (which is what earlier IIS versions call integrated Windows
authentication).

CHAPTER 20 ■ SECURITY FUNDAMENTALS714

8911CH20.qxd 10/18/07 4:45 PM Page 714

Figure 20-10. Installing support for authentication methods (IIS 7)

Once you have the authentication features you need installed, you simply need to follow
these steps:

1. Start IIS Manager (select Settings ➤ Control Panel ➤ Administrative Tools ➤ Internet
Information Services (IIS) Manager).

2. Expand your computer, then the Web Sites group, and then expand the Default Web
Site item to see all the virtual directories on your web server.

3. Select the virtual directory you want to configure.

4. Double-click the Authentication icon in the Features area on the right. Now you’ll see
whatever authentication options you’ve installed. Figure 20-11 shows an example on a
web server that supports integrated Windows authentication.

You can enable more than one authentication method. In this case, the client will use the
strongest authentication method it supports, as long as anonymous access is not enabled. If
anonymous access is enabled, the client will automatically access the website anonymously,
unless the web application explicitly denies anonymous users with this rule in the web.config
file:

<deny users="?" />

CHAPTER 20 ■ SECURITY FUNDAMENTALS 715

8911CH20.qxd 10/18/07 4:45 PM Page 715

Figure 20-11. Configuring Windows authentication (in IIS 7)

A Windows Authentication Test
One of the nice features of Windows authentication is that no login page is required. Once you
enable it in IIS and deny anonymous users in your web.config file, IIS springs into action.
Depending on the authentication protocol you’re using, the login process may take place
automatically or the browser may show a login dialog box. Either way, you don’t need to per-
form any additional work.

You can retrieve information about the currently logged-on user from the User object.
As you learned earlier, the User object provides identity information through the User.Identity
property. Depending on the type of authentication, a different identity object is used, and
each identity object can provide customized information. To get some additional information
about the identity of the user who has logged in with Windows authentication, you can con-
vert the generic IIdentity object to a WindowsIdentity object (which is defined in the
System.Security.Principal namespace).

The following is a sample test page that uses Windows authentication (see Figure 20-12).
To use this code as written, you need to import the System.Security.Principal namespace
(where the WindowsIdentity class is defined).

public partial class SecuredPage : System.Web.UI.Page
{

protected void Page_Load(Object sender, EventArgs e)
{

StringBuilder displayText = new System.Text.StringBuilder();
displayText.Append("You have reached the secured page, ");
displayText.Append(User.Identity.Name);

CHAPTER 20 ■ SECURITY FUNDAMENTALS716

8911CH20.qxd 10/18/07 4:45 PM Page 716

WindowsIdentity winIdentity = (WindowsIdentity)User.Identity;
displayText.Append(".

Authentication Type: ");
displayText.Append(winIdentity.AuthenticationType);
displayText.Append("
Anonymous: ");
displayText.Append(winIdentity.IsAnonymous);
displayText.Append("
Authenticated: ");
displayText.Append(winIdentity.IsAuthenticated);
displayText.Append("
Guest: ");
displayText.Append(winIdentity.IsGuest);
displayText.Append("
System: ");
displayText.Append(winIdentity.IsSystem);
displayText.Append("
Administrator: ");
displayText.Append(User.IsInRole(@"BUILTIN\Administrators"));

lblMessage.Text = displayText.ToString();
}

}

Figure 20-12. Retrieving Windows authentication information

Impersonation
In ASP.NET, all code runs under a carefully limited account. In Windows XP, this is typically an
account that ASP.NET creates automatically, which is named ASPNET. In Windows Server
2003, Windows Vista, and Windows Server 2008, ASP.NET uses the network service account
instead.

The account that ASP.NET uses determines what Windows will allow your application to
do. As you’ve already learned earlier in this book, this account needs to be able to access the
databases you want to use, the files you want to change, and so on. From a security stand-
point, this design makes sense, because it limits what your application can do if it’s tricked
into performing the wrong action or compromised in some way.

CHAPTER 20 ■ SECURITY FUNDAMENTALS 717

8911CH20.qxd 10/18/07 4:45 PM Page 717

Obviously, the permissions that are given to the ASP.NET account do not match the per-
missions that you want your users to have. For example, the ASP.NET account is allowed to
perform tasks that the application users are not, like compile code. Furthermore, the ASP.NET
account usually has the free run of any databases and files you use, whereas individual users
are only allowed to see some of the information inside. Because of this mismatch of permis-
sions, you need to write security checks in your code. For example, if the user goes to the
current account page, your code makes sure the user only sees the information for their
account, and only sees that if they’re properly logged in.

In some cases, you might want your ASP.NET application to temporarily assume the per-
missions of the ASP.NET user. This process, whereby a portion of your code runs under a
different Windows account, with a different set of Windows permissions, is called imperson-
ation.

Understanding Impersonation
With impersonation, your ASP.NET code interacts with the system under the identity of the
authenticated user—not the normal ASP.NET account. This changes the equation of what your
website code is allowed to do. For example, if you try to perform a database operation, Win-
dows will now evaluate whether that specific Windows user is allowed to access the database.

Impersonation is useful when you don’t want to worry about authorization details in your
code. For example, imagine you have a simple application that lets users upload, view, and
manage some personal files on the web server. Each user has a separate folder to store files,
and each folder has a different set of Windows permissions that allow the appropriate user
and restrict everyone else.

Now, imagine you build an ASP.NET web page that lets users browse and view these files.
You want the permissions to remain in effect—in other words, users should only be allowed to
view the files they own. But ordinarily, your ASP.NET web pages are executed by an account
that has permission to view all the files (or even worse, none of them). If you want to make
sure users are only allowed to see their files, you need to write the tedious security checks into
your code by hand.

In this situation, impersonation can save a lot of work. You simply need to use imperson-
ation to assume the current user’s account. Then, you can attempt to view the file the user has
requested. Now, the code will only succeed if the user has the right permissions—in other
words, if they’re trying to view one of the files they own. Of course, this means your applica-
tion will encounter an error when you try to read the file—so you’ll need to use exception
handling code to deal with the situation gracefully.

Programmatic Impersonation
The most useful way to use impersonation is programmatically, using the
WindowsIdentity.Impersonate() method. This allows you to execute some code in the identity
of a specific user (such as your file access routine) but allows the rest of your code to run
under the local system account, guaranteeing it won’t encounter any problems.

To use programmatic impersonation, you need to use Windows authentication and dis-
able anonymous access for the website virtual directory. This way, IIS will authenticate the
user, and that user identity will be available for you to use when you need it.

The following code shows how your code can use the Impersonate() method to switch
identities:

CHAPTER 20 ■ SECURITY FUNDAMENTALS718

8911CH20.qxd 10/18/07 4:45 PM Page 718

WindowsIdentity id = User.Identity as WindowsIdentity;
if (id != null)
{

WindowsImpersonationContext impersonateContext;
impersonateContext = id.Impersonate();

// Now perform tasks under the impersonated ID.
// This code will not be able to perform any task
// (such as reading a file) that the user would not be allowed to do.

// Revert to the original ID as shown below.
impersonateContext.Undo();

}
else
{

// User isn't Windows authenticated.
// Throw an error or take other steps.

}

Confidentiality with SSL
One topic this chapter doesn’t treat in detail is SSL (Secure Sockets Layer) connections. These
technologies are supported by IIS and are really independent from ASP.NET programming.
However, they are an important ingredient in creating a secure website.

Essentially, certificates allow you to demonstrate that your site and your organization
information are registered and verified with a certificate authority. This generally encourages
customer confidence, although it doesn’t guarantee the company or organization acts respon-
sibly or fairly. A certificate is a little like a driver’s license—it doesn’t prove you can drive, but it
demonstrates that a third party (in this case, a department of the government) is willing to
attest to your identity and your qualifications. Your web server requires a certificate in order to
use SSL, which automatically encrypts all the information sent between the client and server.

To add a certificate to your site, you first need to purchase one from a certificate authority.
These are some well-known certificate authorities:

• VeriSign (http://www.verisign.com)

• GeoTrust (http://www.geotrust.com)

• GlobalSign (http://www.globalsign.com)

• Thawte (http://www.thawte.com)

Creating a Certificate Request
The first step in the process of getting a certificate is to e-mail a certificate request for your
web server. IIS Manager allows you to create a certificate request automatically.

CHAPTER 20 ■ SECURITY FUNDAMENTALS 719

8911CH20.qxd 10/18/07 4:45 PM Page 719

http://www.verisign.com
http://www.geotrust.com
http://www.globalsign.com
http://www.thawte.com

The exact process depends on the version of IIS that you have installed. In IIS 5 (the ver-
sion included with Windows XP) or IIS 6 (the version included with Windows Server 2003),
follow these steps:

1. Launch IIS Manager by opening the Start menu and choosing Settings ➤ Control Panel ➤
Administrative Tools ➤ Internet Information Services.

2. Expand your computer, then the Web Sites group, and then expand the Default Web
Site item to see all the virtual directories on your web server.

3. Right-click the virtual directory for your website and choose Properties.

4. Under the Directory Security tab, you’ll find a Server Certificate button. Click this but-
ton to start the Web Server Certificate wizard.

In IIS 7 (the version included with Windows Vista and Windows Server 2008), follow these
steps:

1. Launch IIS Manager by opening the Start menu and choosing Settings ➤ Control Panel ➤
Administrative Tools ➤ Internet Information Services (IIS) Manager.

2. Select the first item in the tree in IIS Manager, which is your computer. In the Features
area on the right, double-click the Server Certificates icon.

3. In the Actions pane, click Create Certificate Request to start the Request Certificate
wizard (shown in Figure 20-13).

Figure 20-13. Requesting a certificate

CHAPTER 20 ■ SECURITY FUNDAMENTALS720

8911CH20.qxd 10/18/07 4:45 PM Page 720

The Web Server Certificate wizard and the Request Certificate wizard serve the same pur-
pose. They collect some basic information, such as your address, the strength of encryption
key you would like (the higher the bit length, the stronger the key), and so on.

At the end of the process, you’ll create a key request. You can save the generated file as a
text file, but you must ultimately e-mail it to a certificate authority. The following is a sample
(slightly abbreviated) request file:

Webmaster: administrator@certificatecompany.com
Phone: (555) 555-5555
Server: Microsoft Key Manager for IIS Version 4.0

Common-name: www.yourcompany.com
Organization: YourOrganization

-----BEGIN NEW CERTIFICATE REQUEST-----
MIIB1DCCAT0CAQAwgZMxCzAJBgNVBAYTAlVTMREwDwYDVQQIEwhOZXcgWW9yazEQ
MA4GA1UEBxMHQnVmZmFsbzEeMBwGA1UEChMVVW5pdmVyc2l0eSBhdCBCdWZmYWxv
MRwwGgYDVQQLExNSZXNlYXJjaCBGb3VuZGF0aW9uMSEwHwYDVQQDExh3d3cucmVz
ZWFyY2guYnVmZmFsby5lZHUwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBALJO
hbsCagHN4KMbl7uz0GwvcjJeWH8JqIUFVFi352tnoA15PZfCxW18KNtFeBtrb0pf
-----END NEW CERTIFICATE REQUEST-----

The certificate authority will return a certificate that you can install according to its
instructions.

TEST CERTIFICATES

If you don’t want to go to the trouble of buying a certificate, you can create a test certificate to use with your
application. However, test certificates aren’t suitable for real, live websites, because they lead to lots of
browser security warnings (which is sure to scare away your users).

IIS 7 (the version included with Windows Vista) makes it easy to create and use a test certificate. You
can find instructions at http://tinyurl.com/2hndyq. You can create a test certificate for previous ver-
sions of IIS with a little more work using the makecert.exe command line tool. For more information, look up
makecert.exe in the index of Visual Studio Help.

Secure Sockets Layer
SSL technology encrypts communication between a client and a website. Although it slows
performance, it’s often used when private or sensitive information needs to be transmitted
between an authenticated user and a web application. Without SSL, any information that’s
sent over the Internet, including passwords, credit card numbers, and employee lists, is easily
viewable to an eavesdropper with the right network equipment.

Even with the best encryption, you have another problem to wrestle with—just how can a
client be sure a web server is who it claims to be? For example, consider a clever attacker who
uses some sort of IP spoofing to masquerade as Amazon.com. Even if you use SSL to transfer

CHAPTER 20 ■ SECURITY FUNDAMENTALS 721

8911CH20.qxd 10/18/07 4:45 PM Page 721

mailto:administrator@certificatecompany.com
http://www.yourcompany.com
http://tinyurl.com/2hndyq

your credit card information, the malicious web server on the other end will still be able to
decrypt all your information seamlessly. To prevent this type of deception, SSL uses certifi-
cates. The certificate establishes the identity, and SSL protects the communication. If a
malicious user abuses a certificate, the certificate authority can revoke it.

To use SSL, you need to install a valid certificate. You can then set IIS directory settings
specifying that individual folders require an SSL connection. To access this page over SSL, the
client simply types the URL with a preceding https instead of http at the beginning of the
request.

In your ASP.NET code, you can check whether a user is connecting over a secure connec-
tion using code like this:

protected void Page_Load(Object sender, EventArgs e)
{

if (Request.IsSecureConnection)
{

lblStatus.Text = "This page is running under SSL.";
}
else
{

lblStatus.Text = "This page isn't secure.
";
lblStatus.Text += "Please request it with the ";
lblStatus.Text += "prefix https:// instead of http://";

}
}

HOW DOES SSL WORK?

With SSL, the client and web server start a secure session before they communicate any information. This
secure session uses a randomly generated encryption key.

Here’s how the process works:

1. The client requests an SSL connection.

2. The server signs its digital certificate and sends it to the client.

3. The client verifies the certificate was issued by a certificate authority it trusts, matches the web server
it wants to communicate with, and has not expired or been revoked. If the certificate is valid, the client
continues to the next step.

4. The client tells the server what encryption key sizes it supports.

5. The server chooses the strongest key length that is supported by both the client and server. It then
informs the client what size this is.

CHAPTER 20 ■ SECURITY FUNDAMENTALS722

8911CH20.qxd 10/18/07 4:45 PM Page 722

https://instead

6. The client generates a session key (a random string of bytes). It encrypts this session key using the
server’s public key (which was provided through the server’s digital certificate). It then sends this
encrypted package to the server.

7. The server decrypts the session key using its private key. Both the client and server now have the
same random session key, which they can use to encrypt communication for the duration of the
session.

The Last Word
In this chapter, you learned about the multilayered security architecture in ASP.NET and IIS
and how you can safeguard your web pages and web services by using a custom login page or
Windows authentication. You also learned the basics about certificates and SSL.

In the next chapter, you’ll continue to build on your knowledge by considering some
add-on features that can simplify your life and enhance your security. You’ll learn how to get
ASP.NET to create a basic user database for your site (complete with password encryption),
saving you from creating it yourself or writing any ADO.NET code. You’ll also extend your
authorization rules by learning how you can group forms-authenticated users into logical
groups, each of which can be assigned its own permissions.

CHAPTER 20 ■ SECURITY FUNDAMENTALS 723

8911CH20.qxd 10/18/07 4:45 PM Page 723

8911CH20.qxd 10/18/07 4:45 PM Page 724

Membership

In the previous chapter, you learned how you can use ASP.NET forms authentication as the
cornerstone of your website security. With forms authentication, you can identify users and
restrict them from pages they shouldn’t access. Best of all, ASP.NET manages the whole
process for you by creating and checking the forms authentication cookie.

As convenient as forms authentication is, it isn’t a complete solution. It’s still up to you to
take care of a variety of related tasks. For example, you need to maintain a user list and check
it during the authentication process. You also need to create the login page, decide how to sep-
arate public from private content, and decide what each user should be allowed to do. These
tasks aren’t insurmountable, but they can be tedious. That’s why Microsoft adds another layer
of features to its forms authentication framework. This extra layer is known as membership.

The membership features fall into three broad categories:

User record management: Rather than create your own user database, if you use the mem-
bership features, ASP.NET can create and maintain this catalog of user information. It can
even implement advanced rules (such as requiring e-mail addresses, asking security
questions, and implementing strong passwords).

Security controls: Every secure website needs a login page. With ASP.NET’s security con-
trols, you don’t need to design your own—instead, you can use a ready-made version
straight from the Login section of the Toolbox. And along with the basic Login control are
other controls for displaying secure content, creating new users, and changing passwords.
Best of all, you can customize how every security control works by setting properties and
reacting to events.

Role-based security: In many websites, you need to give different permissions to different
users. Of course, life would be far too complex if you had to maintain a different set of set-
tings for each user, so instead it’s useful to assemble users into groups that define certain
permissions. These groups are called roles, and ASP.NET’s membership features include
tools for automatically creating a database with role information.

In this chapter, you’ll explore all three of these feature areas and see how you can create
secure sites with surprisingly little code.

The Membership Data Store
The key membership feature is the ability of ASP.NET to store user credentials in a database.
The idea is that you make a few choices about the information that will be stored and the

725

C H A P T E R 2 1

8911CH21.qxd 10/9/07 4:36 PM Page 725

security policy that will be used. From that point on, ASP.NET manages the user database for
you—adding new user information, checking credentials when users try to log in, and so on.

Clearly, the membership data store has the ability to greatly reduce the amount of code
you need to write. You can create a secure website with much less code and, hence, much less
work. You also don’t need to worry about inevitable bugs, because the ASP.NET membership
module is a well-known, carefully tested component.

So, why wouldn’t you want to use the membership data store? A few possible reasons
exist:

You don’t want to store your data in a database: In theory, you can store your user list in
any type of data store, from an XML file to an Oracle database. Technically, each data
store requires a different membership provider. However, ASP.NET includes only two
providers—the SQL Server provider you’ll use in this chapter and a provider for Active
Directory. If you want to use another data store, such as a different relational database,
you’ll need to find a corresponding membership, or you’ll need to forgo membership
altogether.

You need backward compatibility: If you’ve already created a table to store user informa-
tion, it may be too much trouble to switch over to the membership data store. That’s
because the SQL Server membership provider expects a specific table structure. It won’t
work with existing tables, because they’ll have a subtly different combination of fields and
data types. And even if you don’t need to keep the current table structure, you might find
it’s just too much work to re-create all your user records in the membership data store.

You want to manage user information in non-ASP.NET applications: As you’ll see in this
chapter, ASP.NET gives you a powerful set of objects for interacting with membership
data. For example, you can update user records, delete user records, retrieve user records
based on certain criteria, and so on. However, if you’re creating another application out-
side ASP.NET that needs to perform these tasks, you might find it’s not as easy, because
you’ll need to understand the membership table structure. In this case, you may find that
it’s easier to manage users with straight SQL statements that work with your own user
table.

If you decide not to use the membership data store, it’s up to you to write ADO.NET code
to retrieve user records and check user credentials. Using these techniques, you can create
your own login pages the hard way, as explained in Chapter 20.

Before continuing any further, you should set up your website to use forms authentica-
tion by adding the <forms> tag. Here’s what you need to add:

<configuration>
<system.web>

...
<authentication mode="Forms" />

</system.web>
...

</configuration>

Optionally, you can define additional details such as the location of the login page and the
time before the security cookie times out, as described in Chapter 20. You may also want to

CHAPTER 21 ■ MEMBERSHIP726

8911CH21.qxd 10/9/07 4:36 PM Page 726

add an authorization rule that prevents anonymous users from accessing a specific page or
subfolder so you can better test your website security.

Membership with SQL Server 2005 Express
Assuming you do decide to use membership, you need to create the membership database. If
you’re using SQL Server 2005 Express Edition, the task is a lot easier than you might expect. In
fact, it all happens automatically.

By default, membership is enabled for every new website you create. The default mem-
bership provider makes the following assumptions:

• You want to store your membership database using SQL Server 2005 Express.

• SQL Server 2005 Express is installed on the current computer, with the instance name
SQLEXPRESS.

• Your membership data store will be a file named aspnetdb.mdf, which will be stored in
the App_Data subfolder in your web application directory.

These assumptions make a lot of sense. They allow you to create as many web applica-
tions as you want while still keeping the user databases separate. That’s because each website
will have its own aspnetdb.mdf file. These files are never registered in SQL Server, which
means when you open a connection in another application, you won’t see dozens of user
databases. Instead, the only way to connect to them is to specify the file path in the connec-
tion string, which ASP.NET does.

Another advantage of this setup is that it’s potentially easier to deploy your website.
Assuming the web server where you’ll deploy your application has SQL Server 2005 Express,
you won’t need to change the connection string. You also don’t need to perform any extra
steps to install the database—you simply copy the aspnetdb.mdf file with your website. If the
target server is using the full version of SQL Server 2005, your application will still work, pro-
vided the default connection string in the machine.config file has been adjusted accordingly.
You still won’t need to worry about installing the database manually. This is clearly a great
advantage for large web hosting companies, because it’s otherwise quite complex to support
multiple websites, each with its own custom database that needs to be installed and main-
tained.

To see how this works, it helps to create a new web project with a simple test page. Drag
the CreateUserWizard control onto your page from the Login section of the Toolbox. Now run
the page (shown in Figure 21-1), without adding any code or configuring the control.

Fill in all the text boxes with user information. Note that by default you need to supply a
password that includes at least one character that isn’t a number or a letter (such as an under-
score or an asterisk) and is at least seven characters long. Once you’ve filled in all the
information, click Create User.

At this point, the CreateUserWizard control uses the ASP.NET Membership class behind
the scenes to create a new user. The default membership provider creates the aspnetdb.mdf
file (if it doesn’t exist already) and then adds the new user record. Once this process is com-
plete, the CreateUserWizard control shows a message informing you that the user was created.
Miraculously, all of this takes place automatically even though you haven’t configured any-
thing in the web.config file and you didn’t create the database file in advance.

CHAPTER 21 ■ MEMBERSHIP 727

8911CH21.qxd 10/9/07 4:36 PM Page 727

Figure 21-1. The CreateUserWizard control

To reassure yourself that the user really was created, you can check for the aspnetdb.mdf
file. In the Solution Explorer, right-click the App_Data folder, and select Refresh Folder. You’ll
see the aspnetdb.mdf file appear immediately. Using Visual Studio, you can even dig into the
contents of the aspnetdb.mdf file. To do so, double-click the file in the Solution Explorer.
Visual Studio will configure a new connection and add it to the Server Explorer on the left.
Using the Server Explorer, you can roam freely through the database, examining its tables and
stored procedures.

Check the aspnet_Users table to find the user record you created. Just right-click the table
name, and choose Show Table Data. You’ll see something like the record shown in Figure 21-2.
Among other details, you’ll find a randomly generated GUID that uniquely identifies the user
and the date the user last used your web application. You won’t see the password and pass-
word question—that’s stored in a linked record in the aspnet_Membership table, and it’s
encrypted to prevent casual snooping.

■Note At first glance, you’ll find the membership database includes a dizzying number of tables. Some of
these tables are for other related features you may or may not use, such as role-based security (discussed
later in the “Role-Based Security” section) and profiles (discussed in Chapter 21).

Before diving into the rest of ASP.NET’s membership features in detail, it’s important to
consider what you should do if you don’t want the default membership data store. For exam-
ple, you might decide to store your membership tables in a different database, or you might
want to configure one of the many options for the membership provider. You’ll learn how to
do so in the next two sections.

CHAPTER 21 ■ MEMBERSHIP728

8911CH21.qxd 10/9/07 4:36 PM Page 728

Figure 21-2. A user record in the aspnetdb.mdf database

Using the Full Version of SQL Server
If you’re using the automatically generated database for SQL Server 2005 Express, you don’t
need to touch the web.config file. In any other case, you’ll need to do a bit of configuration
tweaking.

The simplest case is if you’re using the full version of SQL Server 2005 (or another sup-
ported version, such as SQL Server 2000 or SQL Server 2008). In this case, you can still use the
default membership settings. However, you need to change the connection string.

■Tip The default membership settings and local connection string are set in the machine.config file. You
can take a look at this file (and even edit it to update the settings for all web applications on your computer).
Look in the c:\Windows\Microsoft.NET\Framework\v2.0.50727\Config directory.

The default connection string that’s used with membership is named LocalSqlServer. You
can edit this setting directly in the machine.config. However, if you just need to tweak it for a
single application, it’s better to adjust the web.config file for your web application. First, you
need to remove all the existing connection strings using the <clear> element. Then, add the
LocalSqlServer connection string—but this time with the right value:

CHAPTER 21 ■ MEMBERSHIP 729

8911CH21.qxd 10/9/07 4:36 PM Page 729

<configuration>
<connectionStrings>

<clear />
<add name="LocalSqlServer" providerName="System.Data.SqlClient"

connectionString="Data Source=localhost;Integrated Security=SSPI;
Initial Catalog=aspnetdb" />

</connectionStrings>
...

</configuration>

This <connectionStrings> section removes all connection strings and then creates a new
connection string. This new connection string connects to a database named aspnetdb on the
local computer. The only catch is that the aspnetdb database won’t be created automatically.
Instead, you’ll need to generate it with the aspnet_regsql.exe command-line tool. Rather than
hunt around for this file, the easiest way to launch it is to fire up the Visual Studio command
prompt (open the Start menu and choose Programs ➤ Microsoft Visual Studio 2008 ➤ Visual
Studio Tools ➤ Visual Studio 2008 Command Prompt). You can then type in commands that
use aspnet_regsql.

You can use aspnet_regsql in two ways. If you use it without adding any command-line
parameters, a Windows wizard will appear that leads you through the process. You’ll be asked
to supply the connection information for your database server. The database will be named
aspnetdb, which is the recommended default.

Your other option is to specify exactly what you want to happen using command-line
switches. This is particularly useful when deploying your application—you can use
aspnet_regsql as part of a setup batch file, which will then create the membership data store
automatically. This is the option you’ll use if you want to choose the database name or if you
want to install only some of the database tables. By default, the aspnet_regsql tool installs
tables that can be used for user authentication, role-based authorization, profiles, and Web
Parts personalization. This gives you maximum flexibility, but you may feel it’s overkill if you
aren’t planning to use some of these features.

Table 21-1 describes the most important command-line options. Here’s an example com-
mand line that connects to an unnamed SQL Server instance on the current computer (using
the -S parameter), connects with the current Windows account (using the -E parameter),
installs all tables (using the -A all parameter), and places them all in a database named
aspnetdb (which is the default):

aspnet_regsql -S (local) -E -A all

If you want to use a different database, you must specify the database name using the -d
parameter.

■Tip It’s a good idea to install all the tables at once (using the –A all option). This way, your database will
be ready for the profile feature discussed in the next chapter. Once you’ve finished testing your application
and you’re ready to create the final database, you can create a database that only has the options you’ve
decided to use. (For example, use –A mr to use membership and role management but nothing else.)

CHAPTER 21 ■ MEMBERSHIP730

8911CH21.qxd 10/9/07 4:36 PM Page 730

Table 21-1. Command-Line Switches for aspnet_regsql.exe

Switch Description

-S ServerName Specifies the location of the SQL Server instance where you
want to install the database.

-E Connects to the server through Windows authentication,
using the currently logged-in Windows account.

-U UserName and -P Password Specify the user name and password you need to connect to
the SQL Server database. Usually, you’ll use -E instead.

-A Specifies the features you want to use (and determines the
database tables that are created). Valid options for this switch
are all, m (membership), r (role-based security), p (profiles),
c (Web Part personalization), and w (for database cache
dependencies with SQL Server 2000).

-R Removes the databases that support the features specified by
the -A switch.

-d DatabaseName Allows you to specify the name of the database in which the
tables will be created. If you don’t specify this parameter, a
database named aspnetdb is created automatically.

-sqlexportonly Creates SQL scripts for adding or removing the specified fea-
tures to the database, but doesn’t actually create the tables in
the database. Instead, you can run the script afterward. This
can be a useful technique when deploying your application.

■Note If you’re deploying your website to a web hosting company, you probably won’t be allowed to run
aspnet_regsql on the web server. Instead, you’ll probably need to use SQL Server Express. In this case, your
database will be deployed in the App_Data folder as part of your web application, and no extra configuration
steps will be required. If your web host doesn’t support SQL Server Express, you’ll need to use a tool like
SQL Server Management Studio to prepare a .sql script file that installs your database. The administrators at
the web hosting company can then run your script file to create the database you need.

Configuring the Membership Provider
Configuring the connection string is the simplest change you can make when setting up the
membership data store. However, you may also want to tweak other membership settings. For
example, you can change the default password policy.

■Note As with the connection string, the default membership provider is defined in the machine.config file.
You can edit the machine.config file to change these defaults for all applications on the computer, but you
shouldn’t, because it will complicate your life when you deploy the application. Instead, you should make the
changes by configuring a new membership provider in your application’s web.config file.

CHAPTER 21 ■ MEMBERSHIP 731

8911CH21.qxd 10/9/07 4:36 PM Page 731

To configure your membership provider, you need to add the <membership> element to
your web application. Inside the <membership> element, you define a new membership
provider with your custom settings. Then, you set the defaultProvider attribute of the
<membership> element so it refers to your membership provider by name.

Here’s the basic structure you need to follow:

<configuration>
<system.web>

<membership defaultProvider="MyMembershipProvider">
<providers>

<!-- Clear any existing providers. -->
<clear />

<!-- Define your provider, with custom settings. -->
<add name="MyMembershipProvider" ... />

</providers>
</membership>
...

</system.web>
...

</configuration>

Of course, the interesting part is the attributes you use in the <add> tag to configure your
membership provider. Here’s an example that defines a membership provider with relaxed
password settings. The first three attributes supply required settings (the name, type, and con-
nection string for the membership provider). The remaining settings remove the requirement
for a security question and allow a password to be as short as one character and contain only
letters:

<membership defaultProvider="MyMembershipProvider">
<providers>

<clear/>
<add
name="MyMembershipProvider"
type="System.Web.Security.SqlMembershipProvider"
connectionStringName="LocalSqlServer"
requiresQuestionAndAnswer="false"
minRequiredPasswordLength="1"
minRequiredNonalphanumericCharacters="0" />

</providers>
</membership>

Table 21-2 describes the most commonly used membership settings.

CHAPTER 21 ■ MEMBERSHIP732

8911CH21.qxd 10/9/07 4:36 PM Page 732

Table 21-2. Attributes for Configuring a Membership Provider

Attribute Description

name* Specifies a name for the membership provider.
You can choose any name you want. This is the
name you use later to reference the provider
(for example, when you set the defaultProvider
attribute). You can also use it to get provider
information programmatically.

type* Specifies the type of membership provider.
In this chapter, you will always be using the
System.Web.Security.SqlMembershipProvider.
ASP.NET also includes an
ActiveDirectoryMembershipProvider, which
allows you to use the membership features with
Windows authentication through an Active
Directory server. (For more information on this
topic, consult the Visual Studio Help.) Finally, you
can use a custom membership provider that you
or a third-party developer creates.

applicationName Specifies the name of the web application. This
setting is primarily useful if you have several web
applications using the same membership database.
If you give each one a separate application name, all
the information (including user, profiles, and so on)
is completely separated so it’s usable only in the
appropriate application.

connectionStringName* Specifies the name of the connection string setting.
This must correspond to a connection string defined
in the <connectionStrings> section of web.config or
machine.config.

description Allows an optional description for the membership
provider.

passwordFormat Sets the way passwords are stored in the database.
You can use Clear (passwords are stored as is, with
no encryption), Encrypted (passwords are encrypted
using a computer-specific key), or Hashed
(passwords are hashed, and the hash value is stored
in the database). Hashing passwords offers similar
protection to encrypting them (namely, if you look
at the hash you’ll have a difficult time reverse-
engineering the password). However, when
passwords are hashed, they can never be retrieved—
only reset. If you decide to use encryption,
you’ll need to create a unique encryption key
for your web application. You do this by adding the
<machineKey> element to the <system.web> section
of your web.config file. To help you out, you can use
an online tool (like the one at http://www.
developmentnow.com/articles/
machinekey_generator.aspx), which can create a
suitable <machineKey> element complete with
randomly generated keys.

Continued

CHAPTER 21 ■ MEMBERSHIP 733

8911CH21.qxd 10/9/07 4:36 PM Page 733

http://www

Table 21-2. Continued

Attribute Description

minRequiredPasswordLength Specifies the minimum length of a password. If the
user enters fewer characters when creating an
account, the attempt will be rejected with an error
message.

minRequiredNonalphanumericCharacters Specifies the number of nonalphanumeric
characters (characters other than numbers and
letters) the password needs to have. If the user
enters fewer of these characters when creating an
account, the attempt will be rejected with an error
message. Although requiring nonalphanumeric
characters makes for stronger (less guessable)
passwords, it also can confuse users, causing
them to forget their passwords more often or
(worse) write them down in a conspicuous place,
where they might be stolen.

maxInvalidPasswordAttempts Specifies the number of times a user is allowed to
enter an invalid password for their login before the
user account is locked and made inaccessible. The
default is five attempts.

passwordAttemptWindow Sets the internal time in which
maxInvalidPasswordAttempts is measured. For
example, if you set a window of 30 minutes, after
30 minutes the number of invalid password
attempts is reset. If the user surpasses the
maxInvalidPasswordAttempts within
passwordAttemptWindow, the account
is locked.

enablePasswordReset Determines whether a password can be reset, which
is useful if a password is forgotten.

enablePasswordRetrieval Determines whether a password can be requested
(and e-mailed to the user), which is useful if a user
forgets a password. This feature is never supported
if passwordFormat is set to Hashed, because the
password isn’t stored in that case.

requiresQuestionAndAnswer Determines whether the membership security
answer will be required when you request or reset
a user password.

requiresUniqueEmail If false, allows more than one user to have the same
e-mail address. The e-mail address information is
always optional.

* This setting is required.

Now that you’ve seen the settings you can tweak, it’s worth asking what the defaults are. If
you look at the <membership> section in the machine.config file, here’s what you’ll find:

<membership>
<providers>

<add name="AspNetSqlMembershipProvider"
type="System.Web.Security.SqlMembershipProvider ..."

CHAPTER 21 ■ MEMBERSHIP734

8911CH21.qxd 10/9/07 4:36 PM Page 734

connectionStringName="LocalSqlServer"
enablePasswordRetrieval="false"
enablePasswordReset="true"
requiresQuestionAndAnswer="true"
applicationName="/"
requiresUniqueEmail="false"
passwordFormat="Hashed"
minRequiredPasswordLength="7"
minRequiredNonalphanumericCharacters="1"
passwordAttemptWindow="10"
maxInvalidPasswordAttempts="5" />

</providers>
</membership>

As you can see, the default membership provider is AspNetSqlMembershipProvider. It
connects using the LocalSqlServer connection string and supports password resets but not
password retrieval. Accounts require a security question but not a unique e-mail. The pass-
words themselves are hashed in the database for security, so they can’t be retrieved. Passwords
must be at least seven characters long with at least one nonalphanumeric character. Finally, if
a user makes five invalid password attempts in 10 minutes, the account is disabled.

Creating Users with the WAT
Once you’ve created the membership data store and (optionally) configured the membership
provider, you’re ready to use membership-backed security in your web application. As you’ve
already seen, you can create new users with the CreateUserWizard control. You’ll consider the
CreateUserWizard control and the other security controls later in this chapter. First, it’s worth
considering your other options for setting up your user list.

One option is to use the WAT. Choose Website ➤ ASP.NET Configuration to launch this
tool. Next, click the Security tab. In the bottom-left corner, a box indicates how many users
are currently in the database (see Figure 21-3). This box also provides links that allow you to
examine the existing user records or add new ones.

If you want to browse the current user list or update an existing user record, click the
Manage Users link. To add new users, click Create User. You’ll see a set of controls that are
similar to the CreateUserWizard control used in the test page earlier (see Figure 21-4). After
you’ve created a few users, you may want to take another look at the aspnet_Users and
aspnet_Membership tables in your database to see what the user records look like.

Although the WAT is a perfectly sensible way to add user records, you might find the web
interface is a little sluggish if you have a large number of users to create. Another option is to
use the Membership class, as shown here:

// Create a user record based with user name, password, and e-mail information.
Membership.CreateUser(userName, password, email);

Here’s an example with hard-coded values:

Membership.CreateUser("joes", "ignreto12__", "joes@domains.com");

CHAPTER 21 ■ MEMBERSHIP 735

8911CH21.qxd 10/9/07 4:36 PM Page 735

mailto:joes@domains.com

Figure 21-3. Managing website security with the WAT

Figure 21-4. Creating a new user

CHAPTER 21 ■ MEMBERSHIP736

8911CH21.qxd 10/9/07 4:36 PM Page 736

This creates a new user with just a single line of code. Of course, the CreateUser() method
has multiple overloads, which you can use to supply details such as the password question
and answer. If you haven’t changed the default membership settings, you won’t be able to
create an account unless you provide these details. Instead, you’ll need to use this more com-
plex overload:

MembershipCreateStatus createStatus;
Membership.CreateUser("joes", "ignreto12__", "joes@domains.com",
"What is your favorite restaurant?", "Saigon", true, out createStatus);

The first few parameters are self-explanatory—they take the user name, password, e-mail
address, password question, and password answer. The second-to-last parameter takes a
Boolean value that determines whether the account is given the IsApproved flag. If you supply
false, the account won’t be approved, and so it won’t be active (and usable) until you modify it
using the Membership.UpdateUser() method. In the simpler overload that doesn’t include this
parameter, accounts are always marked as approved.

The last parameter returns a value from the MembershipCreateStatus enumeration. If this
value isn’t MembershipCreateStatus.Success, an error occurred when creating the record. The
value indicates the exact error condition (for example, a password that wasn’t strong enough,
a duplicate e-mail address when your membership provider doesn’t allow duplicates, and so
on). In the simpler overload that doesn’t include the MembershipCreateStatus, any error
results in an exception object being thrown that has the same information.

■Tip Clearly, if you needed to transfer a large number of user accounts from a custom database into the
membership data store, the quickest option would be to write a routine that loops through the existing
records and use the CreateUser() method to insert the new ones.

The Membership and MembershipUser Classes
There wouldn’t be much point to using the membership data store if you still needed to write
handcrafted ADO.NET code to retrieve or modify user information. That’s why ASP.NET offers
a more convenient, higher-level model with the Membership class.

Membership is a useful class that’s full of practical static methods such as CreateUser().
You can find it in the System.Web.Security namespace. Table 21-3 provides a snapshot of its
most useful static methods.

Table 21-3. Membership Methods

Method Description

CreateUser() Adds a new user to the database.

DeleteUser() Deletes an existing user from the database. You specify the user by
the user name. You can also choose whether you want to delete all
related data in other tables (the default is to remove it).

GetUser() Gets a specific user from the database, by user name.

Continued

CHAPTER 21 ■ MEMBERSHIP 737

8911CH21.qxd 10/9/07 4:36 PM Page 737

mailto:joes@domains.com

Table 21-3. Continued

Method Description

GetUserNameByEmail() Retrieves a user name for the user that matches a given e-mail
address. Keep in mind that duplicate e-mail addresses are allowed
by default, in which case this method will find only the first match.

FindUsersByName() Gets users from the membership database that match a given user
name. This supports partial matches, so User will match TestUser,
User001, and so on.

FindUsersByEmail() Gets users from the membership database that match a specific
e-mail address. You can also supply part of an e-mail address (such
as the domain name), in which case you’ll get every user who has
an e-mail address that contains this text.

GetAllUsers() Gets a collection that represents all the users in the database. An
overloaded version of this method allows you to get just a portion
of the full user list (a single page of users, based on a starting index
and length).

GetNumberOfUsersOnline() Gets the number of logged-in users currently accessing an
application. This calculation assumes a user is online if that
user’s last activity time stamp falls within a set time limit (such
as 20 minutes).

GeneratePassword() Generates a random password of the specified length. This is
useful when programmatically creating new user records.

UpdateUser() Updates the database with new information for a specific user.

ValidateUser() Tests whether the supplied user name and password are valid.

The Membership class also provides static read-only properties that let you retrieve infor-
mation about the configuration of your membership provider, as set in the configuration file.
For example, you can retrieve the required password length, the maximum number of pass-
word attempts, and all the other details described in Table 21-2.

Many of these methods use the MembershipUser class, which represents a user record.
For example, when you call GetUser(), you receive the information as a MembershipUser
object. If you want to update that user, you can change its properties and then call
Membership.UpdateUser() with the modified MembershipUser object.

■Note The MembershipUser object combines the details from the aspnet_Users table and the linked
aspnet_Membership table. For example, it includes the password question. However, the password answer
and the password itself aren’t available.

The MembershipUser class also provides its own smaller set of instance methods. The
most important ones are detailed in Table 21-4.

CHAPTER 21 ■ MEMBERSHIP738

8911CH21.qxd 10/9/07 4:36 PM Page 738

Table 21-4. Membership User Methods

Method Description

UnlockUser() Reactivates a user account that was locked out for too
many invalid login attempts.

GetPassword() Retrieves a user password. If
requiresQuestionAndAnswer is true in the membership
configuration (which is the default), you must supply
the answer to the password question in order to retrieve
a password. Note that this method won’t work at all if
the passwordFormat setting is Hashed, which is also
the default.

ResetPassword() Resets a user password using a new, randomly
generated password, which this method returns. If
requiresQuestionAndAnswer is true in the membership
configuration (which is the default), you must supply
the answer to the password question in order to reset a
password. You can display the new password for the
user or send it in an e-mail.

ChangePassword() Changes a user password. You must supply the current
password in order to apply a new one.

ChangePasswordQuestionAndAnswer() Changes a user password question and answer. You
must supply the current password in order to change
the security question.

To get a sense of how the Membership class works, you can create a simple test page that
displays a list of all the users in the membership database. Figure 21-5 shows this page.

Figure 21-5. Getting a list of users

CHAPTER 21 ■ MEMBERSHIP 739

8911CH21.qxd 10/9/07 4:36 PM Page 739

To create this page, you simply need to begin by defining the GridView. The GridView will
show a list of MembershipUser objects. For each user, it shows the values from the UserName
and Email properties, along with a Select link. Here’s the markup that creates the GridView
(without the formatting details):

<asp:GridView ID="gridUsers" runat="server"
OnSelectedIndexChanged="gridUsers_SelectedIndexChanged"
AutoGenerateColumns="False" DataKeyNames="UserName" >

<Columns>
<asp:BoundField DataField="UserName" HeaderText="User Name" />
<asp:BoundField DataField="Email" HeaderText="Email" />
<asp:CommandField ShowSelectButton="True" />

</Columns>
</asp:GridView>

When the page is first loaded, it calls the Membership.GetAllUsers() method and binds
the results to the GridView, as shown here:

protected void Page_Load(object sender, EventArgs e)
{

gridUsers.DataSource = Membership.GetAllUsers();
gridUsers.DataBind();

}

To make the example more interesting, when a record is selected, the corresponding
MembershipUser object is retrieved. This object is then added to a collection so it can be
bound to the DetailsView for automatic display:

protected void gridUsers_SelectedIndexChanged(object sender, EventArgs e)
{

List<MembershipUser> list = new List<MembershipUser>();
list.Add(Membership.GetUser(gridUsers.SelectedValue.ToString()));
detailsUser.DataSource = list;
detailsUser.DataBind();

}

Here’s the DetailsView that does the work (again, without the formatting details):

<asp:DetailsView ID="detailsUser" runat="server"></asp:DetailsView>

This DetailsView uses automatic row creation (because AutoGenerateRows defaults to true).
As a result, the DetailsView shows all the MembershipUser properties.

Figure 21-6 shows the information that’s available in a single record. Among other details,
you can use the MembershipUser object to check whether a user is online, when they last
accessed the system, and what their e-mail address is.

CHAPTER 21 ■ MEMBERSHIP740

8911CH21.qxd 10/9/07 4:36 PM Page 740

Figure 21-6. The information in a MembershipUser object

Authentication with Membership
Now that you’ve switched to membership, and all your users are stored in the membership
data store, you need to change the way your login page works. Life now gets a lot simpler—
rather than create ADO.NET objects to query a database and see whether a matching user
record exists, you can let the Membership class perform all the work for you. The method you
need is Membership.ValidateUser(). It takes a user name and password and returns true if
there’s a valid match in the database.

Here’s the new code you need in your login page:

protected void cmdLogin_Click(object sender, EventArgs e)
{

if (Membership.ValidateUser(txtName.Text, txtPassword.Text))
{

FormsAuthentication.RedirectFromLoginPage(txtName.Text, false);
}

CHAPTER 21 ■ MEMBERSHIP 741

8911CH21.qxd 10/9/07 4:36 PM Page 741

else
{

lblStatus.Text = "Invalid username or password.";
}

}

Actually, a fair bit of work is taking place behind the scenes. If you’re using the default
membership provider settings, passwords are hashed. That means when you call
ValidateUser(), ASP.NET hashes the newly supplied password using the same hashing
algorithm and then compares it to the hashed password that’s stored in the database.

Disabled Accounts
An account can become disabled in the membership database in two ways:

The account isn’t approved: This occurs if you create an account programmatically and
supply false for the isApproved parameter. You might take this step if you want to create
an account automatically but allow an administrator to review it before it becomes live.
To make this account active, you need to get a MembershipUser object for the correspon-
ding user record, set MembershipUser.IsApproved to true, and call
Membership.UpdateUser().

The account is locked out: This occurs if the user makes multiple attempts to access a
user account with an invalid password. In this case, you need to get a MembershipUser
object for the user, and call MembershipUser.UnlockUser(). You may also want to call
MembershipUser.ResetPassword() to prevent another lockout.

To help you with these tasks, you might want to create an administrative page like the one
shown in Figure 21-6. For example, you can allow a user to review all accounts that aren’t yet
approved and approve them by clicking a button.

Similarly, if you want to disable an account at any time, you can retrieve a
MembershipUser object for that user and set the IsApproved property to false. However,
you have no way to programmatically lock a user account.

You’re probably already thinking of a wide range of pages you can create using the
Membership and MembershipUser classes. For example, you can build pages that allow users
to request a password reset or check whether they are locked out. However, you might not
need to create all these pages, because ASP.NET includes a rich set of security controls that
automate many common tasks. You’ll learn more about the security controls in the next
section.

The Security Controls
The basic membership features are a remarkable time-saver. They allow you to concentrate on
programming your web application, without worrying about managing security and crafting
the perfect database or user information. Instead, you can use the higher-level Membership
and MembershipUser classes to do everything you need.

CHAPTER 21 ■ MEMBERSHIP742

8911CH21.qxd 10/9/07 4:36 PM Page 742

However, the ASP.NET membership feature doesn’t stop there. Not only does the Mem-
bership class simplify common security tasks, it also standardizes them. As a result, other
components and controls can use the Membership class to integrate themselves with the
ASP.NET security model, without worrying about the specifics of each web application. You
can find the best example of this new flexibility in ASP.NET’s security controls. These controls
interact with the membership provider using the methods of the Membership and
MembershipUser classes to implement common bits of user interfaces such as a login page,
a set of user creation controls, and a password recovery wizard.

Table 21-5 lists all the ASP.NET security controls that work with membership. In Visual
Studio, you can find these controls in the Login section of the Toolbox.

Table 21-5. Security Controls

Control Description

Login Displays the familiar user name and password text boxes, with a login
button.

LoginStatus Shows a login button, if the user isn’t already logged in, that redirects the
user to the configured login page. Otherwise, it displays a sign-out button.
You can choose the test used for the login and sign-out buttons, but that’s
about it.

LoginName Displays the user name of the logged-in user.

LoginView Displays different content depending on whether the user is logged in. You
can even use this control to show different content for different groups of
users, or roles.

PasswordRecovery Allows the user to request a password via e-mail or reset it. Typically, the
user must supply the answer to the security question to get the password.

ChangePassword Allows the user to set a new password (as long as the user can supply the
current password).

CreateUserWizard Allows a user to create a new record, complete with e-mail address and a
password question and answer.

There is a simple way and a complex way to use most of these controls. At their simplest,
you merely drop the control on a page, without writing a line of code. (You saw this approach
with the CreateUserWizard control at the beginning of this chapter.) You can also modify
properties, handle events, and even create templates to customize these controls.

In the following sections, you’ll take a closer look at the Login, PasswordRecovery, and
CreateUserWizard controls. And later, in the “Role-Based Security” section, you’ll put the
LoginView control to work to show different content to users in different roles.

The Login Control
So far, the secure websites you’ve seen have used handmade login pages. In many websites
this is what you’ll want—after all, it gives you complete control to adjust the user interface
exactly the way you want it. However, a login page is standard, so it makes sense for ASP.NET
to give developers some extra shortcuts that can save them work.

CHAPTER 21 ■ MEMBERSHIP 743

8911CH21.qxd 10/9/07 4:36 PM Page 743

Along these lines, ASP.NET includes a Login control that pairs a user name and a pass-
word text box with a login button. The Login control also adds a few features:

• It includes validator controls that prevent the page from being posted back until a user
name and password have been entered. These validators use client-side validation if it’s
supported by the browser (with the help of a bit of JavaScript) and server-side valida-
tion, as described in Chapter 10.

• It automatically handles the signing in and redirection process when the user logs in
successfully. If invalid login credentials are entered, it shows an error message.

• It provides a Remember Me check box that, if selected, stores a persistent cookie that
remains indefinitely on the user’s computer; therefore, the user doesn’t need to log back
in at the beginning of each visit.

In other words, if the basic Login control is right for your needs (it gives the user interface
you want), you won’t need to write a line of code.

To try this, drop the Login control onto a new page. Make sure this page is named
Login.aspx so it’s used as the default login page for forms authentication (or edit the <forms>
tag to choose a different login page, as explained in the previous chapter). Then, run the page.
You’ll see the basic interface shown in Figure 21-7.

Figure 21-7. The Login control and a failed login attempt

Although the Login control takes care of the login process for you automatically, you can
step in with your own custom code. To do so, you must react to one of the Login control
events, as listed in Table 21-6.

Table 21-6. Events of the Login Control

Event Description

LoggingIn Raised before the user is authenticated.

LoggedIn Raised after the user has been authenticated by the control.

LoginError Raised when the login attempt fails (for example, if the user enters the wrong
password).

Authenticate Raised to authenticate the user. If you handle this event, it’s up to you to supply
the login code—the Login control won’t perform any action.

CHAPTER 21 ■ MEMBERSHIP744

8911CH21.qxd 10/9/07 4:36 PM Page 744

The LoggingIn, LoggedIn, and LoginError events are primarily useful if you want to
update other controls to display certain information based on the login process. For example,
after the first login failure, you might choose to show a link that redirects the user to a pass-
word retrieval page:

protected void Login1_LoginError(object sender, EventArgs e)
{

lblStatus.Text = "Have you forgotten your password?";
lnkRedirectToPasswordRetrieval.Visible = true;

}

The Authenticate event is the most important event. It allows you to write your own
authentication logic, as you did in the previous chapter. This is typically useful in two situa-
tions. First, you might want to supplement the default checking in the Login control with
other requirements (for example, prevent any users from logging in at specific times of day,
allow users to log in only if they’ve entered information in another control, and so on). The
other reason you might handle the Authenticate event is if you aren’t using the membership
provider at all. In this case, you can still use the Login control, as long as you provide the
authentication logic.

In the Authenticate event handler, you can check the user name and password using the
UserName and Password properties of the Login control. You then set the Authenticated prop-
erty of the AuthenticateEventArgs to true or false. If true, the LoggedIn event is raised next,
and then the user is redirected to the Login.DestinationPageUrl (or the original page the user
came from if the DestinationPageUrl property is not set). If you set Authenticated to false, the
LoginError event is raised next, and the control displays the error message defined by the
Login.FailureText property.

Here’s an event handler for the Authenticated event that uses the membership classes
directly:

protected void Login1_Authenticate(object sender, AuthenticateEventArgs e)
{

if (Membership.ValidateUser(Login1.UserName, Login1.Password))
{

e.Authenticated = true;
}
else
{

e.Authenticated = false;
}

}

That covers everything you need to know about interacting with the Login control, but
you can tweak many properties to configure the appearance of the Login control. There’s even
an Auto Format link you can choose from the Properties window (or the smart tag) to give the
Login control a face-lift with a single click.

The most powerful formatting properties for the Login control are style properties, which
allow you to tweak fonts, coloring, and alignment for individual parts of the control. You’ve
already seen styles at work with several other controls, including the Calendar (Chapter 11)
and the GridView (Chapter 17), and they work in the same way with the security controls.
Table 21-7 details the style properties of the Login control.

CHAPTER 21 ■ MEMBERSHIP 745

8911CH21.qxd 10/9/07 4:36 PM Page 745

Table 21-7. Style Properties of the Login Control

Style Description

TitleTextStyle Defines a style for the title text of the Login control.

LabelStyle Defines the style for the Username and Password labels.

TextBoxStyle Defines the style for the user name and password text boxes.

LoginButtonStyle Defines the style for the login button.

FailureTextStyle Defines the style for the text displayed if the login attempt fails.

CheckBoxStyle Defines the style properties for the Remember Me check box.

ValidatorTextStyle Defines styles for RequiredFieldValidator controls that validate the user
name and password information. These style properties tweak how the
error text looks. (By default, the error text is simply an asterisk that
appears next to the empty text box.)

HyperLinkStyle Configures all the links that the Login control shows. This includes the
links that let you create a new user record, retrieve a password, and so
on. These links appear only if you’ve set the CreateUserUrl and
PasswordRecoveryUrl properties.

InstructionTextStyle Formats the Login.InstructionText, which is help instruction text you
can add under the Login control. By default, the Login control has no
instruction text.

Of course, styles aren’t the only feature you can change in the Login control. You can
adjust several properties to change the text it uses and to add links. For example, the
following tag for the Login control adjusts the formatting and uses the CreateUserUrl and
PasswordRecoveryUrl properties to add links to a page for registering a new user and another
for recovering a lost password. (Obviously, you’ll need to create both of these pages in order
for the links to work.)

<asp:Login ID="Login1" runat="server" BackColor="#EFF3FB" BorderColor="#B5C7DE"
BorderPadding="4" BorderStyle="Solid" BorderWidth="1px" Font-Names="Verdana"
ForeColor="#333333" Height="256px" Width="368px"
CreateUserText="Register for the first time"
CreateUserUrl="Register.aspx"
PasswordRecoveryText="Forgot your password?"
PasswordRecoveryUrl="PasswordRecovery.aspx"
InstructionText=
"Please enter your username and password for logging into the system.">

<TitleTextStyle BackColor="#507CD1" Font-Bold="True" Font-Size="Large"
ForeColor="White" Height="35px" />

<InstructionTextStyle Font-Italic="True" ForeColor="Black" />
<LoginButtonStyle BackColor="White" BorderColor="#507CD1"
BorderStyle="Solid" BorderWidth="1px" Font-Names="Verdana"
ForeColor="#284E98" />

</asp:Login>

CHAPTER 21 ■ MEMBERSHIP746

8911CH21.qxd 10/9/07 4:36 PM Page 746

Figure 21-8 shows the revamped Login control. Table 21-8 explains the other properties of
the Login control.

Figure 21-8. A formatted Login control

Table 21-8. Useful Properties of the Login Control

Property Description

TitleText The text that’s displayed in the heading of the control.

InstructionText The text that’s displayed just below the heading but above
the login controls. By default, the Login control has no
instruction text.

FailureText The text that’s displayed when a login attempt fails.

UserNameLabelText The text that’s displayed before the user name text box.

PasswordLabelText The text that’s displayed before the password text box.

UsernameRequiredErrorMessage The error message that’s shown by the RequiredFieldValidator
if the user doesn’t type in a user name. By default, this is
simply an asterisk (*).

PasswordRequiredErrorMessage The error message that’s shown by the RequiredFieldValidator
if the user doesn’t type in a password. By default, this is
simply an asterisk (*).

LoginButtonText The text displayed for the login button.

LoginButtonType The type of button control that’s used as the login button. It
can be displayed as Link, Button, or Image.

LoginButtonImageUrl The URL that points to the image you want to display for the
login button. You must set the LoginButtonStyle property to
Image to use this property.

Continued

CHAPTER 21 ■ MEMBERSHIP 747

8911CH21.qxd 10/9/07 4:36 PM Page 747

Table 21-8. Continued

Property Description

DestinationPageUrl The page to which the user is redirected if the login attempt is
successful. This property is blank by default, which means the
Login control uses the forms infrastructure and redirects the
user to the originally requested page (or to the defaultUrl
configured in web.config file).

DisplayRememberMe Determines whether the Remember Me check box will be
shown. You may want to remove this option to ensure stricter
security, so malicious users can’t gain access to your website
through another user’s computer.

RememberMeSet Sets the default value for the Remember Me check box. By
default, this option is set to false, which means the check box
is not checked initially.

VisibleWhenLoggedIn If set to false, the Login control automatically hides itself if the
user is already logged in. If set to true (the default), the Login
control is displayed even if the user is already logged in.

CreateUserUrl Supplies a URL to a user registration page. This property is
used in conjunction with the CreateUserText.

CreateUserText Sets the text for a link to the user registration page. If this text
is not supplied, this link is not displayed in the Login control.

CreateUserIconUrl Supplies a URL to an image that will be displayed alongside
the CreateUserText for the user registration link.

HelpPageUrl Supplies a URL to a page with help information.

HelpPageText Sets the text for the link to the help page. If this text is not
supplied, this link is not displayed in the Login control.

HelpPageIconUrl Supplies a URL to an image that will be displayed alongside
the HelpPageText for the help page link.

PasswordRecoveryUrl Supplies a URL to a password recovery page.

PasswordRecoveryText Sets the text for the link to the password recovery page. If this
text is not supplied, this link is not displayed in the Login
control.

PasswordRecoveryIconUrl Supplies a URL to an image that will be displayed alongside
the PasswordRecoveryText for the password recovery page
link.

To round out the example in Figure 21-8, you must create the Register.aspx and
PasswordRecovery.aspx pages. In the next sections, you’ll learn how you can do this easily
using two more of the ASP.NET security controls.

The CreateUserWizard Control
You already used the CreateUserWizard control to create a basic user record at the beginning
of this chapter. Now that you’ve seen the flexibility of the Login control, it should come as no
surprise to learn that you have just as many options for tweaking the appearance and behav-
ior of the CreateUserWizard control.

CHAPTER 21 ■ MEMBERSHIP748

8911CH21.qxd 10/9/07 4:36 PM Page 748

The CreateUserWizard control operates in two steps. The first step collects the user infor-
mation that’s needed to generate the user record. The second step displays a confirmation
message once the account is created.

Overall, the CreateUserWizard provides a dizzying number of properties you can adjust.
However, it helps to understand that really only three types of properties exist:

Style properties that format just a section of the control: For example, TitleTextStyle config-
ures how the text heading is formatted.

Properties that set the text for the control: For example, you can configure each label, the
success text, and the messages shown under different error conditions. You can also
retrieve or set the values in each text box.

Properties that hide or show a part of the control: For example, you can use
DisplaySideBar, DisplayCancelButton, and RequireEmail to show or hide the sidebar,
cancel button, and e-mail text box, respectively.

The CreateUserWizard control also provides a familiar set of events, including
CreatingUser, CreatedUser, and CreateUserError. Once again, these events are handy for syn-
chronizing other controls on the page or for overriding the user creation process if you decide
not to use the membership features.

■Tip By default, newly created users are automatically logged in. You can change this behavior by setting
the CreateUserWizard.LoginCreatedUser property to false. You can also set the ContinueDestinationPageUrl
property to set the URL where the user should be redirected once the new record is created.

Interestingly enough, the CreateUserWizard control inherits from the Wizard control you
explored in Chapter 11. As a result, you can add as many extra steps as you want, just as you
can with the Wizard control. These steps might perform other tasks, such as signing the user
up to receive a regular newsletter. However, the actual user creation process must always take
place in a single step.

For example, consider the markup for the basic CreateUserWizard (with style tags omitted):

<asp:CreateUserWizard ID="CreateUserWizard1" runat="server" ... >
<WizardSteps>

<asp:CreateUserWizardStep runat="server" Title="Create User">
</asp:CreateUserWizardStep>
<asp:CompleteWizardStep runat="server">
</asp:CompleteWizardStep>

</WizardSteps>
</asp:CreateUserWizard>

Essentially, the CreateUserWizard is a Wizard control that supports two specialized step
types: a CreateUserWizardStep where the user information is collected and the user record is
created, and a CompleteWizardStep where the confirmation message is shown.

CHAPTER 21 ■ MEMBERSHIP 749

8911CH21.qxd 10/9/07 4:36 PM Page 749

The following example shows how you can add an ordinary WizardStep into this
sequence. In this case, the extra step simply provides some additional options for the newly
created user (namely, the choice to subscribe to automatic e-mail newsletters).

<asp:CreateUserWizard ID="CreateUserWizard1" runat="server"
DisplaySideBar="True" ... >

<WizardSteps>
<asp:CreateUserWizardStep runat="server" Title="Create User">
</asp:CreateUserWizardStep>

<asp:WizardStep runat="server" Title="Subscribe">
Would you like to sign up for the following newsletters?

<asp:CheckBoxList ID="chkSubscription" runat="server">

<asp:ListItem>MSN Today</asp:ListItem>
<asp:ListItem>VB Planet</asp:ListItem>
<asp:ListItem>The High-Tech Herald</asp:ListItem>

</asp:CheckBoxList>
</asp:WizardStep>

<asp:CompleteWizardStep runat="server">
</asp:CompleteWizardStep>

</WizardSteps>
</asp:CreateUserWizard>

Figure 21-9 shows the first two steps. Notice that the sidebar appears (because the
CreateUserWizard.DisplaySidebar property is set to true) to show the order of steps.

Figure 21-9. A CreateUserWizard with a custom step

It’s still up to you to take the appropriate action in your code by reacting to one of the
CreateUserWizard events. In this case, you use the FinishButtonClick event, because it occurs

CHAPTER 21 ■ MEMBERSHIP750

8911CH21.qxd 10/9/07 4:36 PM Page 750

on the last step before the completion message. If you place your step earlier in the sequence,
you’ll need to react to NextButtonClick. In the current example, you might want to add this
information to the user’s profile table. You’ll learn how to use profiles in the next chapter.

For complete layout and formatting power, you can convert one of the CreateUserWizard
steps into a template. You’re then free to rearrange the existing content and add new controls
and HTML content. However, be careful not to remove any of the required elements. The
CreateUserWizard will throw an exception if you try to use it but you’re missing one of the
required text boxes for account information.

The easiest way to convert a step into a template is to use the smart tag links. First, select
the CreateUserControl on the design surface of your web page in Visual Studio. Next, click the
arrow icon that appears next to the top-right corner to show the smart tag. Then, select the
Customize Create User Step link or the Customize Complete Step link, depending on which
step you want to modify. ASP.NET will then insert the controls into a template in the
CreateUserWizard control tag.

For example, imagine you want to show the options the user selected in your custom step
in the final summary. In this case, you might want to add a new Label control, as shown here:

<asp:CompleteWizardStep ID="CompleteWizardStep1" runat="server">
<ContentTemplate>

<table border="0" style="...">
<tr>

<td align="center" colspan="2" style="...">
Complete

</td>
</tr>
<tr>

<td>
Your account has been successfully created.

You subscribed to:
<asp:Label ID="lblSubscriptionList" runat="server">
</asp:Label>

</td>
</tr>
<tr>

<td align="right" colspan="2">
<asp:Button ID="ContinueButton" runat="server"
BackColor="White" BorderColor="#507CD1"
BorderStyle="Solid" BorderWidth="1px"
CausesValidation="False" CommandName="Continue"
Font-Names="Verdana" ForeColor="#284E98" Text="Continue"
ValidationGroup="CreateUserWizard1" />

</td>
</tr>

</table>
</ContentTemplate>

</asp:CompleteWizardStep>

CHAPTER 21 ■ MEMBERSHIP 751

8911CH21.qxd 10/9/07 4:36 PM Page 751

Now, when the user moves to the last step, you can fill in the label with the information
from the CheckBoxList control. However, because the Label and CheckBoxList controls are
placed inside a template, you can’t access them directly by name. Instead, you need to extract
them from the CreateUserWizard control. To get the label, you need to access the complete
step, grab the first control it contains (which is the content template), and then use the
FinControl() method to search for the label. To get the CheckBoxList, you perform a similar
operation, except you can use the FindControl() method of the CreateWizardControl itself,
which searches all ordinary steps.

Here’s the code that performs this task:

protected void CreateUserWizard1_FinishButtonClick(object sender,
WizardNavigationEventArgs e)

{
Label lbl = (Label)CreateUserWizard1.CompleteStep.Controls[0].FindControl(
"lblSubscriptionList");

string selection = "";
foreach (ListItem item in chkSubscription.Items)
{

if (item.Selected)
selection += "
" + item.Text;

}
lbl.Text = selection;

}

Figure 21-10 shows the final step.

Figure 21-10. Enhancing the complete step with extra content

The PasswordRecovery Control
The PasswordRecovery control comes in handy when users forget their passwords. It allows
them to retrieve their password using a short wizard.

CHAPTER 21 ■ MEMBERSHIP752

8911CH21.qxd 10/9/07 4:36 PM Page 752

The PasswordRecovery control leads the user through three steps. First, it requests the
user name. Next, it shows the security questions and requests the answer. Finally, if the correct
answer is provided, the PasswordRecovery sends an e-mail to the user’s e-mail address. If you
use a password format of Encrypted or Clear (refer to Table 21-2), the e-mail contains the orig-
inal password. If you are using the default password format Hashed, a new random password
is generated, and that password is sent in the e-mail. Either way, the last step shows a confir-
mation message informing you that the e-mail was sent. Figure 21-11 shows the
PasswordRecovery control in action.

Figure 21-11. Requesting a password

CHAPTER 21 ■ MEMBERSHIP 753

8911CH21.qxd 10/9/07 4:36 PM Page 753

For the PasswordRecovery control to do its work, your computer must have a correctly
configured SMTP server, and the user must have an e-mail address in the user record.

■Note You can configure your SMTP server by selecting the PasswordRecovery control and choosing
Administer Website from the smart tag. Then, choose the Application tab, and click the Configure SMTP
E-mail Settings link.

If your application doesn’t meet these two requirements—you can’t send e-mail
messages, or users aren’t guaranteed to have an e-mail address—you can display the
new password directly in the page. The easiest approach is to handle the
PasswordRecovery.SendingMail event. First, set the MailMessageEventArgs.Cancel
property to true to prevent the message from being sent. Next, you can retrieve the
message content from the MailMessageEventArgs.Message object and display it on
the page. Here’s an example:

protected void PasswordRecovery1_SendingMail(object sender, MailMessageEventArgs e)
{

e.Cancel = true;
PasswordRecovery1.SuccessText = e.Message.Body;

}

When you use this event handler, you’ll see a final step like the one shown in Figure 21-12.

Figure 21-12. Displaying the retrieved or regenerated password

Of course, for complete flexibility you can create your own page that resets passwords.
You just need to use the methods of the Membership and MembershipUser classes described
earlier.

CHAPTER 21 ■ MEMBERSHIP754

8911CH21.qxd 10/9/07 4:36 PM Page 754

Role-Based Security
The authentication examples you’ve examined so far provide an all-or-nothing approach that
either forbids or allows a user. In many cases, however, an application needs to recognize dif-
ferent levels of users. Some users will be provided with a limited set of capabilities, and other
users might be allowed to perform potentially dangerous changes or use the administrative
portions of a website.

To allow this type of multitiered access, you need ASP.NET’s role-based authorization fea-
ture. As with membership, ASP.NET takes care of storing the role information and making it
available to your code. All you need to do is create the roles, assign users to each role, and then
test for role membership in your code.

Before you can use role-based authorization, you need to enable it. Although you can per-
form this step using the WAT (just click the Enable Roles link in the Security tab), it’s easy
enough just to add the required line to your web.config file directly:

<configuration>
<system.web>

<roleManager enabled="true" />
...

</system.web>
...

</configuration>

As with the membership data store, ASP.NET will automatically create the role informa-
tion in the aspnetdb.mdf file using SQL Server 2005 Express. If you want to use a different
database, you need to follow the steps discussed earlier in this chapter to create the database
using aspnet_regsql.exe and modify the connection string.

Creating and Assigning Roles
Once you enable role management, you need to create a basic set of roles (for example, User,
Administrator, Guest, and so on). You can then assign users to one or more groups.

You can create roles in two ways. You can do so programmatically, or you can do so by
hand, using the WAT.

To use the WAT, follow these steps:

1. Launch the WAT by selecting Website ➤ ASP.NET Configuration.

2. Click the Security tab.

3. Click the Create or Manage Roles link.

4. To add a new role, type it into the provided text box, and click Add Role (see
Figure 21-13). Or use the Manage and Delete links in the role list to modify or delete
an existing role record.

CHAPTER 21 ■ MEMBERSHIP 755

8911CH21.qxd 10/9/07 4:36 PM Page 755

Figure 21-13. Creating roles

To place a user into a role, you’ll need to head back to the main security page (click the
Back button in the role management page). Then follow these steps:

1. Select Manage Users from the Security tab. You’ll see the full list of users for your web-
site (subdivided into pages).

2. Find the user you want to change, and click the Edit Roles link next to that user.

3. Fill in the check box for each role you want to assign to that user.

Figure 21-14 shows an example where the user joes is being given the User role.

CHAPTER 21 ■ MEMBERSHIP756

8911CH21.qxd 10/9/07 4:36 PM Page 756

Figure 21-14. Applying roles

Of course, you don’t need to use the WAT. You can also use the Roles class. The Roles
class serves the same purpose for role management as the Membership class does for
membership—it provides a number of static utility methods that let you modify role
information. Table 21-9 lists the methods you can use.

Table 21-9. Methods of the Roles Class

Method Description

CreateRole() Adds a new role to the database.

DeleteRole() Deletes an existing role from the database.

RoleExists() Checks whether a specific role name exists in the database.

GetAllRoles() Retrieves a list of all the roles for this application.

Continued

CHAPTER 21 ■ MEMBERSHIP 757

8911CH21.qxd 10/9/07 4:36 PM Page 757

Table 21-9. Continued

Method Description

AddUserToRole(), Assigns a role to a user, assigns several roles to a user at once,
AddUserToRoles(), assigns a role to several users, or assigns several roles to several
AddUsersToRole(), and users. If you want to assign a role to a large number of users,
AddUsersToRoles() the quickest approach is to use the Membership class to

retrieve the corresponding user names (if needed), and then
use the AddUsersToRole() or AddUsersToRoles() method of the
Roles class to apply the change to everyone at once.

RemoveUserFromRole(), Allow you to remove a user from a role. You can perform this
RemoveUserFromRoles(), operation on multiple users at once or remove a user from
RemoveUsersFromRole(), and multiple roles at once, depending on which method you use.
RemoveUsersFromRoles()

IsUserInRole() Checks whether a user is part of a specific role.

GetRolesForUser() Retrieves all the roles for a specific user.

GetUsersInRole() Retrieves all the users who are part of a specific role.

FindUsersInRole() Retrieves all the users who are part of a specific role (much like
GetUsersInRole()). However, it allows you to limit the results to
users who have a specific piece of text in their user names.

For example, you could use the following event handler with the CreateUserWizard con-
trol to assign a newly created user into a specific role:

protected void CreateUserWizard1_CreatedUser(object sender, EventArgs e)
{

Roles.AddUserToRole(CreateUserWizard1.UserName, "User");
}

Restricting Access Based on Roles
Once you’ve created and assigned your roles, you need to adjust your application to take the
role information into account. You can use several techniques:

• You can write authorization rules that specifically deny certain roles from specific
pages or subfolders. You can write these rules by hand by adding the <authorization>
section to your web.config file, or you can define them with the help of the WAT by
clicking the Manage Access Rules link.

• You can use the User.IsInRole() method in your code to test whether the user belongs
to a specific role and then decide whether to allow an action or show certain content
accordingly.

• You can use the LoginView control to set different content for different roles.

You already learned how to use the first two techniques in the previous chapter. For
example, you already know how to write web.config rules that restrict a specific group, like
this:

CHAPTER 21 ■ MEMBERSHIP758

8911CH21.qxd 10/9/07 4:36 PM Page 758

<authorization>
<deny users="?" />
<deny roles="Guest" />
<allow users="*" />

</authorization>

These rules deny all anonymous users and any users in the Guest role. Remember, a user
may be part of more than one role, so the order of the <deny> tags matters. The first rule that
matches determines whether the user is allowed or denied.

Similarly, you know how to use the User.IsInRole() method to make a programmatic
authorization decision:

private void Page_Load(Object sender, EventArgs e)
{

lblMessage.Text = "You have reached the secured page, ";
lblMessage.Text += User.Identity.Name + ".";

if (User.IsInRole("Administrator"))
{

lblMessage.Text += "

Congratulations:";
lblMessage.Text += "you are an administrator.";

}
}

The only remaining technique to consider is the LoginView control.

The LoginView Control
The LoginView is a view control like the Panel or MultiView control you learned about in
Chapter 11. The difference is that the user doesn’t choose which view is used. Instead, the view
is set based on the authentication status of the user.

The simplest way to use the LoginView is to show separate content for authenticated
and anonymous users. To use this design, you simply fill some content in the
<AnonymousTemplate> and <LoggedInTemplate> sections of the control. Here’s an example:

<asp:LoginView ID="LoginView1" runat="server">
<AnonymousTemplate>

<h1>You are anonymous</h1>
Why don't you log in?

</AnonymousTemplate>
<LoggedInTemplate>

<h1>You are logged in</h1>
<p>You are now ready to see this super-secret content.</p>

</LoggedInTemplate>
</asp:LoginView>

Figure 21-15 shows the two ways this control can appear, depending on whether the user
is currently logged in.

CHAPTER 21 ■ MEMBERSHIP 759

8911CH21.qxd 10/9/07 4:36 PM Page 759

Figure 21-15. Showing different content with the LoginView

■Tip You can also react to the ViewChanging and ViewChanged events of the LoginView control to initialize
your controls just before they become visible in the current view. This approach is faster than initializing all
the controls every time the page is served.

The LoginView also supports one other tag—the RoleGroups tag. Inside the RoleGroups
tag, you add one or more RoleGroup controls. Each role group is specifically mapped to one or
more roles. In other words, when you use the RoleGroups template, you can show different
content for authenticated users, depending to which role they belong.

Here’s an example:

<asp:LoginView ID="LoginView1" runat="server">
<AnonymousTemplate>

<h1>You are anonymous</h1>
Why don't you log in?

</AnonymousTemplate>
<RoleGroups>

<asp:RoleGroup Roles="User, Guest">
<ContentTemplate>

<p>If you can see this, you are a member of the
User or Guest roles.</p>

</ContentTemplate>
</asp:RoleGroup>
<asp:RoleGroup Roles="Administrator">

<ContentTemplate>
<p>Congratulations, you are an administrator.</p>

</ContentTemplate>
</asp:RoleGroup>

</RoleGroups>
</asp:LoginView>

Remember, a user can belong to more than one role. However, only one template can dis-
play at a time. When matching the role to a RoleGroup, the LoginView control goes through

CHAPTER 21 ■ MEMBERSHIP760

8911CH21.qxd 10/9/07 4:36 PM Page 760

the RoleGroup tags in order and uses the first match. If it can’t find a match, it uses the ordi-
nary <LoggedInTemplate>, if provided.

The LoginView is a fairly powerful control. It gives you an effective way to separate secure
content from ordinary content declaratively—that is, without writing custom code to hide and
show labels. This approach is clearer, more concise, and less error prone.

The Last Word
ASP.NET’s membership features give you several high-level services that work with the basic
form authentication and Windows authentication systems you learned about in Chapter 20.

In this chapter, you saw how to use membership to maintain a database of users, either
with the free SQL Server 2005 Express Edition or with another version of SQL Server. You also
learned how to use the prebuilt security controls, which give you a convenient and flexible
way to add user management features and organize secure content. Finally, you considered
how you can use role management in conjunction with membership to determine exactly
what actions a user should—and shouldn’t—be allowed to perform in your applications.

CHAPTER 21 ■ MEMBERSHIP 761

8911CH21.qxd 10/9/07 4:36 PM Page 761

8911CH21.qxd 10/9/07 4:36 PM Page 762

Profiles

You can store information for the users of your website in a variety of ways. In Chapter 7, you
learned how to use techniques such as view state, session state, and cookies to keep track of
information for a short period of time. But if you need to store information between visits, the
only realistic option is a server-side database. Using the ADO.NET skills you’ve learned so far,
it’s fairly easy to save information such as customer addresses and user preferences in a data-
base and retrieve it later.

The only problem with the database approach is that it’s up to you to write all the code for
retrieving information and updating records. This code isn’t terribly complex—Chapter 15
covers everything you need to know—but it can be tedious. ASP.NET includes a feature that
allows you to avoid this tedium, if you’re able to work within certain limitations. This feature is
called profiles, and it’s designed to keep track of user-specific information automatically.

When you use profiles, ASP.NET handles the unglamorous work of retrieving the infor-
mation you need and updating the database when it changes. You don’t need to write any
ADO.NET code, or even design the appropriate database tables, because ASP.NET takes care
of all the details. Best of all, the profiles feature integrates with ASP.NET authentication so the
information for the currently logged-in user (referred to as that user’s profile) is always avail-
able to your web page code.

The only drawback to the profiles feature is that it forces you to use a preset database
structure. This prevents you from using tables you’ve already created to store user-specific
details, and it poses a new challenge if you want to use the same information in other applica-
tions or reporting tools. If the locked-in structure is too restricting, your only choice is to
create a custom profile provider that extends the profiles feature (which is a more challenging
task outside the scope of this book) or forego profiles altogether and write your own ADO.NET
code by hand.

In this chapter, you’ll learn how to use profiles, how the profile system works, and when
profiles make the most sense.

Understanding Profiles
One of the most significant differences between profiles and other types of state management
is that profiles are designed to store information permanently, using a back-end data source
such as a database. Most other types of state management are designed to maintain informa-
tion for a series of requests occurring in a relatively short space of time (such as session state)
or in the current browser session (such as view state and nonpersistent cookies) or to transfer
information from one page to another (such as the query string and cross-page posting).

763

C H A P T E R 2 2

8911CH22.qxd 9/26/07 2:41 PM Page 763

If you need to store information for the longer term in a database, profiles simply provide a
convenient model that manages the retrieval and persistence of this information for you.

Before you begin using profiles, you need to assess them carefully. In the following sec-
tions, you’ll learn how they stack up.

Profile Performance
The goal of ASP.NET’s profiles feature is to provide a transparent way to manage user-specific
information, without forcing you to write custom data access code using the ADO.NET data
classes. Unfortunately, many features that seem convenient suffer from poor performance or
scalability. This is particularly a concern with profiles, because they involve database access,
and database access can easily become a scalability bottleneck for any web application.

So, do profiles suffer from scalability problems? This question has no simple answer. It all
depends on how much data you need to store and how often you plan to access it. To make an
informed decision, you need to know a little more about how profiles work.

Profiles plug into the page life cycle in two ways:

• The first time you access the Profile object in your code, ASP.NET retrieves the complete
profile data for the current user from the database. If you read the profile information
more than once in the same request, ASP.NET reads it once and then reuses it, saving
your database from unnecessary extra work.

• If you change any profile data, the update is deferred until the page processing is com-
plete. At that point (after the PreRender, PreRenderComplete, and Unload events have
fired for the page), the profile is written back to the database. This way, multiple
changes are batched into one operation. If you don’t change the profile data, no extra
database work is incurred.

Overall, the profiles feature could result in two extra database trips for each request (in a
read-write scenario) or one extra database trip (if you are simply reading profile data). The
profiles feature doesn’t integrate with caching, so every request that uses profile data requires
a database connection.

From a performance standpoint, profiles work best when the following is true:

• You have a relatively small number of pages accessing the profile data.

• You are storing small amounts of data.

They tend to work less well when the following is true:

• You have a large number of pages needing to use profile information.

• You are storing large amounts of data. This is particularly inefficient if you need to use
only some of that data in a given request (because the profile model always retrieves
the full block of profile data).

Of course, you can combine profiles with another type of state management. For exam-
ple, imagine your website includes an order wizard that walks the user through several steps.
At the beginning of this process, you could retrieve the profile information and store it in
session state. You could then use the Session collection for the remainder of the process.
Assuming you’re using the in-process or out-of-process state server to maintain session data,

CHAPTER 22 ■ PROFILES764

8911CH22.qxd 9/26/07 2:41 PM Page 764

this approach is more efficient because it saves you from needing to connect to the database
repeatedly.

How Profiles Store Data
The most significant limitation with profiles doesn’t have anything to do with performance—
instead, it’s a limitation of how the profiles are serialized. The default profile provider included
with ASP.NET serializes profile information into a block of data that’s inserted into a single
field in a database record. For example, if you serialize address information, you’ll end up with
something like this:

Marty Soren315 Southpart DriveLompocCalifornia93436U.S.A.

Another field indicates where each value starts and stops, using a format like this:

Name:S:0:11:Street:S:11:19:City:S:30:6:State:S:36:10:ZipCode:S:46:5:Country:S:51:6

Essentially, this string identifies the value (Name, Street, City, and so on), the way it’s
stored (S for string), the starting position, and the length. So the first part of this string

Name:S:0:11

indicates that the first profile property is Name, which is stored as a string, starts at position 0,
and is 11 characters long.

Although this approach gives you the flexibility to store just about any combination of
data, it makes it more difficult to use this data in other applications. You can write custom
code to parse the profile data to find the information you want, but depending on the amount
of data and the data types you’re using, this can be an extremely tedious process. And even if
you do this, you’re still limited in the ways you can reuse this information. For example, imag-
ine you use profiles to store customer address information. Because of the proprietary format,
it’s no longer possible to generate customer lists in an application such as Microsoft Word or
perform queries that filter or sort records using this profile data. (For example, you can’t easily
perform a query to find all the customers living in a specific city.)

This problem has two solutions:

• Use your own custom ADO.NET code instead of profiles.

• Create a custom profile provider that’s designed to store information using your data-
base schema.

Of the two options, creating a custom data access component is easier, and it gives you
more flexibility. You can design your data component to have any interface you want, and you
can then reuse that component with other .NET applications. Currently, ASP.NET developers
are more likely to use this approach because it has been around since .NET 1.0 and is well
understood.

The second option is interesting because it allows your page to keep using the profile
model. In fact, you could create an application that uses the standard profile serialization with
the SqlProfileProvider and then switch it later to use a custom provider. To make this switch,
you don’t need to change any code. Instead, you simply modify the profile settings in the
web.config file. As it becomes more common for websites to use the profiles features, custom
profile providers will become more attractive.

CHAPTER 22 ■ PROFILES 765

8911CH22.qxd 9/26/07 2:41 PM Page 765

■Note It’s also important to consider the type of data that works best in a profile. As with many other types
of state management, you can store any serializable types into a profile, including simple types and custom
classes.

One significant difference between profiles and other types of state management is that
profiles are stored as individual records, each of which is uniquely identified by user name.
This means profiles require you to use some sort of authentication system. It makes no
difference what type of authentication system you use (Windows, forms, or a custom authen-
tication system)—the only requirement is that authenticated users are assigned a unique user
name. That user name is used to find the matching profile record in the database.

■Note Later in this chapter (in the section “Anonymous Profiles”), you’ll learn how the anonymous identifi-
cation feature lets you temporarily store profile information for users who haven’t logged in.

When deciding whether to use profiles, it’s natural to compare the profiles feature with
the kind of custom data access code you wrote in Chapter 15 (and the database components
you’ll learn to build in Chapter 23). Clearly, writing your own ADO.NET code is far more flexi-
ble. It allows you to store other types of information and perform more complex business
tasks. For example, an e-commerce website could realistically use profiles to maintain cus-
tomer address information (with the limitations discussed in the previous section). However,
you wouldn’t use a profile to store information about previous orders. Not only is it far too
much information to store efficiently, it’s also awkward to manipulate.

Using the SqlProfileProvider
The SqlProfileProvider allows you to store profile information in a SQL Server 7.0 (or later)
database (including SQL Server 2005 Express Edition). You can choose to create the profile
tables in any database. However, you can’t change any of the other database schema details,
which means you’re locked into specific table names, column names, and serialization format.

From start to finish, you need to perform the following steps to use profiles:

1. Enable authentication for a portion of your website.

2. Configure the profile provider. (This step is optional if you’re using SQL Server 2005
Express. Profiles are enabled by default.)

3. Create the profile tables. (This step isn’t required if you’re using SQL Server 2005
Express.)

4. Define some profile properties.

5. Use the profile properties in your web page code.

You’ll tackle these steps in the following sections.

CHAPTER 22 ■ PROFILES766

8911CH22.qxd 9/26/07 2:41 PM Page 766

Enabling Authentication
Because profiles are stored in a user-specific record, you need to authenticate the current user
before you can read or write profile information. You can use any type of authentication sys-
tem, including Windows-based authentication and forms-based authentication. The profile
system doesn’t care—it simply stores the user-specific information in a record that’s identified
based on the user ID. Seeing as every authentication system identifies users uniquely by user
ID, any authentication system will work.

The following web.config file uses Windows authentication:

<configuration>
...
<system.web>
<authentication mode="Windows"/>
<authorization>
<deny users="?"/>

</authorization>
...

</system.web>
</configuration>

Because this example uses Windows authentication, you don’t need to create a record for each
user. Instead, you’ll use the existing Windows user accounts that are defined on the web
server. This approach also saves you from creating a login page, because the browser handles
the login process. (For more information about Windows authentication, refer to Chapter 20.)

If you decide to use forms authentication instead, you’ll need to decide whether you want
to perform the authentication using your own custom user list (Chapter 20) or in combination
with the membership features (Chapter 21). In most cases, the membership and profiles fea-
tures are used in conjunction—after all, if you’re using the profiles feature to store
user-specific information automatically, why not also store the list of user credentials (user
names and passwords) automatically in the same database?

■Tip The downloadable examples for this chapter show profiles in action in one site that uses forms
authentication, and in another site that uses Windows authentication.

Once you’ve chosen your authentication system (and taken care of any other chores that
may be necessary, such as creating a user list and generating your login page), you’re ready to
use profiles. Remember, profiles store user-specific information, so the user needs to be
authenticated before their profile is available. In the web.config file shown previously, an
authorization rule ensures this by denying all anonymous users.

Using the Full Version of SQL Server
In the previous chapter, you learned that no special steps are required to configure a web
application to use membership with SQL Server 2005 Express. The same is true of profiles.

CHAPTER 22 ■ PROFILES 767

8911CH22.qxd 9/26/07 2:41 PM Page 767

As with the membership details, profile information is stored in the automatically
generated aspnetdb.mdf file. If this file doesn’t exist, it’s created the first time you use any
membership or profiles features, and it’s placed in the App_Data subdirectory of your web
application. This automatic creation feature relies on SQL Server 2005 Express. If you’re using
a non-Express version of SQL Server, you’ll need to modify the profile configuration and create
the database you need manually.

By default, the connection string that is used with profiles is named LocalSqlServer. You
can edit this connection string directly in the machine.config file. However, if you just need to
tweak a single application, it’s better to adjust the web.config file for your web application.

To do so, you need to remove all the existing connection strings using the <clear> element
in your web application’s web.config file. Then, add the LocalSqlServer connection string
again—but this time with the right value:

<configuration>
<connectionStrings>

<clear />
<add name="LocalSqlServer" providerName="System.Data.SqlClient"

connectionString="Data Source=localhost;Integrated Security=SSPI;
Initial Catalog=aspnetdb" />

</connectionStrings>
...

</configuration>

This is the same process you used in Chapter 20, because both the membership feature
and the profiles feature use the LocalSqlServer connection string. In this example, the new
connection string is for the full version of SQL Server 2005. It uses a database named aspnetdb
on the local computer.

You’ll then need to create the aspnetdb database using the aspnet_regsql.exe command-
line utility. This is the same tool that allows you to generate databases for other ASP.NET
features, such as SQL Server–based session state, membership, roles, database cache depend-
encies, and Web Parts personalization. You can find the aspnet_regsql.exe tool in the
c:\Windows\Microsoft.NET\Framework\v2.0.50727 folder.

To create the tables, views, and stored procedures required for profiles, you use the -A p
command-line option. The other details you may need to supply include the server location
(-S), database name (-d), and authentication information for connecting to the database
(use -U and -P to supply a password and user name, or use -E to use the current Windows
account). If you leave out the server location and database name, aspnet_regsql.exe uses the
default instance on the current computer and creates a database named aspnetdb.

The easiest way to use aspnet_regsql is to open the Visual Studio command prompt. To do
so, open the Start menu and choose Programs ➤ Microsoft Visual Studio 2008 ➤ Visual Studio
Tools ➤ Visual Studio 2008 Command Prompt. The following example creates a database
named aspnetdb in the SQL Server database server on the current computer:

aspnet_regsql.exe -S (local) -E -A all

If you want to use a different database, you must specify the database name using the -d
parameter. Either way, you should use a new, blank database that doesn’t include any other
custom tables. That’s because aspnet_regsql.exe creates several tables for profiles (see
Table 22-1 in the next section), and you shouldn’t risk confusing them with business data.

CHAPTER 22 ■ PROFILES768

8911CH22.qxd 9/26/07 2:41 PM Page 768

■Note This command line uses the -A all option to create tables for all of ASP.NET’s database features,
including profiles and membership. You can also choose to add tables for just one feature at a time. For more
information about -A and the other command-line parameters you can use with aspnet_regsql, refer to
Table 21-2 in Chapter 21.

The Profile Databases
Whether you use aspnet_regsql to create the profile databases on your own or you use SQL
Server 2005 and let ASP.NET create them automatically, you’ll wind up with the same tables.
Table 22-1 briefly describes them. (The rather unexciting views aren’t included.)

If you want to look at the data in these tables, you can peer into this database in the same
way that you peered into the membership database in Chapter 21. However, the contents
aren’t of much interest, because ASP.NET manages them automatically. All the information
you store in a profile is combined into one record and quietly placed in a field named
PropertyValuesString in a table named aspnet_Profile.

Table 22-1. Database Tables Used for Profiles

Table Name Description

aspnet_Applications Lists all the web applications that have records in this database. It’s
possible for several ASP.NET applications to use the same aspnetdb
database. In this case, you have the option of separating the profile
information so it’s distinct for each application (by giving each
application a different application name when you register the
profile provider) or sharing it (by giving each application the same
application name).

aspnet_Profile Stores the user-specific profile information. Each record contains the
complete profile information for a single user. The PropertyNames
field lists the property names, and the PropertyValuesString and
PropertyValuesBinary fields list all the property data, although you’ll
need to do some work if you want to parse this information for use
in other non-ASP.NET programs. Each record also includes the last
update date and time (LastUpdatedDate).

aspnet_SchemaVersions Lists the supported schemas for storing profile information. In the
future, this could allow new versions of ASP.NET to provide new ways
of storing profile information without breaking support for old profile
databases that are still in use.

aspnet_Users Lists user names and maps them to one of the applications in
aspnet_Applications. Also records the last request date and time
(LastActivityDate) and whether the record was generated automati-
cally for an anonymous user (IsAnonymous). You’ll learn more about
anonymous user support later in this chapter (in the section
“Anonymous Profiles”).

Figure 22-1 shows the relationships between the most important profile tables.

CHAPTER 22 ■ PROFILES 769

8911CH22.qxd 9/26/07 2:41 PM Page 769

Figure 22-1. The profile tables

Defining Profile Properties
Before you can store any profile information, you need to specifically define what you want
to store. You do this by adding the <properties> element inside the <profile> section of the
web.config file. Inside the <properties> element, you place one <add> tag for each user-
specific piece of information you want to store. At a minimum, the <add> element supplies
the name for the property, like this:

<configuration>
<system.web>
...
<profile>
<properties>
<add name="FirstName"/>
<add name="LastName"/>

</properties>
</profile>

</system.web>
...

</configuration>

Usually, you’ll also supply the data type. (If you don’t, the property is treated as a string.)
You can specify any serializable .NET data type, as shown here:

<add name="FirstName" type="System.String"/>
<add name="LastName" type="System.String"/>
<add name="DateOfBirth" type="System.DateTime"/>

You can set a few more property attributes to create the more advanced properties shown
in Table 22-2.

CHAPTER 22 ■ PROFILES770

8911CH22.qxd 9/26/07 2:41 PM Page 770

Table 22-2. Profile Property Attributes

Attribute (for the <add> Element) Description

name The name of the property.

type The fully qualified class name that represents the data type
for this property. By default, this is System.String.

serializeAs The format to use when serializing this value (String, Binary,
Xml, or ProviderSpecific). You’ll look more closely at the
serialization model in the section “Profile Serialization.”

readOnly A Boolean value that determines whether a value is
changeable. If true, the property can be read but not
changed. (Attempting to change the property will cause a
compile-time error.) By default, this is false.

defaultValue A default value that will be used if the profile doesn’t exist or
doesn’t include this particular piece of information. The
default value has no effect on serialization—if you set a
profile property, ASP.NET will commit the current values to
the database, even if they match the default values.

allowAnonymous A Boolean value that indicates whether this property can be
used with the anonymous profiles feature discussed later in
this chapter. By default, this is false.

provider The profile provider that should be used to manage just this
property. By default, all properties are managed using the
provider specified in the <profile> element, but you can
assign different properties to different providers.

Using Profile Properties
With these details in place, you’re ready to access the profile information using the Profile
property of the current page. When you run your application, ASP.NET creates a new class to
represent the profile by deriving from System.Web.Profile.ProfileBase, which wraps a collec-
tion of profile settings. ASP.NET adds a strongly typed property to this class for each profile
property you’ve defined in the web.config file. These strongly typed properties simply call the
GetPropertyValue() and SetPropertyValue() methods of the ProfileBase base class to retrieve
and set the corresponding profile values.

For example, if you’ve defined a string property named FirstName, you can set it in your
page like this:

Profile.FirstName = "Henry";

Figure 22-2 presents a complete test page that allows the user to display the profile infor-
mation for the current user or set new profile information.

CHAPTER 22 ■ PROFILES 771

8911CH22.qxd 9/26/07 2:41 PM Page 771

Figure 22-2. Testing profile

The first time this page runs, no profile information is retrieved, and no database connec-
tion is used. However, if you click the Show Profile Data button, the profile information is
retrieved and displayed on the page:

protected void cmdShow_Click(object sender, EventArgs e)
{

lbl.Text = "First Name: " + Profile.FirstName + "
" +
"Last Name: " + Profile.LastName + "
" +
"Date of Birth: " + Profile.DateOfBirth.ToString("D");

}

At this point, an error will occur if the profile database is missing or the connection can’t
be opened. Otherwise, your page will run without a hitch, and you’ll see the newly retrieved
profile information. Technically, the complete profile is retrieved when your code accesses the
Profile.FirstName property in the first line and is used for the subsequent code statements.

■Note Profile properties behave like any other class member variable. This means if you read a profile
value that hasn’t been set, you’ll get a default initialized value (such as an empty string or 0).

If you click the Set Profile Data button, the profile information is set based on the current
control values:

CHAPTER 22 ■ PROFILES772

8911CH22.qxd 9/26/07 2:41 PM Page 772

protected void cmdSet_Click(object sender, EventArgs e)
{

Profile.FirstName = txtFirst.Text;
Profile.LastName = txtLast.Text;
Profile.DateOfBirth = Calendar1.SelectedDate;

}

Now the profile information is committed to the database when the page request finishes.
If you want to commit some or all of the information earlier (and possibly incur multiple data-
base trips), just call the Profile.Save() method. As you can see, the profiles feature is
unmatched for simplicity.

■Tip The Profile object doesn’t just include the properties you’ve defined. It also provides LastActivityDate
and LastUpdatedDate properties with information drawn from the database.

Profile Serialization
Earlier, you learned how properties are serialized into a single string. For example, if you save
a FirstName of Harriet and a LastName of Smythe, both values are crowded together in the
PropertyValuesString field of the aspnet_Profile table in the database, like so:

HarrietSmythe

The PropertyNames field (also in the aspnet_Profile table) gives the information you need
to parse each value from the PropertyValuesString field. Here’s what you’ll see in the
PropertyNames field in this example:

FirstName:S:0:7:LastName:S:7:6:

The colons (:) are used as delimiters. The basic format is as follows:

PropertyName:StringOrBinarySerialization:StartingCharacterIndex:Length:

Something interesting happens if you create a profile with a DateTime data type. When
you look at the PropertyValuesString field, you’ll see something like this:

<?xml version="1.0" encoding="utf-16"?><dateTime>2007-07-12T00:00:00-04:00
</dateTime>HarrietSmythe

Initially, it looks like the profile data is serialized as XML, but the PropertyValuesString
clearly doesn’t contain a valid XML document (because of the text at the end). What has actu-
ally happened is that the first piece of information, the DateTime, is serialized (by default) as
XML. The following two profile properties are serialized as ordinary strings.

The PropertyNames field makes it slightly clearer:

DateOfBirth:S:0:81:FirstName:S:87:7:LastName:S:94:6:

CHAPTER 22 ■ PROFILES 773

8911CH22.qxd 9/26/07 2:41 PM Page 773

Interestingly, you have the ability to change the serialization format of any profile prop-
erty by adding the serializeAs attribute to its declaration in the web.config file. Table 22-3 lists
your choices.

Table 22-3. Serialization Options

SerializeAs Description

String Converts the type to a string representation. Requires a type converter that
can handle the job.

Xml Converts the type to an XML representation, which is stored in a string,
using the System.Xml.XmlSerialization.XmlSerializer (the same class that’s
used with web services).

Binary Converts the type to a proprietary binary representation that only .NET
understands using the
System.Runtime.Serialization.Formatters.Binary.Binary-Formatter. This is
the most compact option but the least flexible. Binary data is stored in the
PropertyValuesBinary field instead of the PropertyValues.

ProviderSpecific Performs customized serialization that’s implemented in a custom provider.

For example, here’s how you can change the serialization for the profile settings:

<add name="FirstName" type="System.String" serializeAs="Xml"/>
<add name="LastName" type="System.String" serializeAs="Xml"/>
<add name="DateOfBirth" type="System.DateTime" serializeAs="String"/>

Now the next time you set the profile, the serialized representation in the
PropertyValuesString field will store information for FirstName and LastName. It takes
this form:

2007-06-27<?xml version="1.0" encoding="utf-16"?><string>Harriet</string>
<?xml version="1.0" encoding="utf-16"?><string>Smythe</string>

If you use the binary serialization mode, the property value will be placed in the
PropertyValuesBinary field instead of the PropertyValuesString field. The only indication of
this shift is the use of the letter B instead of S in the PropertyNames field. Here’s an example
where the FirstName property is serialized in the PropertyValuesBinary field:

DateOfBirth:S:0:9:FirstName:B:0:31:LastName:S:9:64:

All of these serialization details raise an important question—what happens when you
change profile properties or the way they are serialized? Profile properties don’t have any
support for versioning. However, you can add or remove properties with relatively minor con-
sequences. For example, ASP.NET will ignore properties that are present in the aspnet_Profile
table but not defined in the web.config file. The next time you modify part of the profile, these
properties will be replaced with the new profile information. Similarly, if you define a profile
in the web.config file that doesn’t exist in the serialized profile information, ASP.NET will just
use the default value. However, more dramatic changes—such as renaming a property, chang-
ing its data type, and so on, are likely to cause an exception when you attempt to read the
profile information. Even worse, because the serialized format of the profile information is
proprietary, you have no easy way to migrate existing profile data to a new profile structure.

CHAPTER 22 ■ PROFILES774

8911CH22.qxd 9/26/07 2:41 PM Page 774

■Tip Not all types are serializable in all ways. For example, classes that don’t provide a parameterless con-
structor can’t be serialized in Xml mode. Classes that don’t have the Serializable attribute can’t be serialized
in Binary mode. You’ll consider this distinction when you contemplate how to use custom types with profiles
(see the “Profiles and Custom Data Types” section), but for now just keep in mind that you may run across
types that can be serialized only if you choose a different serialization mode.

Profile Groups
If you have a large number of profile settings, and some settings are logically related to each
other, you may want to use profile groups to achieve better organization.

For example, you may have some properties that deal with user preferences and others
that deal with shipping information. Here’s how you could organize these profile properties
using the <group> element:

<profile>
<properties>
<group name="Preferences">
<add name="LongDisplayMode" defaultValue="true" type="Boolean" />
<add name="ShowSummary" defaultValue="true" type="Boolean" />

</group>
<group name="Address">
<add name="Name" type="String" />
<add name="Street" type="String" />
<add name="City" type="String" />
<add name="ZipCode" type="String" />
<add name="State" type="String" />
<add name="Country" type="String" />

</group>
</properties>

</profile>

Now you can access the properties through the group name in your code. For example,
here’s how you retrieve the country information:

lblCountry.Text = Profile.Address.Country;

Groups are really just a poor man’s substitute for a full-fledged custom structure or class.
For instance, you could achieve the same effect as in the previous example by declaring a cus-
tom Address class. You’d also have the ability to add other features (such as validation in the
property procedures). The next section shows how.

Profiles and Custom Data Types
Using a custom class with profiles is easy. You need to begin by creating the class that wraps
the information you need. In your class, you can use public member variables or full-fledged
property procedures. The latter choice, though longer, is the preferred option because it

CHAPTER 22 ■ PROFILES 775

8911CH22.qxd 9/26/07 2:41 PM Page 775

ensures your class will support data binding, and it gives you the flexibility to add property
procedure code later.

Here’s a slightly abbreviated Address class that ties together the same information you
saw in the previous example:

[Serializable()]
public class Address
{

private string name;
public string Name {...}

private string street;
public string Street {...}

private string city;
public string City {...}

private string zipCode;
public string ZipCode {...}

private string state;
public string State {...}

private string country;
public string Country {...}

public Address(string name, string street, string city,
string zipCode, string state, string country)

{
Name = name;
Street = street;
City = city;
ZipCode = zipCode;
State = state;
Country = country;

}
public Address()
{ }

}

You can place this class in the App_Code directory. The final step is to add a property that
uses it:

<properties>
<add name="Address" type="Address" />

</properties>

Now you can create a test page that uses the Address class. Figure 22-3 shows an example
that simply allows you to load, change, and save the address information in a profile.

CHAPTER 22 ■ PROFILES776

8911CH22.qxd 9/26/07 2:41 PM Page 776

Figure 22-3. Editing complex information in a profile

Here’s the page class that makes this possible:

public partial class ComplexTypes : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

if (!Page.IsPostBack)
LoadProfile();

}

protected void cmdGet_Click(object sender, EventArgs e)
{

LoadProfile();
}

private void LoadProfile()
{

txtName.Text = Profile.Address.Name;
txtStreet.Text = Profile.Address.Street;
txtCity.Text = Profile.Address.City;
txtZip.Text = Profile.Address.ZipCode;
txtState.Text = Profile.Address.State;
txtCountry.Text = Profile.Address.Country;

}

protected void cmdSave_Click(object sender, EventArgs e)
{

CHAPTER 22 ■ PROFILES 777

8911CH22.qxd 9/26/07 2:41 PM Page 777

Profile.Address = new Address(txtName.Text,
txtStreet.Text, txtCity.Text, txtZip.Text,
txtState.Text, txtCountry.Text);

}
}

Dissecting the Code . . .

• When the page loads (and when the user clicks the Get button), the profile information
is copied from the Profile.Address object into the various text boxes. A private
LoadProfile() method handles this task.

• The user can make changes to the address values in the text boxes. However, the
change isn’t committed until the user clicks the Save button.

• When the Save button is clicked, a new Address object is created using the constructor
that accepts name, street, city, zip code, state, and country information. This object is
then assigned to the Profile.Address property. Instead of using this approach, you could
modify each property of the current Profile.Address object to match the text values.

• The content of the Profile object is saved to the database automatically when the
request ends. No extra work is required.

Custom Type Serialization
You need to keep in mind a few points, depending on how you decide to serialize your custom
class. By default, all custom data types use XML serialization with the XmlSerializer. This class
is relatively limited in its serialization ability. It simply copies the value from every public
property or member variable into a straightforward XML format like this:

<Address>
<Name>...</Name>
<Street>...</Street>
<City>...</City>
<ZipCode>...</ZipCode>
<State>...</State>
<Country>...</Country>

</Address>

When deserializing your class, the XmlSerializer needs to be able to find a parameterless
public constructor. In addition, none of your properties can be read-only. If you violate either
of these rules, the deserialization process will fail.

If you decide to use binary serialization instead of XmlSerialization, .NET uses a com-
pletely different approach:

<add name="Address" type="Address" serializeAs="Binary"/>

CHAPTER 22 ■ PROFILES778

8911CH22.qxd 9/26/07 2:41 PM Page 778

In this case, ASP.NET enlists the help of the BinaryFormatter. The BinaryFormatter can
serialize the full public and private contents of any class, provided the class is decorated with
the <Serializable()> attribute. Additionally, any class it derives from or references must also be
serializable.

Automatic Saves
The profiles feature isn’t able to detect changes in complex data types (anything other than
strings, simple numeric types, Boolean values, and so on). This means if your profile includes
complex data types, ASP.NET saves the complete profile information at the end of every
request that accesses the Profile object.

This behavior obviously adds unnecessary overhead. To optimize performance when
working with complex types, you have several choices. One option is to set the corresponding
profile property to be read-only (if you know it never changes). Another approach is to disable
the autosave behavior completely by adding the automaticSaveEnabled attribute on the
<profile> element and setting it to false, as shown here:

<profile defaultProvider="SqlProvider" automaticSaveEnabled="false">...</profile>

If you choose this approach, it’s up to you to call Profile.Save() to explicitly commit
changes. Generally, this approach is the most convenient, because it’s easy to spot the places
in your code where you modify the profile. Just add the Profile.Save() call at the end:

Profile.Address = new Address(txtName.Text, txtStreet.Text, txtCity.Text,
txtZip.Text, txtState.Text, txtCountry.Text);

Profile.Save();

For instance, you could modify the earlier example (shown in Figure 22-3) to save
address information only when it changes. The easiest way to do this is to disable automatic
saves, but call Profile.Save() when the Save button is clicked. You could also handle the
TextBox.TextChanged event to determine when changes are made, and save the profile
immediately at this point.

The Profile API
Although your page automatically gets the profile information for the current user, this doesn’t
prevent you from retrieving and modifying the profiles of other users. In fact, you have two
tools to help you—the ProfileBase class and the ProfileManager class.

The Profile object (provided by the Page.Profile property) includes a useful GetProfile()
method that retrieves the profile information for a specific user by user name. Figure 22-4
shows an example with a Windows-authenticated user.

CHAPTER 22 ■ PROFILES 779

8911CH22.qxd 9/26/07 2:41 PM Page 779

Figure 22-4. Retrieving a profile manually

Here’s the code that gets the profile:

protected void cmdGet_Click(object sender, EventArgs e)
{

ProfileCommon profile = Profile.GetProfile(txtUserName.Text);
lbl.Text = "This user lives in " + profile.Address.Country;

}

GetProfile() returns a ProfileCommon object. However, you won’t find ProfileCommon in
the .NET class library. That’s because ProfileCommon is a dynamically generated class that
ASP.NET creates to hold the profile information for your web application. In this example, the
profile defines a property named Address, so that you can retrieve this information using the
ProfileCommon.Address property.

Notice that once you have a ProfileCommon object, you can interact with it in the same
way you interact with the profile for the current user. You can even make changes. The only
difference is that changes aren’t saved automatically. If you want to save a change, you need to
call the Save() method of the ProfileCommon object. ProfileCommon also adds the
LastActivityDate and LastUpdatedDate properties, which you can use to determine the last
time a specific profile was accessed and modified.

If you try to retrieve a profile that doesn’t exist, you won’t get an error. Instead, you’ll sim-
ply end up with blank data (for example, empty strings). If you change and save the profile, a
new profile record will be created.

You can test for this condition by examining the ProfileCommon.LastUpdatedDate prop-
erty. If the profile hasn’t been created yet, this value will be a zero-date value (in other words,
day 0 on month 0 in year 0000). Here’s the code you’d use:

protected void cmdGet_Click(object sender, EventArgs e)
{

ProfileCommon profile = Profile.GetProfile(txtUserName.Text);
if (profile.LastUpdatedDate == DateTime.MinValue)
{

lbl.Text = "No user match found.";
}
else

CHAPTER 22 ■ PROFILES780

8911CH22.qxd 9/26/07 2:41 PM Page 780

{
lbl.Text = "This user lives in " + profile.Address.Country;

}
}

If you need to perform other tasks with profiles, you can use the ProfileManager class in
the System.Web.Profile namespace, which exposes the useful static methods described in
Table 22-4. Many of these methods work with a ProfileInfo class, which provides information
about a profile. The ProfileInfo includes the user name (UserName), last update and last activ-
ity dates (LastUpdatedDate and LastActivityDate), the size of the profile in bytes (Size), and
whether the profile is for an anonymous user (IsAnonymous). It doesn’t provide the actual
profile values.

Table 22-4. ProfileManager Methods

Method Description

DeleteProfile() Deletes the profile for the user you specify.

DeleteProfiles() Deletes multiple profiles at once. You supply a collection
of user names.

DeleteInactiveProfiles() Deletes profiles that haven’t been used since a time you
specify. You also must supply a value from the
ProfileAuthenticationOption enumeration to indicate
what type of profiles you want to remove (All, Anonymous,
or Authenticated).

GetNumberOfProfiles() Returns the number of profile records in the data source.

GetNumberOfInactiveProfiles() Returns the number of profiles that haven’t been used
since the time you specify.

GetAllInactiveProfiles() Retrieves profile information for profiles that haven’t been
used since the time you specify. The profiles are returned
as ProfileInfo objects.

GetAllProfiles() Retrieves all the profile data from the data source as a
collection of ProfileInfo objects. You can choose what type
of profiles you want to retrieve (All, Anonymous, or
Authenticated). You can also use an overloaded version of
this method that uses paging and retrieves only a portion
of the full set of records based on the starting index and
page size you request.

FindProfilesByUserName() Retrieves a collection of ProfileInfo objects matching a
specific user name. The SqlProfileProvider uses a LIKE
clause when it attempts to match user names, which
means you can use wildcards such as the % symbol. For
example, if you search for the user name user%, you’ll
return values such as user1, user2, user_guest, and so on.
You can use an overloaded version of this method that
uses paging.

FindInactiveProfilesByUserName() Retrieves profile information for profiles that haven’t been
used since the time you specify. You can also filter out cer-
tain types of profiles (All, Anonymous, or Authenticated)
or look for a specific user name (with wildcard matching).
The return value is a collection of ProfileInfo objects.

CHAPTER 22 ■ PROFILES 781

8911CH22.qxd 9/26/07 2:41 PM Page 781

For example, if you want to remove the profile for the current user, you need only a single
line of code:

ProfileManager.DeleteProfile(User.Identity.Name);

And if you want to display the full list of users in a web page (not including anonymous
users), just add a GridView with AutoGenerateColumns set to true and use this code:

protected void Page_Load(object sender, EventArgs e)
{

gridProfiles.DataSource = ProfileManager.GetAllProfiles(
ProfileAuthenticationOption.Authenticated);

gridProfiles.DataBind();
}

Figure 22-5 shows the result.

Figure 22-5. Retrieving information about all the profiles in the data source

Anonymous Profiles
So far, all the examples have assumed that the user is authenticated before any profile infor-
mation is accessed or stored. Usually, this is the case. However, sometimes it’s useful to create
a temporary profile for a new, unknown user. For example, most e-commerce websites allow
new users to begin adding items to a shopping cart before registering. If you want to provide
this type of behavior and you choose to store shopping cart items in a profile, you’ll need
some way to uniquely identify anonymous users.

■Note It’s worth asking whether it makes sense to store a shopping cart in a profile. It’s a reasonable,
workable design, but many developers find it easier to explicitly control how this type of information is stored
in their database using custom ADO.NET code instead of the profile feature.

ASP.NET provides an anonymous identification feature that fills this gap. The basic idea is
that the anonymous identification feature automatically generates a random identifier for any

CHAPTER 22 ■ PROFILES782

8911CH22.qxd 9/26/07 2:41 PM Page 782

anonymous user. This random identifier stores the profile information in the database, even
though no user ID is available. The user ID is tracked on the client side using a cookie (or in
the URL, if you’ve enabled cookieless mode). Once this cookie disappears (for example, if the
anonymous user closes and reopens the browser), the anonymous session is lost and a new
anonymous session is created.

Anonymous identification has the potential to leave a lot of abandoned profiles, which
wastes space in the database. For that reason, anonymous identification is disabled by default.
However, you can enable it using the <anonymousIdentification> element in the web.config
file, as shown here:

<configuration>
...
<system.web>
<anonymousIdentification enabled="true" />
...

</system.web>
</configuration>

You also need to flag each profile property that will be retained for anonymous users by
adding the allowAnonymous attribute and setting it to true. This allows you to store just some
basic information and restrict larger objects to authenticated users.

<properties>
<add name="Address" type="Address" allowAnonymous="true" />
...

</properties>

If you’re using a complex type, the allowAnonymous attribute is an all-or-nothing setting.
You configure the entire object to support anonymous storage or not support it.

The <anonymousIdentification> element also supports numerous optional attributes that
let you set the cookie name and timeout, specify whether the cookie will be issued only over
an SSL connection, control whether cookie protection (validation and encryption) is used to
prevent tampering and eavesdropping, and configure support for cookieless ID tracking.
Here’s an example:

<anonymousIdentification enabled="true" cookieName=".ASPXANONYMOUS"
cookieTimeout="43200" cookiePath="/" cookieRequireSSL="false"
cookieSlidingExpiration="true" cookieProtection="All"
cookieless="UseCookies"/>

For more information, refer to the Visual Studio Help.

■Tip If you use anonymous identification, it’s a good idea to delete old anonymous sessions regularly using
the aspnet_Profile_DeleteInactiveProfiles stored procedure, which you can run at scheduled intervals using
the SQL Server Agent. You can also delete old profiles using the ProfileManager class, as described in the
previous section.

CHAPTER 22 ■ PROFILES 783

8911CH22.qxd 9/26/07 2:41 PM Page 783

Migrating Anonymous Profiles
One challenge that occurs with anonymous profiles is what to do with the profile information
when a previously anonymous user logs in. For example, in an e-commerce website a user
might select several items and then register or log in to complete the transaction. At this point,
you need to make sure the shopping cart information is copied from the anonymous user’s
profile to the appropriate authenticated (user) profile.

Fortunately, ASP.NET provides a solution through the ProfileModule.MigrateAnonymous
event. This event fires whenever an anonymous identifier is available (either as a cookie or in
the URL if you’re using cookieless mode) and the current user is authenticated. To handle the
MigrateAnonymous event, you need to add an event handler to the file that handles all appli-
cation events—the Global.asax file, which you learned about in Chapter 7.

The basic technique when handling the MigrateAnonymous event is to load the profile
for the anonymous user by calling Profile.GetProfile() and passing in the anonymous ID,
which is provided to your event handler through the ProfileMigrateEventArgs.

Once you’ve loaded this data, you can then transfer the settings to the new profile manu-
ally. You can choose to transfer as few or as many settings as you want, and you can perform
any other processing that’s required. Finally, your code should remove the anonymous profile
data from the database and clear the anonymous identifier so the MigrateAnonymous event
won’t fire again. For example:

void Profile_MigrateAnonymous(Object sender, ProfileMigrateEventArgs pe)
{

// Get the anonymous profile.
ProfileCommon anonProfile = Profile.GetProfile(pe.AnonymousID);

// Copy information to the authenticated profile
// (but only if there's information there).
if (!anonProfile.IsNullOrEmpty())
{

Profile.Address = anonProfile.Address;
}

// Delete the anonymous profile from the database.
// (You could decide to skip this step to increase performance
// if you have a dedicated job scheduled on the database server
// to remove old anonymous profiles.)
System.Web.Profile.ProfileManager.DeleteProfile(pe.AnonymousID);

// Remove the anonymous identifier.
AnonymousIdentificationModule.ClearAnonymousIdentifier();

}

You need to handle this task with some caution. If you’ve enabled anonymous identifica-
tion, the MigrateAnonymous event fires every time a user logs in, even if the user hasn’t
entered any information into the anonymous profile. That’s a problem—if you’re not careful,
you could easily overwrite the real (saved) profile for the user with the blank anonymous pro-
file. The problem is further complicated by the fact that complex types (such as the Address

CHAPTER 22 ■ PROFILES784

8911CH22.qxd 9/26/07 2:41 PM Page 784

object) are created automatically by ASP.NET, so you can’t just check for a null reference to
determine whether the user has anonymous address information.

In the previous example, the code tests for a missing Name property in the Address
object. If this information isn’t part of the anonymous profile, no information is migrated. A
more sophisticated example might test for individual properties separately or might migrate
an anonymous profile only if the information in the user profile is missing or outdated.

The Last Word
In this chapter, you learned how to use profiles and how they store information in the data-
base. Many ASP.NET developers will prefer to write their own ADO.NET code for retrieving
and storing user-specific information. Not only does this allow you to use your own database
structure, it allows you to add your own features, such as caching, logging, validation, and
encryption. But profiles are handy for quickly building modest applications that don’t store a
lot of user-specific information and don’t have special requirements for how this information
is stored.

CHAPTER 22 ■ PROFILES 785

8911CH22.qxd 9/26/07 2:41 PM Page 785

8911CH22.qxd 9/26/07 2:41 PM Page 786

Advanced ASP.NET

P A R T 6

8911CH23.qxd 10/23/07 12:29 PM Page 787

8911CH23.qxd 10/23/07 12:29 PM Page 788

Component-Based
Programming

Component-based programming is a simple, elegant idea. When used properly, it allows
your code to be more organized, consistent, and reusable. It’s also incredibly easy to imple-
ment in a .NET application, because you never need to use the Windows registry or perform
any special configuration.

A component, at its simplest, is one or more classes that are compiled into a separate
DLL assembly file. These classes provide some unit of logically related functionality. You can
access a component in a single application, or you can share the component between multi-
ple applications. Your web pages (or any other .NET application) can use the classes in your
components in the same way they use any other .NET class. Best of all, your component is
encapsulated, which means it provides exactly the features your code requires and hides all
the other messy details.

When combined with careful organization, component-based programming is the basis
of good ASP.NET application design. In this chapter, you’ll examine how you can create com-
ponents (and why you should) and consider examples that show you how to encapsulate
database functionality with a well-written business object. You’ll also learn how to bind your
database component to the web controls on a page using the ObjectDataSource.

Why Use Components?
To master ASP.NET development you need to become a skilled user of the .NET class library.
So far, you’ve learned how to use .NET components designed for reading files, communicating
with databases, calling web services, and storing information about the user. Though these
class library ingredients are powerful, they aren’t customizable, which is both an advantage
and a weakness.

For example, if you want to retrieve data from a SQL Server database, you need to weave
database details (such as SQL queries) directly into your code-behind class or (if you’re using
the SqlDataSource) into the .aspx markup portion of your web page file. Either way if the
structure of the database changes even slightly, you could be left with dozens of pages to
update and retest. To solve these problems, you need to create an extra layer between your
web page code and the database. This extra layer takes the form of a custom component.

This database scenario is only one of the reasons you might want to create your own
components. Component-based programming is really just a logical extension of good code-
organizing principles, and it offers a long list of advantages: 789

C H A P T E R 2 3

8911CH23.qxd 10/23/07 12:29 PM Page 789

Safety: Because the source code isn’t contained in your web page, you can’t modify it.
Instead, you’re limited to the functionality your component provides. For example, you
could configure a database component to allow only certain operations with specific
tables, fields, or rows. This is often easier than setting up complex permissions in the
database. Because the application has to go through the component, it needs to play by
its rules.

Better organization: Components move the clutter out of your web page code. It also
becomes easier for other programmers to understand your application’s logic when it’s
broken down into separate components. Without components, commonly used code
has to be copied and pasted throughout an application, making it extremely difficult to
change and synchronize.

Easier troubleshooting: It’s impossible to oversell the advantage of components when test-
ing and debugging an application. Component-based programs are broken down into
smaller, tighter blocks of code, making it easier to isolate exactly where a problem is
occurring. It’s also easier to test individual components separate from the rest of your
web application.

More manageability: Component-based programs are much easier to enhance and mod-
ify because the component and web application code can be modified separately. Taken
to its extreme, this approach allows you to have one development team working on the
component and another team coding the website that uses the component.

Code reuse: Components can be shared with any ASP.NET application that needs the com-
ponent’s functionality. Even better, any .NET application can use a component, meaning
you could create a common “backbone” of logic that’s used by a web application and an
ordinary Windows application.

Simplicity: Components can provide multiple related tasks for a single client request
(writing several records to a database, opening and reading a file in one step, or even
starting and managing a database transaction). Similarly, components hide details—an
application programmer can use a database component without worrying about the
database name, the location of the server, or the user account needed to connect. Even
better, you can perform a search using certain criteria, and the component itself can
decide whether to use a dynamically generated SQL statement or stored procedure.

Component Jargon
Component-based programming is sometimes shrouded in a fog of specialized jargon.
Understanding these terms helps sort out exactly what a component is supposed to do, and it
also allows you to understand MSDN articles about application design. If you’re already famil-
iar with the fundamentals of components, feel free to skip ahead.

Three-Tier Design
The idea of three-tier design is that the functionality of most complete applications can be
divided into three main levels (see Figure 23-1). The first level is the user interface (or

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING790

8911CH23.qxd 10/23/07 12:29 PM Page 790

presentation tier), which displays controls and receives and validates user input. All the event
handlers in your web page are in this first level. The second level is the business tier, where the
application-specific logic takes place. For an e-commerce site, application-specific logic
includes rules such as how shipping charges are applied to an order, when certain promotions
are valid, and what customer actions should be logged. It doesn’t involve generic .NET details
such as how to open a file or connect to a database. The third level is the data tier, where you
place the logic that stores your information in files, a database, or some other data store. The
third level contains logic about how to retrieve and update data, such as SQL queries or stored
procedures.

Figure 23-1. Three-tier design

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING 791

8911CH23.qxd 10/23/07 12:29 PM Page 791

The important detail about three-tier design is that information travels from only one
level to an adjacent level. In other words, your web page code shouldn’t connect directly to the
database to retrieve information. Instead, it should go through a component in the business
tier that connects to the database and returns the data.

This basic organization principle can’t always be adhered to, but it’s a good model to fol-
low. When you create a component it’s almost always used in the second level to bridge the
gap between the data and the user interface. In other words, if you want to fill a list of product
categories in a list box, your user interface code calls a component, which gets the list from
the database and then returns it to your code. Your web page code is isolated from the
database—and if the database structure changes, you need to change one concise component
instead of every page on your site.

Encapsulation
If three-tier design is the overall goal of component-based programming, encapsulation is the
best rule of thumb. Encapsulation is the principle that you should create your application out
of “black boxes” that hide information. So, if you have a component that logs a purchase on an
e-commerce site, that component handles all the details and allows only the essential vari-
ables to be specified.

For example, this component might accept a user ID and an order item ID and then han-
dle all the other details. The calling code doesn’t need to worry about how the component
works or where the data is coming from—it just needs to understand how to use the compo-
nent. (This principle is described in a lot of picturesque ways. For example, you know how to
drive a car because you understand its component interface—the steering wheel and pedals—
not because you understand the low-level details about internal combustion and the engine.
As a result, you’re able to transfer your knowledge to many different types of automobiles,
even if they have dramatically different internal workings.)

Business Objects
The term business object often means different things to different people. Generally, business
objects are the components in the second level of your application that provide the extra layer
between your code and the data source. They are called business objects because they enforce
business rules. For example, if you try to submit a purchase order without any items, the
appropriate business object will throw an exception and refuse to continue. In this case, no
.NET error has occurred—instead, you’ve detected the presence of a condition that shouldn’t
be allowed according to your application’s logic.

In this chapter’s examples, business objects are also going to contain data access code. In
an extremely complicated, large, and changeable system, you might want to further subdivide
components and actually have your user interface code talking to a business object, which in
turn talks to another set of objects that interact with the data source. However, for most pro-
grammers, this extra step is overkill, especially with the increased level of sophistication
ADO.NET provides.

Data Objects
The term data object is also used in a variety of ways. In this book, data objects are simply
packages of data that you use to send information between your web page and your business

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING792

8911CH23.qxd 10/23/07 12:29 PM Page 792

objects. For example, you might create a data class named Employee that represents the infor-
mation from one record in an Employees table, complete with properties like FirstName,
LastName, and DateOfBirth. A typical data object is filled with properties, but provides no
methods.

Components and Classes
Technically, a component is just a collection of one or more classes (and possibly other .NET
types, such as structures and enumerations) that are compiled together as a unit. For example,
Microsoft’s System.Web.dll is a single (but very large) component that provides the types
found in many of the namespaces that start with System.Web.

So far, the code examples in this book have used only a few kinds of classes—mainly
custom web page classes that inherit from System.Web.UI.Page and contain mostly event-
handling procedures. Component classes, on the other hand, usually won’t include any user
interface logic (which would limit their use unnecessarily) and don’t need to inherit from an
existing class. They are more similar to the custom web service classes described in Part 4 of
this book, which collect related features together in a series of utility methods.

Creating a Component
To create a component, you create a new class library project in Visual Studio. Just select File ➤
New ➤ Project, and choose the Class Library project template in the New Project dialog box
(see Figure 23-2). You’ll need to choose a file location and a project name.

Figure 23-2. Creating a component in Visual Studio

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING 793

8911CH23.qxd 10/23/07 12:29 PM Page 793

Rather than just choosing File ➤ New Project to create the class library, you can add it to
the same solution as your website. This makes it easy to debug the code in your component
while you’re testing it with a web page. (On its own, there’s no way to run a component, so
there’s no way to test it.) To create a new class library in an existing web solution, start by
opening your website, and then choose File ➤ Add ➤ New Project. Specify the directory and
project name in the Add New Project dialog box.

Figure 23-3 shows a solution with both a website and a class library named Components.
The website is in bold in the Solution Explorer to indicate that it runs on start-up (when you
click the Start button).

Figure 23-3. A solution with a website and class library project

To make it easy to open this solution, you might want to take a moment to save it. Click
the solution name (which is “Components” in Figure 23-3) in the Solution Explorer. Then
choose File ➤ Save [SolutionName] As. You can open this .sln file later to load both the website
and class library project.

You can compile your class library at any point by right-clicking the project in the Solu-
tion Explorer and choosing Build. This creates a DLL assembly file (Components.dll). You can’t
run this file directly, because it isn’t an application, and it doesn’t provide any user interface.

■Note Unlike web pages and web services, you must compile a component before you can use it. Compo-
nents aren’t hosted by the ASP.NET service and IIS; thus, they can’t be compiled automatically when they are
needed. However, you can easily recompile your component in Visual Studio (and depending on the refer-
ences and project settings you use, Visual Studio may perform this step automatically when you launch your
web application in the design environment).

Classes and Namespaces
Once you’ve created your class library project, you’re ready to add classes in a .cs file. Class
library projects begin with one file named Class1.cs, which you can use, delete, or rename. You
can also add more class files simply by right-clicking on the project in the Solution Explorer

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING794

8911CH23.qxd 10/23/07 12:29 PM Page 794

and choosing Add ➤ Class. The only difference between class library projects and web appli-
cations is that your class files won’t be placed in an App_Code subdirectory.

Here’s an example that creates a class named SimpleTest:

public class SimpleTest
{

// (Code goes here, inside one or more methods.)
}

Remember, a component can contain more than one class. You can create these other
classes in the same file, or you can use separate files for better organization. In either case, all
the classes and source code files are compiled together into one assembly:

public class SimpleTest
{ ... }

public class SimpleTest2
{ ... }

Usually, classes are placed inside a namespace block. That means your code will actually
look like this:

namespace Components
{

public class SimpleTest
{

// (Class code omitted.)
}

public class SimpleTest2
{

// (Class code omitted.)
}

}

When you add a new class file to a class library, C# automatically adds a namespace
block using the default namespace for your project. The classes in your component are
automatically organized into a namespace that’s named after your project. For example, if
you’ve created a project named Components, the SimpleTest and SimpleTest2 classes will
be in the Components namespace (shown here), and their fully qualified names will be
Components.SimpleTest and Components.SimpleTest2. You need to know the fully qualified
name in order to use your classes in another application, because other applications won’t
share the same namespace.

If you don’t like the default namespace, you can edit the namespace name in all your code
files. However, there’s an easier way—you can simply ask Visual Studio to change the default
namespace for your project. That way, whenever you add a new class file to your project,
Visual Studio will insert a namespace block that uses the namespace name you want. To
change the default namespace, begin by right-clicking the project in the Solution Explorer
and choosing Properties. You’ll see a multitabbed display of application settings. Choose the
Application tab and then edit the namespace in the Default Namespace text box. You can also

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING 795

8911CH23.qxd 10/23/07 12:29 PM Page 795

use the Assembly Name text box in this window to configure the name that is given to the
compiled assembly file.

If you have a complex component, you might choose to subdivide it into nested name-
spaces. For example, you might have a namespace named Components.Database and another
named Components.Validation. To create a nested namespace inside the default project
namespace, you use a namespace block like this:

namespace Components
{

namespace Database
{

public class SimpleDatabaseTest
{

// (Class code omitted.)
}

}
}

■Tip The general rule for naming namespaces is to use the company name followed by the technology
name and optionally followed by a feature-specific division, as in CompanyName.TechnologyName.Feature.
Example namespaces that follow this syntax include Microsoft.Media and Microsoft.Media.Audio. These
namespace conventions dramatically reduce the possibility that more than one company might release com-
ponents in the same namespaces, which would lead to naming conflicts. The only exception to the naming
guidelines is in the base assemblies that are part of .NET. They use namespaces that begin with System.

Class Members
To add functionality to your class, add public methods or properties. The web page code can
then call these members to retrieve information or perform a task.

The following example shows one of the simplest possible components, which does noth-
ing more than return a string to the calling code:

public class SimpleTest
{

public string GetInfo(string param)
{

return "You invoked SimpleTest.GetInfo() with '" +
param + "'";

}
}

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING796

8911CH23.qxd 10/23/07 12:29 PM Page 796

public class SimpleTest2
{

public string GetInfo(string param)
{

return "You invoked SimpleTest2.GetInfo() with '" +
param + "'";

}
}

In the following sections, you’ll learn how to use this component in a web application.
A little later, you’ll graduate to a more complex, practical component.

Adding a Reference to the Component
Using the component in an actual ASP.NET page is easy. Essentially, your website needs a copy
of your component in its Bin directory. ASP.NET automatically monitors this directory and
makes all of its classes available to any web page in the application. To create this copy, you
use a Visual Studio feature called references.

Here’s how it works: First, select your website in the Solution Explorer. Then, select
Website ➤ Add Reference from the menu. This brings you to the Add Reference dialog box.
(Don’t choose Add Web Reference, which is used to connect an application to a web service,
and has little in common with the similarly named Add Reference command.)

You can take one of two approaches in the Add Reference dialog box:

Add a project reference: If your class library project is in the same solution, use the
Projects tab. This shows you a list of all the class library projects in your current solution
(see Figure 23-4). Select the class library, and click OK.

Add an assembly reference: If your class library is in a different solution, or you have the
compiled DLL file only (perhaps the component was created by another developer), use
the Browse tab (see Figure 23-5). Browse through your directories until you find the DLL
file, select it, and click OK.

■Note If you’re using an assembly reference, you need to compile your component first (choose Build ➤
Build Solution from the Visual Studio menu) before you can add the reference.

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING 797

8911CH23.qxd 10/23/07 12:29 PM Page 797

Figure 23-4. Adding a project reference

Figure 23-5. Adding an assembly reference

Either way, .NET copies the compiled DLL file to the Bin subdirectory of your web appli-
cation (see Figure 23-6).

Visual Studio also takes extra care to make sure that you keep using the most up-to-date
version of the component. If you change the component and recompile it, Visual Studio will
notice the change. The next time you run your web application, Visual Studio will automati-
cally copy the new component to the Bin subdirectory.

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING798

8911CH23.qxd 10/23/07 12:29 PM Page 798

If you’re using a project reference, Visual Studio goes one step further. Every time you run
the website project, Visual Studio checks for any changes in your component’s source code
files. If any of these files have been changed, Visual Studio automatically recompiles the com-
ponent and copies the new version to the Bin subdirectory in your web application.

Figure 23-6. A component in the Bin directory

When you add a reference to a component, Visual Studio also allows you to use its classes
in your code with the usual syntax checking and IntelliSense. If you don’t add the reference,
you won’t be able to use the component classes (and if you try, Visual Studio interprets your
attempts to use the class as mistakes and refuses to compile your code).

■Note Removing a reference is a bit trickier. The easiest way is to right-click on your web project and
choose Property Pages. Then, choose References from the list. You’ll see a list of all your references
(including assembly and project references). To remove one, select it and click Remove.

Using the Component
Once you’ve added the reference, you can use the component by creating instances of the
SimpleTest or SimpleTest2 class, as shown here:

using Components;

public partial class TestPage : System.Web.UI.Page
{

protected void Page_Load(Object sender, EventArgs e)
{

SimpleTest testComponent = new SimpleTest();
SimpleTest2 testComponent2 = new SimpleTest2();
lblResult.Text = testComponent.GetInfo("Hello") + "

";
lblResult.Text += testComponent2.GetInfo("Bye");

}
}

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING 799

8911CH23.qxd 10/23/07 12:29 PM Page 799

The output for this page, shown in Figure 23-7, combines the return value from both
GetInfo() methods.

Figure 23-7. The SimpleTest component output

To make this code slightly simpler, you can choose to use static methods in the compo-
nent class, so that you don’t need to create an instance before using the methods. A static
GetInfo() method looks like this:

public class SimpleTest
{

public static string GetInfo(string param)
{

return "You invoked SimpleTest.GetInfo() with '" +
param + "'";

}
}

In this case, the web page accesses the static GetInfo() method through the class name
and doesn’t need to create an object:

protected void Page_Load(Object sender, EventArgs e)
{

lblResult.Text = SimpleTest.GetInfo("Hello");
}

■Tip Remember, if you’re using assembly references and your component and web application aren’t in
the same solution, you won’t see the effect of your changes right away. Instead, you need to recompile your
component assembly (choose Build ➤ Build Solution) and then relaunch your web application. If you’re using
project references, this isn’t necessary—Visual Studio notices every change you make and recompiles your
component automatically.

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING800

8911CH23.qxd 10/23/07 12:29 PM Page 800

Deciding when to use instance methods and when to use static methods is part of the
art of object-oriented design, and it takes experience. Static methods impose additional
considerations—namely, your class must be stateless (a concept described in the following
section), which means it can’t hold on to any additional information in member variables.
If it does, it risks a potential conflict if more than one piece of code uses the component at
the same time.

As a rule of thumb, use instance methods if you need to be able to create several
instances of your class at the same time. For example, instance methods make sense for the
SqlConnection class, because you might choose to open a connection to several different
databases for one operation. Instance methods are also the best choice if you want to config-
ure an object once and use it several times. For example, the SqlConnection class lets you set
the connection string and then open and close the connection as much as needed. On the
other hand, consider static methods if your methods perform a single, discrete task that
doesn’t require any initialization. Examples include the calculations in the Math class, and
the business tasks (such as registering a new customer) in a high-level business component.

Properties and State
The SimpleTest classes provide functionality through public methods. If you’re familiar with
class-based programming (as described in Chapter 3), you’ll remember that classes can also
store information in private member variables and provide property procedures that allow the
calling code to modify this information. For example, a Person class might have a FirstName
property.

When you use properties and store information in member variables, you’re using stateful
design. In stateful design, the class has the responsibility of maintaining certain pieces of
information. In stateless design, no information is retained between method calls. Compare
the earlier SimpleTest class, which uses stateless design, to the stateful SimpleTest class shown
here:

public class SimpleTest
{

private string data;
public string Data
{

get
{ return data; }
set
{ data = value; }

}

public string GetInfo()
{

return "You invoked SimpleTest.GetInfo()," +
"and data is '" + data + "'";

}
}

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING 801

8911CH23.qxd 10/23/07 12:29 PM Page 801

Programmers who design large-scale applications (such as web applications) sometimes
debate whether stateful or stateless programming is best. Stateful programming is the most
natural, object-oriented approach, but it also has a few disadvantages. To accomplish a com-
mon task, you might need to set several properties before calling a method. Each of these
steps adds a little bit of unneeded overhead. A stateless design, on the other hand, often per-
forms all its work in a single method call. However, because no information is retained in
state, you may need to specify several parameters, which can make for tedious programming.
A good example of stateful versus stateless objects is shown by the FileInfo and File classes,
which are described in Chapter 18.

There is no short answer about whether stateful or stateless design is best, and it often
depends on the task at hand. Components that are high-performance, components that use
transactions, components that use limited resources such as a database connection, or com-
ponents that need to be invoked remotely (such as web services) usually use stateless design,
which is the simplest and most reliable approach. Because no information is retained in
memory, fewer server resources are used, and no danger exists of losing valuable data if a
software or hardware failure occurs. The next example illustrates the difference with two ways
to design an Account class.

A Stateful Account Class
Consider a stateful account class that represents a single customer account. Information is
read from the database when it’s first created in the constructor method, and this information
can be updated using the Update() method.

public class CustomerAccount
{

private int accountNumber;
private decimal balance;

public decimal Balance
{

get
{ return balance; }
set
{ balance = value; }

}

public CustomerAccount(int accountNumber)
{

// (Code to read account record from database goes here.)
}

public void Update()
{

// (Code to update database record goes here.)
}

}

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING802

8911CH23.qxd 10/23/07 12:29 PM Page 802

If you have two CustomerAccount objects that expose a Balance property, you need to
perform two separate steps to transfer money from one account to another. Conceptually, the
process works like this:

// Create an account object for each account,
// using the account number.
CustomerAccount accountOne = new CustomerAccount(122415);
CustomerAccount accountTwo = new CustomerAccount(123447);
decimal amount = 1000;

// Withdraw money from one account.
accountOne.Balance -= amount;

// Deposit money in the other account.
accountTwo.Balance += amount;

// Update the underlying database records using an Update method.
accountOne.Update();
accountTwo.Update();

The problem here is that if this task is interrupted halfway through by an error, you’ll end
up with at least one unhappy customer.

A Stateless AccountUtility Class
A stateless object might expose only a static method named FundTransfer(), which performs
all its work in one method:

public class AccountUtility
{

public static void FundTransfer(int accountOne,
int accountTwo, decimal amount)

{
// (The code here retrieves the two database records,
// changes them, and updates them.)

}
}

The calling code can’t use the same elegant CustomerAccount objects, but it can be
assured that account transfers are protected from error. Because all the database operations
are performed at once, they can use a database stored procedure for greater performance and
can use a transaction to ensure that the withdrawal and deposit either succeed or fail as a whole.

// Set the account and transfer details.
decimal amount = 1000;
int accountIDOne = 122415;
int accountIDTwo = 123447;

AccountUtility.FundTransfer(accountIDOne, accountIDTwo,
amount);

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING 803

8911CH23.qxd 10/23/07 12:29 PM Page 803

In a mission-critical system, transactions are often required. For that reason, classes that
retain little state information are often the best design approach, even though they aren’t quite
as satisfying from an object-oriented perspective.

■Tip There is one potential compromise. You can create stateful classes to represent common items such
as accounts, customers, and so on, without adding any functionality. Then, you can use these classes as
data packages to send information to and from a stateless utility class. (These are the data objects that were
described in the beginning of this chapter.)

Data-Access Components
Clearly, components are extremely useful. But if you’re starting a large programming project,
you may not be sure what features are the best candidates for being made into separate com-
ponents. Learning how to break an application into components and classes is one of the
great arts of programming, and it takes a good deal of practice and fine-tuning.

One of the most common types of components is a data-access component. Data-access
components are an ideal application of component-based programming for several reasons:

Databases require extraneous details: These details include connection strings, field
names, and so on, all of which can distract from the application logic and can easily be
encapsulated by a well-written component.

Databases evolve over time: Even if the underlying table structure remains constant and
additional information is never required (which is far from certain), queries may be
replaced by stored procedures, and stored procedures may be redesigned.

Databases have special connection requirements: You may even need to change the data-
base access code for reasons unrelated to the application. For example, after profiling
and testing a database, you might discover that you can replace a single query with two
queries or a more efficient stored procedure. In either case, the returned data remains
constant, but the data access code is dramatically different.

Databases are used repetitively in a finite set of ways: In other words, a common database
routine should be written once and is certain to be used many times.

A Simple Data-Access Component
To examine the best way to create a data-access component, you’ll consider a simple applica-
tion that provides a classifieds page that lists items that various individuals have for sale. The
database uses two tables: one is an Items table that lists the description and price of a specific
sale item, and the other is a Categories table that lists the different groups you can use to cate-
gorize an item. Figure 23-8 shows the relationship.

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING804

8911CH23.qxd 10/23/07 12:29 PM Page 804

Figure 23-8. The AdBoard database relationships

In this example, you’re connecting to a SQL Server database using ADO.NET. You can cre-
ate this database yourself, or you can refer to the online samples, which include a SQL script
that generates it automatically. To start, the Categories table is preloaded with a standard set
of allowed categories.

The data-access component is simple. It’s a single class (named DBUtil), which is placed
in a namespace named DatabaseComponent (which is the default namespace for the project).
The DBUtil class uses instance methods, and retains some basic information (such as the con-
nection string to use), but it doesn’t allow the client to change this information. Therefore, it
doesn’t need any property procedures. Instead, it performs most of its work in methods such
as GetCategories() and GetItems(). These methods return DataSets with the appropriate data-
base records. This type of design creates a fairly thin layer over the database—it handles some
details, but the client is still responsible for working with familiar ADO.NET classes such as the
DataSet.

■Note To use this example as written, you need to add a reference to the System.Configuration.dll and
System.Web.dll assemblies in the class library. Otherwise, you can’t use the WebConfigurationManager to
dig up the connection string you need. To add these references, select Project ➤ Add Reference, and look in
the .NET tab.

using System;
using System.Data;
using System.Data.SqlClient;
using System.Web.Configuration;

namespace DatabaseComponent
{

public class DBUtil
{

private string connectionString;

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING 805

8911CH23.qxd 10/23/07 12:29 PM Page 805

public DBUtil()
{

connectionString =
WebConfigurationManager.ConnectionStrings[
"AdBoard"].ConnectionString;

}

public DataSet GetCategories()
{

string query = "SELECT * FROM Categories";
SqlCommand cmd = new SqlCommand(query);
return FillDataSet(cmd, "Categories");

}

public DataSet GetItems()
{

string query = "SELECT * FROM Items";
SqlCommand cmd = new SqlCommand(query);
return FillDataSet(cmd, "Items");

}

public DataSet GetItems(int categoryID)
{

// Create the Command.
string query = "SELECT * FROM Items WHERE Category_ID=@CategoryID";
SqlCommand cmd = new SqlCommand(query);
cmd.Parameters.AddWithValue("@CategoryID", categoryID);

// Fill the DataSet.
return FillDataSet(cmd, "Items");

}

public void AddCategory(string name)
{

SqlConnection con = new SqlConnection(connectionString);

// Create the Command.
string insertSQL = "INSERT INTO Categories ";
insertSQL += "(Name) VALUES @Name";
SqlCommand cmd = new SqlCommand(insertSQL, con);
cmd.Parameters.AddWithValue("@Name", name);

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING806

8911CH23.qxd 10/23/07 12:29 PM Page 806

try
{

con.Open();
cmd.ExecuteNonQuery();

}
finally
{

con.Close();
}

}

public void AddItem(string title, string description,
decimal price, int categoryID)

{
SqlConnection con = new SqlConnection(connectionString);

// Create the Command.
string insertSQL = "INSERT INTO Items ";
insertSQL += "(Title, Description, Price, Category_ID)";
insertSQL += "VALUES (@Title, @Description, @Price, @CategoryID)";
SqlCommand cmd = new SqlCommand(insertSQL, con);
cmd.Parameters.AddWithValue("@Title", title);
cmd.Parameters.AddWithValue("@Description", description);
cmd.Parameters.AddWithValue("@Price", price);
cmd.Parameters.AddWithValue("@CategoryID", categoryID);

try
{

con.Open();
cmd.ExecuteNonQuery();

}
finally
{

con.Close();
}

}

private DataSet FillDataSet(SqlCommand cmd, string tableName)
{

SqlConnection con = new SqlConnection(connectionString);
cmd.Connection = con;
SqlDataAdapter adapter = new SqlDataAdapter(cmd);

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING 807

8911CH23.qxd 10/23/07 12:29 PM Page 807

DataSet ds = new DataSet();
try
{

con.Open();
adapter.Fill(ds, tableName);

}
finally
{

con.Close();
}
return ds;

}
}

}

Dissecting the Code . . .

• When a DBUtil object is created, the constructor automatically retrieves the connection
string from the web.config file, using the technique described in Chapter 5. However,
it’s important to note that this is the web.config file of the web application (as the com-
ponent doesn’t have a configuration file). This is a good design, because it allows a
website to use the database component with any database server. However, if the client
web application doesn’t have the appropriate configuration setting, the database com-
ponent won’t work.

• The code includes methods for retrieving data (those methods that start with Get) and
methods for updating data (those methods that start with Add).

• This class includes an overloaded method named GetItems(). This means the client can
call GetItems() with no parameters to return the full list or with a parameter indicating
the appropriate category. (Chapter 2 provides an introduction to overloaded methods.)

• Each method that accesses the database opens and closes the connection. This is a far
better approach than trying to hold a connection open over the lifetime of the class,
which is sure to result in performance degradation in multiuser scenarios.

■Tip Your web server can open and close connections frequently without causing any slowdown. That’s
because ADO.NET uses connection pooling to keep a small set of open connections ready to use. As long as
you don’t change the connection string, every time you call SqlConnection.Open() you receive one of these
already-open connections, thereby avoiding the overhead of setting up a new connection.

• The code uses its own private FillDataSet() function to make the code more concise.
This isn’t made available to clients. Instead, the GetItems() and GetCategories()
methods use the FillDataSet() function.

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING808

8911CH23.qxd 10/23/07 12:29 PM Page 808

Using the Data-Access Component
To use this component in a web application, you first have to make sure the appropriate con-
nection string is configured in the web.config file, as shown here:

<configuration>

<connectionStrings>
<add name="AdBoard" connectionString=

"Data Source=localhost\SQLEXPRESS;Initial Catalog=AdBoard;Integrated Security=SSPI"
/>
</connectionStrings>
...

</configuration>

Next, compile and copy the component DLL file, or add a reference to it if you’re using
Visual Studio. The only remaining task is to add the user interface for the web page that uses
the component.

To test this component, you can create a simple test page. In the example shown in
Figure 23-9, this page allows users to browse the current listing by category and add new
items. When the user first visits the page, it prompts the user to select a category.

Figure 23-9. The AdBoard listing

Once a category is chosen, the matching items display, and a panel of controls appears,
which allows the user to add a new entry to the AdBoard under the current category, as shown
in Figure 23-10.

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING 809

8911CH23.qxd 10/23/07 12:29 PM Page 809

Figure 23-10. The AdBoard listing

In order to access the component more easily, the web page imports its namespace:

using DataBaseComponent;

The page code creates the component to retrieve information from the database and dis-
plays it by binding the DataSet to the drop-down list or GridView control:

public partial class AdBoard : System.Web.UI.Page
{

protected void Page_Load(Object sender, EventArgs e)
{

if (!this.IsPostBack)
{

DBUtil DB = new DBUtil();

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING810

8911CH23.qxd 10/23/07 12:29 PM Page 810

lstCategories.DataSource = DB.GetCategories();
lstCategories.DataTextField = "Name";
lstCategories.DataValueField = "ID";
lstCategories.DataBind();
pnlNew.Visible = false;

}
}

protected void cmdDisplay_Click(Object sender, EventArgs e)
{

DBUtil DB = new DBUtil();

gridItems.DataSource = DB.GetItems(
Int32.Parse(lstCategories.SelectedItem.Value));

gridItems.DataBind();
pnlNew.Visible = true;

}

protected void cmdAdd_Click(Object sender, EventArgs e)
{

DBUtil DB = new DBUtil();

try
{

DB.AddItem(txtTitle.Text, txtDescription.Text,
Decimal.Parse(txtPrice.Text),
Int32.Parse(lstCategories.SelectedItem.Value));

gridItems.DataSource = DB.GetItems(
Int32.Parse(lstCategories.SelectedItem.Value));

gridItems.DataBind();
}
catch (FormatException err)
{

// An error occurs if the user has entered an
// invalid price (non-numeric characters).
// In this case, take no action.
// Another option is to add a validator control
// for the price text box to prevent invalid input.

}
}

}

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING 811

8911CH23.qxd 10/23/07 12:29 PM Page 811

Dissecting the Code . . .

• Not all the functionality of the component is used in this page. For example, the page
doesn’t use the AddCategory() method or the version of GetItems() that doesn’t require
a category number. This is completely normal. Other pages may use different features
from the component.

• The code for the web page is free of data access code. It does, however, need to under-
stand how to use a DataSet, and it needs to know specific field names to create a more
attractive GridView with custom templates for layout (instead of automatically gener-
ated columns).

• The page could be improved with error handling code or validation controls. As it is, no
validation is performed to ensure that the price is numeric or even to ensure that the
required values are supplied.

■Tip If you’re debugging your code in Visual Studio, you’ll find you can single-step from your web page
code right into the code for the component, even if it isn’t a part of the same solution. The appropriate
source code file is loaded into your editor automatically, as long as it’s available (and you’ve compiled the
component in debug mode).

Enhancing the Component with Error Handling
One way you could enhance the component is with better support for error reporting. As it is,
any database errors that occur are immediately returned to the calling code. In some cases
(for example, if there is a legitimate database problem), this is a reasonable approach, because
the component can’t handle the problem.

However, the component fails to handle one common problem properly. This problem
occurs if the connection string isn’t found in the web.config file. Though the component tries
to read the connection string as soon as it’s created, the calling code doesn’t realize a problem
exists until it tries to use a database method.

A better approach is to notify the client as soon as the problem is detected, as shown in
the following code example:

public class DBUtil
{

private string connectionString;

public DBUtil()
{

if (WebConfigurationManager.ConnectionStrings["AdBoard"] == null)
{

throw new ApplicationException(
"Missing ConnectionString variable in web.config.");

}

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING812

8911CH23.qxd 10/23/07 12:29 PM Page 812

else
{

connectionString =
WebConfigurationManager.ConnectionStrings[
"AdBoard"].ConnectionString;

}
}

// (Other class code omitted.)
}

This code throws an ApplicationException with a custom error message that indicates the
problem. To provide even better reporting, you could create your own exception class that
inherits from ApplicationException, as described in Chapter 8.

■Tip Components often catch the exceptions that occur during low-level tasks (like reading a file or inter-
acting with a database) and then throw less detailed exceptions like ApplicationException to notify the web
page. That way, there’s no chance that the user will see the technical error information. This is important,
because detailed error messages can give hackers clues to how your code works—and how to subvert it.

Enhancing the Component with Aggregate Information
The component doesn’t have to limit the type of information it provides to DataSets. Other
information is also useful. For example, you might provide a read-only property called
ItemFields that returns an array of strings representing the names for fields in the Items table.
Or you might add another method that retrieves aggregate information about the entire table,
such as the average cost of items in the database or the total number of currently listed items,
as shown here:

public class DBUtil
{

// (Other class code omitted.)

public decimal GetAveragePrice()
{

string query = "SELECT AVG(Price) FROM Items";

SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand(query, con);

con.Open();
decimal average = (decimal)cmd.ExecuteScalar();
con.Close();

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING 813

8911CH23.qxd 10/23/07 12:29 PM Page 813

return average;
}

public int GetTotalItems()
{

string query = "SELECT Count(*) FROM Items";

SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand(query, con);

con.Open();
int count = (int)cmd.ExecuteScalar();
con.Close();

return count;
}

}

These queries use some SQL that may be new to you (namely, the COUNT and AVG aggre-
gate functions). However, these methods are just as easy to use from the client’s perspective as
GetItems() and GetCategories():

DBUtil DB = new DBUtil();
decimal averagePrice = DB.GetAveragePrice();
int totalItems = DB.GetTotalItems();

It may have occurred to you that you can return information such as the total number of
items through a read-only property procedure (such as TotalItems) instead of a method (in
this case, GetTotalItems). Though this does work, property procedures are better left to infor-
mation that is maintained with the class (in a private variable) or is easy to reconstruct. In this
case, it takes a database operation to count the number of rows, and this database operation
can cause an unusual problem or slow down performance if used frequently. To help reinforce
that fact, a method is used instead of a property.

The ObjectDataSource
Using a dedicated database component is a great way to keep your code efficient and
well-organized. It also makes it easy for you to apply changes later. However, this has a
drawback—namely, you need to write quite a bit of code to create a web page and a separate
data-access component. In Chapter 16, you saw that you could simplify your life by using
components such as the SqlDataSource to encapsulate all your data access details. Unfortu-
nately, that code-free approach won’t work if you’re using a separate component—or will it?

It turns out there is a way to get the best of both worlds and use a separate data-access
component and easier web page data binding. Instead of using the SqlDataSource, you use
the ObjectDataSource, which defines a link between your web page and your component. This
won’t save you from writing the actual data access code in your component, but it will save
you from writing the tedious code in your web page to call the methods in your component,
extract the data, format it, and display it in the page.

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING814

8911CH23.qxd 10/23/07 12:29 PM Page 814

■Note The ObjectDataSource allows you to create code-free web pages, but you still need to write the
code in your component. You shouldn’t view this as a drawback—after all, you need to write this code to get
fine-grained control over exactly what’s taking place and thereby optimize the performance of your data
access strategy.

In the following sections, you’ll learn how to take the existing DBUtil class presented
earlier and use it in a data-bound web page. You’ll learn how to replicate the example shown
in Figure 23-9 and Figure 23-10 without writing any web page code.

Making Classes the ObjectDataSource Can Understand
Essentially, the ObjectDataSource allows you to create a declarative link between your web
page controls and a data access component that queries and updates data. Although the
ObjectDataSource is remarkably flexible, it can’t support every conceivable component you
could create. In fact, for your data component to be usable with the ObjectDataSource, you
need to conform to a few rules:

• Your class must be stateless. That’s because the ObjectDataSource will create an
instance only when needed and destroy it at the end of every request.

• Your class must have a default, no-argument constructor.

• All the logic must be contained in a single class. (If you want to use different classes for
selecting and updating your data, you’ll need to wrap them in another higher-level
class.)

• The query results must be provided as a DataSet, DataTable, or some sort of collection
of objects. (If you decide to use a collection of objects, each data object needs to expose
all the data fields as public properties.)

Fortunately, many of these rules are best practices that you should already be following.
Even though the DBUtil class wasn’t expressly designed for the ObjectDataSource, it meets all
these criteria.

Selecting Records
You can learn a lot about the ObjectDataSource by building the page shown in Figure 23-10. In
the following sections, you’ll tackle this challenge.

The first step is to create the list box with the list of categories. For this list, you need an
ObjectDataSource that links to the DBUtil class and calls the GetCategories() method to
retrieve the full list of category records.

Next, define the ObjectDataSource and indicate the name of the class that contains the
data access methods. You do this by specifying the fully qualified class name with the
TypeName property, as shown here:

<asp:ObjectDataSource ID="sourceCategories" runat="server"
TypeName="DatabaseComponent.DBUtil" ... />

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING 815

8911CH23.qxd 10/23/07 12:29 PM Page 815

Once you’ve attached the ObjectDataSource to a class, the next step is to point it to the
methods it can use to select and update records.

The ObjectDataSource defines SelectMethod, DeleteMethod, UpdateMethod, and
InsertMethod properties that you use to link your data access class to various tasks. Each
property takes the name of the method in the data access class. In this example, you simply
need to enable querying, so you need to set the SelectMethod property so it calls the
GetCategories() method:

<asp:ObjectDataSource ID="sourceCategories" runat="server"
TypeName="DatabaseComponent.DBUtil" SelectMethod="GetCategories" />

Once you’ve set up the ObjectDataSource, you can bind your web page controls in the
same way you do with the SqlDataSource. Here’s the tag you need for the list box:

<asp:DropDownList ID="lstCategories" runat="server"
DataSourceID="sourceCategories" DataTextField="Name" DataValueField="ID">

</asp:DropDownList>

This tag shows a list of category names (thanks to the DataTextField property) and also
keeps track of the category ID (using the DataValueField property).

This example works fine so far. You can run the test web page and see the list of categories
in the list (as shown in Figure 23-9).

Using Method Parameters
The next step is to show the list of items in the current category in the GridView underneath.
As with the SqlDataSource, the ObjectDataSource can be used only for a single query. That
means you’ll need to create a second ObjectDataSource that’s able to retrieve the list of items
by calling GetItems().

The trick here is that the GetItems() method requires a single parameter (named
categoryID). That means you need to create an ObjectDataSource that includes a single
parameter. You can use all the same types of parameters used with the SqlDataSource to get
values from the query string, other controls, and so on. In this case, the category ID is pro-
vided by the SelectedValue property of the list box, so you can use a control parameter that
points to this property.

Here’s the ObjectDataSource definition you need:

<asp:ObjectDataSource ID="sourceItems" runat="server" SelectMethod="GetItems"
TypeName="DatabaseComponent.DBUtil" >
<SelectParameters>

<asp:ControlParameter ControlID="lstCategories" Name="categoryID"
PropertyName="SelectedValue" Type="Int32" />

</SelectParameters>
</asp:ObjectDataSource>

Again, you use the DBUtil class, but this time it’s the GetItems() method you need. Even
though there are two overloaded versions of the GetItems() method (one that takes a
categoryID parameter and one that doesn’t), you don’t need to worry. The ObjectDataSource
automatically uses the correct overload by looking at the parameters you’ve defined.

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING816

8911CH23.qxd 10/23/07 12:29 PM Page 816

In this case, you use a single parameter that extracts the selected category ID from the
list box and passes it to the GetItems() method. Notice that the name defined in the
ControlParameter tag matches the parameter name of the GetItems() method. This is an
absolute requirement. The ObjectDataSource searches for the GetItems() method using reflec-
tion, and it verifies that any potential match has the number of parameters, parameter names,
and data types that you’ve indicated. This searching process allows the ObjectDataSource to
distinguish between different overloaded versions of the same method. If the ObjectDataSource
can’t find the method you’ve specified, an exception is raised at this point.

■Tip If you’re ever in doubt what method is being called in your data-access component, place a break-
point on the possible methods, and use Visual Studio’s debugging features (as described in Chapter 4).

The final step is to link the GridView to the new ObjectDataSource using the DataSourceID.
Here’s the tag that does it:

<asp:GridView ID="GridView1" runat="server" DataSourceID="sourceItems"/>

This is all you need. You should keep the Display button, because it triggers a page post-
back and allows the ObjectDataSource to get to work. (If you don’t want to use this button, set
the AutoPostback property on the list box to True so it posts back whenever you change the
selection.) You don’t need to write any event-handling code to react when the button is
clicked. The queries are executed automatically, and the controls are bound automatically.

Updating Records
The final step is to provide a way for the user to add new items. The easiest way to make this
possible is to use a rich data control that deals with individual records—either the DetailsView
or the FormsView. The DetailsView is the simpler of the two, because it doesn’t require a tem-
plate. It’s the one used in the following example.

Ideally, you’d define the DetailsView using a tag like this and let it generate all the fields it
needs based on the bound data source:

<asp:DetailsView ID="DetailsView1" runat="server" DataSourceID="sourceItems"/>

Unfortunately, this won’t work in this example. The problem is that this approach creates
too many fields. In this example, you don’t want the user to specify the item ID (that’s set by
the database automatically) or the category ID (that’s based on the currently selected cate-
gory). So neither of these details should appear. The only way to make sure this is the case is to
turn off automatic field generation and define each field you want explicitly, as shown here:

<asp:DetailsView ID="DetailsView1" runat="server"
DataSourceID="sourceItems" AutoGenerateRows="False">
<Fields>
<asp:BoundField DataField="Title" HeaderText="Title" />
<asp:BoundField DataField="Price" HeaderText="Price"/>

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING 817

8911CH23.qxd 10/23/07 12:29 PM Page 817

<asp:BoundField DataField="Description" HeaderText="Description" />
</Fields>

</asp:DetailsView>

You need to make a couple of other changes. To allow inserting, you need to set the
AutoGenerateInsertButton to True. This way, the DetailsView creates the links that allow
you to start entering a new record and then insert it. At the same time, you can set the
DefaultMode property to Insert. This way, the DetailsView is always in insert mode and is
used exclusively for adding records (not displaying them), much like the non-data-bound
page shown earlier.

<asp:DetailsView ID="DetailsView1" runat="server"
DefaultMode="Insert" AutoGenerateInsertButton="True"
DataSourceID="sourceItems" AutoGenerateRows="False">
...

</asp:DetailsView>

The ObjectDataSource provides the same type of support for updatable data binding as
the SqlDataSource. The first step is to specify the InsertMethod, which needs to be a public
method in the same class:

<asp:ObjectDataSource ID="sourceItems" runat="server"
TypeName="DatabaseComponent.DBUtil"
SelectMethod="GetItems" InsertMethod="AddItem" >
</asp:ObjectDataSource>

The challenge is in making sure the InsertMethod has the right signature. As with the
SqlDataSource, updates, inserts, and deletes automatically receive a collection of parameters
from the linked data control. These parameters have the same names as the corresponding
field names. So in this case, the fields are Title, Price, and Description, which exactly match
the parameter names in the AddItem() method. (The capitalization is not the same, but the
ObjectDataSource is not case-sensitive, so this isn’t a problem.)

This still has a problem, however. When the user commits an edit, the DetailsView sub-
mits the three parameters you expect (Title, Price, and Description). However, the AddItem()
method needs a fourth parameter—CategoryID. We’ve left that parameter out of the
DetailsView fields, because you don’t want the user to be able to set the category ID. However,
you still need to supply it to the method.

So where can you get the current category ID from? The easiest choice is to extract it
from the list box, just as you did for the GetItems() method. All you need to do is add a
ControlParameter tag that defines a parameter named CategoryID and binds it to the
SelectedValue property of the list box. Here’s the revised tag for the ObjectDataSource:

<asp:ObjectDataSource ID="sourceItems" runat="server" SelectMethod="GetItems"
TypeName="DatabaseComponent.DBUtil" InsertMethod="AddItem" >
<SelectParameters>
...

</SelectParameters>
<InsertParameters>
<asp:ControlParameter ControlID="lstCategories" Name="categoryID"

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING818

8911CH23.qxd 10/23/07 12:29 PM Page 818

PropertyName="SelectedValue" Type="Int32" />
</InsertParameters>

</asp:ObjectDataSource>

Now you have all the parameters you need—the three from the DetailsView and the one
extra from the list box. When the user attempts to insert a new record, the ObjectDataSource
collects these four parameters, makes sure they match the signature for the AddItem()
method, puts them in order, and then calls the method.

Figure 23-11 shows an insert in progress.

Figure 23-11. Inserting with the DetailsView

When you click the Insert button, quite a bit takes place behind the scenes. Here’s a
breakdown of what actually happens:

1. The DetailsView gathers all the new values, and passes them to the ObjectDataSource.

2. The ObjectDataSource calls the DBUtil.AddItem() method, passing all the values it
received from the DetailsView in the right positions (by matching the field names with
the parameter names) and the selected value from the lstCategories list box.

3. The DBUtil.AddItem() method builds a parameterized SQL command. It then opens a
database connection and executes the command to insert the new record. (At this
point, the ASP.NET data binding system takes a break and lets other events occur, such
as Page.Load.)

4. Just before the page is rendered, the data binding process begins. The DropDownList
asks the first ObjectDataSource for the list of categories (which triggers a call to the
DBUtil.GetCategories() method), and the GridView requests the list of items from the
second ObjectDataSource (which triggers the DBUtil.GetItems() method).

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING 819

8911CH23.qxd 10/23/07 12:29 PM Page 819

Because the page is always re-bound after any insert and update operations are finished,
you’ll always see the latest information in your web controls. For example, if you add a new
item, you’ll see it appear immediately, complete with the unique ID value that the database
server generates automatically.

■Note In some cases, you might need to supply an extra parameter that needs to be set programmatically.
In this case, you need to define a plain-vanilla Parameter tag (instead of a ControlParameter tag), with a
name and data type but no value. Then you can respond to the ObjectDataSource.Updating event to fill in the
value you need just in time. It’s a little messy (and it forces you to write code in your web page), but it’s
sometimes a necessity. Chapter 16 demonstrates this technique with the SqlDataSource control.

The Last Word
The examples in this chapter demonstrate safe, solid ways to create components and integrate
them into your website. As you can see, these objects respect the rules of encapsulation,
which means they do a specific business task, but they don’t get involved in generating the
user interface for the application. For example, the DBUtil class uses ADO.NET code to
retrieve records or update a database. It’s up to other controls, such as the GridView and
DetailsView, to provide the presentation.

CHAPTER 23 ■ COMPONENT-BASED PROGRAMMING820

8911CH23.qxd 10/23/07 12:29 PM Page 820

Caching

ASP.NET applications are a bit of a contradiction. On the one hand, because they’re hosted
over the Internet, they have unique requirements—namely, they need to be able to serve hun-
dreds of clients as easily and quickly as they deal with a single user. On the other hand,
ASP.NET includes some remarkable tricks that let you design and code a web application in
the same way you program a desktop application. These tricks are useful, but they can lead
developers into trouble. The problem is that ASP.NET makes it easy to forget you’re creating a
web application—so easy, that you might introduce programming practices that will slow or
cripple your application when it’s used by a large number of users in the real world.

Fortunately, a middle ground exists. You can use the incredible timesaving features such
as view state, web controls, and session state that you’ve spent the last 20-odd chapters learn-
ing about and still create a robust web application. But to finish the job properly, you’ll need
to invest a little extra time to profile and optimize your website’s performance. One of the easi-
est ways to improve perform is to use caching, a technique that temporarily stores valuable
information in server memory so it can be reused. Unlike the other types of state management
you learned about in Chapter 7, caching includes some built-in features that ensure good
performance.

Understanding Caching
ASP.NET has taken some dramatic steps forward with caching. Many developers who first
learn about caching see it as a bit of a frill, but nothing could be further from the truth. Used
intelligently, caching can provide a twofold, threefold, or even tenfold performance improve-
ment by retaining important data for just a short period of time.

Caching is often used to store information that’s retrieved from a database. This makes
sense—after all, retrieving information from a database takes time. With careful optimization,
you can reduce the time and lessen the burden imposed on the database to a certain extent,
but you can never eliminate it. But with a system that uses caching, some data requests won’t
require a database connection and a query. Instead, they’ll retrieve the information directly
from server memory, which is a much faster proposition.

Of course, storing information in memory isn’t always a good idea. Server memory is a
limited resource; if you try to store too much, some of that information will be paged to disk,
potentially slowing down the entire system. That’s why ASP.NET caching is self-limiting. When
you store information in a cache, you can expect to find it there on a future request, most of
the time. However, the lifetime of that information is at the discretion of the server. If the
cache becomes full or other applications consume a large amount of memory, data will be

821

C H A P T E R 2 4

8911CH24.qxd 10/16/07 5:45 PM Page 821

selectively evicted from the cache, ensuring that the application continues to perform well.
It’s this self-sufficiency that makes caching so powerful (and would make it extremely compli-
cated to implement on your own).

When to Use Caching
The secret to getting the most out of caching is choosing the right time to use it. A good
caching strategy identifies the most frequently used pieces of data that are the most time-
consuming to create, and stores them. If you store too much information, you risk filling
up the cache with relatively unimportant data, and forcing out the content you really want
to keep.

Here are two caching guidelines to keep you on the right track:

Cache data (or web pages) that are expensive: In other words, cache information that’s
time-consuming to create. The results of a database query or contents of a file are good
examples. Not only does it take time to open a database connection or a file, but it can
also delay or lock out other users who are trying to do the same thing at the same time.

Cache data (or web pages) that are used frequently: There’s no point setting aside memory
for information that’s never going to be needed again. For example, you might choose
not to cache product detail pages, because there are hundreds of different products,
each with its own page. But it makes more sense to cache the list of product categories,
because that information will be reused to serve many different requests.

If you keep these two rules in mind, you can get two benefits from caching at once—you
can improve both performance and scalability.

Performance is a measure of how quickly a web page works for a single user. Caching
improves performance, because it bypasses bottlenecks like the database. As a result, web
pages are processed and sent back to the client more quickly.

Scalability measures how the performance of your web application degrades as more and
more people use it at the same time. Caching improves scalability, because it allows you to
reuse the same information for requests that happen in quick succession. With caching, more
and more people can use your website, but the number of trips to the database won’t change
very much. Therefore, the overall burden on the system will stay relatively constant, as shown
in Figure 24-1.

Many optimization techniques enhance scalability at the cost of performance, or vice
versa. Caching is remarkable because it gives you the best of both worlds.

CHAPTER 24 ■ CACHING822

8911CH24.qxd 10/16/07 5:45 PM Page 822

Figure 24-1. The effect of good caching

Caching in ASP.NET
ASP.NET really has two types of caching. Your applications can and should use both types,
because they complement each other:

• Output caching: This is the simplest type of caching. It stores a copy of the final ren-
dered HTML page that is sent to the client. The next client that submits a request for
this page doesn’t actually run the page. Instead, the final HTML output is sent auto-
matically. The time that would have been required to run the page and its code is
completely reclaimed.

• Data caching: This is carried out manually in your code. To use data caching, you store
important pieces of information that are time-consuming to reconstruct (such as a
DataSet retrieved from a database) in the cache. Other pages can check for the exis-
tence of this information and use it, thereby bypassing the steps ordinarily required to
retrieve it. Data caching is conceptually the same as using application state, but it’s
much more server-friendly because items will be removed from the cache automati-
cally when it grows too large and performance could be affected. Items can also be set
to expire automatically.

Also, two specialized types of caching build on these models:

• Fragment caching: This is a specialized type of output caching—instead of caching the
HTML for the whole page, it allows you to cache the HTML for a portion of it. Fragment
caching works by storing the rendered HTML output of a user control on a page. The
next time the page is executed, the same page events fire (and so your page code will
still run), but the code for the appropriate user control isn’t executed.

CHAPTER 24 ■ CACHING 823

8911CH24.qxd 10/16/07 5:45 PM Page 823

• Data source caching: This is the caching that’s built into the data source controls,
including the SqlDataSource, ObjectDataSource, and XmlDataSource. Technically, data
source caching uses data caching. The difference is that you don’t need to handle the
process explicitly. Instead, you simply configure the appropriate properties, and the
data source control manages the caching storage and retrieval.

In this chapter, you’ll learn about all these types of caching. You’ll begin by learning the
basics of output caching and data caching. Next, you’ll examine the caching in the data source
controls. Finally, you’ll explore one of ASP.NET’s hottest new features—linking cached items to
tables in a database with SQL cache dependencies.

Output Caching
With output caching, the final rendered HTML of the page is cached. When the same page is
requested again, the control objects are not created, the page life cycle doesn’t start, and none
of your code executes. Instead, the cached HTML is served. Clearly, output caching gets the
theoretical maximum performance increase, because all the overhead of your code is side-
stepped.

To see output caching in action, you can create a simple page that displays the current
time of day. Figure 24-2 shows this page.

Figure 24-2. Displaying the time a page is served

The code for this task is elementary:

public partial class OutputCaching : System.Web.UI.Page
{

protected void Page_Load(Object sender, EventArgs e)
{

lblDate.Text = "The time is now:
";
lblDate.Text += DateTime.Now.ToString();

}
}

CHAPTER 24 ■ CACHING824

8911CH24.qxd 10/16/07 5:45 PM Page 824

You can cache an ASP.NET page in two ways. The most common approach is to insert the
OutputCache directive at the top of your .aspx file, just below the Page directive, as shown
here:

<%@ OutputCache Duration="20" VaryByParam="None" %>

The Duration attribute instructs ASP.NET to cache the page for 20 seconds. The
VaryByParam attribute is also required—but you’ll learn about its effect later on in the
“Caching and the Query String” section.

When you run the test page, you’ll discover some interesting behavior. The first time you
access the page, you will see the current time displayed. If you refresh the page a short time
later, however, the page will not be updated. Instead, ASP.NET will automatically send the
cached HTML output to you, until it expires in 20 seconds. If ASP.NET receives a request after
the cached page has expired, ASP.NET will run the page code again, generate a new cached
copy of the HTML output, and use that for the next 20 seconds.

Twenty seconds may seem like a trivial amount of time, but in a high-volume site, it can
make a dramatic difference. For example, you might cache a page that provides a list of prod-
ucts from a catalog. By caching the page for 20 seconds, you limit database access for this page
to three operations per minute. Without caching, the page will try to connect to the database
once for each client and could easily make dozens of requests in the course of 20 seconds.

Of course, just because you request that a page should be stored for 20 seconds doesn’t
mean that it actually will be. The page could be evicted from the cache early if the system finds
that memory is becoming scarce. This allows you to use caching freely, without worrying too
much about hampering your application by using up vital memory.

■Tip When you recompile a cached page, ASP.NET will automatically remove the page from the cache. This
prevents problems where a page isn’t properly updated, because the older, cached version is being used.
However, you might still want to disable caching while testing your application. Otherwise, you may have
trouble using variable watches, breakpoints, and other debugging techniques, because your code will not be
executed if a cached copy of the page is available.

Caching on the Client Side
Another option is to cache the page exclusively on the client side. In this case, the browser
stores a copy and will automatically use this page if the client browses back to the page or
retypes the page’s URL. However, if the user clicks the Refresh button, the cached copy
will be abandoned, and the page will be rerequested from the server, which will run the
appropriate page code once again. You can cache a page on the client side using the
Location attribute in the OutputCache directive, which specifies a value from the
System.Web.UI.OutputCacheLocation enumeration, as shown here:

<%@ OutputCache Duration="20" VaryByParam="None" Location="Client" %>

CHAPTER 24 ■ CACHING 825

8911CH24.qxd 10/16/07 5:45 PM Page 825

Client-side caching is less common than server-side caching. Because the page is still
re-created for every separate user, it won’t reduce code execution or database access nearly as
dramatically as server-side caching (which shares a single cached copy among all users). How-
ever, client-side caching can be a useful technique if your cached page uses some sort of
personalized data. Even though each user is in a separate session, the page will be created
only once and reused for all clients, ensuring that most will receive the wrong greeting.
Instead, you can either use fragment caching to cache the generic portion of the page or use
client-side caching to store a user-specific version on each client’s computer.

Caching and the Query String
One of the main considerations in caching is deciding when a page can be reused and when
information must be accurate up to the latest second. Developers, with their love of instant
gratification (and lack of patience), generally tend to overemphasize the importance of real-
time information. You can usually use caching to efficiently reuse slightly stale data without a
problem and with a considerable performance improvement.

Of course, sometimes information needs to be dynamic. One example is if the page uses
information from the current user’s session to tailor the user interface. In this case, full page
caching just isn’t appropriate, because the same page can’t be reused for requests from differ-
ent users (although fragment caching may help). Another example is if the page is receiving
information from another page through the query string. In this case, the page is too dynamic
to cache—or is it?

The current example sets the VaryByParam attribute on the OutputCache directive to
None, which effectively tells ASP.NET that you need to store only one copy of the cached page,
which is suitable for all scenarios. If the request for this page adds query string arguments to
the URL, it makes no difference—ASP.NET will always reuse the same output until it expires.
You can test this by adding a query string parameter manually in the browser window. For
example, try tacking ?a=b on to the end of your URL. The cached output is still used.

Based on this experiment, you might assume that output caching isn’t suitable for pages
that use query string arguments. But ASP.NET actually provides another option. You can set
the VaryByParam attribute to * to indicate that the page uses the query string and to instruct
ASP.NET to cache separate copies of the page for different query string arguments:

<%@ OutputCache Duration="20" VaryByParam="*" %>

Now when you request the page with additional query string information, ASP.NET will
examine the query string. If the string matches a previous request and a cached copy of that
page exists, it will be reused. Otherwise, a new copy of the page will be created and cached
separately.

To get a better idea of how this process works, consider the following series of requests:

1. You request a page without any query string parameter and receive page copy A.

2. You request the page with the parameter ProductID=1. You receive page copy B.

3. Another user requests the page with the parameter ProductID=2. That user receives
copy C.

CHAPTER 24 ■ CACHING826

8911CH24.qxd 10/16/07 5:45 PM Page 826

4. Another user requests the page with ProductID=1. If the cached output B has not
expired, it’s sent to the user.

5. The user then requests the page with no query string parameters. If copy A has not
expired, it’s sent from the cache.

You can try this on your own, although you might want to lengthen the amount of time
that the cached page is retained to make it easier to test.

■Note Output caching works well if the pages depend only on server-side data (for example, the data in a
database) and the data in the query string. However, output caching doesn’t work if the page output depends
on user-specific information such as session data or cookies, because there’s no way to vary caching based
on these criteria. Output caching also won’t work with dynamic pages that change their content in response
to control events. In these situations, use fragment caching instead to cache a portion of the page, or use
data caching to cache specific information. Both techniques are discussed later in this chapter.

Caching with Specific Query String Parameters
Setting VaryByParam to the wildcard asterisk (*) is unnecessarily vague. It’s usually better to
specifically identify an important query string variable by name. Here’s an example:

<%@ OutputCache Duration="20" VaryByParam="ProductID" %>

In this case, ASP.NET will examine the query string, looking for the ProductID parameter.
Requests with different ProductID parameters will be cached separately, but all other parame-
ters will be ignored. This is particularly useful if the page may be passed additional query
string information that it doesn’t use. ASP.NET has no way to distinguish the “important”
query string parameters without your help.

You can specify several parameters as long as you separate them with semicolons:

<%@ OutputCache Duration="20" VaryByParam="ProductID;CurrencyType" %>

In this case, ASP.NET will cache separate versions, provided the query string differs by
ProductID or CurrencyType.

A Multiple Caching Example
The following example uses two web pages to demonstrate how multiple versions of a web
page can be cached separately. The first page, QueryStringSender.aspx, isn’t cached. It pro-
vides three buttons, as shown in Figure 24-3.

CHAPTER 24 ■ CACHING 827

8911CH24.qxd 10/16/07 5:45 PM Page 827

Figure 24-3. Three page options

A single event handler handles the Click event for all three buttons. The event handler
navigates to the QueryStringRecipient.aspx page and adds a Version parameter to the query
string to indicate which button was clicked—cmdNormal, cmdLarge, or cmdSmall.

protected void cmdVersion_Click(Object sender, EventArgs e)
{

Response.Redirect("QueryStringRecipient.aspx" + "?Version=" +
((Control)sender).ID);

}

The QueryStringRecipient.aspx destination page displays the familiar date message. The
page uses an OutputCache directive that looks for a single query string parameter (named
Version):

<%@ OutputCache Duration="60" VaryByParam="Version" %>

In other words, this has three separately maintained HTML outputs: one where Version
equals cmdSmall, one where Version equals cmdLarge, and one where Version equals
cmdNormal.

Although it isn’t necessary for this example, the Page.Load event handler in
QueryRecipient.aspx tailors the page by changing the font size of the label accordingly. This
makes it easy to distinguish the three versions of the page and verify that the caching is
working as expected.

protected void Page_Load(Object sender, EventArgs e)
{

lblDate.Text = "The time is now:
" + DateTime.Now.ToString();

switch (Request.QueryString["Version"])
{

case "cmdLarge":
lblDate.Font.Size = FontUnit.XLarge;
break;

case "cmdNormal":

CHAPTER 24 ■ CACHING828

8911CH24.qxd 10/16/07 5:45 PM Page 828

lblDate.Font.Size = FontUnit.Large;
break;

case "cmdSmall":
lblDate.Font.Size = FontUnit.Small;
break;

}
}

Figure 24-4 shows one of the cached outputs for this page.

Figure 24-4. One page with three cached outputs

Custom Caching Control
Varying by query string parameters isn’t the only option when storing multiple cached ver-
sions of a page. ASP.NET also allows you to create your own procedure that decides whether to
cache a new page version or reuse an existing one. This code examines whatever information
is appropriate and then returns a string. ASP.NET uses this string to implement caching. If
your code generates the same string for different requests, ASP.NET will reuse the cached
page. If your code generates a new string value, ASP.NET will generate a new cached version
and store it separately.

One way you could use custom caching is to cache different versions of a page based on
the browser type. That way, Firefox browsers will always receive Firefox-optimized pages, and
Internet Explorer users will receive IE-optimized HTML. To set up this sort of logic, you start
by adding the OutputCache directive to the pages that will be cached. Use the VaryByCustom
attribute to specify a name that represents the type of custom caching you’re creating. (You
can pick any name you like.) The following example uses the name Browser because pages will
be cached based on the client browser:

<%@ OutputCache Duration="10" VaryByParam="None" VaryByCustom="Browser" %>

Next, you need to create the procedure that will generate the custom caching string. This
procedure must be coded in the Global.asax application file (or its code-behind file) and must
use the following syntax:

CHAPTER 24 ■ CACHING 829

8911CH24.qxd 10/16/07 5:45 PM Page 829

public override string GetVaryByCustomString(
HttpContext context, string arg)

{
// Check for the requested type of caching.
if (arg == "browser")
{

// Determine the current browser.
string browserName;
browserName = Context.Request.Browser.Browser;

// Indicate that this string should be used to vary caching.
return browserName;

}
else
{

// For any other type of caching, use the default logic.
return base.GetVaryByCustomString(context, arg);

}
}

The GetVaryByCustomString() function passes a string with a value of “VaryByCustom” in
the arg parameter. This allows you to create an application that implements several types of
custom caching in the same function. Each type would use a different VaryByCustom name
(such as Browser, BrowserVersion, or DayOfWeek). Your GetVaryByCustomString() function
would see the value “VaryByCustom” in the arg parameter and then return the appropriate
caching string. If the caching strings for different requests match, ASP.NET will reuse the
cached copy of the page. Or to look at it another way, ASP.NET will create and store a separate
cached version of the page for each caching string it encounters.

Interestingly, the base implementation of the GetVaryByCustomString() method already
includes the logic for browser-based caching. That means you don’t need to code the method
shown previously. The base implementation of GetVaryByCustomString() creates the cached
string based on the browser name and major version number, which makes it a bit more
selective than the version shown here. If you want to change how this logic works (for example,
to vary based on name, major version, and minor version), you could override the
GetVaryByCustomString() method, as in the previous example.

The OutputCache directive has a third attribute that you can use to define caching. This
attribute, VaryByHeader, allows you to store separate versions of a page based on the value of
an HTTP header received with the request. You can specify a single header or a list of headers
separated by semicolons. Multilingual sites could use this technique to cache different ver-
sions of a page based on the client browser language.

<%@ OutputCache Duration="20" VaryByParam="None"
VaryByHeader="Accept-Language" %>

Fragment Caching
In some cases, you may find that you can’t cache an entire page, but you would still like to
cache a portion that is expensive to create and doesn’t vary frequently (like a list of categories

CHAPTER 24 ■ CACHING830

8911CH24.qxd 10/16/07 5:45 PM Page 830

in a product catalog). One way to implement this sort of scenario is to use data caching to
store just the underlying information used for the page. You’ll examine this technique in the
next section. Another option is to use fragment caching.

To implement fragment caching, you need to create a user control for the portion of the
page you want to cache. You can then add the OutputCache directive to the user control. The
result is that the page will not be cached, but the user control will.

Fragment caching is conceptually the same as page caching. It has only one catch—if
your page retrieves a cached version of a user control, it cannot interact with it in code. For
example, if your user control provides properties, your web page code cannot modify or
access these properties. When the cached version of the user control is used, a block of HTML
is simply inserted into the page. The corresponding user control object is not available.

Cache Profiles
One problem with output caching is that you need to embed the instruction into the page—
either in the .aspx markup portion or in the code of the class. Although the first option (using
the OutputCache directive) is relatively clean, it still produces management problems if you
create dozens of cached pages. If you want to change the caching for all these pages (for exam-
ple, moving the caching duration from 30 to 60 seconds), you need to modify every page.
ASP.NET also needs to recompile these pages.

ASP.NET includes a feature called cache profiles that makes it easy to apply the same
caching settings to a group of pages. With cache profiles, you define a group of caching set-
tings in the web.config file, associate a name with these settings, and then apply these settings
to multiple pages using the name. That way, you have the freedom to modify all the linked
pages at once simply by changing the caching profile in the web.config file.

To define a cache profile, you use the <add> tag in the <outputCacheProfiles> section, as
follows. You assign a name and a duration.

<configuration>
<system.web>
<caching>
<outputCacheSettings>
<outputCacheProfiles>
<add name="ProductItemCacheProfile" duration="60" />

</outputCacheProfiles>
</outputCacheSettings>

</caching>
...
</system.web>

</configuration>

You can now use this profile in a page through the CacheProfile attribute:

<%@ OutputCache CacheProfile="ProductItemCacheProfile" VaryByParam="None" %>

Interestingly, if you want to apply other caching details, such as the VaryByParam behav-
ior, you can set it either as an attribute in the OutputCache directive or as an attribute of the
<add> tag for the profile. Just make sure you start with a lowercase letter if you use the <add>
tag, because the property names are camel case, as are all configuration settings, and case is
important in XML.

CHAPTER 24 ■ CACHING 831

8911CH24.qxd 10/16/07 5:45 PM Page 831

Data Caching
Data caching is the most flexible type of caching, but it also forces you to take specific addi-
tional steps in your code to implement it. The basic principle of data caching is that you add
items that are expensive to create to a built-in collection object called Cache. Cache is a prop-
erty of the Page class, and it returns an instance of the System.Web.Caching.Cache class. This
object works much like the Application object you saw in Chapter 7. It’s globally available to
all requests from all clients in the application. But it has three key differences:

The Cache object is thread-safe: This means you don’t need to explicitly lock or unlock the
Cache object before adding or removing an item. However, the objects in the Cache object
will still need to be thread-safe themselves. For example, if you create a custom business
object, more than one client could try to use that object at once, which could lead to
invalid data. You can code around this limitation in various ways—one easy approach
that you’ll see in this chapter is to just make a duplicate copy of the object if you need to
work with it in a web page.

Items in the Cache object are removed automatically: ASP.NET will remove an item if it
expires, if one of the objects or files it depends on changes, or if the server becomes low
on memory. This means you can freely use the cache without worrying about wasting
valuable server memory, because ASP.NET will remove items as needed. But because
items in the cache can be removed, you always need to check whether a cache object
exists before you attempt to use it. Otherwise, you could generate a null reference
exception.

Items in the cache support dependencies: You can link a cached object to a file, a database
table, or another type of resource. If this resource changes, your cached object is automat-
ically deemed invalid and released.

Adding Items to the Cache
You can insert an object into the cache in several ways. You can simply assign it to a new key
name (as you would with the Session or Application collection):

Cache["KeyName"] = objectToCache;

However, this approach is generally discouraged because it doesn’t give you any control
over the amount of time the object will be retained in the cache. A better approach is to use
the Insert() method.

The Insert() method has four overloaded versions. The most useful one requires five
parameters:

Cache.Insert(key, item, dependencies, absoluteExpiration, slidingExpiration);

Table 24-1 describes these parameters.

CHAPTER 24 ■ CACHING832

8911CH24.qxd 10/16/07 5:45 PM Page 832

Table 24-1. Cache.Insert() Parameters

Parameter Description

key A string that assigns a name to this cached item in the collection and
allows you to look it up later.

item The actual object you want to cache.

dependencies A CacheDependency object that allows you to create a dependency for this
item in the cache. If you don’t want to create a dependent item, just specify
a null reference for this parameter.

absoluteExpiration A DateTime object representing the date and time at which the item will be
removed from the cache.

slidingExpiration A TimeSpan object representing how long ASP.NET will wait between
requests before removing a cached item. For example, if this value is
20 minutes, ASP.NET will evict the item if it isn’t used by any code for a
20-minute period.

Typically, you won’t use all of these parameters at once. Cache dependencies, for example,
are a special tool you’ll consider a little later in the “Caching with Dependencies” section. Also,
you cannot set both a sliding expiration and an absolute expiration policy at the same time. If
you want to use an absolute expiration, set the slidingExpiration parameter to TimeSpan.Zero:

Cache.Insert("MyItem", obj, null,
DateTime.Now.AddMinutes(60), TimeSpan.Zero);

Absolute expirations are best when you know the information in a given item can be con-
sidered valid only for a specific amount of time (such as a stock chart or a weather report).
Sliding expiration, on the other hand, is more useful when you know that a cached item will
always remain valid (such as with historical data or a product catalog) but should still be
allowed to expire if it isn’t being used. To set a sliding expiration policy, set the
absoluteExpiration parameter to DateTime.MaxValue, as shown here:

Cache.Insert("MyItem", obj, null,
DateTime.MaxValue, TimeSpan.FromMinutes(10));

■Tip Don’t be afraid to cache for a long time. For example, Microsoft’s case studies often store cached
data for 100 minutes or more.

A Simple Cache Test
The following page presents a simple caching test. An item is cached for 30 seconds and
reused for requests in that time. The page code always runs (because the page itself isn’t
cached), checks the cache, and retrieves or constructs the item as needed. It also reports
whether the item was found in the cache.

CHAPTER 24 ■ CACHING 833

8911CH24.qxd 10/16/07 5:45 PM Page 833

public partial class SimpleDataCache : System.Web.UI.Page
{

protected void Page_Load(Object sender, EventArgs e)
{

if (this.IsPostBack)
{

lblInfo.Text += "Page posted back.
";
}
else
{

lblInfo.Text += "Page created.
";
}

if (Cache["TestItem"] == null)
{

lblInfo.Text += "Creating TestItem...
";
DateTime testItem = DateTime.Now;

lblInfo.Text += "Storing TestItem in cache ";
lblInfo.Text += "for 30 seconds.
";
Cache.Insert("TestItem", testItem, null,
DateTime.Now.AddSeconds(30), TimeSpan.Zero);

}
else
{

lblInfo.Text += "Retrieving TestItem...
";
DateTime testItem = (DateTime)Cache["TestItem"];
lblInfo.Text += "TestItem is '" + testItem.ToString();
lblInfo.Text += "'
";

}

lblInfo.Text += "
";
}

}

Figure 24-5 shows the result after the page has been loaded and posted back several times
in the 30-second period.

CHAPTER 24 ■ CACHING834

8911CH24.qxd 10/16/07 5:45 PM Page 834

Figure 24-5. A simple cache test

Caching to Provide Multiple Views
The next example shows a more interesting demonstration of caching, which includes retriev-
ing information from a database and storing it in a DataSet. This information is then displayed
in a GridView. However, the output for the web page can’t be efficiently cached because the
user is given the chance to customize the display by hiding any combination of columns. Note
that even with just ten columns, you can construct more than a thousand different possible
views by hiding and showing various columns. These are far too many columns for successful
output caching!

Figure 24-6 shows the page.

CHAPTER 24 ■ CACHING 835

8911CH24.qxd 10/16/07 5:45 PM Page 835

Figure 24-6. Filtering information from a cached DataSet

The DataSet is constructed in the dedicated RetrieveData() function shown here. In order
to use this code as written, you must import the System.Data, System.Data.SqlClient, and
System.Web.Configuration namespaces in the web page.

private DataSet RetrieveData()
{

string connectionString =
WebConfigurationManager.ConnectionStrings["Northwind"].ConnectionString;

string SQLSelect = "SELECT * FROM Customers";
SqlConnection con = new SqlConnection(connectionString);
SqlCommand cmd = new SqlCommand(SQLSelect, con);
SqlDataAdapter adapter = new SqlDataAdapter(cmd);
DataSet ds = new DataSet();

try
{

con.Open();
adapter.Fill(ds, "Customers");

}
finally

CHAPTER 24 ■ CACHING836

8911CH24.qxd 10/16/07 5:45 PM Page 836

{
con.Close();

}

return ds;
}

The RetrieveData() method handles the work of contacting the database and creating the
DataSet. You need another level of code that checks to see if the DataSet is in the cache and
adds it when needed. The best way to write this code is to add another method. This method is
called GetDataSet().

The GetDataSet() method attempts to retrieve the DataSet from the cache. If it cannot
retrieve the DataSet, it calls the RetrieveData() method and then adds the DataSet to the
cache. It also reports on the page whether the DataSet was retrieved from the cache or gener-
ated manually.

private DataSet GetDataSet()
{

DataSet ds = (DataSet)Cache["Customers"];

// Contact the database if necessary.
if (ds == null)
{

ds = RetrieveData();
Cache.Insert("Customers", ds, null, DateTime.MaxValue,
TimeSpan.FromMinutes(2));

lblCacheStatus.Text = "Created and added to cache.";
}
else
{

lblCacheStatus.Text = "Retrieved from cache.";
}

return ds;
}

The advantage of this approach is that you can call GetDataSet() in any event handler in
your web page code to get the DataSet when you need it. You don’t need to worry about check-
ing the cache first and calling RetrieveDataSet() when needed—instead, GetDataSet() handles
the whole process transparently.

■Tip This two-step approach (with one method that creates the data object you need and another that
manages cache) is a common, time-tested design. It’s always a good strategy to ensure that you deal with
the cache consistently. If you want to use the same cached object in multiple web pages, you can take this
design one step further by moving the GetDataSet() and RetrieveDataSet() methods into a separate class. In
this case, you’d probably make the RetrieveDataSet() method private and the GetDataSet() method public—
that way, web pages can request the DataSet whenever they need it but don’t determine when to contact
the database.

CHAPTER 24 ■ CACHING 837

8911CH24.qxd 10/16/07 5:45 PM Page 837

When the page is first loaded, it calls GetDataSet() to retrieve the DataSet. It then gets the
DataTable with the customer records, and binds the DataTable.Columns collection to a
CheckBoxList control named chkColumns:

protected void Page_Load(object sender, EventArgs e)
{

if (!this.IsPostBack)
{

DataSet ds = GetDataSet();
chkColumns.DataSource = ds.Tables["Customers"].Columns;
chkColumns.DataTextField = "ColumnName";
chkColumns.DataBind();

}
}

As you learned in Chapter 15, the DataTable.Columns collection holds one DataColumn
object for each column in the DataTable. Each DataColumn specifies details such as data type
and column name. In this example, the DataColumn.ColumnName property is used to display
the name of each column (as configured by the DataTextField property of the CheckBoxList
control).

Every time the Filter button is clicked, the page calls GetDataSet() to retrieve the DataSet.
To provide the configurable grid, the code loops through the DataTable, removing all the
columns that the user has selected to hide. The code then binds the data by calling
GridView.DataBind().

The full code for the Filter button is as follows:

protected void cmdFilter_Click(Object sender, EventArgs e)
{

DataSet ds = GetDataSet();

// Copy the DataSet so you can remove columns without
// changing the cached item.
ds = ds.Copy();

foreach (ListItem item in chkColumns.Items)
{

if (item.Selected)
{

ds.Tables[0].Columns.Remove(item.Text);
}

}

gridCustomers.DataSource = ds.Tables[0];
gridCustomers.DataBind();

}

This example demonstrates an important fact about the cache. When you retrieve an
item, you actually retrieve a reference to the cached object. If you modify that object, you’re

CHAPTER 24 ■ CACHING838

8911CH24.qxd 10/16/07 5:45 PM Page 838

actually modifying the cached item as well. For the page to be able to delete columns without
affecting the cached copy of the DataSet, the code needs to create a duplicate copy before per-
forming the operations using the DataSet.Copy() method.

Caching with the Data Source Controls
The SqlDataSource (Chapter 16), ObjectDataSource (Chapter 23), and XmlDataSource
(Chapter 19) all support built-in data caching. Using caching with these controls is highly
recommended, because unlike your own custom data code, the data source controls always
requery the data source in every postback. They also query the data source once for every
bound control, so if you have three controls bound to the same data source, three separate
queries are executed against the database just before the page is rendered. Even a little
caching can reduce this overhead dramatically.

■Note Although many data source controls support caching, it’s not a required data source control feature,
and you’ll run into data source controls that don’t support it or for which it may not make sense (such as the
SiteMapDataSource).

To support caching, the SqlDataSource, ObjectDataSource, and XmlDataSource controls
all use the same properties, which are listed in Table 24-2.

Table 24-2. Caching Properties of the Data Source Controls

Property Description

EnableCaching If true, switches caching on. It’s false by default.

CacheExpirationPolicy Uses a value from the DataSourceCacheExpiry enumeration—
Absolute for absolute expiration (which times out after a fixed
interval of time), or Sliding for sliding expiration (which resets the
time window every time the data object is retrieved from the
cache).

CacheDuration Determines the number of seconds to cache the data object. If you
are using sliding expiration, the time limit is reset every time the
object is retrieved from the cache. The default value, 0, keeps
cached items perpetually.

CacheKeyDependency and Allow you to make a cached item dependent on another item in
SqlCacheDependency the data cache (CacheKeyDependency) or on a table in your data-

base (SqlCacheDependency). Dependencies are discussed in the
“Cache Dependencies” section.

Caching with SqlDataSource
When you enable caching for the SqlDataSource control, you cache the results of the
SelectCommand. However, if you create a select query that takes parameters, the
SqlDataSource will cache a separate result for every set of parameter values.

CHAPTER 24 ■ CACHING 839

8911CH24.qxd 10/16/07 5:45 PM Page 839

For example, imagine you create a page that allows you to view employees by city. The
user selects the desired city from a list box, and you use a SqlDataSource control to fill in the
matching employee records in a grid (see Figure 24-7).

Figure 24-7. Retrieving data from the cache

There are two SqlDataSource controls at work in this example. The first SqlDataSource
gets the list of cities for the drop-down list. These results don’t change often, and so they are
cached for one hour (3600 seconds):

<asp:SqlDataSource ID="sourceEmployeeCities" runat="server"
ProviderName="System.Data.SqlClient"
EnableCaching="True" CacheDuration="3600"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT DISTINCT City FROM Employees">
</asp:SqlDataSource>

<asp:DropDownList ID="lstCities" runat="server"
DataSourceID="sourceEmployeeCities"
DataTextField="City" AutoPostBack="True">
</asp:DropDownList>

The second SqlDataSource gets the employees in the currently selected city. These results
are cached for 600 seconds and bound to a GridView:

<asp:SqlDataSource ID="sourceEmployees" runat="server"
ProviderName="System.Data.SqlClient"
EnableCaching="True" CacheDuration="600"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand="SELECT EmployeeID, FirstName, LastName, Title, City
FROM Employees WHERE City=@City">
<SelectParameters>
<asp:ControlParameter ControlID="lstCities" Name="City"

CHAPTER 24 ■ CACHING840

8911CH24.qxd 10/16/07 5:45 PM Page 840

PropertyName="SelectedValue" />
</SelectParameters>

</asp:SqlDataSource>

<asp:GridView ID="GridView1" runat="server"
DataSourceID="sourceEmployees" ... >
...

</asp:GridView>

This SqlDataSource is a bit more sophisticated because it uses a parameter. Each time you
select a city, a separate query is performed to get just the matching employees in that city. The
query is used to fill a DataSet, which is then cached for up to ten minutes (600 seconds). If you
select a different city, the process repeats, and the new DataSet is cached separately. However,
if you pick a city that you or another user has already requested, the appropriate DataSet is
fetched from the cache (provided it hasn’t yet expired).

Thus, this single SqlDataSource can result in a surprisingly large number of cache entries.
If there are 20 different cities in your list (and therefore 20 different possible parameter values),
you can end up with as many as 20 different DataSet objects in the cache at once.

■Note SqlDataSource caching works only when the DataSourceMode property is set to DataSet (the
default). It doesn’t work when the mode is set to DataReader, because the DataReader object maintains a
live connection to the database and can’t be efficiently cached.

On the other hand, if the parameter values are all used with similar frequency, this
approach isn’t as suitable. One of the problems it imposes is that when the items in the cache
expire, you’ll need multiple database queries to repopulate the cache (one for each combina-
tion of parameter values), which isn’t as efficient as getting the combined results with a single
query.

If you fall into the second situation, you can change the SqlDataSource so it retrieves a
DataSet with all the employee records and caches that. The SqlDataSource can then extract
just the records it needs to satisfy each request from the DataSet. This way, a single DataSet
with all the records is cached, which can satisfy any parameter value.

To use this technique, you need to rewrite your SqlDataSource to use filtering. First, the
select query should return all the rows and not use any SelectParameters:

<asp:SqlDataSource ID="sourceEmployees" runat="server"
SelectCommand=
"SELECT EmployeeID, FirstName, LastName, Title, City FROM Employees"
...>
</asp:SqlDataSource>

Second, you need to define the filter expression. This is the portion that goes in the
WHERE clause of a typical SQL query. However, this has a catch—if you’re supplying the filter
value from another source (such as a control), you need to define one or more placeholders,
using the syntax {0} for the first placeholder, {1} for the second, and so on. You then supply the

CHAPTER 24 ■ CACHING 841

8911CH24.qxd 10/16/07 5:45 PM Page 841

filter values using the <FilterParameters> section, in much the same way you supplied the
select parameters in the first version.

Here’s the completed SqlDataSource tag:

<asp:SqlDataSource ID="sourceEmployees" runat="server"
ProviderName="System.Data.SqlClient"
ConnectionString="<%$ ConnectionStrings:Northwind %>"
SelectCommand=
"SELECT EmployeeID, FirstName, LastName, Title, City FROM Employees"
FilterExpression="City='{0}'" EnableCaching="True">
<FilterParameters>
<asp:ControlParameter ControlID="lstCities" Name="City"
PropertyName="SelectedValue" />

</FilterParameters>
</asp:SqlDataSource>

■Tip Don’t use filtering unless you are using caching. If you use filtering without caching, you are essen-
tially retrieving the full result set each time and then extracting a portion of its records. This combines the
worst of both worlds—you have to repeat the query with each postback, and you fetch far more data than
you need each time.

Caching with ObjectDataSource
The ObjectDataSource caching works on the data object returned from the SelectMethod.
If you are using a parameterized query, the ObjectDataSource distinguishes between
requests with different parameter values and caches them separately. Unfortunately, the
ObjectDataSource caching has a significant limitation—it works only when the select method
returns a DataSet or a DataTable. If you return any other type of object, you’ll receive a
NotSupportedException.

This limitation is unfortunate, because there’s no technical reason you can’t cache custom
objects in the data cache. If you want this feature, you’ll need to implement data caching
inside your method by manually inserting your objects into the data cache and retrieving
them later. In fact, caching inside your method can be more effective, because you have the
ability to share the same cached object in multiple methods. For example, you could cache
a DataTable with a list of products and categories and use that cached item in both the
GetProductCategories() and GetProductsByCategory() methods.

■Tip The only consideration you should keep in mind is to make sure you use unique cache key names
that aren’t likely to collide with the names of cached items that the page might use. This isn’t a problem
when using the built-in data source caching, because it always stores its information in a hidden slot in the
cache.

CHAPTER 24 ■ CACHING842

8911CH24.qxd 10/16/07 5:45 PM Page 842

If your custom class returns a DataSet or DataTable, and you do decide to use the built-in
ObjectDataSource caching, you can also use filtering as discussed with the SqlDataSource
control. Just instruct your ObjectDataSource to call a method that gets the full set of data, and
set the FilterExpression to retrieve just those items that match the current view.

Caching with Dependencies
As time passes, the information in your data source may change. If your code uses caching,
you may remain unaware of the changes and continue using out-of-date information from the
cache. To help mitigate this problem, ASP.NET supports cache dependencies. Cache dependen-
cies allow you to make a cached item dependent on another resource, so that when that
resource changes, the cached item is removed automatically.

ASP.NET includes three types of dependencies:

• Dependencies on other cached items

• Dependencies on files or folders

• Dependencies on a database query

You’ll see all these types of dependencies in the following section.

File Dependencies
To use a cache dependency, you need to create a CacheDependency object. You then need to
supply the CacheDependency object when you add the dependent cached item.

For example, the following code creates a CacheDependency that depends on an XML file
named ProductList.xml. When the XML file is changed, the CacheDependency will be invali-
dated and the dependent cached item will be evicted from the cache immediately.

// Create a dependency for the ProductList.xml file.
CacheDependency prodDependency = new CacheDependency(
Server.MapPath("ProductList.xml"));

// Add a cache item that will be dependent on this file.
Cache.Insert("ProductInfo", prodInfo, prodDependency);

Monitoring begins as soon as the CacheDependency object is created. If the XML file
changes before you have added the dependent item to the cache, the item will expire immedi-
ately as soon as it’s added.

Figure 24-8 shows a simple test page that is included with the samples for this chapter. It
sets up a dependency, modifies the file, and allows you to verify that the cached item has been
dropped from the cache.

The CacheDependency object provides several constructors. You’ve already seen how it
can make a dependency based on a file by using the file name constructor. You can also spec-
ify a directory that needs to be monitored for changes, or you can use a constructor that
accepts an array of strings that represent multiple files and directories.

CHAPTER 24 ■ CACHING 843

8911CH24.qxd 10/16/07 5:45 PM Page 843

Figure 24-8. Testing cache dependencies

Cache Item Dependencies
The CacheDependency class provides another constructor that accepts an array of file names
and an array of cache keys. Using the array of cache keys, you can create a cached item that’s
dependent on another item in the cache. (If you don’t want to use file dependencies at all, you
simply supply a null reference for the first parameter.)

Here’s an example that makes one item dependent on another cached item, without using
file dependencies:

Cache["Key1"] = "Cache Item 1";

// Make Cache["Key2"] dependent on Cache["Key1"].
string[] dependencyKey = new string[1];
dependencyKey[0] = "Key1";
CacheDependency dependency = new CacheDependency(null, dependencyKey);

Cache.Insert("Key2", "Cache Item 2", dependency);

Now, when the first cached item changes or is removed from the cache, the second
cached item will automatically be dropped from the cache as well.

SQL Server 2000 Cache Dependencies
A more complex kind of cache dependency is the SQL Server cache dependency. In a nutshell,
SQL cache dependencies provide the ability to automatically invalidate a cached data object
(such as a DataSet) when the related data is modified in the database.

CHAPTER 24 ■ CACHING844

8911CH24.qxd 10/16/07 5:45 PM Page 844

This feature is supported in most versions of SQL Server, although the underlying plumb-
ing is quite a bit different. If you’re using SQL Server 2000, keep reading this section for the
lowdown. If you’re using SQL Server 2005 or SQL Server 2008, skip ahead to the section “SQL
Server 2005 and 2008 Cache Dependencies.”

■Tip Using SQL cache dependencies still entails more complexity than just using a time-based expiration
policy. It’s more difficult to set up, and it can be more of a headache to maintain. If it’s acceptable for certain
information to be used without reflecting all the most recent changes (and developers often overestimate the
importance of up-to-the-millisecond live information), you may not need it at all.

ASP.NET uses a polling model for SQL Server 2000. With the polling model, ASP.NET keeps
a connection open to the database and checks periodically whether a table has been updated.
The effect of tying up one connection in this way isn’t terribly significant, but the extra data-
base work involved with polling does add some database overhead. For the polling model to
be effective, the polling process needs to be quicker and lighter than the original query that
extracts the data.

You must take several steps to enable notification with SQL Server 2000. Here’s an
overview of the process:

1. The first step is to determine which tables need notification support.

2. Next, use the aspnet_regsql.exe command-line utility to create the notification tables
for your database.

3. Then, you need to register each table that requires notification support. You also use
the aspnet_regsql.exe command for this step.

4. Finally, you enable ASP.NET polling through a web.config file. You’re now ready to cre-
ate SqlCacheDependency objects.

The following sections describe these steps.

Enabling Notifications
Before you can use SQL Server cache invalidation, you need to enable notifications for the
database. This task is performed with the aspnet_regsql.exe command-line utility, which is
located in the c:\Windows\Microsoft.NET\Framework\v2.0.50727 directory. To enable notifi-
cations, you need to use the -ed command-line switch. You also need to identify the server
(use -E for a trusted connection, and -S to choose a server other than the current computer)
and the database (use -d). Here’s an example that enables notifications for the Northwind
database on the current server:

aspnet_regsql -ed -E -d Northwind

When you take this step, a new table named SqlCacheTablesForChangeNotification
is added to the database named Northwind (which must already exist). The
SqlCacheTablesForChangeNotification table has three columns: tableName,

CHAPTER 24 ■ CACHING 845

8911CH24.qxd 10/16/07 5:45 PM Page 845

notificationCreated, and changeId. This table is used to track changes. Essentially, when
a change takes place, SQL Server writes a record to this table. ASP.NET’s polling service
queries this table.

This design achieves a number of benefits:

• Because the change notification table is much smaller than the table with the cached
data, it’s much faster to query.

• Because the change notification table isn’t used for other tasks, reading these records
won’t risk locking and concurrency issues.

• Because multiple tables in the same database will use the same notification table, you
can monitor several tables at once without increasing the polling overhead.

Figure 24-9 shows an overview of how SQL Server 2000 cache invalidation works.

Figure 24-9. Monitoring a database for changes in SQL Server 2000

Even once you’ve created the SqlCacheTablesForChangeNotification table, you still
need to enable notification support for each table. You can do this manually using the
SqlCacheRegisterTableStoredProcedure, or you can rely on aspnet_regsql by using the -et
parameter to turn on the notifications and the -t parameter to name the table. Here’s an
example that enables notifications for the Employees table in the Northwind database:

aspnet_regsql -et -E -d Northwind -t Employees

This step generates the notification trigger for the Employees table.

CHAPTER 24 ■ CACHING846

8911CH24.qxd 10/16/07 5:45 PM Page 846

How Notifications Work
Now you have all the ingredients in place to use the notification system. For example, imagine
you cache the results of a query like this:

SELECT * FROM Employees

This query retrieves records from the Employees table. To check for changes that might
invalidate your cached object, you need to know whether any record in the Employees table is
inserted, deleted, or updated. You can watch for these operations using triggers. For example,
here’s the trigger on the Employees table that aspnet_regsql creates:

CREATE TRIGGER dbo.[Employees_AspNet_SqlCacheNotification_Trigger]
ON [Employees]
FOR INSERT, UPDATE, DELETE AS BEGIN

SET NOCOUNT ON
EXEC dbo.AspNet_SqlCacheUpdateChangeIdStoredProcedure N'Employees'

END

In other words, when a change takes place on the table that’s being monitored, that
change triggers the AspNet_SqlCacheUpdateChangeIdStoredProcedure stored procedure.
This stored procedure simply increments the changeId of the corresponding row in the
change notification table:

CREATE PROCEDURE dbo.AspNet_SqlCacheUpdateChangeIdStoredProcedure
@tableName NVARCHAR(450)

AS

BEGIN
UPDATE dbo.AspNet_SqlCacheTablesForChangeNotification WITH (ROWLOCK)
SET changeId = changeId + 1
WHERE tableName = @tableName

END
GO

The AspNet_SqlCacheTablesForChangeNotification contains a single record for every
table you’re monitoring. As you can see, when you make a change in the table (such as insert-
ing a record), the changeId column is incremented by 1. ASP.NET queries this table repeatedly
and keeps track of the most recent changeId values for every table. When this value changes in
a subsequent read, ASP.NET knows that the table has changed.

This hints at one of the major limitations of cache invalidation as implemented in SQL
Server 2000 and SQL Server 7. Any change to the table is deemed to invalidate any query for
that table. In other words, if you use this query

SELECT * FROM Employees WHERE City='London'

the caching still works in the same way. That means if any employee record is touched, even if
the employee resides in another city (and therefore isn’t one of the cached records), the notifi-
cation is still sent and the cached item is considered invalid. Keeping track of which changes

CHAPTER 24 ■ CACHING 847

8911CH24.qxd 10/16/07 5:45 PM Page 847

do and do not invalidate a cached data object is simply too much work for SQL Server 2000
(although it is possible when using cache dependencies with SQL Server 2005 or 2008).

■Tip The implementation of cache invalidation with SQL Server 2000 isn’t as fine-grained as the imple-
mentation with SQL Server 2005 and SQL Server 2008. As a result, it doesn’t make sense for tables that
change frequently, or for narrowly defined queries that retrieve only a small subset of records from a table.

Enabling ASP.NET Polling
The next step is to instruct ASP.NET to poll the database. You do this on a per-application
basis. In other words, every application that uses cache invalidation will hold a separate con-
nection and poll the notification table on its own.

To enable the polling service, you use the <sqlCacheDependency> element in the
web.config file. You set the enabled attribute to true to turn it on, and you set the pollTime
attribute to the number of milliseconds between each poll. (The higher the poll time, the
longer the potential delay before a change is detected.) You also need to supply the connec-
tion string information.

For example, this web.config file checks for updated notification information every
15 seconds:

<configuration>
<connectionStrings>
<add name="Northwind" connectionString=

"Data Source=localhost;Initial Catalog=Northwind;Integrated Security=SSPI"/>
</connectionStrings>

<system.web>
<caching>
<sqlCacheDependency enabled="true" pollTime="15000" >
<databases>
<add name="Northwind" connectionStringName="Northwind" />

</databases>
</sqlCacheDependency>

</caching>
...

</system.web>
</configuration>

Creating the Cache Dependency
Now that you’ve seen how to set up your database to support SQL Server notifications, the
only remaining detail is the code, which is quite straightforward. You can use your cache
dependency with programmatic data caching, a data source control, and output caching.

For programmatic data caching, you need to create a new SqlCacheDependency and
supply that to the Cache.Insert() method, much as you did with file dependencies. In the
SqlCacheDependency constructor, you supply two strings. The first is the name of the

CHAPTER 24 ■ CACHING848

8911CH24.qxd 10/16/07 5:45 PM Page 848

database you defined in the <add> element in the <sqlCacheDependency> section of the
web.config file. The second is the name of the linked table.

Here’s an example:

// Create a dependency for the Employees table.
SqlCacheDependency empDependency = new SqlCacheDependency(
"Northwind", "Employees");

// Add a cache item that will be invalidated if this table changes.
Cache.Insert("Employees", dsEmployees, empDependency);

To perform the same trick with output caching, you simply need to set the
SqlCacheDependency property of the OutputCache directive. Use the database dependency
name and the table name, separated by a colon:

<%@ OutputCache Duration="600" SqlDependency="Northwind:Employees"
VaryByParam="none" %>

The same technique works with the SqlDataSource and ObjectDataSource controls:

<asp:SqlDataSource EnableCaching="True"
SqlCacheDependency="Northwind:Employees" ... />

To try a complete example, you can use the downloadable code for this chapter.

SQL Server 2005 and 2008 Cache Dependencies
SQL Server 2005 and SQL Server 2008 get closest to the ideal notification solution, because the
notification infrastructure is built into the database with a messaging system called the Service
Broker. The Service Broker manages queues, which are database objects that have the same
standing as tables, stored procedures, or views.

■Note SQL Server 2005 and SQL Server 2008 share the same Service Broker model. Although SQL Server
2008 wasn’t yet released at the time of this writing, it’s expected to support the ASP.NET cache dependency
feature in exactly the same way as SQL Server 2005.

Essentially, you can instruct SQL Server to send notifications for specific events using the
CREATE EVENT NOTIFICATION command. ASP.NET offers a higher-level model—you register
a query, and ASP.NET automatically instructs SQL Server to send notifications for any opera-
tions that would affect the results of that query. Every time you perform an operation, SQL
Server determines whether your operation affects a registered command. If it does, SQL Server
sends a notification message and stops the notification process. Figure 24-10 shows an
overview of how cache invalidation works with SQL Server 2005 and SQL Server 2008.

CHAPTER 24 ■ CACHING 849

8911CH24.qxd 10/16/07 5:45 PM Page 849

Figure 24-10. Monitoring a database for changes in SQL Server 2005 or 2008

When using notification with SQL Server 2005 or SQL Server 2008, you get the following
benefits over SQL Server 2000:

Notification is much more fine-grained: Instead of invalidating your cached object when
the table changes, SQL Server invalidates your object only when a row that affects your
query is inserted, updated, or deleted.

Notification is more intelligent: A notification message is sent the first time the data is
changed but not if the data is changed again (unless you reregister for notification mes-
sages by adding an item back to the cache).

No special steps are required to set up notification: You do not run aspnet_regsql or
add polling settings to the web.config file. However, you do need to call the shared
SqlDependency.Start() method somewhere in your code to start the polling service.

Notifications work with SELECT queries and stored procedures. However, some restric-
tions exist for the SELECT syntax you can use. To properly support notifications, your
command must adhere to the following rules:

• You must fully qualify table names in the form [Owner].table, as in dbo.Employees (not
just Employees).

• Your query cannot use an aggregate function, such as COUNT(), MAX(), MIN(), or
AVERAGE().

• You cannot select all columns with the wildcard * (as in SELECT * FROM Employees).
Instead, you must specifically name each column so that SQL Server can properly track
changes that do and do not affect the results of your query.

CHAPTER 24 ■ CACHING850

8911CH24.qxd 10/16/07 5:45 PM Page 850

Here’s an acceptable command:

SELECT EmployeeID, FirstName, LastName, City FROM dbo.Employees

These are the most important rules, but the SQL Server Books Online has a lengthy list of
caveats and exceptions. If you break one of these rules, you won’t receive an error. However,
the notification message will be sent as soon as you register the command, and the cached
item will be invalidated immediately.

Enabling the Service Broker
SQL Server 2005 and SQL Server 2008 are often installed with carefully locked-down settings
for optimum security. In order to use SQL Server notifications, you may have to enable fea-
tures that are currently switched off.

First, you need to enable the Service Broker, which watches for changes in the database
and delivers the notifications to the appropriate queue. The Service Broker must be specifi-
cally enabled for each database that you want to use with cache dependencies.

If the Service Broker isn’t currently enabled for your database (or if you’re just not sure),
there’s an easy solution. First, launch the Visual Studio 2008 Command Prompt window (click
the Start button and choose Programs ➤ Microsoft Visual Studio 2008 ➤ Visual Studio Tools ➤
Visual Studio 2008 Command Prompt). Then, run the SqlCmd.exe command-line utility, spec-
ifying the –S parameter and the name of your server. Here’s an example:

SqlCmd -S localhost\SQLEXPRESS

This connects to SQL Server Express on the current computer. If you’re using the full ver-
sion of SQL Server, you won’t need to supply the instance name (you can use just localhost
instead of localhost\SQLEXPRESS). If your database is installed on another server, use its
computer name instead of localhost.

The SqlCmd.exe utility provides a command prompt where you can enter SQL com-
mands. Use it to enter the following SQL statements:

USE Northwind
ALTER DATABASE Northwind SET ENABLE_BROKER
GO

Of course, if you want to enable the Service Broker for a different database (other than
Northwind), you can modify this SQL accordingly. You can enable the Service Broker for as
many databases as you’d like.

Once you’re finished, type quit to exit the SqlCmd tool.

Initializing the Caching Service
Before you can use SQL cache dependencies with SQL Server 2005 or SQL Server 2008, you
need to call the shared SqlDependency.Start() method. This initializes the listening service on
the web server.

string connectionString = WebConfigurationManager.ConnectionStrings[
"Northwind"].ConnectionString;

SqlDependency.Start(connectionString)

CHAPTER 24 ■ CACHING 851

8911CH24.qxd 10/16/07 5:45 PM Page 851

You need to call the Start() method only once over the lifetime of your web application, so
it often makes sense to place the call in the Application_Start() method of the Global.asax file
so it’s triggered automatically. It’s safe to call the Start() method even if the listener is already
started, as this won’t cause an error. You can also use the Stop() method to halt the listener.

Creating the Cache Dependency
When you create the dependency object you need to supply the command that you’re using to
retrieve your data. That way, SQL Server knows what range of records you want to monitor.

To specify the command, you create the SqlCacheDependency using the constructor that
accepts a SqlCommand object. Here’s an example:

// Create the ADO.NET objects.
SqlConnection con = new SqlConnection(connectionString);
string query =
"SELECT EmployeeID, FirstName, LastName, City FROM dbo.Employees";
SqlCommand cmd = new SqlCommand(query, con);
SqlDataAdapter adapter = new SqlDataAdapter(cmd);

// Fill the DataSet.
DataSet ds = new DataSet();
adapter.Fill(ds, "Employees");

// Create the dependency.
SqlCacheDependency empDependency = new SqlCacheDependency(cmd);

// Add a cache item that will be invalidated if one of its records changes
// (or a new record is added in the same range).
Cache.Insert("Employees", ds, empDependency);

Now, when you change the data in the table the notification will be delivered and the item
will be removed from the cache. The next time you create the DataSet, you’ll need to add it
back to the cache with a new SqlCacheDependency. To try a page that uses this technique,
check out the sample code for this chapter.

FAILED NOTIFICATIONS

If your cached item never expires, the ASP.NET polling service is not receiving the invalidation message. This
has several possible causes. The most common is that your database server doesn’t have the common lan-
guage runtime enabled. The procedure that sends notification messages is a .NET procedure, so it requires
this support.

To enable CLR support, fire up the Visual Studio 2008 Command Prompt window, and run the
SqlCmd.exe command-line utility. Here’s how to do it for SQL Server Express:

SqlCmd -S localhost\SQLEXPRESS

CHAPTER 24 ■ CACHING852

8911CH24.qxd 10/16/07 5:45 PM Page 852

Now enter the following SQL statements:

EXEC sp_configure 'show advanced options', '1'
GO
RECONFIGURE
GO
EXEC sp_configure 'clr enabled', 1
GO
RECONFIGURE
GO

Then type quit to exit the SqlCmd tool.
On the other hand, if your cached item expires immediately, the most likely problem is that you’ve

broken one of the rules for writing commands that work with notifications, as described earlier.

The Last Word
The most performance-critical area in most web applications is the data layer. But many
ASP.NET developers don’t realize that you can dramatically reduce the burden on your data-
base and increase the scalability of all your web applications with just a little caching code.

However, with any performance-optimization strategy, the best way to gauge the value of
a change is to perform stress testing and profiling. Without this step, you might spend a great
deal of time perfecting code that will achieve only a minor improvement in performance or
scalability, at the expense of more effective changes.

CHAPTER 24 ■ CACHING 853

8911CH24.qxd 10/16/07 5:45 PM Page 853

8911CH24.qxd 10/16/07 5:45 PM Page 854

ASP.NET AJAX

So far, you’ve learned to build web pages that use the postback model. With the postback
model, pages are perpetually being sent back to the web server and regenerated.

For example, consider the greeting card maker you first saw in Chapter 6. When the user
picks a font, enters some text, or chooses new colors, the page is posted back to the web
server, allowing your code to run. The web page code makes the necessary adjustments,
ASP.NET renders the page to HTML all over again, and the browser receives (and displays)
the new version of the page.

This process seems somewhat labor intensive, but it’s actually not that bad. The time
required to complete the whole process (transmitting the posted-back page, running the code,
rendering the page, and returning the final HTML) is surprisingly short. However, the process
isn’t seamless. When the greeting card is updated in the greeting card maker, the entire page is
refreshed, including the parts that haven’t changed. This produces a distracting flicker. This
browser refresh is also a bit intrusive—for example, this process might interrupt users while
they’re in the middle of entering information in another control, or it might scroll them back
to the beginning of the page even though they were previously looking at the end. The overall
experience of using the greeting card maker is quite different than the experience of using a
rich Windows application, which has no noticeable flicker and feels much more responsive.

Recently, a new generation of web applications has begun to appear that behave more
like Windows applications than traditional web pages. These applications refresh themselves
quickly and flicker-free, and sometimes include slick new features like animation and drag
and drop. Notable examples include web-based email applications like Gmail and mapping
tools like Google Maps.

This new breed of web applications uses a set of design practices and technologies known
as Ajax. Ajax is programming shorthand for a set of techniques that create more responsive,
dynamic pages. One of the hallmarks of Ajax is the ability to refresh part of the page while
leaving the rest untouched.

In this chapter, you’ll learn how Ajax works and you’ll see how you can use it to create
rich, responsive web pages. You won’t delve into the intricate details of do-it-yourself Ajax
(which requires an extensive understanding of JavaScript), but you will explore the Ajax fea-
tures of ASP.NET. These features allow you to use the familiar ASP.NET model—.NET objects
and server-side controls—to get Ajax effects with surprisingly little effort.

855

C H A P T E R 2 5

8911CH25.qxd 10/8/07 4:38 PM Page 855

Understanding Ajax
Before you really get started with Ajax, it’s important to understand its capabilities and limita-
tions. Only then will you know how to fit it into your web applications.

Ajax: The Good
The key benefit of Ajax is responsiveness. An Ajax application, when done properly, provides a
better experience for the user. Even if the user can’t do anything new (or do anything faster),
this improved experience can make your web application seem more modern and sophisti-
cated. If you’re creating a website that’s competing against other similar sites, you just might
find that Ajax allows you to distinguish your work from the rest of the pack.

Ajax can also provide genuinely new features that aren’t possible in traditional web pages.
For example, Ajax pages often use JavaScript code that reacts to client-side events like mouse
movements and key presses. These events occur frequently, so it’s not practical to deal with
them using the postback model. For example, imagine you want to highlight a TextBox when
the user moves the mouse over it. With the postback approach, you’d need to send the entire
page back to the web server, regenerate it, and refresh it in the browser—by which point the
mouse might be somewhere completely different. This approach is clearly impractical. How-
ever, an Ajax page can deal with this scenario because it can react immediately, updating the
page if needed or requesting additional information from the web server in the background.
While this request is under way, the user is free to keep working with the page. In fact, the user
won’t even realize that the request is taking place.

■Note Ajax isn’t really a whole new technology. More accurately, it’s a set of techniques, some of which
extend existing practices. For example, you’ve already seen quite a few ASP.NET controls that use client-side
JavaScript to provide a richer experience, such as the validation controls (Chapter 10) and the Menu control
(Chapter 14). However, Ajax pages use much more JavaScript than normal, they often require interactions
between controls, and they often request additional information from the web server using a special browser
object called XMLHttpRequest, which is available to client-side JavaScript code.

Ajax: The Bad
There are two key challenges to using Ajax. The first is complexity. Writing the JavaScript code
needed to implement an Ajax application is a major feat. Fortunately, you’ll sidestep this
problem in this chapter, because you’ll use ASP.NET’s Ajax-enabled features. That means you’ll
let Microsoft manage the complexity instead of worrying about it yourself.

The other challenge to using Ajax is browser support. The technology that supports Ajax
has existed for several years, but it’s only now found consistently in all major browsers. If you
use the Ajax features that ASP.NET provides, they’ll work in Internet Explorer 5 and newer,
Netscape 7 and newer, Opera 7.6 and newer, Safari 1.2 and newer, and Firefox 1.0 and newer.
This captures the overwhelming majority of web users. (The actual percentage depends on
your audience, but over 90 percent is a good initial assumption.)

CHAPTER 25 ■ ASP.NET AJAX856

8911CH25.qxd 10/8/07 4:38 PM Page 856

But what about the minority of users who are using old browsers or have JavaScript
switched off? It all depends on the feature you’re using and the way it’s implemented. If you’re
using the partial rendering support that’s provided by ASP.NET’s UpdatePanel control (which
you’ll learn about in this chapter), your page will continue to work with non-Ajax-enabled
browsers—it will simply use full postbacks instead of more streamlined partial updates. On
the other hand, if you’re using a more advanced Ajax-enabled web control, you may find that
it doesn’t work properly or at all. The only way to know is to switch JavaScript off in your
browser and try it out. Either way, there’s a price to be paid for slick Ajax features, and that
price is increased web browser requirements.

Finally, Ajax applications introduce a few quirks that might not be to your liking. Web
pages that use Ajax often do a lot of work on a single page. This is different than traditional
web pages, which often move the user from one page to another to complete a task. Although
the multiple-page approach is a little more roundabout, it allows the user to place bookmarks
along the way and use the browser’s Back and Forward buttons to step through the sequence.
These techniques usually don’t work with Ajax applications, because there’s only a single page
to bookmark or navigate to, and the URL for that page doesn’t capture the user’s current state.
This isn’t a showstopper of an issue, but it might cause you to consider the design of your web
application a little more closely.

The ASP.NET AJAX Toolkit
There are a variety of ways to implement Ajax in any web application, including ASP.NET. To
implement it on your own, you need to have a thorough understanding of JavaScript, because
it’s JavaScript code that runs in the browser, requesting the new information from the web
server when needed and updating the page accordingly. Although JavaScript isn’t terribly
complex, it’s remarkably difficult to program correctly, for two reasons:

• The implementation of key JavaScript details varies from browser to browser, which
means you need a tremendous amount of experience to write a solid web page that
runs equally well on all browsers.

• JavaScript is a notoriously loose language that tolerates many minor typos and mis-
takes. Catching these mistakes and removing them is a tedious process. Even worse, the
mistakes might be fatal on some browsers and harmless in others, which complicates
debugging.

In this chapter, you won’t use JavaScript directly. Instead, you’ll use a higher-level model
called ASP.NET AJAX. ASP.NET AJAX gives you a set of server-side components and controls
that you can use when designing your web page. These components automatically render all
the JavaScript you need to get the effect you want. The result is that you can create a page with
Ajax effects while programming with a familiar (and much more productive) model of server-
side objects. Of course, you won’t get quite as much control to customize every last detail
about the way your web pages work, but you will get some great functionality with minimal
effort.

CHAPTER 25 ■ ASP.NET AJAX 857

8911CH25.qxd 10/8/07 4:38 PM Page 857

■Note It’s generally accepted that Ajax isn’t written in all capitals, because the word isn’t an acronym.
(Technically, it’s a short form for Asynchronous JavaScript and XML, although this technique is now consid-
ered to be just one of several possible characteristics of an Ajax web application.) However, Microsoft chose
to write the term in uppercase when it named ASP.NET AJAX. For that reason, you’ll see two capitalizations
of Ajax in this chapter—Ajax when talking in general terms about the technology and philosophy of Ajax, and
AJAX when talking about ASP.NET AJAX, which is Microsoft’s specific implementation of these concepts.

The ScriptManager
In order to use ASP.NET AJAX, you need to place a new web control on your page. This control
is the ScriptManager, and it’s the brains of ASP.NET AJAX.

Like all ASP.NET AJAX controls, the ScriptManager is placed on a Toolbox tab named AJAX
Extensions. When you can drag the ScriptManager onto your page, you’ll end up with this
declaration:

<asp:ScriptManager ID="ScriptManager1" runat="server"></asp:ScriptManager>

At design time, the ScriptManager appears as a blank gray box. But when you request a
page that uses the ScriptManager you won’t see anything, because the ScriptManager doesn’t
generate any HTML tags. Instead, the ScriptManager performs a different task—it adds the
links to the ASP.NET AJAX JavaScript libraries. It does that by inserting a script block that looks
something like this:

<script src="/YourWebSite/ScriptResource.axd?d=RUSU1mI ..."
type="text/javascript">
</script>

This script block doesn’t contain any code. Instead, it uses the src attribute to pull the
JavaScript code out of a separate file.

However, the ScriptManager is a bit craftier than you might expect. Rather than use a
separate file to get its JavaScript (which would then need to be deployed along with your
application), the src attribute uses a long, strange-looking URL that points to
ScriptResource.axd. ScriptResource.axd isn’t an actual file—instead, it’s a resource that tells
ASP.NET to find a JavaScript file that’s embedded in one of the compiled .NET 3.5 assemblies.
The long query string argument at the end of the URL tells the ScriptResource.axd extension
which file to send to the browser.

CHAPTER 25 ■ ASP.NET AJAX858

8911CH25.qxd 10/8/07 4:38 PM Page 858

■Note The JavaScript files that ASP.NET AJAX uses contain hundreds of lines of highly complex, concise
code that forms the basis for all the Ajax features you’ll see in this chapter. However, these files are quite
compact, requiring the client to download less than 200 KB of script code (depending on the features that
you’re using). When you’re visiting an ASP.NET AJAX-powered site, the script code is only downloaded once,
and then cached by the browser so it can be used in various ways by various pages in the website. (In addi-
tion, ASP.NET sends a compressed version of the script document, if the browser supports it. Currently,
ASP.NET uses compression when receiving requests from Internet Explorer 7 or later.) The bottom line is
pages that use ASP.NET AJAX features don’t require significantly longer download times.

Each page that uses ASP.NET AJAX features requires an instance of the ScriptManager.
However, you can only use one ScriptManager on a page. ASP.NET AJAX-enabled controls can
interact with the ScriptManager, asking it to render links to additional JavaScript resources.

■Tip If you’re using ASP.NET AJAX features throughout your website, you might choose to place the
ScriptManager in a master page. However, this can occasionally cause problems, because different content
pages may want to configure the properties of the ScriptManager differently. In this scenario, the solution
is to use the ScriptManager in the master page and the ScriptManagerProxy in your content page. (You can
find the ScriptManagerProxy on the same AJAX Extensions tab of the Toolbox.) Each content page can con-
figure the ScriptManagerProxy control in the same way it would configure the ScriptManager.

Now that you’ve taken a brief overview of Ajax, it’s time to start building Ajax-enabled
pages. In this chapter, you’ll consider the following topics:

• Using partial refreshes to avoid full-page postbacks and page flicker

• Using progress notifications to deal with slower updates

• Using timed refreshes to automatically update a portion of your page

• Using the ASP.NET AJAX Control Toolkit to get a range of slick new controls with Ajax
features

Partial Refreshes
The key technique in an Ajax web application is partial refreshes. With partial refreshes, the
entire page doesn’t need to be posted back and refreshed in the browser. Instead, when some-
thing happens the web page asks the web server for more information. The request takes place
in the background, so the web page remains responsive. (It’s up to you whether you use some
sort of progress indicator if you think the request might take a noticeable amount of time.)
When the web page receives the response, it updates just the changed portion of the page, as
shown in Figure 25-1.

CHAPTER 25 ■ ASP.NET AJAX 859

8911CH25.qxd 10/8/07 4:38 PM Page 859

Figure 25-1. Ordinary server-side pages versus Ajax

ASP.NET includes a handy control that lets you take an ordinary page with server-side
logic and make sure it refreshes itself in flicker-free Ajax style using partial updates. This con-
trol is the UpdatePanel.

The basic idea is that you divide your web page into one or more distinct regions, each of
which is wrapped inside an invisible UpdatePanel. When an event occurs in a control that’s
located inside an UpdatePanel, and this event would normally trigger a full-page postback,
the UpdatePanel intercepts the event and performs an asynchronous callback instead. Here’s
an example of how it happens:

1. The user clicks a button inside an UpdatePanel.

2. The UpdatePanel intercepts the client-side click. Now, ASP.NET AJAX performs a call-
back to the server instead of a full-page postback.

CHAPTER 25 ■ ASP.NET AJAX860

8911CH25.qxd 10/8/07 4:38 PM Page 860

3. On the server, your normal page life cycle executes, with all the usual events. Finally,
the page is rendered to HTML and returned to the browser.

4. ASP.NET AJAX receives the full HTML and updates every UpdatePanel on the page by
replacing its current HTML with the new content. (If a change has occurred to content
that’s not inside an UpdatePanel, it’s ignored.)

■Note If you access a page that uses the UpdatePanel with a browser that doesn’t support Ajax or doesn’t
have JavaScript switched on, it uses normal postbacks instead of partial updates. However, everything else
still works correctly.

A Simple UpdatePanel Test
To try out the UpdatePanel, it makes sense to build a simple test page.

The following example (Figure 25-2) uses a simple page that includes two ingredients: an
animated GIF image, and a shaded box that shows the current time and includes a Refresh
Time button. When you click the Refresh Time button, the page grabs the current time from
the web server and updates the label. However, the refresh process uses a partial update. As a
result, the page won’t flicker when it takes place. The animated GIF helps illustrate the point—
even as you click the button to refresh the label, the lamp continues bubbling without a pause
or hiccup.

Figure 25-2. Refreshing a label with a partial update

Building this page is easy. First, you need to add the ScriptManager control to the page.
Like all controls that use ASP.NET AJAX, the UpdatePanel works in conjunction with the
ScriptManager. If you don’t have it in your page, the UpdatePanel won’t work. Furthermore,

CHAPTER 25 ■ ASP.NET AJAX 861

8911CH25.qxd 10/8/07 4:38 PM Page 861

the ScriptManager needs to appear before the UpdatePanel, because the rendered page must
have the JavaScript script block in place before the UpdatePanel can use it. It’s a good idea to
always place the ScriptManager at the top of the page.

Next, you need to add the content to the page. The animated GIF is fairly straightforward—
you can use an ordinary element to show it. However, the label and button require a bit
more effort. To refresh the label using a partial refresh, you need to wrap it in an UpdatePanel.
So start by adding an UpdatePanel to your page, and then drag and drop the button and label
inside.

The UpdatePanel has one role in life—to serve as a container for content that you want to
refresh asynchronously. Interestingly enough, the UpdatePanel doesn’t derive from Panel.
Instead, it derives directly from Control. This design causes a few quirks that you should take
into account.

First, the UpdatePanel is invisible. Unlike the standard ASP.NET Panel, an UpdatePanel
doesn’t support style settings. If you want to display a border around your UpdatePanel or
change the background color, you’ll need to place an ordinary Panel (or just a plain <div> tag)
in your UpdatePanel. Here’s how it’s done in the example shown in Figure 25-2:

<asp:UpdatePanel ID="UpdatePanel1" runat="server" UpdateMode="Conditional">
<ContentTemplate>
<div style="background-color:LightYellow;padding: 20px">
<asp:Label ID="lblTime" runat="server" Font-Bold="True"></asp:Label>

<asp:Button ID="cmdRefreshTime" runat="server"
OnClick="cmdRefreshTime_Click"
Text="Refresh Time" />

</div>
</ContentTemplate>

</asp:UpdatePanel>

This markup reveals another difference between the UpdatePanel and an ordinary
Panel—the UpdatePanel uses a template. All the controls you add to an UpdatePanel are
placed in an element named <ContentTemplate>. When the UpdatePanel renders itself,
it copies the content from the ContentTemplate into the page. This seems like a fairly
unimportant low-level detail, but it does have one important side effect. If you want
to use code to dynamically add controls to an UpdatePanel, you can’t use the
UpdatePanel.Controls collection. Instead, you need to add new controls to the
UpdatePanels.ContentTemplateContainer.Controls collection.

Now that you have the controls you need, you’re ready to add the code. This part is easy—
when the button is clicked, you simply react to the Click event and update the label:

protected void cmdRefreshTime_Click(object sender, EventArgs e)
{

lblTime.Text = DateTime.Now.ToLongTimeString();
}

Remarkably, that’s all you need to do to complete this example. Now, when you click the
Refresh Time button, the label will refresh without a full postback and without any flicker.

CHAPTER 25 ■ ASP.NET AJAX862

8911CH25.qxd 10/8/07 4:38 PM Page 862

So how does it all work? Here’s a blow-by-blow analysis of what’s taking place:

1. When rendering the HTML, the UpdatePanel looks at its contents. It notices that it
contains one control that’s able to trigger a postback—the button. It adds some
JavaScript code that will intercept the button’s click event on the client and use a
JavaScript routine to handle it.

2. When you click the Refresh Time button, you trigger the JavaScript routine.

3. The JavaScript routine doesn’t perform a full-page postback. Instead, it sends a back-
ground request to the web server. This request is asynchronous, which means your
page remains responsive while the request is under way.

■Note Because the UpdatePanel uses asynchronous requests, it’s possible to click the Refresh Time button
several times before the result is returned and the time is updated. In this case, the response from the first
few requests is ignored, and the response from the last request is used. (It’s similar to what happens if you
refresh a posted-back page several times before it’s finished being processed on the server.)

4. The background request is processed in exactly the same way as a normal postback. All
the data from all the web controls is sent back to the web server, along with the view
state information and any cookies. On the web server, the page life cycle is the same—
first the Page.Load event fires, followed by the event that triggered the postback (in this
case, Button.Click). If you’re using data source controls like SqlDataSource, all the nor-
mal querying and data binding takes place. The final page is then rendered to HTML
and sent back to the page.

5. When the browser receives the rendered HTML for the page, it updates the current
view state and grabs any cookies that were returned.

6. The JavaScript routine then replaces a portion of the HTML on the page—just the por-
tion that you wrapped in the UpdatePanel. The rest of the HTML for the page is simply
discarded. In the current example, that means the HTML with the animated GIF is
tossed out. (This really has no effect, because this part of the HTML is exactly the same
in the new response as it was originally. However, it’s important to understand that if
you modify this part of your page on the web server, you won’t see the results of your
change in the web browser, because that area of the page isn’t being updated.)

The most impressive aspect of the UpdatePanel control is that it allows your web page to
behave in the same way it would if you weren’t using any Ajax techniques. There is a bit of a
price to pay for this convenience—namely, the request might take a little longer than neces-
sary because of all the extra work that’s taking place. In a more streamlined do-it-yourself
approach, you’d simply ask the web server for exactly what you need. In this example, that
means you’d simply ask for the current time, rather than an entire HTML document.

However, in most scenarios the UpdatePanel’s more long-winded approach doesn’t intro-
duce any noticeable delay. Even better, it gives you the ability to deal with much more
complex scenarios—for example, when you’re modifying a section of a web page much more

CHAPTER 25 ■ ASP.NET AJAX 863

8911CH25.qxd 10/8/07 4:38 PM Page 863

dramatically. You’ll see an example later in this chapter, when you use the UpdatePanel to
improve the greeting card maker.

■Note When you use the UpdatePanel, you don’t reduce the amount of bandwidth being used or the time
taken to receive the response from the server, because the entire page is still sent. The only difference is
that the page is updated without a distracting flicker. Small as that advantage seems, it can make a major
difference in how your web page “feels” to the person using it.

Handling Errors
As you’ve seen, when the UpdatePanel performs its callback, the web page code runs in
exactly the same way as if the page had been posted back. The only difference is the means of
communication (the page uses an asynchronous call to get the new data) and the way the
received data is dealt with (the UpdatePanel refreshes its inner content, but the remainder of
the page is not changed). For that reason, you don’t need to make significant changes to your
server-side code or deal with new error conditions.

That said, problems can occur when performing an asynchronous postback just as they
do when performing a synchronous postback. To find out what happens, you can add code
like this to the event handler for the Page.Load event, which causes an unhandled exception
to occur when an asynchronous callback takes place:

if (this.IsPostBack)
{

throw new ApplicationException("This operation failed.");
}

When the web page throws an unhandled exception, the error is caught by the
ScriptManager and passed back to the client. The client-side JavaScript then throws a
JavaScript error. What happens next depends on your browser settings, but usually browsers
are configured to quietly suppress JavaScript errors. In Internet Explorer, an “Error on page”
message appears in the status bar that indicates the problem. If you double-click this notifica-
tion, a dialog box appears with the full details, as shown in Figure 25-3.

There’s another option for dealing with the errors that occur during an asynchronous
postback. You can use custom error pages, just as you do with ordinary web pages. All you
need to do is add the <customErrors> element to the web.config file, as you did in Chapter 8.

For example, here’s a <customErrors> element that redirects all errors to the page named
ErrorPage.aspx:

<customErrors defaultRedirect="ErrorPage.aspx" mode="On"></customErrors>

Now, when the PageRequestManager is informed of an error it will redirect the browser to
ErrorPage.aspx. It also adds an aspxerrorpath query string argument to the URL that indicates
the URL of the page where the problem originated, as shown here:

http://localhost/Ajax/ErrorPage.aspx?aspxerrorpath=/Ajax/UpdatePanels.aspx

CHAPTER 25 ■ ASP.NET AJAX864

8911CH25.qxd 10/8/07 4:38 PM Page 864

http://localhost/Ajax/ErrorPage.aspx?aspxerrorpath=/Ajax/UpdatePanels.aspx

Figure 25-3. Displaying a client-side message about a server-side error

You can write code in ErrorPage.aspx that reads the aspxerrorpath information. For exam-
ple, you might include a button that redirects the user to the original requested page, like this:

string url = Request.QueryString["aspxerrorpath"];
if (url != null) Response.Redirect(url);

If your website uses custom error pages but you don’t want them to apply to asynchro-
nous postbacks, you must set the ScriptManager.AllowCustomErrorsRedirect property to
false.

■Note ASP.NET 3.5 includes two controls that can’t be used in an UpdatePanel: the FileInput control and
HtmlInputFile the control. However, these controls can be used on a page that contains an UpdatePanel, so
long as they aren’t actually in the UpdatePanel.

Conditional Updates
In complex pages, you might have more than one UpdatePanel. In this case, when one
UpdatePanel triggers an update, all the UpdatePanel regions will be refreshed.

If you have more than one UpdatePanel and each one is completely self-contained, this
isn’t necessary. In this situation, you can configure the panels to update themselves independ-
ently. Simply change the UpdatePanel.UpdateMode property from Always to Conditional.
Now, the UpdatePanel will refresh itself only if an event occurs in one of the controls in that
UpdatePanel.

CHAPTER 25 ■ ASP.NET AJAX 865

8911CH25.qxd 10/8/07 4:38 PM Page 865

To try this out, create a page that has several UpdatePanel controls, each with its own
time display and button. Then, add code that places the current time in the label of all three
controls:

protected void Page_Load(object sender, EventArgs e)
{

lblTime1.Text = DateTime.Now.ToLongTimeString();
lblTime2.Text = DateTime.Now.ToLongTimeString();
lblTime3.Text = DateTime.Now.ToLongTimeString();

}

Now, when you click one of the Refresh Time buttons, only the label in that panel will be
updated. The other panels will remain untouched.

■Note There’s an interesting quirk here. Technically, when you click the button all the labels are updated,
but only part of the page is refreshed to show that fact. The next time the page is posted back, the most
recent values are pulled out of view state and applied to all the labels, including the ones that weren’t
refreshed on the client.

Most of the time, this distinction isn’t important. But if this isn’t the behavior you want in this example,
you could use a separate event handler for each button. Each event handler would update just one label—
the label that’s in the appropriate UpdatePanel. That way, when the page is posted back just one label is
changed, and you don’t waste time changing parts of the page that won’t be updated in the browser.

There’s one caveat with this approach. If you perform an update that takes a long time,
it could be interrupted by another update. As you know, ASP.NET AJAX posts the page back
asynchronously, so the user is free to click other buttons while the postback is under way.
ASP.NET AJAX doesn’t allow concurrent updates, because it needs to ensure that other
information—such as the page view state information, the session cookie, and so on—
remains consistent. Instead, when a new asynchronous postback is started, the previous
asynchronous postback is abandoned. For the most part, this is the behavior you want. If you
want to prevent the user from interrupting an asynchronous postback, you can add JavaScript
code that disables controls while the asynchronous postback is under way, but this takes sig-
nificantly more work. Another option is to use the UpdateProgress control discussed later in
this chapter.

■Tip There’s one other way to update a conditional UpdatePanel—you can call the UpdatePanel.Update()
method from your server-side code. This allows you to decide on the fly whether a certain panel should be
refreshed. However, you must be careful not to call Update() on a panel that uses an UpdateMode of Always,
and you must not call Update() after the page has been rendered. If you make either of these mistakes, you’ll
cause an exception.

CHAPTER 25 ■ ASP.NET AJAX866

8911CH25.qxd 10/8/07 4:38 PM Page 866

Triggers
So far, the examples you’ve seen have used the built-in behavior of the UpdatePanel. In the
next example, you’ll use the UpdatePanel in a slightly more sophisticated page, and you’ll
learn to control its refreshes with triggers.

Earlier in this book, you learned how to build a web page that allows the user to dynami-
cally build a greeting card. This page lets the user specify several details—such as text, font,
colors, border options, and so on—and then updates a portion of the page to show the greet-
ing card.

Chapter 6 demonstrated two versions of the greeting card maker. The first version allowed
the user to specify a number of options at once, and then click a button to update the greeting
card. The second version used automatic postback events, so that the greeting card was
updated after every change. This second approach gave a more immediate result, but the cost
was a less responsive user interface with distracting flicker. If this version of the greeting card
maker was running on a slow web server (or over a slow network), the problems get even
worse. That’s because after every postback the user is forced to wait for the page update before
making another change.

The UpdatePanel gives you the ability to get the best of both versions. You can create a
greeting card page that updates its display automatically but feels more responsive and doesn’t
lock the user out.

The simplest approach is to add a ScriptManager and wrap the entire web page—
including the controls and the greeting card—in one giant UpdatePanel. Here’s the markup
you’d use:

<asp:ScriptManager ID="ScriptManager1" runat="server"></asp:ScriptManager>

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>

<!-- These are the controls for creating the greeting card. -->
<div style="...">
Choose a background color:

<asp:DropDownList id="lstBackColor" runat="server"
Width="194px" AutoPostBack="True">
</asp:DropDownList>

Choose a foreground (text) color:

<asp:DropDownList id="lstForeColor" runat="server"
Height="22px" Width="194px" AutoPostBack="True" >
</asp:DropDownList>

Choose a font name:

<asp:DropDownList id="lstFontName" runat="server"
Height="22px" Width="194px" AutoPostBack="True">
</asp:DropDownList>

Specify a font size:

<asp:TextBox id="txtFontSize" runat="server"

CHAPTER 25 ■ ASP.NET AJAX 867

8911CH25.qxd 10/8/07 4:38 PM Page 867

AutoPostBack="True">
</asp:TextBox>

Choose a border style:

<asp:RadioButtonList id="lstBorder" runat="server"
Height="59px" Width="177px" Font-Size="X-Small"
AutoPostBack="True" RepeatColumns="2">
</asp:RadioButtonList>

<asp:CheckBox id="chkPicture" runat="server"
Text="Add the Default Picture" AutoPostBack="True">
</asp:CheckBox>

Enter the greeting text below:

<asp:TextBox id="txtGreeting" runat="server"
Height="85px" Width="240px" TextMode="MultiLine"
AutoPostBack="True">
</asp:TextBox>

</div>

<!-- This is the panel that shows the greeting card. -->
<asp:Panel ID="pnlCard" runat="server" ... >
<asp:Label id="lblGreeting" runat="server" Width="272px"
Height="150px"></asp:Label>

<asp:Image id="imgDefault" runat="server" Width="212px" Height="160px"
Visible="False"></asp:Image>

</asp:Panel>

</ContentTemplate>
</asp:UpdatePanel>

The greeting card is then generated when the Page.Load event fires:

protected void Page_Load(object sender, EventArgs e)
{

if (!this.IsPostBack)
{

// (Initialize all the controls here.)
}
else
{

// Refresh the greeting card.
UpdateCard();

}
}

CHAPTER 25 ■ ASP.NET AJAX868

8911CH25.qxd 10/8/07 4:38 PM Page 868

The UpdatePanel watches its child controls and intercepts any events that could
trigger a postback. The Button.Click is an obvious example, but in this example the
TextBox.TextChanged and ListBox.SelectedItemChanged events also trigger a postback,
because these controls set the AutoPostBack property to true. Thus, these events are also
intercepted by the UpdatePanel. If these controls didn’t use the AutoPostBack property, they
wouldn’t trigger a postback, the UpdatePanel wouldn’t get involved, and the greeting card
won’t be updated until another control causes a postback.

This solution achieves the desired result. Although the greeting card page looks essen-
tially the same (see Figure 25-4), when you interact with the controls on the left, the card on
the right is updated without a postback. If you make several changes in quick succession,
you’ll trigger several postbacks, and the result from the last postback (with the completely
updated card) will be used.

Figure 25-4. The greeting card maker, Ajax style

Although this example works perfectly well, it’s doing more work than necessary. Because
the entire page is wrapped in the UpdatePanel, the HTML for the entire page is refreshed.
A better option is to wrap just the label and image that represents the greeting card in the
UpdatePanel. Unfortunately, this won’t work. Once you move the other controls out of the

CHAPTER 25 ■ ASP.NET AJAX 869

8911CH25.qxd 10/8/07 4:38 PM Page 869

UpdatePanel, their events won’t be intercepted any longer, and they’ll trigger full-page post-
backs with the familiar flicker.

The solution is to explicitly tell the UpdatePanel to monitor those controls, even though
they aren’t inside the UpdatePanel. You can do this by adding triggers to the UpdatePanel. You
add one trigger for each button.

Here’s the markup you need:

<asp:ScriptManager ID="ScriptManager1" runat="server"></asp:ScriptManager>

<!-- The controls for creating the greeting card go here. -->

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>
<!-- This is the panel that shows the greeting card. -->
<asp:Panel ID="pnlCard" runat="server" ... >
<asp:Label id="lblGreeting" runat="server" Width="272px"
Height="150px"></asp:Label>

<asp:Image id="imgDefault" runat="server" Width="212px" Height="160px"
Visible="False"></asp:Image>

</asp:Panel>
</ContentTemplate>

<Triggers>
<asp:AsyncPostBackTrigger ControlID="lstBackColor" />
<asp:AsyncPostBackTrigger ControlID="lstForeColor" />
<asp:AsyncPostBackTrigger ControlID="lstFontName" />
<asp:AsyncPostBackTrigger ControlID="txtFontSize" />
<asp:AsyncPostBackTrigger ControlID="lstBorder" />
<asp:AsyncPostBackTrigger ControlID="chkPicture" />
<asp:AsyncPostBackTrigger ControlID="txtGreeting" />

</Triggers>
</asp:UpdatePanel>

■Tip You don’t need to type your triggers in by hand. Instead, you can use the Visual Studio Properties win-
dow. Just select the UpdatePanel, click the Triggers property in the Properties window, and click the ellipsis
(. . .) that appears in the Triggers box. Visual Studio will open a dialog box where you can add as many trig-
gers as you want, and pick the control for each trigger from a drop-down list.

These triggers tell the UpdatePanel to intercept the default event in these seven controls.
(You could specify the event you want to monitor by setting the EventName property of the
trigger, but you don’t need to, because you’re using the most commonly used default event for
each one.) As a result, the page works the same as it did before—it just refreshes a smaller por-
tion of the page after each asynchronous request.

CHAPTER 25 ■ ASP.NET AJAX870

8911CH25.qxd 10/8/07 4:38 PM Page 870

Technically, the UpdatePanel always uses triggers. All the controls inside an UpdatePanel
automatically become the triggers for the UpdatePanel. However, you need to add the triggers
if the controls are placed elsewhere in the page.

■Note You can add the same trigger to several different conditional UpdatePanel controls, in which case
that event will update them all.

You can use triggers in one other way. Instead of using them to monitor more controls,
you can use them to tell the UpdatePanel to ignore certain controls. For example, imagine you
have a button in your UpdatePanel. Ordinarily, clicking that button will trigger an asynchro-
nous request and partial update. If you want it to trigger a full-page postback instead, you
simply need to add a PostBackTrigger (instead of an AsynchronousPostBackTrigger).

For example, here’s an UpdatePanel that contains a nested button that triggers a full post-
back rather than an asynchronous postback:

<asp:UpdatePanel ID="UpdatePanel1" runat="server" UpdateMode="Conditional">
<ContentTemplate>
<asp:Label ID="Label1" runat="server" Font-Bold="True"></asp:Label>

<asp:Button ID="cmdPostback" runat="server" Text="Refresh Full Page" />

</ContentTemplate>
<Triggers>
<asp:PostBackTrigger ControlID="cmdPostback" />

</Triggers>
</asp:UpdatePanel>

This technique isn’t as common, but it can be useful if you have several controls in an
UpdatePanel that perform limited updates (and so use asynchronous request) and one that
performs more significant changes to the whole page (and so uses a full-page postback).

Progress Notification
As you’ve learned, the UpdatePanel performs its work asynchronously in the background. As a
result, the user can keep working with the page. This is generally the behavior you want, but
there’s one catch. While the asynchronous request is under way, the user won’t necessarily
realize that anything’s happening. If the asynchronous request takes some time, this could be
a bit of a problem. At worst, the user will assume the page is broken or click the same button
multiple times, creating needless extra work for your web application and slowing down the
process further.

ASP.NET includes another control that can help—the UpdateProgress control.
The UpdateProgress control works in conjunction with the UpdatePanel. Essentially, the
UpdateProgress control allows you to show a message while a time-consuming update is
under way.

CHAPTER 25 ■ ASP.NET AJAX 871

8911CH25.qxd 10/8/07 4:38 PM Page 871

■Note The UpdateProgress control is slightly misnamed. It doesn’t actually indicate progress; instead, it
provides a wait message that reassures the user that the page is still working and the last request is still
being processed.

Showing a Simulated Progress Bar
When you add the UpdateProgress control to a page, you get the ability to specify some con-
tent that will appear as soon as an asynchronous request is started and disappear as soon as
the request is finished. This content can include a fixed message, but many people prefer to
use an animated GIF, because it more clearly suggests that the page is still at work. Often, this
animated GIF simulates a progress bar.

Figure 25-5 shows a page that uses the UpdateProgress control at three different points in
its life cycle. The top figure shows the page as it first appears, with a straightforward
UpdatePanel control containing a button. When the button is clicked, the asynchronous call-
back process begins. At this point, the contents of the UpdateProgress control appear
underneath (as shown in the middle figure). In this example, the UpdateProgress includes a
text message and an animated GIF that appears as a progress bar, with green blocks that per-
petually fill it from left to right, and then start over. When the callback is complete, the
UpdateProgress disappears and the UpdatePanel is updated, as shown in the bottom figure.

The markup for this page defines an UpdatePanel followed by an UpdateProgress:

<asp:UpdatePanel ID="UpdatePanel1" runat="server">
<ContentTemplate>
<div style="background-color:#FFFFE0;padding: 20px">
<asp:Label ID="lblTime" runat="server" Font-Bold="True"></asp:Label>

<asp:Button ID="cmdRefreshTime" runat="server"
OnClick="cmdRefreshTime_Click"
Text="Start the Refresh Process" />

</div>
</ContentTemplate>

</asp:UpdatePanel>

<asp:UpdateProgress runat="server" id="updateProgress1">
<ProgressTemplate>
<div style="font-size: xx-small">
Contacting Server ...

</div>
</ProgressTemplate>

</asp:UpdateProgress>

CHAPTER 25 ■ ASP.NET AJAX872

8911CH25.qxd 10/8/07 4:38 PM Page 872

Figure 25-5. A wait indicator

This isn’t the only possible arrangement. Depending on the layout you want, you can
place your UpdateProgress control somewhere inside your UpdatePanel control.

The code for this page has a slight modification from the earlier examples. Because the
UpdateProgress control only shows its content while the asynchronous callback is under way,
it only makes sense to use it with an operation that takes time. Otherwise, the UpdateProgress
will only show its ProgressTemplate for a few fractions of a second. To simulate a slow process,
you can add a line to delay your code 10 seconds, as shown here:

CHAPTER 25 ■ ASP.NET AJAX 873

8911CH25.qxd 10/8/07 4:38 PM Page 873

protected void cmdRefreshTime_Click(object sender, EventArgs e)
{

System.Threading.Thread.Sleep(TimeSpan.FromSeconds(10));
lblTime.Text = DateTime.Now.ToLongTimeString();

}

There’s no need to explicitly link the UpdateProgress control to your UpdatePanel control.
The UpdateProgress automatically shows its ProgressTemplate whenever any UpdatePanel
begins a callback. However, if you have a complex page with more than one UpdatePanel, you
can choose to limit your UpdateProgress to pay attention to just one of them. To do so, simply
set the UpdateProgress.AssociatedUpdatePanelID property with the ID of the appropriate
UpdatePanel. You can even add multiple UpdateProgress controls to the same page, and link
each one to a different UpdatePanel.

Cancellation
The UpdateProgress control supports one other detail: a cancel button. When the user clicks a
cancel button, the asynchronous callback will be cancelled immediately, the UpdateProgress
content will disappear, and the page will revert to its original state.

Adding a cancel button is a two-step process. First you need to add a fairly intimidating
block of JavaScript code, which you can copy verbatim. You should place this code at the end
of your page, after all your content but just before the </body> end tag. Here’s the code you
need, in its rightful place:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="WaitIndicator.aspx.cs"
Inherits="WaitIndicator" %>
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">

...
</head>
<body>
<form id="form1" runat="server">
...

</form>

<script type="text/javascript">
var prm = Sys.WebForms.PageRequestManager.getInstance();
prm.add_initializeRequest(InitializeRequest);

function InitializeRequest(sender, args)
{

if (prm.get_isInAsyncPostBack())
{

args.set_cancel(true);
}

}

CHAPTER 25 ■ ASP.NET AJAX874

8911CH25.qxd 10/8/07 4:38 PM Page 874

http://www.w3.org/1999/xhtml

function AbortPostBack()
{

if (prm.get_isInAsyncPostBack()) {
prm.abortPostBack();
}

}
</script>

</body>
</html>

■Tip You can cut and paste this code from the WaitIndicator.aspx page (which is included with the samples
for this chapter) into your own pages.

Once you’ve added this code, you can use JavaScript code to call its AbortPostBack() func-
tion at any time and cancel the callback. The easiest way to do to this is to connect a JavaScript
event to the AbortPostBack() function using a JavaScript event attribute. You can add a
JavaScript event attribute to virtually any HTML element. For example, you can deal with
client-side clicks using the onclick attribute. Here’s a basic HTML button (not a server control)
that uses this technique to connect itself to the AbortPostBack() function:

<input id="cmdCancel" onclick="AbortPostBack()" type="button" value="Cancel" />

If you click this Cancel button, the client-side AbortPostBack() function will be triggered
and the callback will be cancelled immediately. Typically, you’ll place this button (or an
element like this) in the ProgressTemplate of the UpdateProgress control, as shown in
Figure 25-6.

Figure 25-6. An UpdateProgress control with a cancel button

Don’t confuse this approach with server-side event handling—the client-side onclick
attribute allows you to intercept an event in the browser and process it using JavaScript code.
The server doesn’t get involved at all. In fact, when you cancel an operation, the server

CHAPTER 25 ■ ASP.NET AJAX 875

8911CH25.qxd 10/8/07 4:38 PM Page 875

continues to process the request, but the browser simply closes the connection and stops
listening for the response.

■Tip It makes sense to use an abort button for tasks that can be safely canceled because they don’t
change external state. For example, users should be able to cancel an operation that retrieves information
from a database. However, it’s not a good idea to add cancellation to an operation that updates a database,
because the server will continue until it finishes the update, even if the client has stopped listening for the
response.

Timed Refreshes
Using the two controls you’ve seen so far—the UpdatePanel and UpdateProgress controls—
you can create self-contained regions on your page that refresh themselves when certain
actions take place. Of course, in order for this technique to work, the user needs to initiate an
action that would ordinarily cause a postback, such as clicking a button, selecting an item in
an AutoPostBack list, checking an AutoBostBack check box, and so on.

In some situations, you might want to force a full or partial page refresh without waiting
for a user action. For example, you might create a page that includes a stock ticker, and you
might want to refresh this ticker periodically (say, every 5 minutes) to ensure it doesn’t become
drastically outdated. ASP.NET includes a Timer control that allows you to implement this
design easily.

The Timer control is refreshingly straightforward. You simply add it to a page and set its
Interval property to the maximum number of milliseconds that should elapse before an
update. For example, if you set Interval to 60000, the timer will force a postback after one
minute elapses.

<asp:Timer ID="Timer1" runat="server" Interval="60000" />

■Note Obviously, the timer has the potential to greatly increase the overhead of your web application and
reduce its scalability. Think carefully before introducing timed refreshes, and make the intervals long rather
than short.

The timer also raises a server-side Tick event, which you can handle to update your page.
However, you don’t necessarily need to use the Tick event, because the full-page life cycle exe-
cutes when the timer fires. This means you can respond to other page and control events, such
as Page.Load.

The timer is particularly well suited to pages that use partial rendering, as discussed in
the previous section. That’s because a refresh in a partially rendered page might just need to
change a single portion of the page. Furthermore, partial rendering makes sure your refreshes
are much less intrusive. Unlike a full postback, a callback with partial rendering won’t cause
flicker and won’t interrupt the user in the middle of a task.

CHAPTER 25 ■ ASP.NET AJAX876

8911CH25.qxd 10/8/07 4:38 PM Page 876

To use the timer with partial rendering, wrap the updateable portions of the page in
UpdatePanel controls with the UpdateMode property set to Conditional. Then, add a trigger
that forces the UpdatePanel to update itself whenever the Timer.Tick event occurs. Here’s the
markup you need:

<asp:UpdatePanel ID="UpdatePanel1" runat="server" UpdateMode="Conditional">
<ContentTemplate>
...

</ContentTemplate>
<Triggers>
<asp:AsyncPostBackTrigger ControlID="Timer1" EventName="Tick" />

</Triggers>
</asp:UpdatePanel>

All the other portions of the page can be left as is, or you can wrap them in conditional
UpdatePanel controls with different triggers if you need to update them in response to other
actions.

■Note You must use triggers with the Timer control. You can’t simply place the timer inside an
UpdatePanel and expect it to work without a trigger (unlike other controls). If you don’t use a trigger,
the timer will force a full postback, with flicker.

To stop the timer, you simply need to set the Enabled property to false in server-side code.
For example, here’s how you could disable the timer after ten updates:

protected void Timer1_Tick(object sender, EventArgs e)
{

// Update the tick count and store it in view state.
int tickCount = 0;
if (ViewState["TickCount"] != null)
{

tickCount = (int)ViewState["TickCount"];
}
tickCount++;
ViewState["TickCount"] = tickCount;

// Decide whether to disable the timer.
if (tickCount > 10)
{

Timer1.Enabled = false;
}

}

CHAPTER 25 ■ ASP.NET AJAX 877

8911CH25.qxd 10/8/07 4:38 PM Page 877

The ASP.NET AJAX Control Toolkit
The UpdatePanel, UpdateProgress, and Timer controls are fairly useful. However, they’re the
only ASP.NET AJAX-enabled controls you’ll find in ASP.NET. Despite their value, developers
who have heard the Ajax hype and used advanced Ajax websites like Gmail might expect a bit
more.

In fact, ASP.NET’s support for Ajax is a bit deceptive. Although there are only three con-
trols that use ASP.NET AJAX features, ASP.NET actually includes a sophisticated library of
JavaScript functions that can be used to create all sorts of advanced effects. Business applica-
tion developers aren’t likely to use these libraries (because they’re quite complex and require a
significant time investment), but third-party component developers will use them enthusias-
tically.

The first and best example of what ASP.NET AJAX can really do is the ASP.NET AJAX Con-
trol Toolkit. The ASP.NET AJAX Control Toolkit is a joint project between Microsoft and the
ASP.NET community. It consists of dozens of controls that use the ASP.NET AJAX libraries to
create sophisticated effects.

The ASP.NET AJAX Control Toolkit has a lot going for it:

• It’s completely free.

• It includes full source code, which is helpful if you’re ambitious enough to want to
create your own custom controls that use ASP.NET AJAX features.

• It uses extenders that enhance the standard ASP.NET web controls. That way, you don’t
have to replace all the controls on your web pages—instead, you simply plug in the new
bits of functionality that you need.

These advantages have generated a great deal of excitement around the ASP.NET AJAX
Control Toolkit. It’s currently being used in cutting-edge web development with ASP.NET 2.0
and ASP.NET 3.5.

Installing the ASP.NET AJAX Control Toolkit
To get the ASP.NET AJAX Control Toolkit, surf to http://ajax.asp.net/ajaxtoolkit and follow
the links. Eventually, you’ll find your way to a download page. (At the time of this writing, the
download page is http://www.codeplex.com/AtlasControlToolkit/Release/ProjectReleases.
aspx.)

On the download page, you’ll see several download options, depending on the version of
.NET that you’re using and whether you want the source code. As of this writing, the simplest
download option is a 2 MB ZIP file named AjaxControlToolkit-Framework3.5-NoSource.zip,
which is designed for .NET 3.5 and doesn’t include the source code. Once you’ve downloaded
this ZIP file, you can extract the files it contains to a more permanent location on your hard
drive.

Inside the ZIP file, you’ll find a folder named SampleWebSite, which contains a huge sam-
ple website that demonstrates all the ASP.NET AJAX Control Toolkit ingredients. Inside the
SampleWebSite\Bin subfolder are the key support files you need to use ASP.NET AJAX, includ-
ing a central assembly named AjaxControlToolkit.dll and a host of smaller satellite assemblies
that support localization for different cultures.

To get started developing with ASP.NET AJAX Control Toolkit, you could simply copy the
contents of the SampleWebSite\Bin folder to the Bin folder of your own web application.

CHAPTER 25 ■ ASP.NET AJAX878

8911CH25.qxd 10/8/07 4:38 PM Page 878

http://ajax.asp.net/ajaxtoolkit
http://www.codeplex.com/AtlasControlToolkit/Release/ProjectReleases

However, life is much easier if you get Visual Studio to help you out by adding the new compo-
nents to the Toolbox. Here’s how:

1. Make sure the SampleWebSite folder is in a reasonably permanent location on your
hard drive. If you move the SampleWebSite folder after you complete this process,
Visual Studio won’t be able to find the AjaxControlToolkit.dll assembly. As a result, it
won’t be able to add the necessary assembly reference when you drag the controls onto
a web page. (The only way to fix this problem is to remove the controls from the Tool-
box and then repeat the process to add them from their new location.)

2. First, you need to create a new Toolbox tab for the controls. Right-click the Toolbox and
choose Add Tab. Then, enter a name (like AJAX Toolkit) and hit Enter.

3. Now, you need to add the controls to the new tab. Right-click the blank tab you’ve
created and select Choose Items.

4. In the Choose Toolbox Items dialog box, click Browse. Find the AjaxControlToolkit.dll
(which is in the SampleWebSite\Bin folder) and click OK.

5. Now, all the components from AjaxControlToolkit.dll will appear in the list, selected
and with check marks next to each one. To add all the controls to the Toolbox in one
step, just click OK.

Figure 25-7 shows some of the controls that will appear in the new Toolbox tab.

Figure 25-7. Adding the ASP.NET AJAX Control Toolkit to the Toolbox

CHAPTER 25 ■ ASP.NET AJAX 879

8911CH25.qxd 10/8/07 4:38 PM Page 879

Now you can use the components from the ASP.NET AJAX Control Toolkit in any web page
in any website. First, begin by adding the ScriptManager control to the web page. Then, head
to the new Toolbox tab you created and drag the ASP.NET AJAX control you want onto your
page. The first time you do add a component from the ASP.NET AJAX Control Toolkit, Visual
Studio will copy the AjaxControlToolkit.dll assembly to the Bin folder of your web application,
along with the localization assemblies.

The ASP.NET AJAX Control Toolkit is stuffed full of useful components. In the following
sections, you’ll get your feet wet by considering just two of the controls you’ll find—the
Accordion and the AutoCompleteExtender.

The Accordion
The Accordion is a container that stacks several panels on top of one another, and allows you
to view one at a time. Each panel has a header (which usually displays a section title) and
some content. When you click the header of one of the panels, that panel is expanded and the
other panels are collapsed, leaving just their headers visible. Figure 25-8 demonstrates the
effect you’ll see as you click different headers.

Figure 25-8. Choosing a panel in the Accordion

It goes without saying that the collapsing behavior happens without a full-page postback.
In fact, there’s no need to contact the web server at all. The first time the page is generated, all
the panels are rendered to HTML, but they’re hidden using CSS style attributes. When you
click a header, a JavaScript routine runs and changes these style attributes. (In truth, the
Accordion control is a bit more sophisticated than that.) When you choose a new panel, it
gradually expands into view, which is much more impressive than simply popping into exis-
tence in one step. Furthermore, you can set the FadeTransitions property to true if you want
panels to fade into and out of sight when you change from one panel to another.

CHAPTER 25 ■ ASP.NET AJAX880

8911CH25.qxd 10/8/07 4:38 PM Page 880

Using the Accordion control is a bit like using the MultiView control you learned about in
Chapter 11. The Accordion control contains a collection of AccordionPane controls. Each
AccordionPane represents a separate panel in the Accordion.

Here’s an example that illustrates this structure by putting two AccordionPane objects
inside the Accordion:

<ajaxToolkit:Accordion ID="Accordion1" runat="server">
<Panes>
<ajaxToolkit:AccordionPane runat="server">
...

</ajaxToolkit:AccordionPane>

<ajaxToolkit:AccordionPane runat="server">
...

</ajaxToolkit:AccordionPane>
</Panes>

</ajaxToolkit:Accordion>

■Tip To determine what AccordionPane is currently visible (or to set it), you use the Accordion.SelectedIndex
property. If RequiredOpenedPane is true, there will always be at least one expanded panel. If it’s false, you
can collapse all the panels—just click the header of the currently expanded section (or set the SelectedIndex
property to -1 in your code).

Each AccordionPane consists of two sections. The Header section is used for the clickable
header of the panel, while the Content holds the details inside. Here’s the markup you need to
create the example shown in Figure 25-6:

<ajaxToolkit:Accordion ID="Accordion1" runat="server"
HeaderCssClass="accordionHeader"
HeaderSelectedCssClass="accordionHeaderSelected"
ContentCssClass="accordionContent">

<Panes>
<ajaxToolkit:AccordionPane runat="server">
<Header>Colors</Header>
<Content>
Choose a background color:

<asp:DropDownList id="lstBackColor" runat="server"
Width="194px" AutoPostBack="True">
</asp:DropDownList>

Choose a foreground (text) color:

<asp:DropDownList id="lstForeColor" runat="server"
Height="22px" Width="194px" AutoPostBack="True" >

CHAPTER 25 ■ ASP.NET AJAX 881

8911CH25.qxd 10/8/07 4:38 PM Page 881

</asp:DropDownList>
</Content>

</ajaxToolkit:AccordionPane>

<ajaxToolkit:AccordionPane runat="server">
<Header>Text</Header>
<Content>
Choose a font name:

<asp:DropDownList id="lstFontName" runat="server"
Height="22px" Width="194px" AutoPostBack="True">
</asp:DropDownList>

Specify a font size:

<asp:TextBox id="txtFontSize" runat="server"
AutoPostBack="True">
</asp:TextBox>

Enter the greeting text below:

<asp:TextBox id="txtGreeting" runat="server"
Height="85px" Width="240px" TextMode="MultiLine"
AutoPostBack="True">
</asp:TextBox>

</Content>
</ajaxToolkit:AccordionPane>

<ajaxToolkit:AccordionPane runat="server">
<Header>Other</Header>
<Content>
Choose a border style:

<asp:RadioButtonList id="lstBorder" runat="server"
Height="59px" Width="177px" Font-Size="X-Small"
AutoPostBack="True" RepeatColumns="2">
</asp:RadioButtonList>

<asp:CheckBox id="chkPicture" runat="server"
Text="Add the Default Picture" AutoPostBack="True">
</asp:CheckBox>
</Content>

</ajaxToolkit:AccordionPane>
</Panes>

</ajaxToolkit:Accordion>

Along with the content, this example adds three properties: HeaderCssClass,
HeaderSelectedCssClass, and ContentCssClass. These properties take the names of CSS styles
that the Accordion uses to format the appropriate region. The styles are defined in a separate
style sheet, and look like this:

CHAPTER 25 ■ ASP.NET AJAX882

8911CH25.qxd 10/8/07 4:38 PM Page 882

.accordionHeader
{

border: 1px solid #2F4F4F;
color: white;
background-color: #2E4d7B;
padding: 5px;
margin-top: 5px;
cursor: pointer;

}

.accordionHeaderSelected
{

border: 1px solid #2F4F4F;
color: white;
background-color: #5078B3;
padding: 5px;
margin-top: 5px;
cursor: pointer;

}

.accordionContent
{

background-color: #D3DEEF;
border: 1px dashed;
border-top: none;
padding: 5px;

}

Chapter 13 has more about styles. You don’t need to use them with the Accordion—after
all, you could just set the formatting properties of your controls, or wrap each separate section
in a formatted Panel or <div> element—but the style approach is pretty convenient once you
get used to it.

You can really fine-tune the display that the Accordion uses by setting a few more proper-
ties. TransitionDuration sets the number of milliseconds that the collapsing and expanding
animation lasts. FramesPerSecond controls how smooth the transition animation is—a higher
value produces better quality, but requires more work from the browser. Finally, AutoSize lets
you control how the Accordion expands when you show a panel with a large amount of con-
tent. Use a value of None to let the Accordion grow as large as it needs (in which case other
content underneath the Accordion is simply bumped out of the way). Use Limit or Fill to
restrict the Accordion to whatever you’ve set in the Height property (the difference is the Limit
allows the Accordion to shrink smaller, while Fill keeps it at the maximum height by leaving
any unused space blank). With Limit or Fill, the Accordion panels will use scrolling if they can’t
fit all their content into the available space.

Clearly, the Accordion is a simple-to-use, yet impressive way to deal with dense displays
of data and groups of information. If you want to have a similar collapsing and expanding
effect with a single panel, you might want to try another one of the components in the
ASP.NET AJAX Control Toolkit—the CollapsiblePanelExtender.

CHAPTER 25 ■ ASP.NET AJAX 883

8911CH25.qxd 10/8/07 4:38 PM Page 883

The AutoCompleteExtender
The Accordion is an example of a completely new control that has ASP.NET AJAX features
baked in. Although this is a perfectly reasonable approach to integrating Ajax techniques with
the web control model, it’s not the most common solution that you’ll see used in ASP.NET
AJAX Control Toolkit. In fact, the ASP.NET AJAX Control Toolkit includes just a few new con-
trols, and a much larger set of control extenders.

A control extender is a .NET component that adds features to an existing ASP.NET control.
Control extenders allow you to use the same Ajax effects with countless different controls. This
is useful when you’re dealing with multipurpose features such as automatic completion, drag-
and-drop, animation, resizing, collapsing, masked editing, and so on.

One of the many control extenders in the ASP.NET AJAX Control Toolkit is the
AutoCompleteExtender, which allows you to show a list of suggestions while a user types in
another control (such as a text box). Figure 25-9 shows the AutoCompleteExtender at work on
an ordinary TextBox control. As the user types, the drop-down list offers suggestions. If the
user clicks one of these items in the list, the corresponding text is copied to the text box.

Figure 25-9. Providing an autocomplete list of names

To create this example, you need an ordinary text box, like this:

Contact Name:<asp:TextBox ID="txtName" runat="server"></asp:TextBox>

Next, you need to add the ScriptManager and an AutoCompleteExtender control that
extends the text box with the autocomplete feature. The trick is that the list of suggestions
needs to be retrieved from a specialized code routine called a web method, which you need
to create in your page.

CHAPTER 25 ■ ASP.NET AJAX884

8911CH25.qxd 10/8/07 4:38 PM Page 884

■Note You may have heard about web methods and web services, which are remotely callable code rou-
tines that can share data between different organizations, programming platforms, and operating systems.
The web method you’ll use with ASP.NET AJAX isn’t quite as ambitious. Although it uses some of the same
plumbing, it has a much simpler goal. It’s really just a way for the text box to get a list of word suggestions
without going through the whole page life cycle.

Here’s an example of how you might define the AutoCompleteExtender. It uses the
TargetControlID property to bind itself to the txtName text box, and it sets the
MinimumPrefixLength property to 2, which means autocomplete suggestions won’t be pro-
vided until the user has entered at least two characters of text. Finally, the ServiceMethod
property indicates the web method you’re going to use is named GetNames(). Before you can
run this page, you need to create that method.

<ajaxToolkit:AutoCompleteExtender ID="autoComplete1" runat="server"
TargetControlID="txtName" ServiceMethod="GetNames" MinimumPrefixLength="2">

</ajaxToolkit:AutoCompleteExtender>

The next step is to create the GetNames() web method. Here’s the basic method you need
to add to the code-behind class of your web page:

[System.Web.Services.WebMethod]
[System.Web.Script.Services.ScriptMethod]
public static List<string> GetNames(string prefixText, int count)
{ ... }

The web method accepts two parameters, which indicate the text the user has typed so
far and the desired number of matches (which is ten by default). It returns the list of sugges-
tions. The two attributes that precede the GetNames() method indicate that it’s a web method
(meaning the client should be allowed to call it directly with HTTP requests) and that it sup-
ports JavaScript calls (which is what the AutoCompleteExtender uses).

Actually writing the code that retrieves or generates the suggestion list can be quite
tedious. In this example, the code retrieves the list of name suggestions from the Northwind
database. To ensure that this step is performed just once (rather than every single time the
user hits a key in the text box), the name list is cached using the techniques you learned about
in Chapter 24:

List<string> names = null;

// Check if the list is in the cache.
if (HttpContext.Current.Cache["NameList"] == null)
{

// If not, regenerate the list. The ADO.NET code for this part
// isn't shown (but you can see it in the downloadable examples
// for this chapter.
names = GetNameListFromDB();

CHAPTER 25 ■ ASP.NET AJAX 885

8911CH25.qxd 10/8/07 4:38 PM Page 885

// Store the name list in the cache for sixty minutes.
HttpContext.Current.Cache.Insert("NameList", names, null,
DateTime.Now.AddMinutes(60), TimeSpan.Zero);

}
else
{

// Get the name list out of the cache.
names = (List<string>)HttpContext.Current.Cache["NameList"];

}
...

With the list in hand, the next step is to cut down the list so it provides only the ten closest
suggestions. In this example, the list is already sorted. This means you simply need to find the
starting position—the first match that starts with the same letters as the prefix text. Here’s the
code that finds the first match:

...
int index = -1;
for (int i = 0; i < names.Count; i++)
{

// Check if this is a suitable match.
if (names[i].StartsWith(prefixText))
{

index = i;
break;

}
}

// Give up if there isn't a match.
if (index == -1) return new List<string>();
...

The search code then begins at the index number position and moves through the list in
an attempt to get ten matches. However, if it reaches the end of the list or finds a value that
doesn’t match the prefix, the search stops.

...
List<string> wordList = new List<string>();
for (int i = index; i < (index + count); i++)
{

// Stop if the end of the list is reached.
if (i >= names.Count) break;

// Stop if the names stop matching.
if (!names[i].StartsWith(prefixText)) break;

wordList.Add(names[i]);
}
...

CHAPTER 25 ■ ASP.NET AJAX886

8911CH25.qxd 10/8/07 4:38 PM Page 886

Finally, all the matches that were found are returned:

...
return wordList;

You now have all the code you need to create the effect shown in Figure 25-9.

Getting More Controls
The Accordion and AutoCompleteExtender only scratch the surface of the ASP.NET AJAX
ControlToolkit, which currently includes over 30 components. The easiest way to start experi-
menting with other controls is to surf to http://ajax.asp.net/ajaxtoolkit, where you’ll find a
reference that describes each control and lets you try it out online. Table 25-1 highlights a few
of the more interesting ingredients you’ll find.

Table 25-1. Components in the ASP.NET AJAX Control Toolkit

Name Description

AlwaysVisibleControlExtender This extender keeps a control fixed in a specific
position (such as the top-left corner of the web page)
even as you scroll through the content in a page.

AnimationExtender This powerful and remarkably flexible extender allows
you to add animated effects such as resizing, moving,
fading, color changing, and many more, on their own or
in combination.

CalendarExtender This extender shows a pop-up calendar that can be
attached to a text box for easier entry of dates. When
the user chooses a date, it’s inserted in the linked
control.

DragPanelExtender This extender allows you to drag a panel around the
page.

DynamicPopulateExtender This simple extender replaces the contents of a control
with the result of a web service method call.

FilteredTextBoxExtender This extender allows you to restrict certain characters
from being entered in a text box (such as letters in a text
box that contains numeric data). This is meant to
supplement validation, not replace it, as malicious
users could circumvent the filtering by tampering with
the rendered page or disabling JavaScript in the
browser.

HoverMenuExtender This extender allows content to pop up next to a control
when the user hovers over it.

ListSearchExtender This extender allows the user to search for items in a
ListBox or DropDownList by typing the first few letters
of the item text. The control searches the items and
jumps to the first match as the user types.

ModalPopupExtender This extender allows you to create the illusion of a
modal dialog box by darkening the page, disabling
controls, and showing a superimposed panel over the
top of the page.

Continued

CHAPTER 25 ■ ASP.NET AJAX 887

8911CH25.qxd 10/8/07 4:38 PM Page 887

http://ajax.asp.net/ajaxtoolkit

Table 25-1. Continued

Name Description

MutuallyExclusiveCheckboxExtender This extender allows you to associate a “key” with
multiple CheckBox controls. When the user clicks a
check box that’s extended in this way, any other check
box with the same key will be unchecked automatically.

NumericUpDownExtender This extender attaches to a text box to provide
configurable up and down arrow buttons (at the right
side). These buttons increment the numeric or date
value in the text box.

PagingBulletedListExtender This extender attaches to a BulletedList and gives it
client-side paging capabilities, so that it can split a long
list into smaller sections.

PasswordStrengthExtender This extender attaches to a text box. As you type, it
ranks the cryptographic strength of the text box value
(the higher the ranking, the more difficult the password
is to crack). It’s meant to be used as a guideline for a
password-creation box.

PopupControlExtender This extender provides pop-up content that can be
displayed next to any control.

Rating This control allows users to set a rating by moving the
mouse over a series of stars until the desired number of
stars are highlighted.

ResizableControlExtender This extender allows the user to resize a control with a
configurable handle that appears in the bottom-right
corner.

SlideShowExtender This extender attaches to an image and causes it to
display a sequence of images. The images are supplied
using a web service method, and the slide show can
loop endlessly or use play, pause, previous, and next
buttons that you create.

TabContainer This control resembles the tabs you’ll find in Windows
applications. Each tab has a header, and the user can
move from one tab to another by clicking the header.

TextBoxWatermark This extender allows you to automatically change the
background color and supply specific text when a
TextBox control is empty. For example, your text box
might include the text Enter Value in light gray writing
on a pale blue background. This text disappears while
the cursor is positioned in the text box or once you’ve
entered a value.

To use any of these controls or control extenders, you simply need to drop it onto a form,
set the appropriate properties, and run your page.

The Last Word
Ajax techniques and the ASP.NET’s Ajax integration are evolving rapidly. In future versions of
ASP.NET, you’ll see a broader set of controls and features that use Ajax. However, the Ajax sup-
port that you’ll find in ASP.NET AJAX is already surprisingly powerful—and practical. As you

CHAPTER 25 ■ ASP.NET AJAX888

8911CH25.qxd 10/8/07 4:38 PM Page 888

saw in this chapter, the UpdatePanel, UpdateProgress, and Timer controls give you a surpris-
ingly painless way to take a traditional postback-heavy web form and give it a more responsive
Ajax-powered user interface, often without requiring new code. And if you want to step further
into the world of Ajax frills and get collapsible panels, autocompleting text boxes, and a wide
range of animated effects, you need to look no further than the ASP.NET AJAX Control Toolkit,
which provides a lot more to play with.

To learn more about ASP.NET AJAX, check out the Microsoft ASP.NET AJAX site at
http://asp.net/ajax and the ASP.NET AJAX Control Toolkit at http://asp.net/ajaxtoolkit.

CHAPTER 25 ■ ASP.NET AJAX 889

8911CH25.qxd 10/8/07 4:38 PM Page 889

http://asp.net/ajax
http://asp.net/ajaxtoolkit

8911CH25.qxd 10/8/07 4:38 PM Page 890

Symbols and Numerics
!= (not equal to) operator, 40
(number sign) character, URLs, 228
% character

indicating Unit type, 176
URL encoding, 228

& (ampersand) character, 160, 228
&& (and) operator, 40
& character entity, 160
> character entity, 160
< character entity, 160
 character entity, 108, 134, 160
" character entity, 160
* character, regular expressions, 346
* character, SELECT statement, 493
+ character, regular expressions, 346
+ character, URLs, 228
+= operator, 142
. character, regular expressions, 346
.NET entries are alphabetized as NET
== (equal to) operator, 40
; (semicolon) character, 21
@ character

file paths in strings, 619
XSL Transformations, 680

[] characters, regular expressions, 346
\ (backslash) character

escaping special characters, 26
file paths in strings, 619

^ character, regular expressions, 346
_blank frame target, AdRotator control, 364
_parent frame target, AdRotator control, 364
_self frame target, AdRotator control, 364
_top frame target, AdRotator control, 364
" character, 160
{ } characters, regular expressions, 346
{ } characters, uses of, 22
() characters, regular expressions, 346
| character, regular expressions, 346
|| (or) operator, 40
~/ character sequence

connecting content pages to master
pages, 432

master pages and relative paths, 438
representing root folder of web

applications, 448
using Image control instead of img tag,

465

< character, 160
less than operator, 40

> character, 160
greater than operator, 40

404 Not Found error, 448

A
a (anchor) element, 109

attributes, 110
HTML server control class for, 138
master pages and relative paths, 437
redirecting user to new web page, 159
related web control classes, 172

Abandon method, HttpSessionState class,
233

AbortPostBack function, JavaScript, 875
absolute positioning, web pages, 100
absoluteExpiration parameter

Insert method, Cache class, 833
access control rules

forms authentication, 700
AccessDataSource control, 560
accessibility

adding events to .NET classes, 62
declaring member variable, 56

accessibility keywords, 46, 47, 56
accessing files see file access
AccessKey property

TextBox control, 181
WebControl class, 175

accessors, 58, 59
Accordion control, Ajax, 880–883

AutoSize property, 883
choosing panel in Accordion, 880
FadeTransitions property, 880
FramesPerSecond property, 883
RequiredOpenedPane property, 881
SelectedIndex property, 881
TransitionDuration property, 883

Account class
stateful design example, 802–803

AccountOperator role, 712
AccountUtility class

stateless design example, 803–804
ActiveDirectoryMemberProvider class, 733
ActiveStepChanged event, Wizard control,

376, 377
ActiveStepIndex property, Wizard control,

376

Index

891

8911INDEX.qxd 10/17/07 5:02 PM Page 891

ActiveViewIndex property, MultiView
control, 370

adaptive rendering, 172
AdCreated event, AdRotator control, 365
add element, web.config file, 167
Add method, DateTime/TimeSpan classes,

38
Add New Item window

creating content page, 429, 430
creating websites with Visual Studio, 94–96
Place Code in Separate File option, 94
Select Master Page option, 95

Add Reference dialog box, 797
Add Table dialog box, 491
add tag

attributes for configuring membership
provider, 732

profile property attributes, 771
Add Web Reference dialog box, 797
AddDays methods, DateTime class, 37
AddItem method, DBUtil class, 818, 819
Address property, Profile class, 778
Address property, ProfileCommon class, 780
AddUser(s)ToRole(s) methods, Roles class,

758
AddXyz methods, DateTime class, 38
administration page

retrieving log information, 273
Administrator role, 712
ADO.NET, 498–502

brief introduction, 485
classes, groups of, 498
data namespaces, 500–501
data providers, 498, 501–502
data retrieval using, 513–517

filling ListBox control, 514–515
retrieving records, 515–517

description, 483
modifying data in database, 517–527
retrieving data from database, 511–512

using data reader classes, 512
using data set classes, 527–536

SQL basics, 490–498
using SQL with, 491

ADO.NET data access
creating connections, 504–511

connection strings, 505–506
storing connection strings, 508–509
user instance connections, 507–508
Windows authentication, 506–507

data-access components, 804–814
advantages for component-based

programming, 804
aggregate functions enhancement,

813–814
creating data-access component,

804–808

error handling enhancement, 812–813
using data-access component, 809–812

direct data access, 503–527
disconnected data access, 527–536

defining relationships in data sets,
533–536

opening/closing connections, 509–511
verifying connections, 509
XML and .NET, 648

AdRotator control, 363–365
AdCreated event, 365
Advertisement file, 363
AdvertisementFile property, 364
event handling, 365
frame targets, 364
KeywordFilter property, 364

AdvertisementFile property, AdRotator
control, 364

Advertisement file, AdRotator control, 363
elements, 364

AffectedRows property
SqlDataSourceStatusEventArgs class, 574

aggregate functions, SQL, 495
data-access component enhancement,

813–814
Ajax, 855–859

Accordion control, 880–883
advantages of, 856
Ajax or AJAX, 858
AlwaysVisibleControlExtender control,

887
AnimationExtender control, 887
ASP.NET AJAX Control Toolkit, 878–888
ASP.NET AJAX, learning more about, 889
AutoCompleteExtender control, 884–887
CalendarExtender control, 887
control extenders, 884
disadvantages of, 856–857
DragPanelExtender control, 887
DynamicPopulateExtender control, 887
FilteredTextBoxExtender control, 887
HoverMenuExtender control, 887
ListSearchExtender control, 887
ModalPopupExtender control, 887
MutuallyExclusiveCheckboxExtender

control, 888
NumericUpDownExtender control, 888
PagingBulletedListExtender control, 888
partial refreshes, 859–871
PasswordStrengthExtender control, 888
PopupControlExtender control, 888
progress notification, 871–876
Rating control, 888
ResizableControlExtender control, 888
script debugging, 121
ScriptManager control, 858–859
SlideShowExtender control, 888

■INDEX892

8911INDEX.qxd 10/17/07 5:02 PM Page 892

TabContainer control, 888
TextBoxWatermark control, 888
timed refreshes, 876–877
Timer control, 876–877
UpdatePanel control, 860–871
UpdateProgress control, 871–876

aliases
creating virtual directories, 311

allow rule, web.config file
forms authentication, 702
Windows authentication, 711

allowAnonymous attribute
anonymous profiles, 783
profile properties, 771

AllowPaging property
DetailsView control, 611
FormView control, 614
GridView control, 599

AllowReturn property, WizardStep control,
374

AllowSorting property, GridView control, 597
alt attribute, img element, 110
AlternateText element, Advertisement file,

364
AlternatingItemTemplate mode, 603
AlternatingRowStyle property, GridView

control, 585
AlwaysVisibleControlExtender control, 887
Amazon

query strings transferring information in
URLs, 224

ampersand (&) character, URLs, 228
anchor element see a (anchor) element
AND keyword, WHERE clause, 494
and operator (&&), 40
AnimationExtender control, 887
anonymous access

programmatic impersonation, 718
Windows authentication, 715

anonymous identification
deleting old anonymous sessions, 783

Anonymous mode, Windows authentication,
713

anonymous profiles, 782–785
migrating, 784–785

anonymous users
ASP.NET security, 695
controlling access to specific directories,

701
controlling access to specific files, 702
denying access to, 700
forms authentication, 697
IUSER account, 710
IUSR account, 695
multiple authorization rules, 701
non-ASP.NET security, 693
question mark wildcard, 700

restricting access based on roles, 759
restricting user access, 699

anonymousIdentification element,
web.config file, 783

AnonymousTemplate section, LoginView
control, 759

AntiAlias value, SmoothingMode property,
402

AntiAliasGridFit value, TextRenderingHint
property, 402

antialiasing, 402
Append method, XmlNode class, 669
AppendChild method, XmlDocument class,

666
AppendChild method, XmlNode class, 669
Application class

EndRequest event, 162
application directories, ASP.NET, 131–132
application domains

ASP.NET applications, 129
ASP.NET process explained, 144

application events, 161–163
event handling methods, 163
Global.asax file, 162–163
handling in code behind, 162

Application log, Windows, 266
application pool

changing Network Service account, 322
creating virtual directories, 311

Application property, Page class, 158
application server role, 303
Application Settings icon, IIS Manager, 315
application state, 245–246

data caching compared, 823
performance, 246
state management options compared, 248
tracing information, 285

Application state collection
Lock/Unlock methods, 246

application-level tracing, 291
viewing tracing information, 292

ApplicationException class
custom exception classes, 262, 263
enhancing components with error

handling, 813
applicationName attribute, add tag, 733
applications, ASP.NET, 129–132
Application_Xyz events, 163
Apply Styles window, 418
apply-templates command, xsl, 679
ApplyFormatInEditMode property,

BoundField class, 581
appSettings element, web.config file, 164

storing custom settings in, 166–168
AppSettings property,

WebConfigurationManager class, 167
App_Code directory, 132

■INDEX 893

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 893

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

App_Data directory, 132
creating websites with Visual Studio, 91
DataDirectory value, 507
membership with SQL Server 2005

Express, 727, 728
Server Explorer window, 488
using profiles with SQL Server 2005

Express, 768
Visual Studio working with, 508

App_GlobalResources directory, 132
App_LocalResources directory, 132
App_Themes directory, 132
App_WebReferences directory, 132
arcs

drawing with Graphics class, 395
ARGB (alpha, red, green, blue) color value,

178
arithmetic operators, 30

DateTime class, 37
division, 31
shorthand assignment operators, 31
TimeSpan class, 37

Array class, 39–40
Clone method, 70
nature and behavior of data types, 70
properties and methods, 39

ArrayList class, 28
casting objects, 79
generics, 81
repeated-value data binding, 546, 547
why it remains in .NET, 82

arrays, 26–28
accessing elements in, 28
ArrayList class, 28
lower bound, 27
multidimensional arrays, 27
zero-based counting, 39

ascx files, 131
user controls, 381

asmx files, 131
ASP and ASP.NET compared, 6
asp: prefix

creating user controls, 383
web control tags, 173

ASP.NET
ASP compared, 6
caching, 823–824

self-limiting nature, 821
collections, 212
component-based programming, 789
converting HTML page to ASP.NET,

134–136
deploying web applications, 316–323

additional configuration steps, 317–318
ASPNET/network service accounts,

319–320
code compilation, 318–319

using custom components, 317
deploying web applications with Visual

Studio, 323–329
copying website to remote web server,

326–329
creating virtual directory for new

project, 324–326
publishing website, 328–329

description, 9
how IIS handles an ASP file request, 296
HTML server controls, 133
impersonation, 717–718
IUSR account and running code, 695
major releases of, 11
partial refreshes using Ajax, 859–871
polling

enabling, 848
notifications not received, 852

polling model, 845
process for currency converter explained,

144–146
profiles, 763
progress notification using Ajax, 871–876
server controls, 132–147
server-side programming, 6, 7
stages in ASP.NET request, 145
style limitations, 405
themes, 420
timed refreshes using Ajax, 876–877
uses of database with, 484
verifying ASP.NET installation, 306–308
web controls, 133, 171–174

ASP.NET AJAX
Accordion control, 880–883
AutoCompleteExtender control, 884–887
caching, 859
introduction, 857
learning more about, 889
partial refreshes, 859–871
progress notification, 871–876
ScriptManager control, 858–859
timed refreshes, 876–877
Timer control, 876–877
UpdatePanel control, 860–871
UpdateProgress control, 871–876
updates interrupting updates, 866

ASP.NET AJAX Control Toolkit, 878–888
control extenders, 884
installing, 878–880
table of controls, 887–888

ASP.NET AJAX JavaScript libraries
ScriptManager control linking to, 858

ASP.NET application directories, 131–132
ASP.NET applications, 129–132

see also web applications
application domains, 129
Global.asax file, 163

■INDEX894

8911INDEX.qxd 10/17/07 5:02 PM Page 894

virtual directory, 129, 131
web pages and, 129
web servers and, 295

ASP.NET configuration, 163–170
multilayered configuration, 165
storing custom settings in web.config file,

166–168
virtual directories, 314–316
WAT (Website Administration Tool),

168–170
web.config file, 164–165

ASP.NET controls see controls
ASP.NET file mappings, registering, 305–306
ASP.NET file types, 130–131
ASP.NET forms

case sensitivity, 174
ASP.NET security model, 692–697

authentication, 696
authorization, 696
IIS web server, 692–695
Visual Studio web server, 696

ASP.NET tags
see also web control tags
how web servers work, 295

ASP.NET web controls see web controls
ASP.NET web forms

user controls compared to, 381
ASPNET account

changing, 320–321
deploying web applications, 319–320
giving limited privileges to, 323
permissions, 320

aspnetdb.mdf file
creating, 730
SQL Server 2005 Express, 727, 728, 768
user record in aspnetdb.mdf database, 729

aspnet_Applications table, 769
aspnet_compiler.exe tool, 318, 319, 328
aspnet_isapi.dll

ASP.NET deployment security, 319
aspnet_Membership table

creating users with WAT, 735
MembershipUser object, 738
SQL Server 2005 Express, 728

aspnet_Profile table, 769
profile properties, 774
profile serialization, 773

aspnet_regiis.exe utility
registering ASP.NET file mappings, 305,

306
verifying ASP.NET installation, 308

aspnet_regsql.exe command, 244
command-line switches, 731
creating aspnetdb database, 730
enabling notifications with SQL Server

2000, 845

manually creating membership data store,
730

role-based security, 755
using profiles with SQL Server, 768

aspnet_SchemaVersions table, 769
aspnet_Users table, 769

creating users with WAT, 735
membership with SQL Server 2005

Express, 728
MembershipUser object, 738

aspx files
adding HTML server control, 139
ASP.NET process explained, 144
CurrencyConverter.aspx file, 140
description, 131
how web servers work, 296
OutputCache directive, 825
Visual Studio views of aspx page, 97

aspx.cs files
CurrencyConverter.aspx.cs file, 141

assemblies, 74
adding assembly reference, 797, 798
assemblies and namespaces, 74
components and classes, 795
creating data-access component, 805
dll and exe extensions, 74
private assemblies, 317
shared assemblies, 317
using assembly references, 800

assignment operations
copying an object, not a reference, 67
reference types, 67
shorthand assignment operators, 31
String class, 70
value types, 67

assignment, variables, 24–26
characters indicating data type, 25
escaping special characters, 26
var keyword, 26

AssociatedControlID property, Label control,
181

AssociatedUpdatePanelID property,
UpdateProgress control, 874

asynchronous callbacks
partial refreshes using Ajax, 860
UpdatePanel control, 863

asynchronous postbacks see partial refreshes
using Ajax

asynchronous requests
cancelling, 874
progress notification using Ajax, 871

AttachDBFilename property, connection
strings, 507

attributes
HTML and XHTML, 110
setting properties in control tag, 157
XML namespaces, 673

■INDEX 895

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 895

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

Attributes property
DirectoryInfo class, 626
FileInfo class, 626
HtmlControl class, 156
XmlNode class, 669

attributes, XML see XML attributes
Authenticate event, Login control, 744, 745
Authenticate method, FormsAuthentication

class, 706
AuthenticateEventArgs class

Authenticated property, 745
authenticating users

web.config file, 700
authentication

ASP.NET request, 693
authentication with membership, 741–742
description, 696
forms authentication, 697–710
impersonation, 718
mixed-mode authentication, 506
non-ASP.NET request, 693
profiles, 766

enabling authentication, 767
forms authentication, 767
steps to use profiles, 766
Windows authentication, 767

Select Authentication options, 703
SQL Server authentication, 506
User property, Page class, 158
Windows authentication, 506, 697,

710–717
authentication element, web.config file, 165
Authentication Methods window

choosing authentication method in IIS 5,
714

authentication tag, web.config file
attributes/settings, 699
changing for subdirectory, 701
forms authentication, 699
Windows authentication, 711

authorization, 696
authorization element, web.config file, 165
authorization rules

access for specific users, 702–703
accessing specific directories, 701
accessing specific files, 701–702
adding authorization rules, 705
forms authentication, 699–703
multiple authorization rules, 701
ordering authorization rules, 705
restricting access based on roles, 758
setting up using the WAT, 703–704
Windows authentication, 711

authorization section, web.config file, 758
authorization tag, web.config file

access control rules, 700

controlling access to specific directories,
701

multiple authorization rules, 700
Auto Format dialog box

configuring styles with Visual Studio, 587
Auto Format feature

Calendar control, 358
GridView control, 639

auto increment columns
relational databases, 497

AutoCompleteExtender control, Ajax,
884–887

GetNames web method, 885
MinimumPrefixLength property, 885
ServiceMethod property, 885
TargetControlID property, 885

AutoDetect value, HttpCookieMode
enumeration, 237

AutoGenerateColumns property, GridView
control

automatic column generation, 578
defining columns, 579
displaying full list of users in web page,

782
generating columns with Visual Studio,

582
AutoGenerateDeleteButton property,

DetailsView control, 572
AutoGenerateEditButton property,

DetailsView control, 572
AutoGenerateInsertButton property,

DetailsView control, 572, 818
AutoGenerateRows property, DetailsView

control, 566, 612
automated deployment, MSBuild utility, 92
automatic event wireup

event handling in web page, 143
automatic paging feature

GridView control, 599
automatic postbacks

description, 192
greeting card generator example, 206
slow connections and, 208
web control events and, 191–196

automatic properties, 60
automatic validation, server-side, 335
AutomaticallyGenerateDataBindings

property, TreeView control, 686
automaticSaveEnabled attribute, profile

element, 779
AutoPostBack property, list controls

capturing change event immediately, 193
creating list of files in directory, 624
data retrieval using ADO.NET, 515
greeting card generator example, 207
how postback events work, 195
page life cycle, 196

■INDEX896

8911INDEX.qxd 10/17/07 5:02 PM Page 896

repeated-value data binding, 551, 556
using with ObjectDataSource, 817

Autos window, Visual Studio, 126, 127
autosaves, custom data types, 779
AutoSize property, Accordion control, 883
AvailableFreeSpace property, DriveInfo class,

627
AVG function, SQL, 495

B
b element, 107, 108, 167

formatting in XHTML, 110
BackColor property

TextBox control, 173
WebControl class, 175

Background category
style settings, New Style dialog box, 409

backslash (\) character
creating file browser, 632
escaping special characters, 26
file paths in strings, 505, 619

BackupOperator role, 712
base keyword

custom exception classes, 263
BaseValidator class, 336
Basic mode, Windows authentication, 713
bezier curve

drawing with Graphics class, 395
Bin directory, 132

adding references to components, 797,
799

binary files
reading and writing with streams, 635–636

binary serialization
custom data types, 778

Binary value, serializeAs attribute, 774
BinaryFormatter class

serialization of custom data types, 779
BinaryReader class, 635
BinaryWriter class, 635
Bind method, TextBox control, 607
binding see data binding
Bitmap class

basic steps for using GDI+, 394
bitmaps

see also images
sizing bitmaps correctly, 394

bitwise arithmetic
creating list of files in directory, 624

Block category
style settings, New Style dialog box, 409

block-level scope, 44
blocks, 22
body element, 4, 111

ContentPlaceHolder control, 429
bold element see b element
Bold property, FontInfo class, 179

BookEntry class, 638
bool data type, 24
Boolean data type, 24, 70
Border category

style settings, New Style dialog box, 409
BorderColor property, WebControl class, 175
BorderStyle enumeration values, 176
BorderStyle property

Panel control, 204, 206
WebControl class, 176

BorderWidth property, WebControl class, 175
BoundField class

DataFormatString property, 584
DetailsView control, 612
GridView control column type, 580
properties, 581
SortExpression property, 597

BoundField element, GridView control, 582
Box category

style settings, New Style dialog box, 409
br element, 107, 108, 167

master pages, 435
breadcrumb navigation, 462
break keyword, switch statement, 42
break statement, loop structures, 45
breakpoints

commands in break mode, 124
customizing, 126
debugging large website, 125
saving, 126
single-step debugging, 122

Breakpoints window, Visual Studio, 125
browser type

custom caching control, 829
determining user’s browser, 541

browsers see web browsers
Brush object, specifying, 396
BulletedList control, 185–186

see also list controls
additional properties, 185
BulletStyle values supported, 186
DisplayMode property, 185
list controls compared, 182
rendering of text, 185
underlying HTML element, 173

BulletImageUrl property, BulletedList
control, 185

BulletStyle property, BulletedList control, 185
business layer, three-tier design, 791
business objects, 792
Button control

adding linked images, 150
aspx code creating, 188
CausesValidation property, 338, 341
CauseValidation property, 337
Click event, 191, 224
events and postbacks, 193

■INDEX 897

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 897

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

input tag underlying, 172
underlying HTML element, 172

button element, 138
button type, input element, 138
Button web control, 337
ButtonField class

CommandName property, 591
DetailsView control, 612
GridView control column type, 580
using data field as select button, 591

buttons
CausesValidation property, 335
controls with specific command names,

370
default button, 181
images as part of theme, 426–427

ButtonType property, GridView control, 590
Byte data type, 23

nature and behavior of data types, 70

C
C# language

accessibility keywords, 56
arrays, 26–28
blocks, 22
C#, VB and .NET languages, 11–14
case sensitivity, 20
choosing between .NET languages, 19
comments, 21
conditional logic, 40–42

if statement, 41
switch statement, 41–42

delegates, 49–50
enumerations, 29–30
escaping special characters, 26
importance of coding standards, 20
loop structures, 42–45
method overloading, 48
methods, 46–50
.NET data types, 23
object-based manipulation, 34–40

Array type/class, 39–40
DateTime type/class, 36–38
String type/class, 34–36
TimeSpan type/class, 36–38

overview of C# language, 19
parameters, methods, 47
special characters, 20
statement termination, 21
variable initialization and assignment,

24–26
variable operations, 30–34

advanced math, 31
type conversions, 32–34

variables, 22
Cache class

caching test, Cache object, 833–835

data caching, 832
expiry of Cache object, 832
Insert method, 832

creating cache dependency, 848
parameters, 833

inserting objects into cache, 832–833
support for dependencies, 832
thread-safety, 832

cache dependencies, 843–853
cache item dependencies, 844
file dependencies, 843
SQL Server 2000, 844–849
SQL Server 2005/2008, 849–853
using SQL cache dependencies, 845

cache invalidation
SQL Server 2000, 845, 846, 848
SQL Server 2005/2008, 849

cache notifications see notifications
cache profiles, 831
Cache property, Page class, 158, 832
CacheDependency class

cache item dependencies, 844
creating dependency for cached item, 833
creating instance, 843

CacheDuration property, data source
control, 839

CacheExpirationPolicy property, data source
control, 839

CacheKeyDependency property, data source
control, 839

CacheProfile attribute, OutputCache
directive, 831

caching, 821–853
ASP.NET, 823–824

self-limiting nature, 821
ASP.NET AJAX, 859
ASP.NET process explained, 144
cache dependencies, 843–853
cache profiles, 831
cached item expires immediately, 853
caching generic portion of page, 826
caching multiple versions of web page,

827–829
client-side caching, 825–826
custom caching control, 829–830
data caching, 832–843

caching in DataSet, 835–839
caching test, 833–835
description, 823
inserting objects into cache, 832–833

data source caching, 824
data source control caching, 839–843

caching with ObjectDataSource,
842–843

caching with SqlDataSource, 839–842
database queries, 822
disabling caching while testing, 825

■INDEX898

8911INDEX.qxd 10/17/07 5:02 PM Page 898

fragment caching, 823, 830
frequently used data, 822
output caching, 823, 824–831
OutputCache directive, 825
performance, 822
query strings and caching, 826–829
recompiling cached pages, 825
scalability, 822
session state scalability, 236
when to use, 822
which data to cache, 822

Calendar control, 355–362
adjusting styles, 358
Auto Format feature, 358
CalendarDay class properties, 359
configuring selection modes, 356
control tags in skin file, 425
events, 362
formatting, 357–358
highlighting an important date, 359
multiple date selection, 356
navigating from month to month, 355
properties, 361
properties for Calendar styles, 357
restricting dates, 358–362
retrieving selected day in code, 356

CalendarDay class, 359
CalendarExtender control, Ajax, 887
cancel button, UpdateProgress control,

874–876
Cancel property, MailMessageEventArgs

class, 754
CancelButtonClick event, Wizard control, 376
CancelButtonStyle property, Wizard control,

378
Caption/CaptionAlign properties

Calendar control, 361
GridView control, 584

case sensitivity
ASP.NET forms, 174
C#, 20, 23
programming languages compared, 20
SQL, 495
URL in site map, 451
web.config file, 164
XML, 651

casting object variables, 77–80
catch block see try ... catch ... finally blocks
CausesValidation property

Button class, 338, 341
client-side validation, 335
LinkButton control, 609
server-side validation, 335

CauseValidation property, Button class, 337
CellPadding property, Calendar control, 361
CellPadding property, GridView control, 584
Cells collection, GridViewRow control, 588

CellSpacing property, Calendar control, 361
CellSpacing property, GridView control, 584
certificate authorities, 719, 722
certificates, SSL, 719, 722

creating certificate request, 719–721
test certificates, 721

CGI (Common Gateway Interface)
scalability, 6

chains
exception chains, 253

change events
capturing change event immediately, 193
CtrlChanged method handling, 199
greeting card generator example, 207
onchange event, 195
page life cycle, 196
SelectedIndexChanged event, 192
ServerChange event, 191

ChangeExtension method, Path class, 620
ChangePassword control, 743
ChangePassword method, MembershipUser

class, 739
ChangePasswordQuestionAndAnswer

method, 739
Char data type, .NET, 23, 70
char data type, C#, 23
character literals

escaping special characters, 26
characters

character matching, 346
regular expression characters, 346

check boxes
Menu/TreeView controls compared, 475

CheckBox control
aspx code creating, 188
events and postbacks, 193
underlying HTML element, 172
validation, 352

checkbox type, input element
HTML server control class for, 138
related web control classes, 172, 173

CheckBoxField class
GridView control column type, 580

CheckBoxList control
see also list controls
caching in DataSet, 838
converting step into template, 752
events and postbacks, 193
list controls compared, 182
multiple selections, 183
repeated-value data binding, 545, 546
select tag underlying, 173
underlying HTML element, 173

CheckBoxStyle property, Login control, 746
checked block, 33
CheckedChanged event, 193
ChildNodes collection, 668

■INDEX 899

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 899

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

ChildNodes property, SiteMapNode class,
460

ChildNodesPadding property, TreeNodeStyle
class, 471

Choose Location dialog box, 90
class attribute, 417, 418
class library see .NET class library

alphabetized as NET
class members

adding functionality to classes, 796
class name, CSS, 414
classes, 53–66

adding functionality to, 796
ArrayList class, 28
assemblies and namespaces, 74
building .NET classes, 56–66

adding constructors, 61–62
adding events, 62–64
adding methods, 61
adding properties, 58–60
creating objects, 57–58
testing classes, 64–66

CacheDependency class, 844
casting object variables, 77–80
compiling components, 794–796
component-based programming, 793
creating class of static members, 77
creating components, 796
creating simple class, 55
data types behaving as value types, 70
Directory class, 620–625
DirectoryInfo class, 625–627
DriveInfo class, 627–628
events, 54
File class, 620–625
FileInfo class, 625–627
fully qualified names, 72
generics, 81–82
HTML server control classes, 138–140
HtmlContainerControl class, 157
HtmlControl class, 153, 156–157
HtmlInputControl class, 157
inheritance, 75–76
instance members, 55
Membership class, 737–738
MembershipUser class, 738–739
methods, 54
.NET types, 69
objects and classes, 54
Page class, 158
partial classes, 80–81
Path class, 619–620
properties, 54
Roles class, 757–758
serialization, 775
SiteMap class, 459–461

stateful or stateless design, 801, 802
static members, 55, 76–77
using stateful and stateful classes together,

804
value types and reference types, 66
Visual Studio Help reference, 71
web controls, 172–173, 174–182
WebControl class, 175–176
XML classes, 654–671
XmlDataDocument class, 688
XmlDocument class, 662–671
XmlTextReader class, 657–662
XmlTextWriter class, 654–656

clear element
removing connection strings, 768

Clear method, Array class, 40
Clear method, HttpSessionState class, 233
ClearTypeGridFit value, TextRenderingHint

property, 402
Click event

Button controls, 191
LinkButton control, 392
web controls providing and postbacks, 193

Click event, Button class
adding linked images, 151
cross-page postbacks, 224
greeting card generator example, 202

client-side caching, 825–826
client-side programming, 7, 195
client-side validation, 335
ClientValidationFunction property,

CustomValidator control, 351
Clone method, Array class, 70

copying an object, not a reference, 67
CloneNode method, XmlNode class, 669
Close method

connection classes, 510, 512
data reader classes, 512
File class, 634

closing tags, HTML control, 157
CLR (Common Language Runtime), 14–16

brief description, 9
IL and CLR, 14, 20

CLS (Common Language Specification), 12,
14

cmdUpdate_Click event handler, 204, 206
code

reusing web page markup, 381
writing code in Visual Studio, 112–120

adding event handlers, 113–115
automatic coloring of code, 120
automatic formatting of code, 120
code-behind class, 112–113
IntelliSense, 115–120

code blocks
structured exception handling, 251

■INDEX900

8911INDEX.qxd 10/17/07 5:02 PM Page 900

code fragmentation
problems with single-value data binding,

543
code reuse

component-based programming, 790
code transparency, 15
code view

switching to design view, 112
code-behind class

creating user controls, 382
currency converter example, 141
event handlers, 113, 142
Page class, 141
partial keyword, 141
using statements, 141
writing code in Visual Studio, 112–113

code-behind files
handling application events in, 162
page directive, 135
problems with single-value data binding,

543
user controls, 381

coding standard, 20
coding web forms, 88
CollapseImageUrl property, TreeView, 470
CollapseNavigationControls property

master page class, 442
collection classes

casting objects, 79
generics, 82
purpose of, 75
StateBag collection class, 212

collections
ASP.NET, 212
dictionary collections, 549–551
generic collections, 547
QueryString collection, 225
repeated-value data binding, 545, 549–551
ViewState collection, 212

Collections namespace, 546
color properties, web controls, 101
Color property, web control classes, 178–179
colors

ARGB color value, 178
greeting card generator example, 205, 206

colspan attribute, td tags, 439
column types, GridView control, 580
Combine method, Path class, 619, 620

creating file browser, 632
creating list of files in directory, 624

Command class
data providers, 502

command classes
CommandText property, 532
data retrieval using ADO.NET, 515
disposing of Command objects, 512
ExecuteNonQuery method, 517, 526

ExecuteReader method, 512
modifying data in database, 517–527
representing DELETE statement, 526–527
representing INSERT statement, 519–522
representing SELECT statement, 511–512
representing SQL statements, 511
representing UPDATE statement, 524–526
retrieving data, 511
using with data reader classes, 512

command column
editing GridView templates without,

609–610
Command event, LinkButton control, 392
Command object

repeated-value data binding, 558
CommandArgument property, button

controls, 605
CommandBuilder object

concurrency checking, 573
CommandField class

GridView control column type, 580
ShowDeleteButton property, 596
ShowEditButton property, 593

editing with GridView template, 606
ShowSelectButton property, 593, 594

CommandName property
button controls, 605
ButtonField class, 591
LinkButton class, 609

CommandText property, command classes,
532

comments, C#, 21
comments, XML, 166, 653
commit-as-you-go programming model,

Wizard control, 377
commit-at-the-end programming model,

Wizard control, 377
common data type system, 23
Common Gateway Interface (CGI), 6
Common Language Runtime see CLR
Common Language Specification (CLS), 12,

14
Common namespace, System.Data, 501
Compare method, String class, 40
CompareAllValues value, ConflictOptions

enumeration, 574
CompareValidator control, 334

control specific properties, 336
properties of BaseValidator class, 336
validated web form example, 348

comparison operators, 40
compilation

in-place compilation, 319
precompilation, 318

component-based programming
adding reference to components, 797–799
advantages of, 789–790

■INDEX 901

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 901

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

business objects, 792
classes, 793
classes and namespaces, 794–796
compiling components, 794
creating components, 793–801
data objects, 792
data-access components, 804–814

aggregate functions enhancement,
813–814

creating data-access component,
804–808

error handling enhancement, 812–813
using data-access component, 809–812

encapsulation, 792
ObjectDataSource control, 814–820
properties and state, 801–804
removing references, 799
stateful or stateless design, 802
terminology, 790–793
three-tier design, 790–792
using assembly references, 800
using components, 799
using project references, 800

components
data-access components, 804–814
debugging using Visual Studio, 812
simple component, 796
throwing exceptions without details, 813
using stateful and stateful classes together,

804
concurrency

database concurrency in web
applications, 485

concurrency checking
CommandBuilder object, 573
timestamps, 575
updating records with data source

controls, 573–575
conditional structures, 40–42

if statement, 41
logical operators, 40
switch statement, 41–42

conditional updates
UpdatePanel control, 865–866

configuration
ASP.NET configuration, 163–170
configuration inheritance, 165
database deployment, 318
databases, 486–490
multilayered configuration, 165
WAT (Website Administration Tool),

168–170
web.config file, 164–165
XCopy deployment, 317

configuration element, web.config file, 164
configuration files

accessing config files via IIS, 168

adjusting default membership connection
string, 729–731

changing settings for membership data
store, 731–735

debugging with Visual Studio, 121
XML and .NET, 647

ConflictDetection property, SqlDataSource
class, 574

ConflictOptions enumeration, 574
Connection class

data providers, 502
repeated-value data binding, 558

connection classes
Close method, 510, 512
ConnectionString property, 504
creating database connections, 504, 505
data retrieval using ADO.NET, 515
Dispose method, 510
Open method, 510, 808
using instance or static methods, 801

connection pooling, 808
connection strings

adjusting default membership connection
string, 729–731

AttachDBFilename property, 507
ConnectionString property, 505
ConnectionTimeout property, 506
data access, ADO.NET, 505–506
data provider differences, 502
data retrieval using ADO.NET, 514
Data Source property, 505
default membership connection string,

729
enhancing components with error

handling, 812
Initial Catalog property, 505
Integrated Security property, 505
LocalSqlServer connection string, 768
profiles, 768
properties, 505
SqlDataSource class, 562
storing connection strings, 508–509
User Instances property, 507

Connection Strings icon, IIS Manager, 315
connections

creating for ADO.NET data access,
504–511

data-access components, 804
ConnectionString property

connection classes, 504
connection strings, 505
SqlDataSource class, 563

connectionStringName attribute, add tag,
733

connectionStrings section, web.config file,
164, 508, 562

■INDEX902

8911INDEX.qxd 10/17/07 5:02 PM Page 902

ConnectionTimeout property, connection
strings, 506

constructors
adding constructors to .NET classes, 61–62
custom exception classes, 263
naming conventions, 61
overloading, 62

containers
HtmlContainerControl class, 157

containment, 75
content pages

connecting to master pages, 431–433
creating, based on master page, 429–431
default content, 436–437
master pages and, 405
multiple content regions in master pages,

433–436
no content regions in master page, 436
overriding title specified in master page,

432
overriding default content in master page,

436
viewing master pages, 428

Content tag, 438
connecting content pages to master

pages, 432, 433
ContentPlaceHolderID attribute, 433
overriding default content in master page,

436
Content View, IIS Manager, 308
ContentLength property, PostedFile class,

645
ContentPlaceHolder control

body element, HTML, 429
creating content pages, 430–431
creating master page, 428–429, 431
default content in master pages, 436
head element, HTML, 429
multiple content regions in master pages,

433–436
none in master page, 436
overriding default content, 436

ContentPlaceHolder region, 430, 431
ContentPlaceHolderID attribute, Content

tag, 433
ContentTemplate element

UpdatePanel control using, 862
Continue command, break mode, 124
ContinueDestinationPageUrl property,

CreateUserWizard control, 749
Control class

DataBind method, 538
DataMember property, 553
Visible property, 366

control classes
HTML elements underlying, 172

Control directive
creating user controls, 382

control extenders, 884
control parameters, 567
control prefixes, web controls, 182
control properties

configuring, 419
control tags in skin file, 425–426
handling control/theme conflicts, 422–423
parameter types, 567
single-value data binding setting, 542
skins and themes, 419

control tag
adding user controls, 383

control tree
tracing information, 284

ControlParameter control tag
creating master-details pages, 593
parameter types, 567

controls
see also web controls
Accordion, 880–883
adding to page dynamically at runtime,

144
AdRotator, 363–365
AlwaysVisibleControlExtender, 887
AnimationExtender, 887
applying style sheet rules, 417
ASP.NET AJAX Control Toolkit, 878–888
AutoCompleteExtender, 884–887
BulletedList, 185–186
Calendar, 355–362
CalendarExtender, 887
control extenders, 884
CreateUserWizard, 748–752
creating multiple skins for same control,

424–425
custom caching control, 829–830
data source controls, 559–575
DataView, 596
declaring, 114
DetailsView, 566–567, 610–613
DragPanelExtender, 887
DynamicPopulateExtender, 887
FileUpload, 643
FilteredTextBoxExtender, 887
FormView, 613–615
GridView, 577–610
HoverMenuExtender, 887
HTML forms, 5
HTML server controls, 133
ImageButton, 605
list controls, 182–186
ListSearchExtender, 887
ListView, 545, 577
Login, 743–748
LoginView, 759–761

■INDEX 903

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 903

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

Menu, 474–480
ModalPopupExtender, 887
multiple-view controls, 366–379
MultiView, 367–371
MutuallyExclusiveCheckboxExtender, 888
navigation controls, 385
NumericUpDownExtender, 888
ObjectDataSource, 814–820
Page class, 158
pages with multiple views, 366–367
PagingBulletedListExtender, 888
PasswordRecovery, 752–754
PasswordStrengthExtender, 888
PopupControlExtender, 888
Rating, 888
recalling names of controls, 116
repeated-value data binding, 544
ResizableControlExtender, 888
rich controls, 355
ScriptManager, 858–859
ScriptManagerProxy, 859
security controls, 742–761
server controls, 132–147
SiteMapPath, 462–467
SlideShowExtender, 888
SqlDataSource, 561–562
TabContainer, 888
Table, 186–191
TextBoxWatermark, 888
themes, 419–427

control tags in skin file, 425–426
handling control/theme conflicts,

422–423
third-party controls, 380
Timer, 876–877
TreeView, 467–474, 685–687
UpdatePanel, 860–871
UpdateProgress, 871–876
user controls, 381–394

ASP.NET file type describing, 131
creating, 382–384
independent user controls, 384–386
integrated user controls, 387–389
passing information with events,

391–394
user control events, 389–391

using HTML form element, 136
validation controls, 336–353
view state, 137
visibility of, 176
web controls, 133, 171–174
WebControl class, 175–176
Wizard, 372–379
WizardStep, 373–376
workings of ASP.NET controls, 65
Xml web control, 681–682

Controls collection, 190

Controls property, HtmlControl class, 156
Controls property, WebControl class, 176
ControlStyle property, BoundField class, 582
ControlStyle property, Wizard control, 378
ControlToValidate property, BaseValidator

class, 336
manual validation, 343

Conversion wizard, Visual Studio
migrating websites, 96, 97

conversions
type conversions, 32–34

Convert class, 34
static methods, 33

ConvertEmptyStringToNull property,
BoundField class, 582

cookieless attribute, sessionState tag, 237
cookieless setting, 237–240
CookieParameter control tag, 567
cookies, 228–231

anonymous profiles, 783
cookieless state limitations, 239
forms authentication, 697, 699, 706

destroying forms authentication cookie,
709

FormsCookieName property, 706
FormsCookiePath property, 706
GetAuthCookie method, 706
HttpCookie class, 229
HttpCookieMode enumeration, 237
IsCookieless property, 233
parameter types, 567
persistence, 229
persistent cookies, 708
removing, 230
retrieving cookies, 229
security, 228
session state using, 231
session tracking, 232
SetAuthCookie method, 706
setting cookies, 229
state management options compared, 247
suitability of storing information with, 634
timeouts, 699
tracing information, 285
users disabling cookies, 229
users requiring security cookies, 700
using cookies to store data, 230–231
validation for security cookie, 699

Cookies collection, 229
coordinates

x/y coordinates, 396
Copy method, DataSet class, 839
Copy method, File class, 621
Copy Web Site feature, 326–329
CopyTo method, FileInfo class, 627
COUNT function, SQL, 495
Count property, HttpSessionState class, 233

■INDEX904

8911INDEX.qxd 10/17/07 5:02 PM Page 904

counters program, 213
Create Access Rules link, WAT, 704
CREATE EVENT NOTIFICATION command,

849
Create method, DirectoryInfo class, 626, 627
Create method, FileInfo class, 626, 627
Create method, XmlReader class, 676
CreateAttribute method, XmlDocument

class, 666
CreateComment method, XmlDocument

class, 666
CreateDirectory method, Directory class, 620
CreatedUser event, CreateUserWizard

control, 749
CreateElement method, XmlDocument class,

666
CreateEventSource method, EventLog class,

270
CreateRole method, Roles class, 757
CreateSubdirectory method, DirectoryInfo

class, 626
CreateText method, File class, 633
CreateUser method, Membership class, 737
CreateUserError event, CreateUserWizard

control, 749
CreateUserIconUrl property, Login control,

748
CreateUserText property, Login control, 748
CreateUserUrl property, Login control, 746,

748
CreateUserWizard control, 748–752

adding custom steps, 749–750
ContinueDestinationPageUrl property,

749
converting step into template, 751, 752
description, 743
DisplaySidebar property, 750
events, 749
FindControl method, 752
FinishButtonClick event, 750
LoginCreatedUser property, 749
membership security controls, 748–752
membership with SQL Server 2005

Express, 727
NextButtonClick event, 751
property types, 749

CreatingUser event, CreateUserWizard
control, 749

CreationTime property, DirectoryInfo class,
626

CreationTime property, FileInfo class, 626
credentials

ASP.NET, 725
authentication, 696

credit card numbers
regular expression for, 347

cross-page postbacks, 219–224
getting more information from source

page, 221–224
cross-platform support, CLR, 15
cs files, 131
CSS (Cascading Style Sheets)

see also style sheets
applying style sheet rules, 417–419
creating style sheets, 414–416
inheritance, 407
introduction, 406
setting styles, 152
style attribute, 152
styles, 405

CSS class names
style sheet rules, 414

CSS Outline window, 416
CSS Properties window, 412–413

creating styles, 413
formatting properties, 413
style inheritance, 413–414

CSS rules, 414–415
applying style sheet rules, 417–419
CSS class name, 414
CSS Outline window, 416
limitations, 419
selectors, 416

CssClass property
applying style sheet rules, 417, 418

CtrlChanged method, page life cycle, 199
curly braces {}, 22

regular expressions, 346
currency converter

adding HTML server control code to,
140–143

adding linked images, 150–151
adding multiple currencies, 147–148
ASP.NET process explained, 144–146
converting HTML page to ASP.NET,

134–136
error handling, 146–147
event handling, 142–144
setting styles, 152
storing information in drop-down list,

148–150
Currency data type, 584
CurrencyConverter.aspx file, 140
CurrencyConverter.aspx.cs file, 141
CurrentNode property, SiteMap class, 459
CurrentNodeStyle property, SiteMapPath

control, 464
CurrentNodeTemplate property,

SiteMapPath control, 464, 466
curves

drawing with Graphics class, 395
filling with Graphics class, 396

■INDEX 905

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 905

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

custom cookies
state management options, 247

custom data types
automatic saves, 779
profiles and custom data types, 775–779
serialization, 778

custom error pages, 278–280
IIS custom errors, 314
targeting specific HTTP errors, 279–280
virtual directories, 313–314

custom event logs, 270–271
custom exception classes, 262–264

constructors, 263
custom logging class, 271–272
custom templates

defining with TemplateField class, 601
customer form

validated web forms, 347–352
customErrors element, web.config file, 165

asynchronous postbacks, 864
customProvider attribute, sessionState tag,

244
CustomValidator control

ClientValidationFunction property, 351
control specific properties, 336
description, 334
properties of BaseValidator class, 336
server-side validation, 351
ServerValidate event, 349
validated web form example, 348
ValidateEmptyText property, 352

D
\D regular expression character, 346
data

App_Data directory, 132
modifying data in database, 517–527

data access see ADO.NET data access
data adapter classes

data adapter commands, 530
Fill method, 530
properties, 530
selecting disconnected data, 530
updating disconnected data, 528

data binding, 537–576
binding multiple data source controls, 564
binding portions of site maps, 454–459

showing subtrees, 455–458
using different site maps in same file,

458–459
caching in DataSet, 838
creating file browser, 632
creating list of files in directory, 624
creating record editor, 554–559
data source controls, 559–575
determining user’s browser, 541
GridView control, 578, 610

guest book file access example, 638
hierarchical binding, 685–687
how data binding works, 538–539
HtmlControl class, 156
multiple binding, 548
nonhierarchical binding, 683–685
ObjectDataSource control, 816, 818, 820
other types of parameters, 567–568
page life cycle with, 561
parameterized commands, 565–570
reading XML using XmlTextReader, 660,

661
reasons for using data sets, 528
repeated-value data binding, 538, 544–559

with ADO.NET, 552–554
rich data controls, 577
setting parameter values in code, 568–570
single-value data binding, 538, 539–544
SiteMapPath control, 464
SqlDataSource class, 561–562
types of ASP.NET data binding, 538
using data-access component, 810
XML data binding, 682–687

data caching, 832–843
application state compared, 823
caching in DataSet, 835–839

GetDataSet method, 837–838
RetrieveData method, 836–837

caching test, 833–835
caching with ObjectDataSource, 842–843
caching with SqlDataSource, 839–842
data source caching, 824
data source control caching, 839–843
inserting objects into cache, 832–833

data controls
DetailsView control, 610–613
FormView control, 613–615
GridView control, 577–610

data layer, three-tier design, 791
Data namespace, 501
data namespaces, ADO.NET, 500–501
data objects

component-based programming, 792
Data property, XmlDataSource class, 687
data provider classes, 501–502

naming conventions, 502
data provider factories, 561

default factory, 562
data providers, 498

class derivation for, 499
.NET data providers, 499
SQL Server data provider, 498
third-party developers, 499
translating code between, 502

data reader classes
Close method, 512
data retrieval using ADO.NET, 515

■INDEX906

8911INDEX.qxd 10/17/07 5:02 PM Page 906

direct data access, 503
Read method, 512, 515
using with command classes, 512

data retrieval
Command object representing SELECT

statement, 511–512
using ADO.NET, 513–517

filling ListBox control, 514–515
retrieving records, 515–517

using data reader classes, 512
using data set classes, 527–536

data sets
GetDataSet method, 837–838
RetrieveData method, 836–837

data source caching, 824
data source controls, 559–575

automatic submission of parameters
collection, 572

binding multiple controls, 564, 566
caching properties, 839
caching with, 839–843
connection strings, 562
handling errors, 570–571
how data source controls work, 564–565
indicating parameters, 565
ObjectDataSource, 814–820

caching with, 842–843
other types of parameters, 567–568
page life cycle, 561
parameterized commands, 565–570
retrieving information about all profiles,

782
selecting records, 563
setting parameter values in code, 568–570
sorting and selecting at same time,

598–599
SqlDataSource, 561–562

caching with, 839–842
updates, 561
updating records, 571–575

concurrency checking, 573–575
Data Source property, connection strings,

505
data types

characters indicating data type, 25
.NET, 23, 69–70
object-based manipulation in, 34
profiles and custom data types, 775–779
reference types, 66–70
serialization, 775
state management options compared,

247, 248
value types, 66–70
variable prefixes, 24
variables and, 22

data-access components, 804–814
advantages for component-based

programming, 804
aggregate functions enhancement,

813–814
creating data-access component, 804–808
error handling enhancement, 812–813
using data-access component, 809–812

DataAdapter class
data binding with ADO.NET, 552
data providers, 502

database access
output caching, 825

database connections, 504–511
connection strings, 505–506
DataReader class, 512
file paths in strings, 505
number of connections, 504
opening/closing connections, 509–511
reasons for using data sets, 528
SQL Server authentication, 506
storing connection strings, 508–509
try ... catch ... finally blocks, 504
user instance connections, 507–508
verifying connections, 509
Windows authentication, 506–507

database queries
which data to cache, 822

databases
browsing and modifying in Visual Studio,

487–489
cancelling asynchronous requests to, 876
configuration, 486–490
connections, 804
connections and problems of state, 485
database access with web applications,

485–486
database concurrency in web

applications, 485
deployment configuration, 318
encapsulation, 804
introduction, 483
isolation from web page, 792
learning essential database concepts, 485
Microsoft support for, 486
modifying data in database, 517–527
obtaining sample databases, 486
relational model, 483
SQL basics, 490–498
stored procedures, 804
storing database files, 507

DataBind method
Control class, 538, 545
GridView control, 578, 838
ListBox control, 546
Page class, 538

repeated-value data binding with, 544

■INDEX 907

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 907

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

single-value data binding, 539, 541
timing of calling method, 541

XmlDataSource control, 683
DataBinder class

Eval method, 588
using GridView templates, 602

DataDirectory value, App_Data folder, 507
DataField property, BoundField class, 581
DataFile property, XmlDataSource class, 683
DataFormatString property

BoundField class, 581, 584
GridView control, 583

DataItem property, GridView/GridViewRow
controls, 588

DataKeyNames property, GridView control
creating master-details pages, 592
“Must declare the scalar variable . . . ”, 594

DataMember property, Control class
data binding with ADO.NET, 553
repeated-value data binding with list

controls, 545
TreeView control, 686

DataReader class
caching with SqlDataSource, 841
data binding with ADO.NET, 552
data providers, 502
retrieving data, 511
SqlDataSource choosing, 564

DataReader mode, DataSourceMode
property, 597

DataRelation class
adding objects to DataSet, 533, 534
data integrity restrictions, 535
defining relationships in data sets,

533–536
DataRow class

GetChildRows method, 534
GetParentRows method, 534
Rows collection, 530

DataSet class
adding DataRelation objects to, 533, 534
analogy with XmlDocument, 663
caching in DataSet, 835–839
caching with SqlDataSource, 841
Copy method, 839
creating data-access component, 805
data binding with ADO.NET, 552, 554
data caching, 823
defining relationships in data sets,

533–536
disconnected data access, 527–536
introduction, 498
reasons for using data sets, 528
retrieving data, 511
selecting disconnected data, 529–530

multiple tables, 531–532
SqlDataSource choosing, 564

updating disconnected data, 528
using data-access component, 810, 812
XML and .NET, 648

DataSet mode, DataSourceMode property,
597

DataSource property
GridView control, 578
repeated-value data binding with list

controls, 545
DataSourceID property

binding pages to site maps, 452
GridView control, 579
ListBox control, 564
Menu control, 474

DataSourceMode property, SqlDataSource
control

caching with SqlDataSource, 841
sorting with SqlDataSource, 597

DataTable class
caching in DataSet, 838
data binding with ADO.NET, 553
DataView control and, 596

DataTextField property, list controls, 553
DataValueField property, list controls,

551–552
DataView control, 596
date data types, format strings, 585
Date property

CalendarDay class, 359
DateTime class, 38

dates
highlighting important date with Calendar

control, 359
restricting dates in Calendar control,

358–362
SQL statements, 494

DateTime data type/class, 36–38
arithmetic operators, 37
nature and behavior of data types, 70
.NET, 24
profile serialization, 773
properties and methods, 37

Day property, DateTime class, 38
DayHeaderStyle property, Calendar control,

357
DayNameFormat property, Calendar control,

361
DayOfWeek property, DateTime class, 38
DayRender event, Calendar control, 359, 362
Days property, TimeSpan class, 38
DaysInMonth method, DateTime class, 38
DayStyle property, Calendar control, 357
DBUtil class

AddItem method, 818, 819
creating data-access component, 805, 808
GetCategories method, 815, 819
GetItems method, 816, 819

■INDEX908

8911INDEX.qxd 10/17/07 5:02 PM Page 908

using with ObjectDataSource, 815
debug attribute, compilation tag, 317
Debug window, Visual Studio, 43
debugging

component-based programming, 790
disabling caching while testing, 825
page tracing, 280–291

debugging, Visual Studio, 17, 120–127, 281
benefits, 88
breakpoints, 122
commands in break mode, 124
components using Visual Studio, 812
customizing breakpoints, 126
debugging large website, 125
running web application for first time, 137
single step debugging, 122–125
variable watch windows, 126–127
Visual Studio web server, 121–122

Decimal data type, 23
format string, 584
nature and behavior of, 70

deep language integration, 15
default button, web controls, 181–182
default content, 436–437
default namespace, 795
default page, setting, 313
default themes, 422
Default.aspx file, 64, 65

creating websites with Visual Studio, 91
root or current folder, 448

Default.aspx.cs file, 91
DefaultButton property

HtmlForm class, 181
Panel control, 182

DefaultError.aspx web page, 279
DefaultFocus property, form element, 181
DefaultMode property, DetailsView class, 818
defaultProvider attribute, membership

element, 732
defaultValue attribute, add tag, 771
delegates, 49–50

adding events to .NET classes, 62
delegate variables, 49, 50
events, 50
.NET types, 70

Delete method, Directory class, 620
Delete method, DirectoryInfo class, 626
Delete method, File class, 621
Delete method, FileInfo class, 626
DELETE statement, SQL, 498

command object representing, 517,
526–527

DeleteCommand property
data adapter classes, 530
SqlDataSource control, 563, 571, 572, 596

DeleteCommandType property,
SqlDataSource control, 563

Deleted/Deleting events
page life cycle, 561
SqlDataSource control, 570, 571

DeleteInactiveProfiles method,
ProfileManager class, 781

DeleteMethod property, ObjectDataSource
control, 816

DeleteProfile/DeleteProfiles methods
ProfileManager class, 781

DeleteRole method, Roles class, 757
DeleteUser method, Membership class, 737
denial-of-service attack, 645
deny rule, web.config file

forms authentication, 702
Windows authentication, 711

dependencies
Cache class support for, 832
cache dependencies, 843–853

SQL Server 2000, 844–849
SQL Server 2005/2008, 849–853

cache item dependencies, 844
file dependencies, 843

dependencies parameter
Insert method, Cache class, 833

deployment
database configuration, 318
deploying ASP.NET website, 316–323

additional configuration steps, 317–318
ASPNET/network service accounts,

319–320
code compilation, 318–319
using custom components, 317

deploying ASP.NET website with Visual
Studio, 323–329

copying website to remote web server,
326–329

creating virtual directory for new
project, 324–326

publishing website, 328–329
IIS security settings, 318
machine.config file, 318
projectless development, 91
seamless deployment model, 132
Windows account permissions, 318
XCopy deployment, 317

description attribute, add tag, 733
Description box

New Style dialog box, 410
deserialization

custom data types, 778
design view, 97

adding event handlers, 113
adding HTML, 102
adding web controls, 98, 99
configuring web controls, 100
switching to code view, 112

design, three-tier, 790–792

■INDEX 909

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 909

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

DestinationPageUrl property, Login control,
745, 748

DetailsView control, 610–613
AllowPaging property, 611
AutoGenerateDeleteButton property, 572
AutoGenerateEditButton property, 572
AutoGenerateInsertButton property, 572
AutoGenerateRows property, 566, 612
binding to, 568
brief description, 577
creating buttons, 612
DefaultMode property, 818
defining fields, 612–613
DetailsView with paging, 611
editing with, 573
how to use, 566–567
PagerSettings property, 611
PagerStyle property, 611
repeated-value data binding, 545
representing fields, 612
ShowHeader property, 612
using with ObjectDataSource, 817, 818,

819
DHTML

ASP.NET process explained, 144
EnableClientScript property, 336

dictionary collections
repeated-value data binding with, 549–551

Digest mode, Windows authentication, 713
digital certificates, SSL, 722
digits

regular expression characters, 346
direct data access, ADO.NET, 503–527
directives

Control directive, 382
Master directive, 431
OutputCache directive, 825
Page directive, 103–104
PreviousPageType directive, 221
Register directive, 383
Src directive, 383

directories
see also file system; virtual directories
application directories, 131–132
authorization rules for accessing, 701
configuration inheritance, 165
creating file browser, 628–632
retrieving information about, 618
reviewing directory contents, 622

Directory class, 620–625
DirectoryInfo class compared, 625
GetFiles method, 624
methods, 620
retrieving information about directories,

618
Directory property, FileInfo class, 627

DirectoryInfo class, 625–627
creating instance of, 627
Directory class compared, 625
GetDirectories method, 628, 632
GetFiles method, 628, 632, 642
methods, 626
Name property, 632
properties, 626
retrieving information about directories,

618
DirectoryName property, FileInfo class, 627
disabled accounts

membership data store, 742
Disabled property, HtmlControl class, 156
DisappearAfter property, Menu control, 477
disconnected data access, ADO.NET, 527–536

defining relationships in data sets,
533–536

selecting disconnected data, 529–530
multiple tables, 531–532

updating disconnected data, 528
Display property, BaseValidator class, 336,

339
DisplayMode property

BulletedList control, 185
ValidationSummary control, 340

DisplayRememberMe property, Login
control, 748

DisplaySideBar property
CreateUserWizard control, 750
Wizard control, 372

Dispose method
connection classes, 510
Graphics class, 397

DISTINCT keyword, SQL, 495
div element, 109, 111, 112

adding a style to a div, 408
applying style sheet rules, 418
currency converter example, 140
greeting card generator example, 199
grouping text and controls, 200
inserting formatted text into web page,

140
related web control classes, 173
using styled division, 411

DivideByZeroException class
overlapping exception handlers, 258
throwing exceptions, 260, 261

DivideNumbers method
nested exception handlers, 257
throwing exceptions, 260

division operator, 31
dll assemblies

creating components, 794
creating data-access component, 805

dll extension, 74

■INDEX910

8911INDEX.qxd 10/17/07 5:02 PM Page 910

DLL files
adding references to components, 798
Bin directory, 132

DNS (Domain Name Service), 298
DNS registry, 298, 299
do ... while loop, 45
doctypes

components and structure of web form,
104–106

configuring level of error checking, 119
creating frames pages, 106
default, 104
doctypes used in this book, 106
HTML standard, 105
omission of doctypes in this book, 148
XHTML 1.0 transitional, 104, 106
XHTML 1.1 standard, 105
XHTML strict, 105

document directory
solution files, 93

DOCUMENT object, 102
Document property, Xml web control, 681
DocumentContent property, Xml web

control, 681
DocumentSource property, Xml web control,

681
domain names, 298
doPostBack function, 195, 196
Double/double data types, 23, 70
DragPanelExtender control, Ajax, 887
drawing

see also dynamic graphics
antialiasing, 402
basic steps using GDI+, 394–397
custom images, 397–398
indicating pixel coordinates, 396
measuring pixels, 396
methods of Graphics class, 395
optimizing code for appearance or speed,

402
specifying Brush or Pen object, 396
x and y coordinates, 396

DrawXyz methods, Graphics class, 395, 398
DriveFormat property, DriveInfo class, 628
DriveInfo class, 627–628

retrieving information about drives, 618
DriveType property, DriveInfo class, 628
drop-down lists

element representing in HTML, 147
storing information in, 148–150

DropDownList control
see also list controls
events and postbacks, 193
list controls compared, 182
repeated-value data binding, 545, 546
select tag underlying, 173
selecting records with SqlDataSource, 564

underlying HTML element, 173
Duration attribute, OutputCache directive,

825
dynamic graphics, 394–403

see also GDI+
antialiasing, 402
basic drawing, 394–397
creating graphics context for images, 394
drawing custom images, 397–398
drawing methods of Graphics class, 395
image formats and quality, 400–403
indicating pixel coordinates, 396
measuring pixels, 396
optimizing drawing code for appearance

or speed, 402
placing custom images in web pages,

398–400
releasing resources, 397
specifying Brush or Pen object, 396
x and y coordinates, 396

dynamic pages, output caching, 827
dynamic styles, Menu control, 476
DynamicHoverStyle property, Menu control,

476
DynamicItemTemplate property, Menu

control, 477
DynamicMenuItemStyle property, Menu

control, 476
DynamicMenuStyle property, Menu control,

476
DynamicPopulateExtender control, Ajax, 887
DynamicSelectedStyle property, Menu

control, 476

E
e parameter, event handlers, 142, 154
e-commerce websites

security requirements, 691
uses of database with ASP.NET, 484

e-mail
preventing message from being sent, 754
regular expression for e-mail address, 346
retrieving message content, 754

EditIndex property, GridView control, 606
editing with GridView template, 606–610

editing with validation, 607–608
editing without command column,

609–610
EditItemTemplate mode, TemplateField

templates, 603, 604
EditRowStyle, GridView control, 585
elements

HTML document, 4
tags and, 107
web control tags, 173–174

elements, HTML see HTML elements

■INDEX 911

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 911

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

elements, XHTML, 107–109
attributes, 110

elements, XML see XML elements
ellipse

drawing with Graphics class, 395
filling with Graphics class, 396

else keyword, if statement, 41
emphasis element, 108
empty element, 447, 651
EmptyDataRowStyle property, GridView

control, 585
EmptyDataTemplate property, GridView

control, 604
EmptyDataTemplate class, 604
EnableCaching property

data source control caching, 839
SqlDataSource class, 564

EnableClientScript property
BaseValidator class, 336, 341
RangeValidator control, 338

enabled attribute
application-level tracing, 291

Enabled property
BaseValidator class, 336
Timer control, 877
WebControl class, 176

enablePasswordReset attribute, add tag, 734
enablePasswordRetrieval attribute, add tag,

734
EnableTheming property, controls, 423
EnableViewState property

HtmlControl class, 156
Label control, 337
Page class, 158
web controls, 212
WebControl class, 176

enableViewStateMac attribute, pages
element, 214

encapsulation, 789
component-based programming, 792
data-access components, 804

encoding, HTML, 160–161
encryption

configuring membership provider, 733
forms authentication, 706
query strings transferring information in

URLs, 225
SSL, 721, 722
view state data

enabling view state encryption, 215
hash code, 214

end of line character, 21
EndElement node

reading XML, 661
EndRequest event, Application class, 162
EndsWith method, String class, 36

Enum class
GetNames method, 205

enumerations, 29–30
brief description, 387
ErrorCode enumeration, 30
.NET types, 70
UserType enumeration, 29
web control classes, 177–178

equal to operator (==), 40
equality testing

reference types, 67
String class, 70
value types, 67

error checking, Visual Studio benefits, 88
error detection

checking for potential error conditions,
254

testing specific error conditions, 127
Visual Studio, 16

error handling
see also errors; exception handling
creating file browser, 632
creating list of files in directory, 625
currency converter, 146–147
data-access component enhancement,

812–813
guest book file access example, 642
HTML server controls, 146–147
partial refreshes using Ajax, 864–865
testing database connections, 509

Error List window, Visual Studio, 118
error modes, 277–278
error pages, 275–280

ASP.NET behavior, 278
custom error pages, 278–280, 313–314
exception handling and, 251
.NET process on occurrence of error, 250,

251
targeting specific HTTP errors, 279–280

error underlining, Visual Studio, 117–119
ErrorCode enumeration, 30
ErrorMessage property, BaseValidator class,

336, 342
errors

see also error handling; exceptions
404 Not Found error, 448
Application_Error event, 163
CLR and, 15
common errors, 249–251
custom exception classes, 262–264
narrowing conversions, 32
.NET process on occurrence of, 250
page tracing, 280–291
reporting during debugging, 260
specifying special error settings, 165
throwing exceptions without details, 813

escaping special characters, 26

■INDEX912

8911INDEX.qxd 10/17/07 5:02 PM Page 912

Eval method
DataBinder class, 588, 602
SiteMapPath control, 464

event bubbling, 605
event handlers

adding events to .NET classes, 63, 64
adding in design view, 113
adding in Properties window, 113
code-behind class, 142
creating different event handler, 163
creating for HTML server controls, 142
creating/attaching event handlers, 114
e parameter, 154
greeting card generator example, 207
page directive, 135
parameters, 142, 154
ToString method, 142
writing code in Visual Studio, 113–115

event handling
AdRotator control, 365
automatic event wireup, 143
caching multiple versions of web page,

828
currency converter, 142–144
handling events in GridView template, 605
HTML server controls, 142–144
manual event wireup, 143
On prefix, 143
page life cycle, 199
redirecting user to new web page, 159
ServerClick event, HtmlInputButton, 140
TableTest class, 189
validated web form example, 349
validating XML document against

schema, 677
Visual Studio, 143

event handling web page, 143
event logs

custom logging class, 271–272
custom logs, 270–271
default log size, 266
increasing log size, 268
potential problems with, 266
retrieving log information, 273–275
security, 269
viewing Windows event logs, 265–268
when to use, 266, 272
writing to, 268–269

event tracker application
watching events in page life cycle, 196–199

Event Viewer tool
custom event logs, 271
viewing Windows event logs, 265, 266
writing to event logs, 268

event-driven programming model, 64
EventArgs class/object

e parameter, event handlers, 154

passing information with events, 391, 392
user control events, 389, 390

EventHandler delegate, 390
EventLog class, 270, 273
events

adding events to .NET classes, 62–64
application events, 161–163
AutoPostBack property, 193
capturing change event immediately, 193
delegates, 50
HTML server controls, 133, 153
HtmlInputImage control, 154–155
introduction to classes, 54
.NET Framework, 389
order of events in page processing, 191,

192
Page.Load event, 148
passing information with events, 391–394
postback events, 195–196
server code reacting immediately to

events, 191
ServerChange event, 154
ServerClick event, 153
user control events, 389–391
watching events in page life cycle, 196–199
web controls, 193, 199

automatic postbacks, 191–196
web forms, 140
XmlDocument class, 669

exception chains, 253
Exception class, 252–253

catching exceptions inherited from, 256
error types, 252
inheritance from, 252
InnerException property, 253
properties and methods, 252

exception classes
custom exception classes, 262–264

exception handling, 251–260
see also error handling; exceptions
catching specific exceptions, 255–256
determining which exceptions to catch,

256
error pages and, 251
exception chains, 253
Exception class, 252–253
nested exception handlers, 257–258
no active exception handler exists, 258
overlapping exception handlers, 257
partial refreshes using Ajax, 864
structured exception handling, 251, 260
testing occurrence of exceptions, 258–260
try ... catch ... finally blocks, 254–255
validated web form example, 350
when to use exception handlers, 260

exception objects
InnerException property, 251

■INDEX 913

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 913

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

throwing exceptions, 261
writing trace information, 289

Exception property
SqlDataSourceStatusEventArgs class, 571

exception types, 251
ExceptionHandled property

SqlDataSourceStatusEventArgs class, 571
exceptions

see also errors; exception handling
logging exceptions, 264–275

custom logging class, 271–272
custom logs, 270–271
event log security, 269
retrieving log information, 273–275
viewing Windows event logs, 265–268
writing to event logs, 268–269

“Must declare the scalar variable . . . ”, 594
null reference exception, 249
testing occurrence of exceptions, 258–260
throwing exceptions, 260–264
throwing exceptions without details, 813

Exceptions dialog box, 252
exe extension, assembly files, 74
ExecuteNonQuery method, command

classes, 517, 526
ExecuteReader method, command classes,

512
Exists method, Directory class, 620
Exists method, File class, 621
Exists property, DirectoryInfo class, 626
Exists property, FileInfo class, 626
ExpandDepth property, TreeView control,

469
ExpandImageUrl property, TreeView control,

470
explicit casting, 32
Exponential data type, 584
Express Edition see SQL Server 2005 Express
extensibility, 88
Extension property, DirectoryInfo class, 626
Extension property, FileInfo class, 626
external style sheets, 406

F
FadeTransitions property, Accordion control,

880
FailureText property, Login control, 745, 747
FailureTextStyle property, Login control, 746
Features View, IIS Manager, 308
Fields dialog box, 583
fields, declaring, 56
file access

cookies, 634
simplest level of file access, 618
using files with web applications, 618
web applications, 617

File and Directory classes, 620

file browser, creating, 628–632
File class, 620–625

Close method, 634
CreateText method, 633
FileInfo class compared, 625
GetAttributes method, 624
methods, 621, 636
Open method, 634, 635
OpenRead method, 635
OpenText method, 634
OpenWrite method, 635
quick access methods, 636–637
retrieving file/directory information, 618

file dependencies, 843
file mappings, registering, 305–306
file permissions

accessing files without, 625
file system, 618–632

creating file browser, 628–632
Directory class, 620–625
DirectoryInfo class, 625–627
DriveInfo class, 627–628
File class, 620–625
FileInfo class, 625–627
.NET classes retrieving information about,

618
Path class, 619–620
retrieving file/directory information, 618

File System option
copying website to remote web server, 327

file type, input element, 139
file types

ASP.NET, 130–131
restricted file types, 695

file uploads
allowing file uploads, 642–645
denial-of-service attack, 645
maximum size of, 645

FileAttributes enumeration, 624
FileInfo class, 625–627

creating a file list, 625
creating instance of, 627
creating list of files in directory, 625
File class compared, 625
methods, 626, 627
Name property, 632
properties, 626, 627
retrieving file/directory information, 618

FileName property, PostedFile class, 645
FileNotFoundException class, 253
files

allowing file uploads, 642–645
authorization rules for accessing, 701–702
creating file browser, 628–632
creating list of files, 622
limitations using with web applications,

617

■INDEX914

8911INDEX.qxd 10/17/07 5:02 PM Page 914

reading and writing with streams, 632–642
binary files, 635–636
guest book example, 637–642
quick file access methods, 636–637
text files, 632–634

retrieving file size, 622
retrieving information about, 618

FileStream class, 397
FileSystemInfo base class, 625
FileUpload control, 643
Fill method, data adapter classes, 530
FillXyz methods, Graphics class, 396, 398
FilteredTextBoxExtender control, Ajax, 887
filtering, 841, 842
finally block see try ... catch ... finally blocks
FindControl method

CreateUserWizard control, 752
Page class, 343

FindInactiveProfilesByUserName method,
ProfileManager class, 781

FindProfilesByUserName method,
ProfileManager class, 781

FindSiteMapNode method, SiteMapProvider
class, 459

FindUsersByEmail method, Membership
class, 738

FindUsersByName method, Membership
class, 738

FindUsersInRole method, Roles class, 758
FinishButtonClick event

CreateUserWizard control, 750
Wizard control, 377

FinishCompleteButtonStyle property, Wizard
control, 378

FinishPreviousButtonStyle property, Wizard
control, 378

FirstBulletNumber property, BulletedList
control, 185

FirstChild property, XmlNode class, 668
FirstDayOfWeek property, Calendar control,

361
FirstName property, Profile class, 772
Fixed Decimal data type, 584
flat files

reading and writing with streams, 632–642
binary files, 635–636
quick file access methods, 636–637
text files, 632–634

float data type, 23
Flush method, StreamWriter class, 633
Focus method, web control classes, 181
Font category

style settings, New Style dialog box, 409
Font property

configuring web controls, 102
web control classes, 179–180
WebControl class, 176

FontFamily class, 204
FontInfo class, 179–180
fonts

drawing custom images, 398
greeting card generator example, 204, 205
using Names property, 180

FontUnit type, 179
Footer class, 387, 388
footer user controls

independent user controls, 384
integrated user controls, 387, 388

footers
reusing footers in web pages, 383

FooterStyle property
BoundField class, 582
GridView control, 585

FooterTemplate mode, TemplateField
templates, 603

FooterText property, BoundField class, 581
for loop, 43
foreach loop, 44–45
ForeColor property

BaseValidator class, 336
configuring web controls, 101
TextBox control, 173
ValidationSummary control, 340
WebControl class, 175

foreign keys, 533
Form class

IsValid property, 338, 341
form collection, 286
form element, 5, 109, 111

ASP.NET controls using, 136
currency converter example, 140
DefaultFocus property, 181
enclosing elements in, 134
HTML server control class for, 138

format strings, 584, 585
formatting in XHTML, 110
formatting properties

CSS Properties window, 413
styles, 407

FormParameter control tag, 567
forms

cookie security, 231
parameter types, 567
validated web forms, 347–352

forms authentication, 697–710
access control rules, 700
authentication tag, web.config file, 699
authorization rules, 699–703

access for specific users, 702–703
accessing specific directories, 701
accessing specific files, 701–702

identities, 709
implementing, 698
login page, 706–710

■INDEX 915

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 915

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

retrieving user identity, 708
signing out, 709

membership, 725
membership data store, 725–742
profiles, 767
restricting anonymous user access, 699
setting up using the WAT, 703–704
setting up website to use, 726
web.config settings, 699

forms authentication cookie
destroying, 709
properties relating to, 706, 708

forms tag, 699, 726
FormsAuthentication class, 706, 707
FormsCookieName property,

FormsAuthentication class, 706
FormsCookiePath property,

FormsAuthentication class, 706
FormsIdentity class

identity objects, 709
Ticket property, 709

FormsView class
using with ObjectDataSource, 817

FormView control, 613–615
AllowPaging property, 614
brief description, 577
introduction, 610
repeated-value data binding, 545

fragment caching, 830
caching generic portion of page, 826
description, 823

frame targets, AdRotator class, 364
frames

master pages compared, 427
frames pages

doctypes creating, 106
FramesPerSecond property, Accordion

control, 883
friendly URLs, 461
FROM clause, SQL, 493
FromImage method, Graphics class, 394
FromXyz methods, TimeSpan class, 38
FTP directory

reviewing directory contents, 622
FTP Site option

copying website to remote web server, 327
FullName property, DirectoryInfo class, 626
FullName property, FileInfo class, 626
fully qualified class names, 72
functions, methods using, 808

G
GAC (Global Assembly Cache), 317
garbage collection, 57
Garbage.jpg file, 64

GDI+
see also dynamic graphics
basic steps for using, 394
creating graphics context for images, 394
drawing custom images, 397
drawing methods of Graphics class, 395
introduction, 394
optimizing drawing code for appearance

or speed, 402
General data type, 585
GeneratePassword method, Membership

class, 738
generic collections, 547
Generic namespace, System.Collections, 82
generics, 81–82
GeoTrust certificate authority, 719
get accessor

adding properties to .NET classes, 58, 59
automatic properties, 60

GetAllInactiveProfiles method,
ProfileManager class, 781

GetAllProfiles method, ProfileManager class,
781

GetAllRoles method, Roles class, 757
GetAllUsers method, Membership class, 738,

740
GetAttribute method, XmlElement class, 666,

669
GetAttributes method, File class, 621, 624
GetAuthCookie method,

FormsAuthentication class, 706
GetBaseException method, Exception class,

252
GetCategories method, DBUtil class, 805,

815, 816, 819
GetChildRows method, DataRow class, 534
GetCreationTime method, Directory class,

620
GetCreationTime method, File class, 621
GetCurrentDirectory method, Directory

class, 621
GetDataSet method, 837–838
GetDescriptionFromTitle method, 478
GetDirectories method

Directory class, 621
DirectoryInfo class, 626, 628, 632

GetDirectoryName method, Path class, 620
GetDrives method, DriveInfo class, 628
GetElementById method, XmlDocument

class, 670
GetElementsByTagName method,

XmlDocument class, 670
GetFileName method, Path class, 619, 620,

645
GetFileNameWithoutExtension method,

Path class, 620

■INDEX916

8911INDEX.qxd 10/17/07 5:02 PM Page 916

GetFiles method
Directory class, 621, 624
DirectoryInfo class, 626, 628, 632, 642

GetFullPath method, Path class, 620
GetHierarchcialView method,

XmlDataSource class, 685
GetHtml method, 61
GetInfo method, 800
GetItems method, DBUtil class, 805, 808, 816,

817, 819
GetLastAccessTime method, Directory class,

620
GetLastAccessTime method, File class, 621
GetLastWriteTime method, Directory class,

620
GetLastWriteTime method, File class, 621
GetLength method, Array class, 39
GetLogicalDrives method, Directory class,

621
GetLowerBound method, Array class, 39
GetNames method, Enum class, 205
GetNames web method

AutoCompleteExtender control using, 885
GetNumberOfInactiveProfiles method,

ProfileManager class, 781
GetNumberOfProfiles method,

ProfileManager class, 781
GetNumberOfUsersOnline method,

Membership class, 738
GetParent method, Directory class, 621
GetParentRows method, DataRow class, 534
GetPassword method, MembershipUser

class, 739
GetPathRoot method, Path class, 620
GetProfile method, Profile class, 779, 784
GetPropertyValue method, ProfileBase class,

771
GetRedirectUrl method,

FormsAuthentication class, 706
GetRolesForUser method, Roles class, 758
GetUpperBound method, Array class, 39
GetUser method, Membership class, 737, 738
GetUserNameByEmail method, Membership

class, 738
GetUsersInRole method, Roles class, 758
GetVaryByCustomString function, 830
GIF image format, 400
global application events, 162
global application file, 131
global resources

App_GlobalResources directory, 132
global themes, 420
Global.asax application file, 829
Global.asax event handler, 245
Global.asax file, 131, 162–163
GlobalSign certificate authority, 719

graphics
dynamic graphics, 394–403

basic drawing, 394–397
drawing custom images, 397–398
image formats and quality, 400–403
placing custom images in web pages,

398–400
embedding dynamic graphics, 399

Graphics class
creating graphics context for images, 394
Dispose method, 397
drawing methods of, 395
DrawXyz methods, 395, 398
FillXyz methods, 396, 398
FromImage method, 394
indicating pixel coordinates, 396
measuring pixels, 396
SmoothingMode property, 402
TextRenderingHint property, 402

greater-than operator (>), 40, 494
greeting card generator example, 199–208
grid layout feature, Visual Studio, 100
GridLines property, GridView control, 584
GridView control, 577–610

Auto Format feature, 639
AutoGenerateColumns property, 582, 782
automatic column generation, 578–579
automatic paging feature, 599
BoundField column type, 580
column types, 580
configuring columns, 581–582
creating scrollable GridView, 584
DataBind method, 838
DataFormatString property, 583
DataItem property, 588
DataKeyNames property, 594
DataSourceID property, 579
defining columns, 579–583
displaying full list of users in web page,

782
EditIndex property, 606
editing with GridView, 593–596, 606
EmptyDataTemplate property, 604
format strings, 584
formatting GridView, 583–589

configuring styles with Visual Studio,
587–588

formatting fields, 584–585
using styles, 585–588

formatting properties, 584
formatting specific values, 588–589
generating columns with Visual Studio,

582–583
guest book file access example, 637, 639
linking to ObjectDataSource, 816, 817
nonhierarchical binding, 683
PagerTemplate property, 604

■INDEX 917

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 917

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

paging, 599–601
repeated-value data binding, 545
RowCommand event, 605
RowDataBound event, 588
selecting GridView row, 589–593

adding select button, 590–591
creating master-details pages, 591–593
using data field as select button, 591

Sorted event, 598
sorting and selecting at same time,

598–599
sorting GridView, 596–599
styles, 585
templates, 601–610

adding controls to templates, 605
editing in Visual Studio, 604
editing with GridView template,

606–610
editing with validation, 607–608
editing without command column,

609–610
handling events in GridView template,

605
multiple templates, 603–604

using data-access component, 810, 812
GridViewRow control, 588
GridViewRowEventArgs class, 588
groups

profile groups, 775
guest book example

reading and writing with streams, 637–642
Guest role, 712

H
<h1>, <h2>, ... elements, 107, 108
handling errors

data source controls, 570–571
handling exceptions see exception handling
HasExtension method, Path class, 620
hash code

encryption of view state data, 214
hashing passwords

configuring membership provider, 733
HashPasswordForStoringInConfigFile

method
FormsAuthentication class, 706

Hashtable collection, 547, 550
head element, 4, 111

ContentPlaceHolder control, 429
HTML server control class for, 139
runat="server" attribute, 111

HeaderImageUrl property, BoundField class,
581

headers
master pages, 428
reusing headers in web pages, 383
VaryByHeader attribute, 830

headers collection, 285
HeaderStyle property

BoundField class, 582
GridView control, 585
Wizard control, 378

HeaderTemplate mode, TemplateField
templates, 603

HeaderText property
BoundField class, 581
ValidationSummary control, 340

heading (<h1>, <h2>, ...) elements, 108
Height property, WebControl class, 176
Help index

determining which exceptions to catch,
256

HelpLink property, Exception class, 252
HelpPageIconUrl property, Login control, 748
HelpPageText property, Login control, 748
HelpPageUrl property, Login control, 748
hex code

inserting special characters, 26
hidden type, input element, 137, 139
hierarchical binding, 685–687
horizontal layout

Menu/TreeView controls compared, 475
horizontal line element, 109
HorizontalPadding property, TreeNodeStyle

class, 471
hosting services, 316
Hour property, DateTime class, 38
Hours property, TimeSpan class, 38
HoverMenuExtender control, Ajax, 887
HoverNodeStyle property, TreeView control,

472
hr element, 109
href attribute, a element, 110
HRef property, HtmlAnchor class, 153
HTML

adding in Visual Studio, 102
attributes, 110
converting HTML page to ASP.NET,

134–136
evolution of web development, 3–6
references to HTML in this book, 105
reusing web page markup, 381
special characters, 160
tutorial resources, 5
XHTML and, 105

HTML controls see HTML server controls
HTML document, 4

web form markup, 102–103
html element, 111
HTML elements, 107–109

applying style sheet rules, 415, 417, 418
compared to XML elements, 650
input tag, 172
object interface, 133

■INDEX918

8911INDEX.qxd 10/17/07 5:02 PM Page 918

ScriptManager control, 858
select tag, 173
server control classes, 138–140
transforming into server controls, 136

HTML encoding
text containing special characters,

160–161
HTML forms, 5

evolution of web development, 3–6
HTML server control classes, 138–140

properties, 139
HTML server controls, 133

adding code to currency converter,
140–143

adding to page dynamically at runtime,
144

converting HTML page to ASP.NET page,
134–136

creating event handlers for, 142
default buttons, 182
error handling, 146–147
event handling, 142–144
EventArgs object, 154
events, 153
inheritance, 153
InnerText property, 160
OnServerClick attribute, 142
postbacks, 191
representing HTML input controls, 135
runat="server" attribute, 136
ServerChange event, controls providing,

154
ServerClick event, controls providing, 154
Style collection, 152
transforming HTML elements into, 136
web controls compared, 171

HTML tables, 438, 440
HTML tags see HTML elements
HtmlAnchor class, 153

description, 138
HRef property, 153
properties, 139
ServerClick event, 154

HtmlButton class, 138
HtmlContainerControl class, 157
HtmlControl class, 156–157

inheritance from, 153, 156
HtmlDecode method, HttpServerUtility

class, 161
HtmlEncode method, HttpServerUtility class,

160, 161
HtmlEncode property, BoundField class, 582
HtmlForm class, 138, 140

DefaultButton property, 181
HtmlGenericControl class, 139, 140
HtmlHead class, 139
HtmlImage class, 138, 139, 153, 437

HtmlInputButton class, 138, 140, 142
HtmlInputCheckBox class, 138, 139
HtmlInputControl class, 157
HtmlInputFile class, 139
HtmlInputHidden class, 139
HtmlInputImage class, 139, 140, 154–155
HtmlInputPassword class, 138
HtmlInputRadioButton class, 138, 139
HtmlInputReset class, 138
HtmlInputSubmit class, 138
HtmlInputText class, 138, 140
HtmlSelect class, 139, 140, 148

repeated-value data binding, 545, 546
HtmlTable class, 138
HtmlTableCell class, 138
HtmlTableRow class, 138
HtmlTextArea class, 139, 140
HtmlTitle class, 139
HTTP cookie, 699
HTTP errors, 279–280
HTTP headers, 285, 830
HttpApplicationState class, 245
HttpCookie class, 229
HttpCookieMode enumeration, 237
HttpForbiddenHandler class, 695
HttpRequest class, 158
HttpResponse class, 158, 159
HttpServerUtility class

HtmlDecode method, 161
HtmlEncode method, 160, 161
Server property, Page class, 158
Transfer method, 159
URL encoding, 228
UrlDecode method, 161
UrlEncode method, 161

HttpSessionState class, 232, 233
HyperLink control, 185

independent user controls, 384
query strings transferring information in

URLs, 225
underlying HTML element, 172
user control events, 390

HyperLinkField class, 580
hyperlinks, 159
HyperLinkStyle property, Login control, 746

I
i element, 108, 110
IButtonControl interface, 182

PostBackUrl property, 219
icons

drawing with Graphics class, 395
ID attribute, input element, 136
IDataSource interface, data source controls,

559
identities, forms authentication, 709
identity objects, 709

■INDEX 919

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 919

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

Identity property, User class, 709
forms authentication, 708
Windows authentication test, 716

IEnumerable interface, 545
if statement, 41
IIS (Internet Information Services), 300–308

accessing config files via IIS, 168
ASP.NET security model, 692–695
ASPNET account, 319

changing ASPNET account, 320–321
changing network service account,

321–322
checking if IIS installed, 301
choosing authentication method, 714
configuring Windows authentication, 716
creating certificate request, 720
creating test certificate, 721
custom errors, 314
deployment configuration, 318
handling ASP file request, 296
how web servers work, 296
installing

IIS 5 on Windows XP, 301–302
IIS 6 in Windows Server 2003, 302
IIS 7 in Windows Server 2008, 305
IIS 7 in Windows Vista, 304

network service account, 319
registering ASP.NET file mappings,

305–306
verifying ASP.NET installation, 306–308
versions, 300–301
Windows authentication, 710, 713–715

IIS Manager
Application Settings icon, 315
changing network service account, 321
Connection Strings icon, 315
IIS Manager for IIS 5, 309
IIS Manager for IIS 6, 309
IIS Manager for IIS 7, 308, 309
managing websites with IIS Manager,

308–316
ASP.NET configuration, 314–316
configuring virtual directories, 312–316
creating virtual directory, 310–312
custom error pages, 313–314
setting default page, 313

Profile icon, 316
Roles icon, 316
Users icon, 316
Session State icon, 315

IIS web server, 710
IL (Intermediate Language), 12–14

CLR and, 14, 20
code transparency, 15

Image class
placing images in web pages, 398
Save method, 396, 398

Image control
adding linked images, 150
img tag underlying, 172
underlying HTML element, 172
using instead of img tag, 465

image element, 108
image type, input element

HTML server control class for, 139
related web control classes, 172

ImageButton control
adding clickable image link by adding, 605
input tag underlying, 172

ImageClickEventArgs object
e parameter, HtmlInputImage, 154, 155

ImageField class
GridView control column type, 580

images
adding linked images, 150–151
creating graphics context for, 394
drawing custom images, 397–398
drawing with Graphics class, 395
image formats and quality, 400–403
images as part of theme, 426–427
placing custom images in web pages,

398–400
saving to valid stream, 397
sizing bitmaps correctly, 394

ImageSet property, TreeView control, 467,
470

ImageUrl element, Advertisement File, 364
ImageUrl property, TreeNodeStyle class, 470
img element, 108

attributes, 110
HTML server control class for, 138
master pages and relative paths, 437
placing images in web pages, 398
related control classes, 172
using an Image control instead, 465

Impersonate method, WindowsIdentity class,
718

impersonation, 717–718
Impressions element, Advertisement File,

364
in-place compilation, 319
in-place conversion, 96
indenting code, Visual Studio, 120
independent user controls, 384–386
IndexOf method, Array class, 40
IndexOf method, String class, 36
infinity

NegativeInfinity value, 257
PositiveInfinity value, 257

inheritance
classes, 75–76
configuration inheritance, 165
CSS (Cascading Style Sheets), 407
HTML server controls, 153

■INDEX920

8911INDEX.qxd 10/17/07 5:02 PM Page 920

HtmlContainerControl class, 157
HtmlControl class, 153, 156
Page class, 158
properties using, 407
style inheritance, 413–414
web controls, 175
web pages, 158

Init method, Page class
cross-page postbacks, 224
page life cycle, 561

Initial Catalog value, connection strings, 505,
507

initialization, variables, 24–26
inline styles, creating, 406–411
InnerException property, Exception class,

251, 252, 253
custom exception classes, 264

InnerHtml property, HtmlContainerControl
class, 157

InnerText property
HTML server controls, 160
HtmlContainerControl class, 157

InnerText property, XmlNode class, 669
InnerXml property, XmlNode class, 669
InProc value, mode attribute, 241
input controls

Focus method, 181
HtmlInputControl class, 157

input element
FileUpload control representing, 643
HTML server control classes for, 138, 139
ID attribute, 136
OnServerClick attribute, 142
related control classes, 172, 173
representing HTML input controls, 135

Insert method, Cache class, 832, 833, 848
INSERT statement, SQL, 497

command object representing, 517,
519–522

Insert method, String class, 36
InsertAfter/InsertBefore methods

XmlDocument class, 666
XmlNode class, 669

InsertCommand property
data adapter classes, 530
SqlDataSource control, 563, 571, 572

InsertCommandType property,
SqlDataSource class, 563

Inserted/Inserting events
page life cycle, 561
SqlDataSource control, 570, 571

InsertItemTemplate mode, TemplateField
templates, 603

InsertMethod property, ObjectDataSource
control, 816, 818

InsertVisible property, BoundField class, 581

installation
verifying ASP.NET installation, 306–308

InstalledFontCollection class, 204
instance methods

DBUtil class, 805
using instance or static methods, 801

instances, classes, 55
adding constructors to .NET classes, 62
file and directory access, 618

instantiation
creating objects of .NET classes, 57–58

InstructionText property, Login control, 746,
747

InstructionTextStyle property, Login control,
746

int data type, 23
Int16 data type, 23
Int32 data type/class, 23

nature and behavior of, 70
.NET class library, 34
Parse method, 34, 350
TryParse method, 350

Int64 data type, 23
integers, division of, 31
Integrated mode, Windows authentication,

713
Integrated Security property, connection

strings, 505
integrated user controls, 387–389
integrated Windows authentication, 506
IntelliSense, Visual Studio, 17, 115–120

automatic coloring of code, 120
automatic formatting of code, 120
automatically importing namespaces,

119–120
error underlining, 117–119
member list, 116–117
outlining, 115–116

interfaces
HTML server controls, 133
.NET types, 70
object interface for HTML elements, 133
web control user interface, 171

internal keyword, 56
internal style sheets, 406
Internet

evolution of web development, 3–7
Internet Explorer

quirks mode, 104
script debugging, 121

Internet hosting service, 316
Internet Information Services see IIS
Interval property, Timer control, 876
IP addresses, 297, 298, 299
IsAnonymous property, ProfileInfo class, 781
ISAPI extension, 296

■INDEX 921

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 921

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

IsApproved property, MembershipUser class,
742

IsCookieless property, HttpSessionState
class, 233

IsEnabled property, Trace class, 282
IsInRole method, User class

forms authentication, 708
restricting access based on roles, 758, 759
Windows authentication, 710

IsLeapYear method, DateTime class, 38
IsNewSession property, HttpSessionState

class, 233
ISO Sortable Standard data type, 585
isolation, 7
IsOtherMonth property, CalendarDay class,

359
IsPathRooted method, Path class, 620
IsPostBack property, Page class, 158

populating list control, 148
repeated-value data binding, 552

IsReady property, DriveInfo class, 628
IsSelectable property, CalendarDay class, 359
IsToday property, CalendarDay class, 359
IsUserInRole method, Roles class, 758
IsValid property, BaseValidator class, 336
IsValid property, Form class, 338, 341
IsWeekend property, CalendarDay class, 359
italic element, 108
Italic property, FontInfo class, 179
item parameter

Insert method, Cache class, 833
Items property, HtmlSelect class, 140, 148
ItemStyle property, BoundField class, 582
ItemTemplate class, 601, 602
ItemTemplate mode, TemplateField

templates, 603
IUSER account, Windows authentication, 710
IUSR account

Anonymous authentication mode, 713
ASP.NET security, 695
non-ASP.NET security, 693

J
J#, 14
JavaScript

AbortPostBack function, 875
Ajax pages using, 856, 857
ASP.NET AJAX, 857
ASP.NET process explained, 144
ASP.NET using client-side abilities of, 195
EnableClientScript property, 336
how validation works, 338
linking to ASP.NET AJAX JavaScript

libraries, 858
script debugging, 121

JavaScript functions
doPostBack function, 195, 196

Join method, String class, 36
JPEG image format, 400

K
key parameter

Insert method, Cache class, 833
key press events

Ajax pages using JavaScript, 856
automatic postbacks and, 193

KeyPress event, 334
Keyword element, Advertisement File, 364
KeywordFilter property, AdRotator control,

364
keywords

accessibility keywords, 46, 47, 56
base, 263
break, 42
else, 41
internal, 56
new, 57–58
out, 69
partial, 80, 81, 114, 141
private, 46, 56
protected, 56
public, 46, 56
ref, 68
static, 76, 77
this, 116, 127, 540
value, 59
var, 26, 74

knowledge bases, 484
KnownColor enumeration, 205

L
Label control

AssociatedControlID property, 181
EnableViewState property, 337
how validation works, 337
independent user controls, 385
refreshing label with partial update,

861–864
Text property, 274, 541
underlying HTML element, 172

LabelStyle property, Login control, 746
LAN (local area network), 297, 298
language integration, 15
languages

choosing between .NET languages, 19
page directive indicating, 135

LastAccessTime property, DirectoryInfo
class, 626

LastAccessTime property, FileInfo class, 626
LastActivityDate property

Profile class, 773
ProfileCommon class, 780
ProfileInfo class, 781

LastChild property, XmlNode class, 668

■INDEX922

8911INDEX.qxd 10/17/07 5:02 PM Page 922

LastIndexOf method, Array class, 40
LastIndexOf method, String class, 36
LastUpdatedDate property

Profile class, 773
ProfileCommon class, 780
ProfileInfo class, 781

LastWriteTime property, DirectoryInfo class,
626

LastWriteTime property, FileInfo class, 626
Layout category

style settings, New Style dialog box, 410
layouts

frames, 427
Menu/TreeView controls compared, 475
table-based layouts for master pages,

438–441
ldf files, 507
LeafNodeStyle property, TreeView control,

472, 473
Length property, Array class, 39
Length property, FileInfo class, 627
Length property, String class, 35
less-than operator (<), 40, 494
LevelMenuItemStyles collection, 476
LevelSelectedStyles collection, 476
LevelStyles collection, TreeView control, 473
LevelSubMenuStyles collection, 476
li element, 109
lifetime

state management options compared,
247, 248

LIKE operator, SQL, 494–495
line break element, 107, 108, 167, 435
line breaks

master pages, 435
whitespace, 108

line termination, 21
lines

drawing with Graphics class, 395
link element, 417
LinkButton control, 185

CausesValidation property, 609
Click event, 392
Command event, 392
CommandName property, 609
underlying HTML element, 172
user control events, 390

LinkClicked event, 390, 391, 393
LinkClickedEventArgs class, 391, 392
LinkClickedEventHandler delegate, 392
LinkMenu control, 384, 386, 389
links

independent user controls, 385
LINQ to XML, 688
list binding see repeated-value data binding
List category

style settings, New Style dialog box, 410

List collection
creating group of objects, 660
generics, 82

list controls, 182–186
AutoPostBack property, 551, 556
binding Text or Value property, 554
BulletedList control, 185–186
data binding with ADO.NET, 553
DataTextField property, 553
DataValueField property, 551–552
Items property, 148
multiple-select list controls, 183–184
repeated-value data binding, 545–547
SelectedIndex property, 182
validation, 352

list item element, 109
ListBox control

see also list controls
AutoPostBack property, 515, 624, 817
data retrieval using ADO.NET, 514–515
DataBind method, 546
DataSourceID property, 564
events and postbacks, 193
list controls compared, 182
multiple selections, 183
repeated-value data binding, 545, 546–547
select tag underlying, 173
SelectedItem property, 551
SelectedValue property, 816, 818
underlying HTML element, 173

ListItem control
properties, 183
Selected property, 183
storing information in drop-down list, 148

ListSearchExtender control, Ajax, 887
ListView control, 545, 577
literals, 343, 344
Load event, Page class

application state, 245
DataBind method, 538
greeting card generator example, 202
integrated user controls, 388
page life cycle, 196, 561
populating drop-down list at runtime, 148
repeated-value data binding, 546, 555
retaining member variables using view

state, 215
setting value of properties, 156
single-value data binding, 540

Load event, UserControl class, 382, 387
Load method, Page class, 224
Load method, XmlDocument class, 667
Load method, XslCompiledTransform class,

678
LoadControl method, Page class, 384
Local IIS option, 327

■INDEX 923

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 923

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

local resources
App_LocalResources directory, 132

Local Service account, IIS Manager, 322
Local System account, IIS Manager, 322
local themes, 420
local variable, 56
localhost

localhost domain, 276
loopback alias, 298

localOnly attribute, 292
Locals window, Visual Studio, 126, 127
LocalSqlServer connection string, 729, 768
location

creating websites with Visual Studio, 90
Location attribute, OutputCache directive,

825
location tag, web.config file, 701
Lock method, Application state collection,

246
Log method, page life cycle, 199
LoggedIn event, Login control, 744
LoggedInTemplate section, LoginView

control, 759
logging events see event logs
logging exceptions, 264–275

viewing Windows event logs, 265–268
logging in

forms authentication, 706
Windows authentication, 710

logging out, forms authentication, 706, 709
logging tools, .NET Framework, 265
LoggingIn event, Login control, 744
logical operators, 40
Login control, 743–748

Authenticate event, 745
CreateUserUrl property, 746
events, 744, 745
formatted Login control, 747
InstructionText property, 746
membership security controls, 743–748
PasswordRecoveryUrl property, 746
properties, 747
recovering lost passwords, 746
registering new users, 746
Remember Me check box, 744
style properties, 745, 746

login page
default, 699
forms authentication, 706–710

default value of LoginUrl, 699
retrieving user identity, 708
signing out, 709

Windows authentication, 716
LoginButtonImageUrl property, Login

control, 747
LoginButtonStyle property, Login control,

746

LoginButtonText property, Login control, 747
LoginButtonType property, Login control,

747
LoginCreatedUser property,

CreateUserWizard control, 749
LoginError event, Login control, 744
LoginName control, 743
LoginStatus control, 743
loginUrl attribute, 699
LoginView control, 759–761

description, 743
membership security controls, 759–761
RoleGroups tag, 760, 761
setting content for roles, 758
showing different content with, 760
ViewChanged/ViewChanging events, 760

long data type, 23
Long Date and Long Time data type, 585
Long Date and Short Time data type, 585
Long Date data type, 585
loop structures, 42–45

break statement, 45
do ... while loop, 45
for loop, 43
foreach loop, 44–45
while loop, 45

loopback alias, URL, 298
Luhn algorithm, 347

M
machine.config file

accessing via IIS, 168
adjusting default membership connection

string, 729
authenticating users, 700
changing ASPNET account, 320
configuration inheritance, 166
deployment configuration, 318
LocalSqlServer connection string, 768
membership section defaults, 734
multilayered configuration, 165
view state and web farms, 300

machineKey element, 300
MailMessageEventArgs class

Cancel property, 754
Manage Access Rules link, WAT, 704
manageability, component programming,

790
manual event wireup, 143
manual validation, 341–343
many-to-many relationships, 531
mapping URLs, 461–462

SiteMapPath control, 462–467
markup

indicating type of markup, 104
reusing web page markup, 381

Master directive, 431

■INDEX924

8911INDEX.qxd 10/17/07 5:02 PM Page 924

master pages, 427–444
binding master page to site map, 452–454
br tag, 435
code in master pages, 442
connecting content pages to, 431–433
content pages and, 405
creating content pages based on, 429–431
creating master page, 428–429
default content, 436–437
description, 405
frames compared, 427
including formatting in, 436
including replaceable items, 436
interacting programmatically with,

442–444
line breaks, 435
Master directive, 431
multiple content regions, 433–436
nesting, 442
no content regions in, 436
overriding title specified in, 432
placing ScriptManager control in, 859
relative paths and, 437–438
Select Master Page option, 95
table-based layouts, 438–441
using parameters in master-details page,

569
viewing directly, 428
whitespace, 435

Master property, Page class, 443
master-details pages, creating, 591–593
MasterPageFile attribute, Page directive, 432
MasterPages folder, 432, 437
Math class, 31
math operations, 31
MAX function, SQL, 495
MaxDataBindDepth property, TreeView

control, 458, 469
maxInvalidPasswordAttempts attribute, add

tag, 734
maxOccurs attribute, XSD documents, 675
maxRequestLength setting, web.config file,

645
mdf files, 507
measurements

web control properties using, 176–177
media sites

uses of database with ASP.NET, 484
member list, Visual Studio, 116–117
member variables

declaring, 56
retaining using view state, 215–217
session state example, 233

members
adding functionality to classes, 796
introduction to classes, 54

membership
authentication with membership, 741–742
default connection string, 729
default enable for new website, 727
role-based security, 725, 755–761

creating and assigning roles, 755–758
LoginView control, 759–761
restricting access based on roles, 758

security controls, 725, 742
CreateUserWizard control, 748–752
Login control, 743–748
LoginView control, 759–761
PasswordRecovery control, 752–754

SQL Server 2005 Express, 727–728
SQL Server, using full version of, 729–731
user record management, 725

Membership class, 737–738
authentication with membership, 741
creating users with, 735–737
CreateUserWizard control, 727
GetAllUsers method, 740
GetUser method, 738
how Membership class works, 739–741
methods, 737
read-only properties, 738
security controls, 743
UpdateUser method, 737, 738, 742
ValidateUser method, 741

membership data store, 725–742
configuring membership provider,

731–735
creating manually, 730
creating users with WAT, 735
disabled accounts, 742
Membership class, 737–738
MembershipUser class, 738–739
reasons for not using, 726
transferring large number of user

accounts, 737
membership element, 732
membership provider, 732
membership section, machine.config file,

734
MembershipCreateStatus enumeration, 737
MembershipUser class, 738–739

how Membership class works, 739–741
IsApproved property, 742
methods, 738
ResetPassword method, 742
security controls, 743
UnlockUser method, 742

MemoryStream object
using PNG, 401

Menu control, 474–480
compared to TreeView control, 475
DataSourceID property, 474
description, 451

■INDEX 925

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 925

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

dynamic styles, 476
independent user controls, 385
properties, 477
static styles, 476
StaticDisplayLevels property, 476
StaticSubMenuIndent property, 476
styles, 476–477
templates, 477–480

MenuHost.aspx web page, 385
MenuItem class

Text property, 477
Message property, Exception class, 252
metacharacters, regular expressions, 343–344
metalanguage, XML as, 650
method overloading, 48
methods, 46–50

accessibility keywords, 46, 47
adding methods to .NET classes, 61
brief description, 35
creating static methods, 76
delegates, 49–50
description, 61
introduction to classes, 54
invoking methods, 47
parameters, 47
static methods, 31
using instance or static methods, 801

MigrateAnonymous event, ProfileModule
class, 784

migrating anonymous profiles, 784–785
migrating websites

from previous version of Visual Studio, 96
web projects, 92

Millisecond property, DateTime class, 38
Milliseconds property, TimeSpan class, 38
MIN function, SQL, 495
MinimumPrefixLength property

AutoCompleteExtender control, 885
minOccurs attribute, XSD documents, 675
minRequiredNonalphanumericCharacters

attribute, 734
minRequiredPasswordLength attribute, add

tag, 733
Minute property, DateTime class, 38
Minutes property, TimeSpan class, 38
mixed-mode authentication, 506
ModalPopupExtender control, Ajax, 887
mode attribute options

customErrors section, web.config file, 278
mode attribute, sessionState tag, 241, 243
Mode property, HttpSessionState class, 233
mode setting

session state configuration, 241–244
Modify Style dialog box, 415
Month and Day data type, 585
Month property, DateTime class, 38

mostRecent attribute
application-level tracing, 292

mouse events
Ajax pages using JavaScript, 856
automatic postbacks and, 193

Move method, Directory class, 621
Move method, File class, 621
MoveTo method, DirectoryInfo class, 626
MoveTo method, FileInfo class, 626
MSBuild utility, 92
MSDN website, 88
MSIL (Microsoft Intermediate Language),

12–14
multidimensional arrays, 27
multilayered exception handlers, 251
MultiLine value, TextBox control, 173
multiple binding, 548
multiple postbacks, 212
multiple templates, GridView control,

603–604
multiple users

using files with web applications, 617
multiple views, web pages with, 366–367

Wizard control, 379
multiple-select list controls, 183–184
multiple-view controls, 366–379

MultiView control, 367–371
Wizard control, 372–379

multitargeting, Visual Studio, 90
MultiView control, 367–371

ActiveViewIndex property, 370
command names, 370
creating views, 368–369
moving between views, 372
SetActiveView method, 370
showing views, 370–371

munged URL, 238
MutuallyExclusiveCheckboxExtender

control, Ajax, 888
MyLogger custom logging class, 271–272

N
name attribute, add tag

configuring membership provider, 733
forms authentication settings, 699
profile properties, 771
web control tags, 173

Name property
DirectoryInfo class, 626, 632
DriveInfo class, 628
FileInfo class, 626, 632
FontInfo class, 179, 180
XmlTextReader class, 657

Names property, FontInfo class, 179, 180
namespace prefixes, XML, 673
namespaces, 71–73

ADO.NET data namespaces, 500–501

■INDEX926

8911INDEX.qxd 10/17/07 5:02 PM Page 926

assemblies and, 74
automatically importing, 119–120
compiling components, 795–796
default namespace, 795
defining, 72–73
fully qualified class names, 72
importing, 73
naming, 796
nested namespaces, 796
Visual Studio Help reference, 71
XML namespaces, 671–673

naming conventions
constructors, 61
data provider classes, 502
data type variable prefixes, 24
fully qualified class names, 72
namespaces, 796
private members of class, 57
property accessors, 58
public members of class, 57
using files with web applications, 617
XML namespaces, 672

narrowing conversions, 32–33
NavigateUrl element, Advertisement file, 364
navigation

404 Not Found error, 448
ASP.NET navigation with site maps, 446
breadcrumb navigation, 462
components, 445
independent user controls, 384
master pages, 427
website navigation, 445–480

Menu control, 474–480
site maps, 445–462
SiteMapPath control, 462–467
TreeView control, 467–474

navigation buttons
pages with multiple views, 366

navigation controls, 385
binding master page to site map, 452
binding navigational controls, 456
changing appearance of, 446
interacting programmatically with master

pages, 442
Menu control, 474–480
navigation components, 445
SiteMapPath control, 462–467
templates not supported by, 467
TreeView control, 467–474

navigation properties, SiteMapNode class,
460

NavigationButtonStyle property, Wizard
control, 378

NavigationStyle property, Wizard control, 378
NegativeInfinity value, 257
nested exception handlers, 257–258

nesting
master pages, 442
siteMap elements, 448, 449

.NET
data provider factories, 562
multitargeting, 90
XML and .NET, 647–648

.NET assemblies, 74
GAC (Global Assembly Cache), 317

.NET class library, 9, 16
adding references, 797
ADO.NET data namespaces, 500–501
Array type/class, 39–40
assemblies, 74
browsing through exceptions, 252
component-based programming, 789, 793
creating components, 793, 794
DateTime type/class, 36–38
determining which exceptions to catch,

256
Directory class, 620–625
DirectoryInfo class, 625–627
DriveInfo class, 627–628
File class, 620–625
FileInfo class, 625–627
generics, 81
Int32 type/class, 34
namespaces, 71–73
naming class library projects, 794
.NET types, 23, 69–70
Path class, 619–620
retrieving file/directory information, 618
String type/class, 34–36
TimeSpan type/class, 36–38
ToString method, 34

.NET components
Bin directory, 132

.NET Framework, 9–17
building .NET classes, 56–66

adding constructors, 61–62
adding events, 62–64
adding methods, 61
adding properties, 58–60
creating objects, 57–58
testing classes, 64–66

classes, 53–66
static members, 55

CLR (Common Language Runtime), 14–16
events, 389
evolution of web development, 3–7
file access, 617
GDI+, 394
logging tools, 265
object-based manipulation, 34–40
predefined exception classes, 252
structured exception handling, 251

■INDEX 927

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 927

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

value types and reference types, 66–70
Visual Studio, 16–17

.NET languages, 14
C#, VB and .NET, 11–14
choosing between .NET languages, 19
CLS (Common Language Specification),

12, 14
compiling straight to machine code, 14
data type variable prefixes, 24
data types, 23
description, 9
installing, 20
Intermediate Language (IL), 12–14
language compilation in .NET, 13
third-party languages, 20

.NET Profile icon, IIS Manager, 316

.NET Roles icon, IIS Manager, 316

.NET Users icon, IIS Manager, 316
network service account

changing, 321–322
deploying ASP.NET website, 319–320
giving limited privileges to, 323
IIS Manager changing, 322
permissions, 320

networks, 297
DNS (Domain Name Service), 298

new keyword, 57–58
New Style dialog box, 408

Description box, 410
Preview box, 410
style categories, 409

New Web Site dialog box
creating virtual directory, 324, 325
creating websites, 89, 90

NextButtonClick event
CreateUserWizard control, 751
Wizard control, 377

NextMonthText property, Calendar control,
361

NextPrevFormat property, Calendar control,
361

NextPrevStyle property, Calendar control,
357

NextSibling property, SiteMapNode class, 460
NextSibling property, XmlNode class, 668
NextView command name, MultiView

control, 371
NodeIndent property, TreeView control, 468,

470, 471
nodes

adding content, 669
adding/removing, 669
applying styles to node levels in TreeView,

473–474
applying styles to node types in TreeView,

472–473
ChildNodes collection, 668

finding related nodes, 668
manipulating node attributes, 669
manipulating XML nodes, 668
Menu/TreeView controls compared, 475
node spacing TreeView styles, 471
working with content as string data, 669

Nodes collection, XmlNode class, 683
nodes, XML, 657

XmlDocument class inserting, 666
NodeSpacing property, TreeNodeStyle class,

470
NodeStyle property, SiteMapPath control,

464
NodeStyle property, TreeView control, 472
NodeTemplate property, SiteMapPath

control, 464, 466
NodeType property, XmlTextReader class,

657
NodeWrap property, TreeView control, 470
NoExpandImageUrl property, TreeView

control, 470
nonbreaking space, 108, 160
nonhierarchical binding, 683–685
Northwind database, obtaining, 486
not equal to operator (!=), 40
notifications

cached item expires immediately, 853
CREATE EVENT NOTIFICATION

command, 849
enabling Service Broker, 851
failed notifications, 852
notifications not received, 852
SQL Server 2000, 845–848
SQL Server 2005/2008, 849–851, 853

NotSupportedException
caching with ObjectDataSource, 842

Now property, DateTime class, 37
null reference exception, 249

overlapping exception handlers, 258
NullDisplayText property, BoundField class,

582
NullReferenceException class, 253
number sign (#) character in URLs, 228
numeric format strings, 584
NumericUpDownExtender control, Ajax, 888

O
Object/object data types, 24
object interface, HTML elements, 133
object model, 171
object walker syntax, 179
object-based manipulation, 34–40

Array type/class, 39–40
DateTime type/class, 36–38
String type/class, 34–36
TimeSpan type/class, 36–38

■INDEX928

8911INDEX.qxd 10/17/07 5:02 PM Page 928

object-oriented programming
assemblies, 74
casting object variables, 77–80
classes, 53–66

inheritance, 75–76
static members, 55, 76–77

generics, 81–82
namespaces, 71–73
partial classes, 80–81
structured exception handling, 251
value types and reference types, 66–70

ObjectDataSource control, 560, 814–820
caching properties, 839
caching with, 842–843
classes ObjectDataSource can understand,

815
creating cache dependency, 849
data component usability rules, 815
selecting records, 815, 816
supplying an extra parameter, 820
TypeName property, 815
updating records, 817–820
using instead of SqlDataSource, 579
using method parameters, 816–817
XyzMethod properties, 816

objects
adding constructors to .NET classes, 62
casting object variables, 77–80
classes and objects, 54
copying an object, not a reference, 67
creating objects of .NET classes, 57–58
storing custom objects in view state,

217–218
streamlined object creation, 74

ODBC data provider, 499
Odbc namespace, System.Data, 501
Off error mode, 278, 279
Off value

mode attribute, sessionState tag, 241
ol element, 109

related web control classes, 173
OldValuesParameterFormatString property

SqlDataSource class, 574
OLE DB data provider, 499
OleDb namespace, System.Data, 501
OleDbCommand class see command classes
OleDbConnection class see connection

classes
OleDbDataAdapter class see data adapter

classes
OleDbDataReader class see data reader

classes
On error mode, 278, 279
On prefix, event handling, 143
onchange attribute, web controls, 195
onclick attribute, web controls, 195
one-to-many relationship, 533

OnServerClick attribute, input element, 142
Open method, connection classes, 510
Open method, File class, 634, 635
Open method, SqlConnection class, 808
OpenRead method, File class, 635
OpenText method, File class, 634
OpenWrite method, File class, 635
operations

math operations, 31
type conversions, 32–34
variable operations, 30–34

operators
arithmetic operators, 30
comparison operators, 40
logical operators, 40
shorthand assignment operators, 31

option element
populating list control, 147, 148

or operator (||), 40
Oracle data provider, 499
OracleClient namespace, System.Data, 501
ORDER BY clause, SQL, 493, 494
ordered list element, 109
OtherMonthDayStyle property, Calendar

control, 357
out keyword, 69
OuterXml property, XmlNode class, 669
Outline window, CSS, 416
outlining, Visual Studio, 115–116
output automatically tailored, 172
output caching, 823, 824–831

cache profiles, 831
caching and query string, 826–829
caching multiple versions of web page,

827–829
client-side caching, 825–826
custom caching control, 829–830
database access, 825
dynamic pages, 827
fragment caching, 823, 830
OutputCache directive, 825
user-specific information and, 827

output parameters, 69
OutputCache directive, 825

cache profiles, 831
caching multiple versions of web page,

828
custom caching control, 829, 830
Duration attribute, 825
fragment caching, 831
Location attribute, 825
SqlCacheDependency property, 849
VaryByParam attribute, 826, 827

OutputCacheLocation enumeration, 825
outputCacheProfiles section, web.config file,

831
Overline property, FontInfo class, 179

■INDEX 929

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 929

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

overloading
constructors, 62
GetItems method, 808
method overloading, 48

OverwriteChanges value
ConflictOptions enumeration, 574

P
p element, 107, 108
PadLeft/PadRight methods, String class, 36
Page class, 158

Cache property, 832
code-behind class, 112, 141
DataBind method, 538, 539
events, 764
FindControl method, 343
inheritance, 158, 381
inheritance chain, 382
Init method, 224, 561
IsPostBack property, 148, 552
Load event, 148, 156, 215, 388, 555, 561
Load method, 224
LoadControl method, 384
Master property, 443
partial keyword, 114
PreRender event, 215, 217, 224, 561
PreviousPage property, 220, 222, 224
Profile property, 779
properties, 158
RegisterRequiresViewStateEncryption

method, 215
Response property, 159
Server property, 159
StyleSheetTheme property, 427
Theme property, 427
TransactionCount variable, 539, 541
Unload event, 217
User property, 708
Validate method, 341
ViewState property, 212

page design, Visual Studio, 16
Page directive

applying theme to entire website, 423–424
components and structure of web form,

103–104
connecting content pages to master

pages, 432
description, 135
MasterPageFile attribute, 432
StyleSheetTheme attribute, 422, 424
Theme attribute, 421, 422, 424
Title attribute, 432
TraceMode attribute, 291
ViewStateEncryptionMode property, 215

page life cycle, 196–199
data binding, 561
profiles, 764

Page property, HtmlControl class, 156
Page property, WebControl class, 176
page tracing, 280–291

application-level tracing, 291
disabling tracing, 281
enabling tracing, 280–281
tracing information, 281–287

control tree, 284
cookies, 285
form collection, 286
headers collection, 285
query string collection, 287
request details, 283
server variables, 287
session or application state, 285
trace information, 284

writing trace information, 287–291
PageIndex property, GridView control, 600
pageOutput attribute, 292
PagerIndexChanged property, GridView

control, 600
PagerIndexChanging property, GridView

control, 600
PagerSettings property, DetailsView control,

611
PagerSettings property, GridView control,

600
PagerStyle property, DetailsView control, 611
PagerStyle property, GridView control, 585,

600
PagerTemplate class, 604
PagerTemplate property, GridView control,

604
pages see web pages
pages element

enableViewStateMac attribute, 214
pages with multiple views

MultiView control, 367–371
navigation buttons, 366
Wizard control, 372–379

PageSize property, GridView control, 599
Page_Load method

event handling in web page, 143
manual event wireup, 143

paging
automatic paging feature, 599
DetailsView control, 611
GridView control, 599–601
performance, 601

PagingBulletedListExtender control, Ajax,
888

Panel control
DefaultButton property, 182
greeting card generator example, 199
underlying HTML element, 173
validation groups, 352

■INDEX930

8911INDEX.qxd 10/17/07 5:02 PM Page 930

panels
stacking panels in web page, 880

paragraph element, 108
parameter types, 567
parameterized commands, 522, 524

data source controls, 565–570
other types of parameters, 567–568
setting parameter values in code, 568–570

parameters
control parameters, 567
data control’s automatic submission of,

572
indicating parameters, 565
methods, 47
output parameters, 69
passing by reference, 68
passing by value, 68
using in master-details page, 569

Parent property, DirectoryInfo class, 626
Parent property, HtmlControl class, 156
Parent property, WebControl class, 176
parent-to-child relationship, 533
ParentLevelsDisplayed property,

SiteMapPath control, 463
ParentNode property, SiteMapNode class,

460
ParentNode property, XmlNode class, 668
ParentNodeStyle property, TreeView control,

472, 473
Parse method, Int32 class, 34, 350
parsing, XML document, 651, 652
partial classes, 80–81
partial keyword, 80, 81

code-behind class, 141
Page class, 114

partial refreshes using Ajax, 859–871
conditional updates, 865–866
controlling refreshes with triggers,

867–871
error handling, 864–865
refreshing label with partial update,

861–864
UpdatePanel control, 860–871
updates interrupting updates, 866

partial rendering, Timer control, 876, 877
pass-by-reference parameter, 68
pass-by-value parameter, 68
Password property, Login control, 745
password type, input element

HTML server control class for, 138
related web control classes, 172

Password value, TextBox control, 173
passwordAttemptWindow attribute, add tag,

734
passwordFormat attribute, add tag, 733
PasswordLabelText property, Login control,

747

PasswordRecovery control, 743, 752–754
PasswordRecoveryIconUrl property, Login

control, 748
PasswordRecoveryText property, Login

control, 748
PasswordRecoveryUrl property, Login

control, 746, 748
PasswordRequiredErrorMessage property,

Login control, 747
passwords

configuring membership provider, 733,
734

disabled accounts, 742
HashPasswordForStoringInConfigFile

method, 706
recovering lost passwords

Login control, 746
PasswordRecovery control, 752–754

regular expression for, 346
PasswordStrengthExtender control, Ajax, 888
path attribute, forms authentication, 699
Path class, 619–620

Combine method, 619, 620, 632, 624
drawing shapes with Graphics class, 395
filling shapes with Graphics class, 396
GetFileName method, 619, 645
methods, 620

Path property, Request class, 462
PathDirection property, SiteMapPath control,

463
paths

adding relative path to absolute path, 619
file paths in strings, 619
master pages and relative paths, 437–438

PathSeparator property, SiteMapPath
control, 463

PathSeparatorStyle property, SiteMapPath
control, 464

PathSeparatorTemplate property,
SiteMapPath control, 464, 465

Pen object, specifying, 396
percentage (%) character, Unit type, 176
Percentage data type, 584
Percentage method, Unit type, 177
performance

application state, 246
caching, 821–824

benefit of, 822
cache dependencies, 843–853
data caching, 832–843
data source control caching, 839–843
fragment caching, 830
output caching, 824–831

CLR, 15
paging, 601
profiles, 764–765
session state, 232

■INDEX 931

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 931

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

state management options compared,
247, 248

view state encryption, 215
permissions, 696

ASPNET/network service accounts, 320
authorization, 696
creating virtual directories, 311
impersonation, 718
Windows account permissions, 318

persistence, cookies, 229, 708
PhysicalApplicationPath property, Request

object, 624
Pixel method, Unit type, 177
pixels

indicating Unit type, 176
measuring, 396

Place Code in Separate File option
Add New Item window, 94

plus sign (+) character in URLs, 228
PNG image format, 400
polling, ASP.NET, 845, 848, 852
pollTime attribute, sqlCacheDependency

element, 848
polygon

drawing with Graphics class, 395
filling with Graphics class, 396

PopupControlExtender control, Ajax, 888
ports

Visual Studio web server, 122
Position category

style settings, New Style dialog box, 409
PositiveInfinity value, 257
postbacks

asynchronous postbacks see partial
refreshes using Ajax

automatic postbacks, 191–196, 206
AutoPostBack property, 193
capturing change event immediately, 193
creating file browser, 632
cross-page postbacks, 219–224
doPostBack function, 195, 196
events, 195–196

not suitable for postbacks, 193
web control events, 193

greeting card generator example, 200
HTML server controls, 191
IsPostBack property, 158
populating list control, 148
processing sequence for, 194
reviewed, 855
UpdatePanel control, 863
view state, 212

PostBackUrl property, IButtonControl
interface, 219

PostedFile class
ContentLength property, 645
FileName property, 645

FileUpload control, 643
SaveAs method, 643

PowerUser role, 712
precompilation

deploying ASP.NET website, 318
publishing website, 328

Prepend method, XmlNode class, 669
PrependChild method, XmlNode class, 669
PreRender event, Page class

changing profile data, 764
cross-page postbacks, 224
page life cycle, 199, 561
retaining member variables using view

state, 215, 217
PreRenderComplete event, Page class, 764
Preview box

New Style dialog box, 410
PreviousButtonClick event, Wizard control,

377
PreviousPage property, Page class, 220, 222,

224
PreviousPageType directive, 221
PreviousSibling property, SiteMapNode class,

460
PreviousSibling property, XmlNode class, 668
PrevMonthText property, Calendar control,

361
PrevView command name, MultiView

control, 371
PrintOperator role, 713
private assemblies, 317
private keys, SSL, 723
private keyword, 46, 56
private members

naming convention, 57
private variables, 56
processModel setting, machine.config file,

320
Product class

building .NET classes, 56–64
testing new .NET classes, 64–66

Product.cs file, 64
Profile API, 779–782
Profile class

Address property, 778
FirstName property, 772
GetProfile method, 779, 784
LastActivityDate property, 773
LastUpdatedDate property, 773
Save method, 773, 779

profile database, 769–770
steps for using profiles, 766
tables, 769

profile element
automaticSaveEnabled attribute, 779

profile groups, 775

■INDEX932

8911INDEX.qxd 10/17/07 5:02 PM Page 932

profile properties
adding or removing properties, 774
automatic saves of custom data types, 779
changing name or data type, 774
defining, 770–771
profile property attributes, 771
steps for using profiles, 766
using, 771–773
versioning, 774

Profile property, Page class, 779
profile property attributes, add tag, 771
profile providers

provider attribute, 771
registering, 769
steps for using profiles, 766

profile serialization, 773–774
serializeAs attribute options, 774

profile tables, 769, 770
ProfileBase class, 771, 779
ProfileCommon class, 780

Address property, 780
LastActivityDate property, 780
LastUpdatedDate property, 780
Save method, 780

ProfileInfo class, 781
ProfileManager class, 779, 781
ProfileMigrateEventArgs class, 784
ProfileModule class, 779

MigrateAnonymous event, 784
ProfileParameter control tag, 567
profiles, 763–766

anonymous profiles, 782–785
ASP.NET, 763
aspnet_Profile table, 769
authentication, 766, 767
automatic saves of custom data types, 779
cache profiles, 831
caching, 764
changing profile data, 764
connection strings, 768
custom data types, 775–779
limitations, 763, 765
migrating anonymous profiles, 784–785
page life cycle, 764
parameter types, 567
performance, 764–765
retrieving information in data source, 782
retrieving profiles manually, 780
scalability, 764
serialization, 765
SqlProfileProvider class, 766–785
steps for using, 766
storing data, 765–766
using with SQL Server, 768–769
using with SQL Server 2005 Express, 767

programmatic impersonation, 718

programming see component-based
programming

progress notification using Ajax, 871–876
simulated progress bar, 872–874

project files, Visual Studio, 91
project references, 797, 798, 800
projectless development, 91, 93, 94, 96
properties

adding to .NET classes, 58–60
automatic properties, 60
brief description, 35
component-based programming, 801–804
creating static properties, 76
introduction to classes, 54
read-only properties, 59
setting through attributes in control tag,

157
setting value of, 156
stateful or stateless design, 801, 802
write-only properties, 59

properties element, web.config file, 770
Properties window

adding event handlers, 113
configuring web controls in, 100–102

property accessors, 58, 59
property procedures, 62, 233, 387, 775, 801,

814
PropertyNames field, aspnet_Profile table,

773
PropertyValuesString field, aspnet_Profile

table, 773, 774
protected internal keyword, 56
protected keyword, 56
protection attribute, forms authentication,

699
provider attribute, add tag, 771
Provider property, SiteMap class, 459
ProviderSpecific value, serializeAs attribute,

774
public keyword, 46, 56
public members of class

naming convention, 57
public methods, 796
Publish Web Site feature, 328–329
pubs database, 486
px (pixel)

indicating Unit type, 176

Q
queries

join query, 531
Query Designer, SQL, 492
query string collection, 287
query strings

caching and, 826–829
output caching, 827–829
parameter types, 567

■INDEX 933

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 933

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

state management options compared, 247
transferring information in URLs, 224–228
URL encoding, 228

QueryString collection, 225
QueryString property, Request class, 462
QueryStringParameter control tag, 567
question mark wildcard

anonymous user access, 700
quirks mode, Internet Explorer, 104

R
radio type, input element

HTML server control class for, 138
related web control classes, 172, 173

RadioButton controls
events and postbacks, 193
underlying HTML element, 172
validation, 352

RadioButtonList control
see also list controls
events and postbacks, 193
list controls compared, 182
repeated-value data binding, 545, 546
underlying HTML element, 173

RangeValidator control
control specific properties, 336
description, 334
editing GridView template with validation,

607
EnableClientScript property, 338
how validation works, 337, 338
properties of BaseValidator class, 336
validated web form example, 348

Rating control, Ajax, 888
RawUrl property, Request class, 462
RDBMS (relational database management

system), 484
Read method

data reader classes, 512, 515
XmlTextReader class, 657

read-only properties, 59
ReadAllBytes method, File class, 636
ReadAllLines method, File class, 636
ReadAllText method, File class, 636
ReadInt32 method, BinaryReader class, 635
ReadLine method, StreamReader class, 634
readOnly attribute, add tag, 771
ReadOnly property, BoundField class, 581
ReadString method, BinaryReader class, 635
ReadXyz methods, XmlTextReader class, 662
record editor

repeated-value data binding, 554–559
records

deleting, 526–527
inserting, 519–522
selecting with SqlDataSource, 563
updating, 524–526

updating with data source controls,
571–575

concurrency checking, 573–575
rectangles

drawing with Graphics class, 395
filling with Graphics class, 396

Redirect method, HttpResponse class, 159
Redirect method, Response class

cookieless session state configuration, 238
independent user controls, 384
passing information with events, 393
query strings transferring information in

URLs, 225
RedirectFromLoginPage method,

FormsAuthentication class, 706, 707,
708

redirection
Login control, 744
redirecting user to new web page, 159–160

ref keyword, 68
reference types, 66–70

assignment operations, 67
data types behaving as, 70
equality testing, 67
passing parameters by reference, 68

references
adding assembly reference, 797, 798
adding project reference, 797, 798
adding reference to components, 797–799
removing, 799
using assembly references, 800
using project references, 800

Refresh method, DirectoryInfo class, 626
Refresh method, FileInfo class, 626
regenerateExpiredSessionId attribute, 240
Register directive, 383
registering components, 132
RegisterRequiresViewStateEncryption

method, Page class, 215
regular expressions

common examples, 346
finding appropriate regular expression,

344–345
literals, 343–344
Luhn algorithm, 347
metacharacters, 343–344
regular expression characters, 346
repeating characters, 344
replacing custom validation with, 350
single characters, 344
using parentheses, 344
using square brackets, 344
validation using, 343–347

RegularExpressionTest page, 344–345
RegularExpressionValidator control, 343–347

control specific properties, 336
description, 334

■INDEX934

8911INDEX.qxd 10/17/07 5:02 PM Page 934

properties of BaseValidator class, 336
validated web form example, 348

relational database management system
(RDBMS), 484

relational databases
auto increment columns, 497
defining relationships in data sets,

533–536
join query, 531
many-to-many relationships, 531
modifying data in database, 517–527
one-to-many relationship, 533
relational model, 483
unique identity column, 497

relative paths
master pages and, 437–438

Remember Me check box, Login control, 744
RememberMeSet property, Login control,

748
Remote Web Server option, 328
RemoteOnly error mode, 278, 279
Remove method, String class, 36
RemoveAll method, XmlNode class, 669
RemoveAttribute method, XmlElement class,

669
RemoveChild method, XmlNode class, 669
RemoveUser(s)FromRole(s) methods, Roles

class, 758
RenderCurrentNodeAsLink property,

SiteMapPath control, 463
rendering

adaptive rendering, 172
description, 106
focused control after, 181
page life cycle, 196
partial refreshes using Ajax, 862
partial rendering, 859
UpdatePanel control, 862, 863

repeated-value data binding, 544–559
creating record editor, 554–559
data binding with ADO.NET, 552–554
data binding with dictionary collections,

549–551
data binding with list controls, 545–547
generic collections, 547
introduction, 538
multiple binding, 548
strongly typed collections, 547
using DataValueField property, 551–552

Replace method, String class, 35, 36
ReplaceChild method, XmlNode class, 669
Replicator role, 713
Request Certificate wizard, 720, 721
Request class/object, 462

Cookies collection, 229
determining user’s browser, 541
PhysicalApplicationPath property, 624

request cookies, 285
request details, 283
Request property, Page class, 158
requestLimit attribute, 291
requests

Application_BeginRequest event, 163
Application_EndRequest event, 163
stages in ASP.NET request, 145

RequiredFieldValidator control
control specific properties, 336
description, 334
properties of BaseValidator class, 336
validated web form example, 348

RequiredOpenedPane property, Accordion
control, 881

requiresQuestionAndAnswer attribute, add
tag, 734

requiresUniqueEmail attribute, add tag, 734
reset type, input element, 138
ResetPassword method, MembershipUser

class, 739, 742
ResizableControlExtender control, Ajax, 888
resources files, huge web projects, 92
Response class

Redirect method
cookieless session state configuration,

238
independent user controls, 384
passing information with events, 393
query strings transferring information

in URLs, 225
Write method, 162, 163

response cookies, 285
Response object, Cookies collection, 229
Response property, Page class, 158, 159
restricted file types, 695
result sets

data retrieval using ADO.NET, 517
reading past the end of, 512

RetrieveData method, 836–837
reusing web page markup, 381
Reverse method, Array class, 40
role-based security, 755–761

creating and assigning roles, 755–758
LoginView control, 759–761
membership, 725
restricting access based on roles, 758

RoleExists method, Roles class, 757
RoleGroups tag, LoginView control, 760, 761
roles, Windows, 712
Roles class

creating and assigning roles, 757–758
Root property, DirectoryInfo class, 626
root-relative path, 432

master pages and relative paths, 438
RootDirectory property, DriveInfo class, 628
RootNode property, SiteMap class, 459

■INDEX 935

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 935

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

RootNodeStyle property, SiteMapPath
control, 464

RootNodeStyle property, TreeView control,
472, 473

RootNodeTemplate property, SiteMapPath
control, 464, 465

roots
hiding root node of site map, 454
representing root folder of web

applications, 448
root node of site maps, 449

Row property, GridViewRowEventArgs class,
588

RowCommand event, GridView control, 591,
605

RowDataBound event, GridView control, 588
rows, retrieving, 493, 494
Rows collection, DataRow class, 530
Rows property, TextBox control, 173
RowStyle, GridView control, 585
rules, style sheets see CSS rules
Run To Cursor command, 124
runat="server" attribute

adding HTML server control, 139
head element, 111
HTML sent to browser, 137
HTML server control class for, 139
select element, HTML, 147
transforming HTML elements into server

controls, 136
web control tags, 173

S
\S regular expression character, 346
sample databases, obtaining, 486
Save method

Image class, 396, 398
Profile class, 773, 779
ProfileCommon class, 780
XmlDocument class, 664, 666

SaveAs method, PostedFile class, 643
scalability

caching, 822
CGI applications, 6
database access with web applications,

485
profiles, 764
session state, 232, 236
using files with web applications, 618
web applications, 232

Schema namespace, System.Xml, 675
schemas

aspnet_SchemaVersions table, 769
XML Schema Definition (XSD), 673–678
XmlSchema class, 675
XmlSchemaCollection class, 675
XmlSchemaException class, 676

Scientific data type, 584
scope

block-level scope, 44
state management options compared,

247, 248
script debugging, Visual Studio, 121
ScriptManager control, Ajax, 858–859

exception handling, 864
ScriptManagerProxy control, 859
ScriptResource.axd, 858
Scrollbars property, Panel class, 584
seamless deployment model, 132
search engines

uses of database with ASP.NET, 484
SearchNodes method, 479
Second property, DateTime class, 38
Seconds property, TimeSpan class, 38
Secure Sockets Layer (SSL), 719–723
security

ASP.NET deployment, 319
ASP.NET security model, 692–697
authentication, 696
authorization, 696
component-based programming, 790
controlling ASP.NET security, 165
cookies, 228
deployment configuration, 318
determining security requirements,

691–692
event log security, 269
expired session IDs, 240
forms authentication, 697–710
impersonation, 717–718
implementing Windows-based security,

710
making view state secure, 214–215
persistent cookies, 708
query strings transferring information in

URLs, 224
reasons to avoid client-side programming,

7
restricted file types, 695
role-based security, 725, 755–761

creating and assigning roles, 755–758
restricting access based on roles, 758

session state, 231
SQL statements, 522–524
SSL (Secure Sockets Layer), 719–723
state management options compared,

247, 248
using files with web applications, 618
Windows authentication, 710–717
Windows event logs, 266

security controls
CreateUserWizard control, 748–752
Login control, 743–748
LoginView control, 759–761

■INDEX936

8911INDEX.qxd 10/17/07 5:02 PM Page 936

membership, 725, 742
PasswordRecovery control, 752–754

security cookies
user requests requiring, 700
validation for, 699

Security tab, WAT, 704
creating and assigning roles, 755–757
creating users with WAT, 735

Seek method, Stream class, 636
seekable streams, 400
Select Authentication options, 703
select button

selecting GridView rows, 590–591
select element

drop-down lists, 147
HTML server control class for, 139
related web control classes, 173
runat="server" attribute, 147
value attribute, 148, 150

Select Master Page option, Add New Item
window, 95

SELECT statement, SQL, 493
AVG function, 495
Command object representing, 511–512
COUNT function, 495
DISTINCT keyword, 495
MAX function, 495
MIN function, 495
SELECT * statement, 493
SUM function, 495
TOP clause, 494

select tag
related control classes, 173

SelectCommand property
data adapter classes, 530
SqlDataSource class, 563, 571

SelectCommandType property,
SqlDataSource class, 563

Selected property, ListItem control, 183
SelectedDataKey property, GridView control,

592, 593
SelectedDate(s) properties, Calendar control,

362
SelectedDayStyle property, Calendar control,

358
Selected/Selecting events

page life cycle, 561
SqlDataSource control, 570, 571

SelectedIndex property
Accordion control, 881
GridView control, 589, 590, 591
list controls, 182

SelectedIndexChanged event
capturing change event immediately, 193
GridView control, 589, 590, 593
web controls, 191, 192, 193

SelectedIndexChanging event, GridView
control, 590

SelectedItem property, ListBox control, 206,
551

SelectedNodeStyle property, TreeView
control, 472

SelectedRowStyle, GridView control, 585, 589
SelectedValue property, ListBox class, 816,

818
SelectionChanged event, Calendar control,

360, 362
SelectionMode property, Calendar control,

362
SelectionMode property, ListBox control, 183
SelectMethod property, ObjectDataSource

control, 816, 842
SelectMonthText property, Calendar control,

362
selectors, style sheets, 416
SelectorStyle property, Calendar control, 358
SelectParameters property, SqlDataSource

class, 563
SelectQuery property, SqlDataSource class,

563
SelectWeekText property, Calendar control,

362
semicolon (;) character

statement termination, 21
sender parameter, event handlers, 142, 154
SendingMail event, PasswordRecovery

control, 754
Serializable attribute, 217, 218, 775, 779
serialization

binary serialization of custom data types,
778

classes, 775
custom data types, 778
data types, 775
description, 217
making objects serializable, 217
profile serialization, 765, 773–774
storing objects in view state, 217, 218
XML serialization, 688

custom data types, 778
serializeAs attribute, add tag, 771
serializeAs attribute, web.config file, 774
Server class

Transfer method, 462
server controls, 132–147

adding to page dynamically at runtime,
144

hidden server controls, 151
HTML and web controls compared, 171
HTML server control classes, 138–140
HTML server controls, 133, 134–136
server code reacting immediately to

events, 191

■INDEX 937

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 937

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

transforming HTML elements into, 136
web controls, 133, 171–174

Server Explorer window, Visual Studio, 487,
488, 491, 508

Server property, Page class, 158, 159
server role

choosing application server role, 303
server variables

tracing information, 287
server-side caching

client-side caching compared, 826
server-side events

HTML server controls, 133
server-side programming, 6, 7
server-side validation, 335
ServerChange event, 154, 191
ServerClick event, 153, 154

creating event handlers for HTML server
controls, 142

HTML server controls, 191
HtmlInputButton class, 140, 142
redirecting user to new web page, 159

ServerValidate event, CustomValidator
control, 349, 351

Service Broker model, 849, 851
ServiceMethod property,

AutoCompleteExtender control, 885
session IDs

cookieless mode, 238
expired session IDs, 240
tracing information, 283

session keys, 723
Session property, Page class, 158
session state, 231–244

configuration, web farms, 241
configuration, web.config file, 236–244

cookieless setting, 237–240
InProc value, mode attribute, 241
mode setting, 241–244
Off value, mode attribute, 241
SqlServer value, mode attribute, 243
StateServer value, mode attribute, 241
timeout setting, 240

cookies, 231
disabling session state management, 241
losing session state, 232
parameter types, 567
performance, 232
scalability, 236
security, 231
session tracking, 231–232
state management options compared, 248
tracing information, 285
web farms, 299

Session State icon, IIS Manager, 315
session tracking, 231–232

SessionID property, HttpSessionState class,
233

SessionParameter control, 567
sessionState tag

cookieless attribute, 237
customProvider attribute, 244
mode attribute, 241
session state configuration, 236, 237, 240,

241
sqlCommandTimeout attribute, 244
sqlConnectionString attribute, 243
stateConnectionString attribute, 242
stateNetworkTimeout attribute, 243
timeout attribute, 240

Session_End event, 163
Session_Start event, 163
set accessor

adding properties to .NET classes, 58, 59
automatic properties, 60

Set Next Statement command, 125
SetActiveView method, MultiView control,

370
SetAttribute method, XmlElement class, 666,

669
SetAttributes method, File class, 621
SetAuthCookie method,

FormsAuthentication class, 706
SetCurrentDirectory method, Directory class,

621
SetPropertyValue method, ProfileBase class,

771
Setup log, Windows, 266
shared assemblies, 317
shared methods

stateless AccountUtility class example, 803
short data type, 23
Short Date data type, 585
shorthand assignment operators, 31
Show Next Statement command, 125
ShowCheckBoxes property, TreeView control,

470
ShowDayHeader property, Calendar control,

362
ShowDeleteButton property, CommandField

class, 596
ShowDirectoriesIn method, 632
ShowEditButton property, CommandField

class, 593, 606
ShowExpandCollapse property, TreeView

control, 470
ShowFilesIn method, 632
ShowGridLines property, Calendar control,

362
ShowHeader property, DetailsView control,

612
ShowLines property, TreeView control, 470

■INDEX938

8911INDEX.qxd 10/17/07 5:02 PM Page 938

ShowMessageBox property,
ValidationSummary control, 341

ShowNavigationControls property, 443
ShowNextPrevMonth property, Calendar

control, 362
ShowSelectButton property, CommandField

class, 593, 594
ShowSelectButton property, GridView

control, 590
ShowStartingNode property,

SiteMapDataSource control, 454, 455
ShowSummary property, ValidationSummary

control, 341
ShowTitle property, Calendar control, 362
ShowToolTips property, SiteMapPath control,

463
side by side execution, 15
SideBarButtonClick event, Wizard control,

377
SideBarButtonStyle property, Wizard control,

378
SideBarStyle property, Wizard control, 378
signatures

method overloading, 48
SignOut method, FormsAuthentication class,

706
simple data binding see single-value data

binding
simulated progress bar

progress notification using Ajax, 872–874
Single data type, 23, 70
single-step debugging, Visual Studio, 122–125
single-value data binding, 538, 539–544

code fragmentation, 543
determining user’s browser, 541
problems with, 543–544
setting control properties, 542
simple data binding with properties,

542–543
templates, 544
using code instead of, 544

SingleBitPerPixelGridFit value,
TextRenderingHint property, 402

SingleLine value, TextBox control, 173
site maps, 445–462

ASP.NET navigation with, 446
binding master page to, 452–454
binding pages to, 451–452
binding portions of, 454–459
case sensitivity of URL in, 451
changing appearance of navigational

controls, 446
defining, 446–450
example, 450–451
hiding root node, 454
mapping URLs, 461–462
nodes with duplicate URLs, 450

retrieving information from, 459
retrieving information from XML file, 446
root node, 449
showing subtrees, 455–458
using different site maps in same file,

458–459
SiteMap class, 459–461

CurrentNode property, 459
defining site maps, 446
Provider property, 459
RootNode property, 459

siteMap element, 447, 448, 449
SiteMapDataSource class, 560
SiteMapDataSource control

binding master page to site map, 452
binding navigational controls, 456
binding pages to site maps, 451
changing appearance of navigational

controls, 446
default tree, 455
defining site maps, 446
properties, 455
showing subtrees of site maps, 455–458
ShowStartingNode property, 454, 455
StartFromCurrentNode property, 455, 458
StartingNodeOffset property, 455, 457, 458
StartingNodeUrl property, 455, 459

siteMapFile attribute, 459
SiteMapNode class, 459, 460
siteMapNode element, 447–450
SiteMapPath control, 462–467

adding custom site map information,
466–467

CurrentNodeTemplate property, 465, 466
customizing, 463
description, 451
Eval method, 464
NodeTemplate property, 466
PathSeparatorTemplate property, 465
properties, 463
RootNodeTemplate property, 465
styles and templates, 464–466

SiteMapProvider class, 450, 459
size details

control tags in skin file, 426
Size property, FontInfo class, 179
SkinID property, controls

applying themes dynamically, 427
seeing theme effects, 422
uniqueness of SkinID, 425

skins
control tags in skin file, 425–426
creating multiple skins for same control,

424–425
images as part of theme, 426–427
themes and skins, 419, 420

SlideShowExtender control, Ajax, 888

■INDEX 939

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 939

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

slidingExpiration parameter
Insert method, Cache class, 833

smarts, 370
SmoothingMode property, Graphics class,

402
social security number, regular expression

for, 347
Solution Explorer

creating websites with Visual Studio, 93–94
debugging with Visual Studio, 120

solution files
creating websites with Visual Studio, 92–93

Sort method, Array class, 40
Sorted event, GridView control, 598
SortExpression property, BoundField class,

582, 597
sorting

GridView control, 596–599
sorting and selecting at same time,

598–599
SqlDataSource control, 597

source code files
App_Code directory, 132

Source Editing toolbar, HTML, 119
Source property, Exception class, 252
source view, Visual Studio, 97

adding HTML, 102
adding web controls, 99

Source view, web page designer, 540
span element, 109

applying style sheet rules, 418
related web control class, 172

special characters, 160
encoding text containing, 160–161
escaping, 26
URL encoding, 228

Split method, String class, 36
split view, Visual Studio, 97, 98, 99
SQL (Structured Query Language), 490–498

aggregate functions, 495
case-sensitivity, 495
dates, 494
DELETE statement, 498
FROM clause, 493
INSERT statement, 497
LIKE operator, 494–495
online tutorials, 491
ORDER BY clause, 493, 494
parameterized commands, 522
running queries in Visual Studio, 491–492
SELECT statement, 493
square brackets in queries, 495
UPDATE statement, 495–496
using with ADO.NET, 491
WHERE clause, 493, 494

SQL Express
using full version of SQL Server, 555

SQL injection attacks, 522
validating user input, 333

SQL Server
creating connection in Visual Studio, 487
data provider, 498
database configuration, 486
membership using full version of, 729–731
obtaining sample databases, 486
sqlcmd tool, 489
using full version, 555
user instance connections, 508
using profiles with, 768–769

SQL Server 2000
cache dependencies, 844–849
cache invalidation, 845, 846, 848
notifications with, 845–848

SQL Server 2005 Express
membership, 727–728
profiles, 767
role-based security, 755

SQL Server 2005/2008
cache dependencies, 849–853
cache invalidation, 849
cache notifications, 853
enabling Service Broker, 851
initializing caching service, 851
notifications, 850

SQL Server authentication, 506
SQL Server data provider, 499

objects, 502
parameterized commands, 522

SQL Server Express
creating connection in Visual Studio, 487,

488
creating database connections, 505
downloading, 486
learning essential database concepts, 485
Server Explorer window, Visual Studio, 488
sqlcmd tool, 489
user instance connections, 507, 508

SQL Server Management Studio, 487
SQL statements

Command objects representing, 511
security, 522–524

sqlCacheDependency element, web.config
file, 848

SqlCacheDependency property
data source control caching, 839
OutputCache directive, 849

SqlClient namespace, System.Data, 501
sqlcmd tool, 489–490
SqlCommand class see command classes
sqlCommandTimeout attribute, sessionState

tag, 244
SqlConnection class see connection classes
sqlConnectionString attribute, sessionState

tag, 243

■INDEX940

8911INDEX.qxd 10/17/07 5:02 PM Page 940

SqlDataAdapter class see data adapter classes
SqlDataReader class see data reader classes
SqlDataSource control, 560, 561–562

automatic caching support, 564
caching properties, 839
caching with, 839–842
choosing DataSet or DataReader, 564
ConflictDetection property, 574
connection strings, 562
ConnectionString property, 563
creating cache dependency, 849
DataSourceMode property, 597
DeleteCommand property, 571, 596
editing GridView template with validation,

608
editing with GridView template, 607
EnableCaching property, 564
events for setting parameter values, 570
handling errors, 570–571
InsertCommand property, 571
OldValuesParameterFormatString

property, 574
parameterized commands, 565–570
properties, 563
SelectCommand property, 571
selecting records, 563
sorting with, 597
Update method, 595
UpdateCommand property, 571, 572
UpdateParameters collection, 572, 595
updating records, 571–575
using ObjectDataSource instead, 814
using with DataView control, 578, 579

SqlDataSourceStatusEventArgs class
AffectedRows property, 574
Exception property, 571
ExceptionHandled property, 571

SqlDependency class
Start method, 851

SqlException class
“Must declare the scalar variable . . . ”, 594
overlapping exception handlers, 258

SQLEXPRESS instance
membership with SQL Server 2005

Express, 727
SqlMembershipProvider class, 733
SqlProfileProvider class, 766–785

anonymous profiles, 782–785
defining profile properties, 770–771
enabling authentication, 767
Profile API, 779–782
profile database, 769–770
profile groups, 775
profile serialization, 773–774
profiles and custom data types, 775–779
standard profile serialization, 765
using profile properties, 771–773

using profiles with SQL Server 2005
Express, 767

SQLServer mode, web farms, 299
SqlServer value

mode attribute, sessionState tag, 241, 243
SqlTypes namespace, System.Data, 501
src attribute, img element, 110
Src directive, 383
SSL (Secure Sockets Layer), 719–723

creating certificate request, 719–721
StackTrace property, Exception class, 252
Start method, SqlDependency class, 851
Start Page, Visual Studio, 88
StartFromCurrentNode property,

SiteMapDataSource control, 455, 458
StartingNodeOffset property,

SiteMapDataSource control, 455,
457, 458

StartingNodeUrl property,
SiteMapDataSource control, 455, 459

StartNextButtonStyle property, Wizard
control, 378

StartsWith method, String class, 36
state

application state, 245–246
component-based programming, 801–804
cookieless state limitations, 239
cookies, 228–231
database access with web applications,

485
hidden type, input element, 137
HTML server controls, 133
problem of state for web applications, 211
session state, 231–244

configuration, web.config file, 236–244
session tracking, 231–232

stateful Account class example, 802–803
stateful or stateless design, 801, 802
stateless AccountUtility class example,

803–804
transferring information between pages,

218–228
cross-page postbacks, 219–224
query strings, 224–228
URL encoding, 228

using instance or static methods, 801
using stateful and stateful classes together,

804
view state, 137, 212–218

example, 213
making view state secure, 214–215
retaining member variables, 215–217
storing custom objects in, 217–218

ViewState collection, 212
state management

disabling session state management, 241
options compared, 247–248

■INDEX 941

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 941

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

profiles, 763, 764
StateBag collection class, 212
stateConnectionString attribute, sessionState

tag, 242
statement termination, 21
stateNetworkTimeout attribute, sessionState

tag, 243
StateServer mode, web farms, 299
StateServer value

mode attribute, sessionState tag, 241
static keyword, 76, 77
static members, classes, 55, 76–77

creating class of static members, 77
creating static properties or methods, 76
file and directory access, 618

static methods
Convert class, 33
Math class, 31
using instance or static methods, 801

static styles, Menu control, 476
StaticXyz properties, Menu control, 476, 477
Step Into/Out/Over commands, break mode,

124
StepNextButtonXyz properties, Wizard

control, 378
StepPreviousButtonStyle property, Wizard

control, 378
StepStyle property, Wizard control, 378
StepType property, WizardStep control, 374
storage locations

state management options compared,
247, 248

stored procedures, 804
storing information

application state, 245–246
cookies, 228–231
problem of state for web applications, 211
profiles, 765–766
session state, 231–244
transferring information between pages,

218–228
cross-page postbacks, 219–224
query strings, 224–228

view state, 212–218
Stream class

Seek method, 636
StreamReader class

reading flat files, 632
ReadLine method, 634

streams
reading and writing with streams, 632–642

binary files, 635–636
guest book example, 637–642
quick file access methods, 636–637
text files, 632–634

seekable streams, 400

StreamWriter class
Flush method, 633
WriteLine method, 633
writing flat files, 632

Strikeout property, FontInfo class, 179
String class

assignment operations, 70
Compare method, 40
equality operations, 70
nature and behavior of data types, 70
properties and methods, 35
Substring method, 350

String/string data types, 24
String type/class, 34–36

data types behaving as value types, 70
String value, serializeAs attribute, 774
StringBuilder class

creating list of files in directory, 624
retrieving log information, 274

strings
comparing, 40
drawing string of text with Graphics class,

395
file paths in strings, 619
zero-based counting, 35

strong element, 108
strongly typed collections

repeated-value data binding, 547
structured exception handling, 251
Structured Query Language see SQL
structures, .NET types, 69
style attribute, div tag, 152
style builder, 407–411
Style collection, 152
style inheritance, 413–414
style properties

inherited and overridden, 414
Login control, 745, 746

Style property, HtmlControl class, 156
style sheets

see also CSS
applying style sheet rules, 417–419
creating, 414–416
external style sheets, 406
formatting in XHTML, 110
internal style sheets, 406
navigating, 417
selectors, 416
trace information, 282
XSLT (XSL Transformations), 678

styles, 405–419
see also CSS
adding a style to a div, 408
attributes, HTML and XHTML, 110
configuring styles with Visual Studio,

587–588
CSS Properties window, 412–413

■INDEX942

8911INDEX.qxd 10/17/07 5:02 PM Page 942

formatting GridView using, 585–588
formatting properties, 407
inheritance, 407
inherited styles, 413–414
inline styles, 406–411
limitations in ASP.NET, 405
Menu control, 476–477
modifying in Visual Studio, 412–413
New Style dialog box, 408, 409
SiteMapPath control, 464–466
style categories, 409
themes and, 405, 419
TreeView control, 470–474
types, 406

stylesheet element, xsl, 679
StyleSheetTheme attribute, Page directive,

422, 424
StyleSheetTheme property, Page class, 427
subdirectories

virtual directories allowing access to, 312
submenus

Menu/TreeView controls compared, 475
submit type, input element

currency converter example, 140
HTML server control class for, 138
related web control classes, 172

Substring method, String class, 35, 36
validated web form example, 350

Subtract method, DateTime class, 38
Subtract method, TimeSpan class, 37, 38
subtrees

showing subtrees of site maps, 455–458
SUM function, SQL, 495
switch statement, 41–42
SwitchViewByID command, MultiView

control, 371
SwitchViewByIndex command, MultiView

control, 371
System log, Windows, 266
System.Collections namespace, 546
System.Collections.Generic namespace, 82
System.Data namespace, 501
system.web element, web.config file, 165, 300
System.Web.UI.WebControls namespace,

174
System.Xml namespace, 654–671
System.Xml.Schema namespace, 675
SystemOperator role, 713

T
TabContainer control, Ajax, 888
TabIndex property, WebControl class, 176
Table category

style settings, New Style dialog box, 410
Table control, 186–191

aspx code creating, 188
fully featured objects, 191

generating table dynamically, 188, 189
underlying HTML element, 173

table element, 109
HTML server control class for, 138
HTML tables, 438
related web control classes, 173
table-based layouts for master pages,

438–441
TableCell class

dynamically creating table, 189
fully featured objects, 191
Table control containing, 186

TableCell control, 190
underlying HTML element, 173

TableRow class
dynamically creating table, 189
fully featured objects, 191
Table control containing, 186

TableRow control
underlying HTML element, 173

tables
generating table dynamically, 186, 188

tables, HTML, 438, 440
TableTest class

event handling, 189
tag prefixes

creating user controls, 383
TagName property, HtmlControl class, 156
tags

see also HTML elements; XML elements
elements and, 107
HTML document, 4
web control tags, 173–174

TargetControlID property,
AutoCompleteExtender control, 885

TargetSite property, Exception class, 252
td element, 109, 439

HTML server control class for, 138
HTML tables, 438
related web control class, 173

TemplateField class, 601, 603
GridView control column type, 580

templates
FormView template model, 613
GridView control, 601–610

editing with GridView template,
606–610

handling events in GridView template,
605

Menu control, 477–480
Menu/TreeView controls compared, 475
multiple templates, 603–604
single-value data binding, 544
SiteMapPath control, 464–466
templates not supported by navigation

controls, 467

■INDEX 943

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 943

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

UpdatePanel control, 862
Wizard control, 378

test certificates, SSL, 721
testing

caching test, 833–835
component-based programming, 790
disabling caching while testing, 825
testing new .NET classes, 64–66

text box, HTML, 171
text files

reading and writing with streams, 632–634
guest book example, 637–642

Text property
Label control, 274, 541
ListItem control, 183
MenuItem class, 477
TableCell control, 190

text type, input element, 138, 140
related web control classes, 172

textarea element, 139
related web control classes, 172

TextBox control
AccessKey property, 181
aspx code creating, 188
Bind method, 607
consolidating HTML text box elements,

171
events and postbacks, 193
how validation works, 337
properties, 173
TextChanged event, 779
underlying HTML element, 172
using AutoCompleteExtender control, 884

TextBoxStyle property, Login control, 746
TextBoxWatermark control, Ajax, 888
TextChanged event

capturing change event immediately, 193
TextBox class, 779
web controls, 191, 193

TextMode property, TextBox control class,
173

TextRenderingHint property, Graphics class,
402

th element, 138
related web control class, 173

Thawte certificate authority, 719
Theme attribute, Page directive, 421, 422, 424
Theme property, Page class, 427
themes, 419–427

applying themes, 421–422
applying themes dynamically, 427
applying to entire website, 423–424
App_Themes directory, 132
configuring control properties, 419
control tags in skin file, 425–426
creating multiple skins for same control,

424–425

default themes, 422
description, 405
global themes, 420
handling control/theme conflicts, 422–423
images as part of theme, 426–427
local themes, 420
skins and, 419, 420
styles and, 405, 419

thin clients, 7
third-party languages and .NET, 20
this keyword, 116, 127, 540
thread-safety, 832
three-tier design, 790–792
throw statement, 260
throwing exceptions, 260–264
Tick event, Timer control raising, 876
Ticket property, FormsIdentity class, 709
ticks, 24
time

progress notification using Ajax, 871
refreshing time with partial update,

861–864
timed refreshes using Ajax, 876–877
timeout setting session state

configuration, 240
time data types, 585
timeout attribute

forms authentication settings, 699
sessionState tag, 240

Timeout property, HttpSessionState class,
233

Timer control, Ajax, 876–877
TimeSpan type/class, 24, 36–38

arithmetic operators, 37
nature and behavior of data types, 70
properties and methods, 38

timestamps, concurrency checking, 575
Title attribute, Page directive, 432
title element

HTML server control class for, 139
Title property, WizardStep control, 374
TitleFormat property, Calendar control, 362
TitleStyle property, Calendar control, 358
TitleText property, Login control, 747
TitleTextStyle property, Login control, 746
To Lower method, String class, 35
To Upper method, String class, 35
Today property, DateTime class, 37
TodayDayStyle property, Calendar control,

358
TodaysDate property, Calendar control, 359,

362
Toolbox

adding ASP.NET AJAX Control Toolkit, 879
stopping Toolbox hiding itself, 98

ToolTip property, WebControl class, 176
tooltips, Visual Studio, 116

■INDEX944

8911INDEX.qxd 10/17/07 5:02 PM Page 944

TOP clause, SQL, 494
ToString method

DateTime class, 38
event handlers, 142
object-based manipulation, 34
TimeSpan class, 38

TotalFreeSpace property, DriveInfo class, 627
TotalSize property, DriveInfo class, 627
TotalXyz properties, TimeSpan class, 38
ToUpper method, String class, 35
tr element, 109

HTML server control class for, 138
HTML tables, 438
related web control class, 173

Trace class
TraceMode property, 291

trace information, 284, 287–291
Trace object, 287, 288

enabling page tracing, 281
TraceMode attribute, Page directive, 291, 292
TraceMode property, Trace class, 291
tracing see page tracing
TransactionCount variable, Page class, 539,

541
Transfer method, Server class, 462
Transfer method, HttpServerUtility class, 159
Transform method, XslCompiledTransform

class, 678
transformations, XSL, 678–682
TransitionDuration property, Accordion

control, 883
TreeNodeDataBound event, 467
TreeNodeStyle class, 470
TreeView control, 467–474

applying styles to node levels, 473–474
applying styles to node types, 472–473
Auto Format feature, 474
AutomaticallyGenerateDataBindings

property, 686
binding master page to site map, 453
binding navigational controls, 456
choosing predefined set of node icons, 467
compared to Menu control, 475
creating mapping, 686
DataMember property, 686
description, 451, 452
different looks for tree views, 469
hierarchical binding, 685–687
ImageSet property, 467, 470
LevelStyles collection, 473
MaxDataBindDepth property, 458
node spacing, 471
NodeIndent property, 468, 470, 471
NodeStyle property, 472
properties, 467–470
resolving limitations of XmlDataSource

class, 685

style properties, 472
styles, 470–474
table-based layouts for master pages, 440,

441
Visible property, 443, 444

TreeViewImageSet enumeration, 467, 468
triggers

controlling partial refreshes with, 867–871
Timer control, 877

Trim method, String class, 35, 36
TrimEnd method, String class, 36
TrimStart method, String class, 36
troubleshooting

component-based programming, 790
try ... catch ... finally blocks

catch block, 255
catching specific exceptions, 255–256
creating list of files in directory, 625
data retrieval using ADO.NET, 515
database connections, 504
determining which exceptions to catch,

256
finally block, 255
nested exception handlers, 257
no active exception handler exists, 258
structured exception handling, 254–255
testing database connections, 509
testing occurrence of exceptions, 260
tips for exception handling, 260
using statements as alternative, 510

TryParse method
error handling, 146
Int32 class, 350

type attribute, add tag
configuring membership provider, 733
profile properties, 771

type attribute, input element, 135
type conversions, 32–34

narrowing conversions, 32–33
widening conversions, 32

Type property, HtmlInputControl class, 157
TypeConverter class, 206
TypeName property, ObjectDataSource

control, 815
types

.NET types, 69–70
reference types, 66–70
value types, 66–70

U
u element, 108, 110
ul element, 109, 173
Underline property, FontInfo class, 179
underlined element, 108
unhandled application error

Application_Error event, 163
ASP.NET error behavior, 279

■INDEX 945

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 945

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

Unit type, 176–177
UnitType enumeration, 177
Unload event, Page class

changing profile data, 764
page life cycle, 196
retaining member variables using view

state, 217
Unlock method, Application state collection,

246
UnlockUser method, MembershipUser class,

739, 742
unordered list element, 109
Update method

SqlDataSource class, 595
stateful Account class example, 802
UpdatePanel control, 866

Update method, Wizard control, 377
UPDATE statement, SQL, 495–496

command object representing, 517,
524–526

UpdateCommand property
data adapter classes, 530
SqlDataSource control, 563, 571, 572

UpdateCommandType property,
SqlDataSource class, 563

Updated/Updating events
page life cycle, 561
SqlDataSource control, 570, 571

UpdateFailedException class, 253
UpdateMethod property, ObjectDataSource

control, 816
UpdateMode property, UpdatePanel control,

865
UpdatePanel control, Ajax, 860–871

browser not supporting Ajax, 861
conditional updates, 865–866
ContentTemplate element, 862
controlling refreshes with triggers,

867–871
controls that can’t be used in, 865
dynamically adding controls to, 862
error handling, 864–865
inheritance, 862
linking UpdateProgress control to, 874
refreshing label with partial update,

861–864
rendering, 862
rendering HTML, 863
response time and bandwidth used, 864
style setting support, 862
Update method, 866
UpdateMode property, 865
updates interrupting updates, 866
updates with multiple UpdatePanel

controls, 865–866
use of templates, 862
visibility of, 862

UpdateParameters collection, SqlDataSource
class, 572, 595

UpdateProgress control, Ajax, 871–876
AssociatedUpdatePanelID property, 874
cancel button, 874–876
linking to UpdatePanel control, 874
simulated progress bar, 872–874

UpdateUser method, Membership class, 738
creating users with Membership class, 737
disabled accounts, 742
using MembershipUser class, 738

updating records
data source controls, 571–575

uploads
allowing file uploads, 642–645
FileUpload control, 643
maximum size of file uploads, 645

URIs (Universal Resource Identifiers), 672
URL encoding, 228
UrlDecode method, HttpServerUtility class,

161, 228
UrlEncode method, HttpServerUtility class,

161, 228
urlMappings section, web.config file, 461
URLs (Universal Resource Locators)

case sensitivity of URL in site map, 451
friendly URLs, 461
GetRedirectUrl method, 706
loopback alias, 298
mapping, 461–462
munged URL, 238
query strings transferring information in,

161, 224–228
session tracking, 232
site map nodes with duplicate URLs, 450
special characters in, 228

UseCookies value, HttpCookieMode
enumeration, 237

UseDeviceProfile value, HttpCookieMode
enumeration, 237

user authentication, 158
User class

Identity property, 708, 709, 716
IsInRole method, 708, 710, 758, 759

user controls, 381–394
ASP.NET file type describing, 131
creating, 382–384
independent user controls, 384–386
integrated user controls, 387–389
passing information with events, 391–394
requesting, 381
user control events, 389–391
web forms compared, 381

user input, 333
user instance connections

data access, ADO.NET, 507–508
SQL Server, 508

■INDEX946

8911INDEX.qxd 10/17/07 5:02 PM Page 946

User Instances property, connection strings,
507

user interface
three-tier design, 790
web controls, benefits of, 171

user interface code
problems with single-value data binding,

543
User property, Page class, 158

retrieving user identity, 708
user record management

membership data store, 725–742
User role, 713
UserControl class

inheritance, 381, 382
Load event, 387

UserName property, Login control, 745
UserName property, ProfileInfo class, 781
UserNameLabelText property, Login control,

747
UsernameRequiredErrorMessage property,

Login control, 747
users

aspnet_Users table, 769
assigning roles using WAT, 756
authorization rules controlling access,

702–703
creating with CreateUserWizard, 748–752
creating with Membership class, 735–737
creating with WAT, 735
displaying full list of, 782
examining group membership, 712
multiple authorization rules for, 700
registering with Login control, 746
restricting access based on roles, 759
restricting anonymous user access, 699
using files with web applications, 617

UserType enumeration, 29
UseUri value, HttpCookieMode

enumeration, 237
using statement

closing database connections, 510–511
code-behind class, 141
importing namespaces, 73

V
Validate method, Page class, 341
ValidateEmptyText property,

CustomValidator control, 352
ValidateUser method, Membership class,

738, 741
validation, 333–335

automatic validation, 335
CausesValidation property, 335
CheckBox controls, 352
client-side validation, 335
configuring level of error checking, 119

displaying all error messages for page, 339
editing GridView templates with, 607–608
how validation works, 337–339
KeyPress event, 334
list controls, 352
manual validation, 341–343
RadioButton controls, 352
replacing custom validation with regular

expressions, 350
security cookie, 699
server-side validation, 335
using regular expressions, 343–347
validated web forms, 347–352
validation groups, 352–353
view state and web farms, 300
web applications, 334
XML validation, 671–678

validation controls, 333, 334, 336–353
BaseValidator class, 336
classes, 334
CompareValidator control, 334
ControlToValidate property, 336, 343
CustomValidator control, 334
Display property, 336, 339
EnableClientScript property, 336, 341
Enabled property, 336
ErrorMessage property, 336, 342
ForeColor property, 336
hiding error messages, 336, 339
IsValid property, 336
Login control, 744
RangeValidator control, 334
RegularExpressionValidator control, 334,

343–347
RequiredFieldValidator control, 334
using multiple validation controls, 334
validated web form example, 347–352
validation groups, 352–353
ValidationGroup property, 352
ValidationSummary control, 334, 339–341

ValidationEventArgs class, 677
ValidationEventHandler event,

XmlReaderSettings class, 677
ValidationGroup property, validation

controls, 352
ValidationSummary control, 339–341

description, 334
DisplayMode property, 340
ForeColor property, 340
HeaderText property, 340
indicating invalid input to user, 339, 340
ShowMessageBox property, 341
ShowSummary property, 341

ValidationType property, XmlReaderSettings
class, 675

validators, 333
see also validation controls

■INDEX 947

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 947

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

ValidatorTextStyle property, Login control,
746

value attribute, select element, 148, 150
value keyword, 59
Value property, HtmlInputControl class, 157
Value property, ListItem control, 183
value types, 66–70

assignment operations, 67
data types behaving as, 70
equality testing, 67
passing parameters by value, 68
structures, 69

value-of command element, xsl, 680
values, enumerations, 29–30
var keyword

indicating data type, 26
streamlined object creation, 74

variable operations, 30–34
advanced math, 31
arithmetic operators, 30
type conversions, 32–34

variable watch windows
Visual Studio debugging, 126–127

variables, 22–26
arrays, 26–28
block-level scope, 44
casting object variables, 77–80
data type prefixes, 24
delegate variables, 49, 50
initialization and assignment, 24–26

characters indicating data type, 25
escaping special characters, 26

streamlined object creation, 74
tracking variables, 126

VaryByCustom attribute, OutputCache
directive, 829

VaryByHeader attribute, OutputCache
directive, 830

VaryByParam attribute, OutputCache
directive, 826, 827, 828

Verisign certificate authority, 719
vertical layout

Menu/TreeView controls compared, 475
VerticalPadding property, TreeNodeStyle

class, 470
view state, 137, 212–218

EnableViewState property, Page class, 158
encryption of view state data, 214, 215
making view state secure, 214–215
retaining member variables, 215–217
retrieving values, 212
state management options, 247
storing custom objects in, 217–218
ViewState collection, 212
web controls, 212
web farms, 300

ViewChanged events, LoginView control, 760

ViewChanging events, LoginView control,
760

views
pages with multiple views, 366–367

ViewState collection, 212
ViewState property, Page class, 212
ViewStateEncryptionMode property, Page

directive, 215
virtual directories

accessing subdirectories, 312
ASP.NET configuration, 314–316
configuring, 312–316
creating, 310–312
creating for new project, 324–326
custom error pages, 313–314
description, 129, 131, 297
managing websites with IIS Manager, 308
removing, 311
setting default page, 313
Windows authentication, 710

Visible property
BoundField class, 581
Control class, 366
HtmlControl class, 156
TreeView control, 443, 444
WebControl class, 176

VisibleDate property, Calendar control, 362
VisibleMonthChanged event, Calendar

control, 360, 362
VisibleWhenLoggedIn property, Login

control, 748
Visual Studio, 16–17

adding event handlers, 113–115
adding references to components, 797,

799
adding web controls, 98–100
adding web forms, 94–96
applying style sheet rules, 417, 418
applying themes, 421–422
automated deployment, 92
automatic coloring of code, 120
automatic formatting of code, 120
automatically importing namespaces,

119–120
Autos window, 126
benefits, 87
Breakpoints window, 125
browsing and modifying databases,

487–489
code-behind class, 112–113
compiling components, 794
configuring level of error checking, 119
configuring web controls in Properties

window, 100–102
Conversion Wizard, 96
copying website to remote web server,

326–329

■INDEX948

8911INDEX.qxd 10/17/07 5:02 PM Page 948

creating components, 794
creating content pages based on master

page, 429–431
creating database connection, 487
creating database, 488
creating master page, 428–429
creating style sheets, 414, 415
creating user controls, 382–384
creating virtual directory for new project,

324–326
creating websites, 88–96
debugging, 120–127
debugging components, 812
debugging tools, 281
deploying web applications, 323–329
description, 9
designing web pages, 97–102
displaying inherited styles, 413–414
editing GridView templates, 604
Error List window, 118
error underlining, 117–119
event handling, 143
executing update query, 496
generating columns with GridView

control, 582–583
grid layout feature, 100
Help reference, 71
highlighted web page code, 103
IntelliSense, 115–120
introduction, 87
Locals window, 126
member list, 116–117
migrating website from previous version,

96
modifying styles in Visual Studio, 412–413
multitargeting, 90
New Web Site dialog box, 89, 90
outlining, 115–116
project files, 91
projectless development, 91
publishing website, 328–329
running SQL queries, 491–492
side-by-side regions for split view, 98
Solution Explorer, 93–94
solution files, 92–93
Start Page, 88
testing using, 710
tooltips, 116
tracking variables, 126
user instance databases, 508
views of .aspx page, 97
Watch window, 126
web projects, 92
writing code, 112–120

Visual Studio web server
ASP.NET security model, 696

retrieving file listing of all files in website,
122

VolumeLabel property, DriveInfo class, 628

W
\W regular expression character, 346
WAN (wide area network), 297
Warn method, Trace object, 287, 288
WAT (Website Administration Tool), 168–170

creating users with, 735
Manage Access Rules link, 758
role-based security, 755–757
Security tab, 704
setting up forms authentication using,

703–704
setting up Windows authentication using,

710
Watch window, Visual Studio, 126, 127
web applications

see also ASP.NET applications
aspnet_Applications table, 769
benefits using files with, 618
creating with Visual Studio, 89–91
database access with, 485–486
database concurrency, 485
deploying ASP.NET website, 300
deploying, 316–323

additional configuration steps, 317–318
ASPNET/network service accounts,

319–320
code compilation, 318–319
using custom components, 317

deploying with Visual Studio, 323–329
copying website to remote web server,

326–329
creating virtual directory for new

project, 324–326
publishing website, 328–329

file access, 617
limitations using files with, 617
problem of state for, 211
representing root folder of, 448
scalability, 485
scalability and session state, 232
security

determining security requirements,
691–692

forms authentication, 697–710
Windows authentication, 710–717

state, 485
testing using Visual Studio, 710
tracking variables, 126
validation, 334
web.config file, 163

web browsers
Ajax and, 857
client-side caching, 825–826

■INDEX 949

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 949

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

creating file browser, 628–632
dealing with non-HTML in web forms, 103
interpreting text containing special

characters, 160
web control classes, 172–173, 174–182
web control events, 199
web control tags, 173–174

asp: prefix, 173
name attribute, 173
runat="server" attribute, 173
tracking control in HTML returned, 173

web controls, 133, 171–174
adaptive rendering, 172
AdRotator control, 363–365
applying style sheet rules, 418
ASP.NET tags, 173–174
automatic postbacks, 191–196
AutoPostBack property, 193
Calendar control, 355–362
classes, 172–173, 174–182
Color property, 178–179
configuring in Properties window, 100–102
default button, 181–182
designing web pages with Visual Studio,

98–100
enumerations, 177–178
events, 191–196, 199
Focus method, 181
Font property, 179–180
greeting card generator example, 199–208
HTML elements underlying, 172
HTML server controls compared, 171
inheritance, 175
list controls, 182–186
MultiView control, 367–371
page life cycle, 196–199
prefixes, 182
properties and measurements, 176–177
reasons for using, 171
rendering, 106
resizing, 99
server code reacting immediately to

events, 191
Table control, 186–191
Unit type, 176–177
user control events, 389
view state, 212
visibility, 176
WebControl class, 175–176
Wizard control, 372–379
workings of, 65

web development
client-side programming, 7
evolution of, 3–7
HTML and HTML forms, 3–6
server-side programming, 6

web farms, 299–300
session state configuration, 241

Web Form controls, 355
web form designer, 88
web forms see web pages
web hosting companies, 297, 317
web methods

AutoCompleteExtender control using, 884
GetNames web method, 885

web pages
absolute positioning, 100
adding web controls, 98–100

configuring in Properties window,
100–102

ASP.NET applications, 129
ASP.NET file type describing, 131
binding pages to site maps, 451–452
code structure with components, 790
complete XHTML web page, 111–112
components and structure of web form,

102–112
doctype, 104–106
Page directive, 103–104
web form markup, 102–103
XHTML essentials, 106–112

converting HTML page to ASP.NET page,
134–136

creating code-free web pages, 815
creating websites with Visual Studio, 94–96
cross-page postbacks, 219–224
dealing with non-HTML in web forms, 103
default button on, 181
default content, 436–437
designing with Visual Studio, 97–102
displaying full list of users in, 782
DOCUMENT object, 102
embedding dynamic graphics, 399
events/event handling, 140, 143
focused control after rendering, 181
greeting card generator example, 199–208
grouping portions of, 112
indicating type of markup, 104
inheritance, 158
inserting formatted text into, 140
isolation from database, 792
master pages, 427–444

binding to site map, 452–454
creating, 428–429
creating content pages based on,

429–431
table-based layouts for, 438–441

multiple views, 366–367
order of events in page processing, 191,

192
page life cycle, 196–199
partial refreshes using Ajax, 859–871
placing custom images in, 398–400

■INDEX950

8911INDEX.qxd 10/17/07 5:02 PM Page 950

progress notification using Ajax, 871–876
query strings transferring information in

URLs, 224–228
redirecting user to new web page, 159–160
reference to, 176
reusing headers and footers in, 383
reusing web page markup, 381
stacking panels in, 880
style types, 406
styles, 405–419

applying style sheet rules, 417–419
creating style sheets, 414–416

themes, 419–427
throwing exceptions without details, 813
timed refreshes using Ajax, 876–877
transferring information between,

218–228
user controls compared, 381
validated customer form, 347–352

web projects, 92
Web Server Certificate wizard, 721
web servers

allowing file uploads, 642–645
creating web server file browser, 629–632
debugging with Visual Studio, 121–122
how web servers work, 295–297
virtual directories, 297
Visual Studio benefits, 88
Windows authentication, 710

web services
App_WebReferences directory, 132
ASP.NET file type describing, 131

web.config file, 164–165
accessing specific directories, 701
accessing specific files, 701
accessing via IIS, 168
add element, 167
adjusting default membership connection

string, 729
anonymousIdentification element, 783
appSettings element, 164, 166
authenticating users, 700
authorization section, 758
basic structure of, 164
case sensitivity, 164
changing error modes, 277
configuration element, 164
configuration inheritance, 165
configuring with WAT, 168–170
connectionStrings element, 164, 562

storing connection string, 508
creating websites with Visual Studio, 91
custom error pages, 278
debugging with Visual Studio, 121
description, 131
forms authentication, 699
LocalSqlServer connection string, 768

maximum size of file uploads, 645
maxRequestLength setting, 645
multilayered configuration, 165
outputCacheProfiles section, 831
profile properties, 770, 774
role-based security, 755
serializeAs attribute, 774
session state configuration, 236–244

cookieless setting, 237–240
mode setting, 241–244
timeout setting, 240

sqlCacheDependency element, 848
storing custom settings in, 166–168
system.web element, 165
updating settings, 164
urlMappings section, 461
web applications, 163
Windows authentication, 711–713
XML structure of, 164

Web.sitemap file
binding pages to site maps, 451
retrieving site map information from XML

file, 446
showing subtrees of site maps, 456
siteMap element, 447
siteMapNode element, 447–450
using different site maps in same file, 459

WebConfigurationManager class
AppSettings property, 167
creating data-access component, 805

WebControl class, 175–176
Website Administration Tool see WAT
website navigation, 445–480

ASP.NET navigation with site maps, 446
Menu control, 474–480
navigation components, 445
pages with multiple views, 379
site maps, 445–462

binding master page to, 452–454
binding pages to, 451–452
binding portions of, 454–459
defining, 446–450
example, 450–451
mapping URLs, 461–462
nodes with duplicate URLs, 450
retrieving information from, 459
showing subtrees, 455–458
using different site maps in same file,

458–459
SiteMap class, 459–461
SiteMapPath control, 462–467
TreeView control, 467–474

websites
applying theme to entire website, 423–424
creating with Visual Studio, 88–96
deploying, 316–323
deploying with Visual Studio, 323–329

■INDEX 951

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 951

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

managing with IIS Manager, 308–316
migrating from previous version of Visual

Studio, 96
setting up to use forms authentication,

726
Solution Explorer, 93–94
synchronizing remote website, 329

WeekendDayStyle property, Calendar
control, 358

WHERE clause, SQL, 493, 494
while loop, 45
whitespace

line breaks, 108
master pages, 435
regular expression characters, 346

widening conversions, 32
Width property, WebControl class, 176
wildcard characters (* and ?)

anonymous user access, 700
Windows accounts

impersonation, 718
permissions, 318

Windows authentication, 710–717
advantages, 710
authorization rules, 711
Basic authentication, 713
choosing authentication method in IIS,

714
configuring authentication in IIS, 716
data access, ADO.NET, 506–507
default Windows roles, 712
description, 697
Digest authentication, 713
examining user’s group membership, 712
IIS settings, 713–715
implementing Windows-based security,

710
integrated Windows authentication, 506,

713
login page, 716
modes, 713
profiles, 767
test page, 716–717
web.config settings, 711–713
WindowsBuiltInRole enumeration, 712

Windows event logs
table of, 266
viewing, 265–268
writing to, 268–269

Windows Features window
authentication in IIS 7, 715

WindowsBuiltInRole enumeration, 712
WindowsIdentity class

identity objects, 709
Impersonate method, 718

Wizard control, 372–379
ActiveStepChanged event, 377

ActiveStepIndex property, 376
CreateUserWizard control, 749
creating wizards, 373–376
DisplaySideBar property, 372
events, 376–377
formatting the wizard, 377–378
programming models, 377
slimming down complex wizards, 376
styles, 378, 379
templates, 378, 379
Update method, 377
validation within wizards, 379

WizardStep controls
creating wizards, 373–376
properties, 374

Write method, Response class, 162, 163
Write method, Trace object, 287, 288
write-only properties, 59
WriteAllBytes method, File class, 636
WriteAllLines method, File class, 636
WriteAllText method, File class, 636
WriteLine method, StreamWriter class, 633
wwwroot directory

creating virtual directories, 311
creating virtual directory for new project,

324
managing websites with IIS Manager, 308
verifying ASP.NET installation, 306

X
x coordinate, 396
XCopy deployment, 317
XHTML

attributes, 110
complete XHTML web page, 111–112
components and structure of web form,

106–112
configuring level of error checking, 119
elements, 107–109
formatting in, 110
HTML and, 105
references to HTML in this book, 105
XML and .NET, 647

XHTML documents, 111
XHTML strict, 105
XHTML transitional, 104
XML

comments, 21, 166, 653, 666
description, 105
formatting XML, 656
introduction, 648–651
LINQ to XML, 688
metalanguage, 650
nodes, 657
web.config file format, 164
XML and .NET, 647–648
XML files compared to databases, 651

■INDEX952

8911INDEX.qxd 10/17/07 5:02 PM Page 952

XSLT (XSL Transformations), 678–682
XML attributes, 652–653

creating XML document as objects, 666
XML classes, 654–671

XmlDataDocument class, 688
XmlDocument class, 662–671
XmlTextReader class, 657–662
XmlTextWriter class, 654–656

XML data binding, 682–687
binding to XML content from other

sources, 687
hierarchical binding, 685–687
nonhierarchical binding, 683–685

XML declaration, 652
XML documents

class providing in-memory model of, 663
cloning a portion of, 669
comments, 653
creating XML document as objects, 666
declaration, 652
description, 662
parsing, 651, 652
reading, 657
reading part of XML document, 662
reading XML document, 667–669
searching XML document, 670–671
validating against schema, 675–678
working with XML documents in memory,

662, 667
writing, 654
XmlDataDocument class, 688

XML elements
attributes, 652–653
case sensitivity, 651
complex types, 675
composition of, 651
creating XML document as objects, 666
description, 650
empty element, 447, 651
nesting, 652
overlapping elements, 652
special characters, 651
using elements or attributes, 652, 653
whitespace, 651

XML namespaces, 671–673
attributes, 673
namespace prefixes, 673
naming conventions, 672
xmlns attribute, 673

XML parsers, 651
XML Schema Definition see XSD
XML serialization, 688

custom data types, 778
XML validation, 671–678

validating XML document against
schema, 675–678

XML namespaces, 671–673

XSD documents, 673–678
Xml value, serializeAs attribute, 774
Xml web control, 681–682
XmlAttribute class, 663, 666
XmlAttributeCollection class, 669
XmlComment class, 666
XmlDataDocument class, 688
XmlDataSource class, 682–687

Data property, 687
DataBind method, 683
DataFile property, 683
description, 560
GetHierarchcialView method, 685
limitations, 685
nonhierarchical binding, 683–685

XmlDataSource control
caching properties, 839

XmlDocument class, 662–671
analogy with DataSet, 663
AppendChild method, 666
CreateAttribute method, 666
CreateComment method, 666
CreateElement method, 666
events, 669
GetElementById method, 670
GetElementsByTagName method, 670
in-memory model of XML documents, 663
InsertAfter method, 666
InsertBefore method, 666
inserting nodes, 666
Load method, 667
manipulating nodes, 668
object model, 663
reading XML document, 667–669
Save method, 664, 666
searching XML document, 670–671
when to use, 668

XmlElement class, 666
XmlNode compared, 668

XmlNode class
adding node content, 669
adding/removing nodes, 669
ChildNodes collection, 668
CloneNode method, 669
manipulating node attributes, 669
manipulating nodes, 668
Nodes collection, 683
properties, 668
reading XMLDocument in memory, 667
working with node content as string data,

669
XmlElement compared, 668

xmlns attribute
siteMap element, 447
XML namespaces, 673

XmlReader class, 676

■INDEX 953

Find
itfasterathttp://superindex.apress.com

/

8911INDEX.qxd 10/17/07 5:02 PM Page 953

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

XmlReaderSettings class
ValidationEventHandler event, 677
ValidationType property, 675

XmlSchema class, 675
XmlSchemaCollection class, 675
XmlSchemaException class, 676
XmlSerializer class, 778
XmlSiteMapProvider control, 446
XmlTextReader class, 657–662

creating group of objects, 660
properties and methods, 662
Read method, 657
when to use, 668

XmlTextWriter class, 654–656
default format of XML file, 656
support for formatting, 656

XPath (XML Path Language)
resolving limitations of XmlDataSource

class, 685
searching XML document, 671

xs namespace prefix, XSD documents, 674
XSD (XML Schema Definition), 673–675

brief description, 671
validating XML document against

schema, 675–678
XSD documents

complex types, 675
making an attribute mandatory, 675

maxOccurs attribute, 675
minOccurs attribute, 675
root element, 674
specifying element/attribute data type,

675
structure of target document, 674
targetNamespace attribute, 674
XML validation, 673–678
xs namespace prefix, 674

XSL (eXtensible Stylesheet Language), 678
XSL Transformations see XSLT
XslCompiledTransform class, 678, 681
XSLT (XSL Transformations), 678–682

@ character, 680
resolving limitations of XmlDataSource

class, 685
style sheets, 678
Xml web control, 681–682

Y
y coordinate, 396
Year property, DateTime class, 37, 38

Z
zero-based counting, arrays, 39
zero-based counting, strings, 35
zero-touch deployment, 317

■INDEX954

8911INDEX.qxd 10/17/07 5:02 PM Page 954

FIND IT FAST
with the Apress SuperIndex ™

Quickly Find Out What the Experts Know

L eading by innovation, Apress now offers you its SuperIndex™, a turbocharged

companion to the fine index in this book. The Apress SuperIndex™ is a keyword

and phrase-enabled search tool that lets you search through the entire Apress library.

Powered by dtSearch™, it delivers results instantly.

Instead of paging through a book or a PDF, you can electronically access the topic

of your choice from a vast array of Apress titles. The Apress SuperIndex™ is the

perfect tool to find critical snippets of code or an obscure reference. The Apress

SuperIndex™ enables all users to harness essential information and data from the

best minds in technology.

No registration is required, and the Apress SuperIndex™ is free to use.

1 Thorough and comprehensive searches of over 300 titles

2 No registration required

3 Instantaneous results

4 A single destination to find what you need

5 Engineered for speed and accuracy

6 Will spare your time, application, and anxiety level

Search now: http://superindex.apress.com

8911INDEX.qxd 10/17/07 5:02 PM Page 955

http://superindex.apress.com

Offer valid through 5/12/08.

8911INDEX.qxd 10/17/07 5:02 PM Page 956

	Prelims
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	About This Book
	Who Should Read This Book
	What You Need to Use This Book

	Code Samples
	Chapter Overview
	Part 1: Introducing .NET
	Part 2: Developing ASP.NET Applications
	Part 3: Building Better Web Forms
	Part 4: Working with Data
	Part 5: Website Security
	Part 6: Advanced ASP.NET

	Feedback

	The .NET Framework
	The Evolution of Web Development
	HTML and HTML Forms
	Server-Side Programming
	Client-Side Programming

	The .NET Framework
	C#,VB, and the .NET Languages
	Intermediate Language
	Other .NET Languages

	The Common Language Runtime
	The .NET Class Library
	Visual Studio

	The Last Word

	The C# Language
	The .NET Languages
	C# Language Basics
	Case Sensitivity
	Commenting
	Statement Termination
	Blocks

	Variables and Data Types
	Assignment and Initializers
	Strings and Escaped Characters
	Arrays
	The ArrayList

	Enumerations

	Variable Operations
	Advanced Math
	Type Conversions

	Object-Based Manipulation
	The String Type
	The DateTime and TimeSpan Types
	The Array Type

	Conditional Logic
	The if Statement
	The switch Statement

	Loops
	The for Loop
	The foreach Loop
	The while loop

	Methods
	Parameters
	Method Overloading
	Delegates

	The Last Word

	Types, Objects, and Namespaces
	The Basics About Classes
	Static Members
	A Simple Class

	Building a Basic Class
	Creating an Object
	Adding Properties
	Adding a Method
	Adding a Constructor
	Adding an Event
	Testing the Product Class

	Value Types and Reference Types
	Assignment Operations
	Equality Testing
	Passing Parameters by Reference and by Value
	Reviewing .NET Types

	Understanding Namespaces and Assemblies
	Using Namespaces
	Importing Namespaces
	Assemblies

	Advanced Class Programming
	Inheritance
	Static Members
	Casting Objects
	Partial Classes
	Generics

	The Last Word

	Visual Studio
	The Promise of Visual Studio
	Creating Websites
	Creating a New Web Application
	Websites and Web Projects
	The Hidden Solution Files
	The Solution Explorer
	Adding Web Forms
	Migrating a Website from a Previous Version of Visual Studio

	Designing a Web Page
	Adding Web Controls
	The Properties Window

	The Anatomy of a Web Form
	The Web Form Markup
	The Page Directive
	The Doctype
	The Essentials of XHTML
	Elements
	Attributes
	Formatting
	A Complete Web Page

	Writing Code
	The Code-Behind Class
	Adding Event Handlers
	IntelliSense and Outlining
	Outlining
	Member List
	Error Underlining
	Automatically Importing Namespaces
	Auto Format and Color

	Visual Studio Debugging
	The Visual Studio Web Server
	Single-Step Debugging
	Variable Watches

	The Last Word

	Web Form Fundamentals
	The Anatomy of an ASP.NET Application
	ASP.NET File Types
	ASP.NET Application Directories

	Introducing Server Controls
	HTML Server Controls
	Converting an HTML Page to an ASP.NET Page
	View State
	The HTML Control Classes
	Adding the Currency Converter Code
	Event Handling
	Behind the Scenes with the Currency Converter
	Error Handling

	Improving the Currency Converter
	Adding Multiple Currencies
	Dissecting the Code . . .

	Storing Information in the List
	Adding Linked Images
	Setting Styles

	A Deeper Look at HTML Control Classes
	HTML Control Events
	Advanced Events with the HtmlInputImage Control
	The HtmlControl Base Class
	The HtmlContainerControl Class
	The HtmlInputControl Class

	The Page Class
	Sending the User to a New Page
	HTML Encoding

	Application Events
	The Global.asax File
	Additional Application Events

	ASP.NET Configuration
	The web.config File
	Nested Configuration
	Storing Custom Settings in the web.config File
	The Website Administration Tool (WAT)

	The Last Word

	Web Controls
	Stepping Up to Web Controls
	Basic Web Control Classes
	The Web Control Tags

	Web Control Classes
	The WebControl Base Class
	Units
	Enumerations
	Colors
	Fonts
	Focus
	The Default Button

	List Controls
	Multiple-Select List Controls
	The BulletedList Control

	Table Controls
	Web Control Events and AutoPostBack
	How Postback Events Work
	The Page Life Cycle
	Dissecting the Code . . .

	A Simple Web Page
	Improving the Greeting Card Generator
	Generating the Cards Automatically

	The Last Word

	State Management
	The Problem of State
	View State
	The ViewState Collection
	A View State Example
	Making View State Secure
	Tamperproof View State
	Private View State

	Retaining Member Variables
	Storing Custom Objects

	Transferring Information Between Pages
	Cross-Page Posting
	Getting More Information from the Source Page

	The Query String
	A Query String Example
	URL Encoding

	Cookies
	A Cookie Example

	Session State
	Session Tracking
	Using Session State
	A Session State Example

	Session State Configuration
	Cookieless
	Timeout
	Mode
	InProc
	Off
	StateServer
	SQLServer

	Application State
	An Overview of State Management Choices
	The Last Word

	Error Handling, Logging, and Tracing
	Common Errors
	Exception Handling
	The Exception Class
	The Exception Chain

	Handling Exceptions
	Catching Specific Exceptions
	Nested Exception Handlers
	Dissecting the Code . . .

	Exception Handling in Action
	Mastering Exceptions

	Throwing Your Own Exceptions
	Logging Exceptions
	Viewing the Windows Event Logs
	Writing to the Event Log
	Custom Logs
	A Custom Logging Class
	Retrieving Log Information

	Error Pages
	Error Modes
	Custom Error Pages

	Page Tracing
	Enabling Tracing
	Tracing Information
	Request Details
	Trace Information
	Control Tree
	Session State and Application State
	Request Cookies and Response Cookies
	Headers Collection
	Form Collection
	Query String Collection
	Server Variables

	Writing Trace Information
	Application-Level Tracing

	The Last Word

	Deploying ASP.NET Applications
	ASP.NET Applications and the Web Server
	How Web Servers Work
	The Virtual Directory
	Web Application URLs
	Web Farms

	Internet Information Services (IIS)
	The Many Faces of IIS
	Installing IIS 5 (in Windows XP)
	Installing IIS 6 (in Windows Server 2003)
	Installing IIS 7 (in Windows Vista)
	Installing IIS 7 (in Windows Server 2008)
	Registering the ASP.NET File Mappings
	Verifying That ASP.NET Is Correctly Installed

	Managing Websites with IIS Manager
	Creating a Virtual Directory
	Configuring a Virtual Directory
	Setting a Default Page
	Custom Error Pages
	ASP.NET Settings

	Deploying a Simple Site
	Web Applications and Components
	Other Configuration Steps
	Code Compilation
	The ASP.NET Account
	Changing the Account in IIS 5
	Changing the Account in IIS 6 or IIS 7
	Giving the ASP.NET Account More Privileges

	Deploying with Visual Studio
	Creating a Virtual Directory for a New Project
	Copying a Website
	Publishing a Website

	The Last Word

	Validation
	Understanding Validation
	The Validator Controls
	Server-Side Validation
	Client-Side Validation

	The Validation Controls
	A Simple Validation Example
	Other Display Options
	Manual Validation
	Validating with Regular Expressions
	Literals and Metacharacters
	Finding a Regular Expression

	A Validated Customer Form
	Validation Groups

	The Last Word

	Rich Controls
	The Calendar
	Formatting the Calendar
	Restricting Dates

	The AdRotator
	The Advertisement File
	The AdRotator Class

	Pages with Multiple Views
	The MultiView Control
	Creating Views
	Showing a View

	The Wizard Control
	Wizard Steps
	Wizard Events
	Formatting the Wizard
	Validation with the Wizard

	The Last Word

	User Controls and Graphics
	User Controls
	Creating a Simple User Control
	Independent User Controls
	Integrated User Controls
	User Control Events
	Passing Information with Events

	Dynamic Graphics
	Basic Drawing
	Drawing a Custom Image
	Placing Custom Images Inside Web Pages
	Image Format and Quality

	The Last Word

	Styles, Themes, and Master Pages
	Styles
	Style Types
	Creating a Basic Inline Style
	The Style Builder
	The CSS Properties Window
	Style Inheritance

	Creating a Style Sheet
	The CSS Outline Window

	Applying Style Sheet Rules
	The Apply Styles Window

	Themes
	How Themes Work
	Applying a Simple Theme
	Handling Theme Conflicts
	Creating Multiple Skins for the Same Control
	More Advanced Skins

	Master Page Basics
	A Simple Master Page and Content Page
	How Master Pages and Content Pages Are Connected
	A Master Page with Multiple Content Regions
	Default Content
	Master Pages and Relative Paths

	Advanced Master Pages
	Table-Based Layouts
	Code in a Master Page
	Interacting with a Master Page Programmatically

	The Last Word

	Website Navigation
	Site Maps
	Defining a Site Map
	Rule 1: Site Maps Begin with the <siteMap> Element
	Rule 2: Each Page Is Represented by a <siteMapNode> Element
	Rule 3: A <siteMapNode> Element Can Contain Other <siteMapNode> Elements
	Rule 4: Every Site Map Begins with a Single <siteMapNode>
	Rule 5: Duplicate URLs Are Not Allowed

	Seeing a Simple Site Map in Action
	Binding an Ordinary Page to a Site Map
	Binding a Master Page to a Site Map
	Binding Portions of a Site Map
	Showing Subtrees
	Using Different Site Maps in the Same File

	The SiteMap Class
	Mapping URLs

	The SiteMapPath Control
	Customizing the SiteMapPath
	Using SiteMapPath Styles and Templates
	Adding Custom Site Map Information

	The TreeView Control
	TreeView Properties
	TreeView Styles
	Applying Styles to Node Types
	Applying Styles to Node Levels

	The Menu Control
	Menu Styles
	Menu Templates

	The Last Word

	ADO.NET Fundamentals
	Understanding Data Management
	The Role of the Database
	Database Access in the Web World

	Configuring Your Database
	SQL Server Express
	Browsing and Modifying Databases in Visual Studio
	The sqlcmd Command-Line Tool

	SQL Basics
	Running Queries in Visual Studio
	The Select Statement
	A Sample Select Statement
	Improving the Select Statement
	An Alternative Select Statement
	The Where Clause
	String Matching with the Like Operator
	Aggregate Queries

	The SQL Update Statement
	The SQL Insert Statement
	The SQL Delete Statement

	ADO.NET Basics
	Data Namespaces
	The Data Provider Classes

	Direct Data Access
	Creating a Connection
	The Connection String
	Windows Authentication
	User Instance Connections
	Storing the Connection String
	Making the Connection

	The Select Command
	The DataReader
	Putting It All Together
	Filling the List Box
	Retrieving the Record

	Updating Data
	Displaying Values in Text Boxes
	Adding a Record
	Creating More Robust Commands
	Updating a Record
	Deleting a Record

	Disconnected Data Access
	Selecting Disconnected Data
	Selecting Multiple Tables
	Defining Relationships

	The Last Word

	Data Binding
	Introducing Data Binding
	Types of ASP.NET Data Binding
	Single-Value, or “Simple,” Data Binding
	Repeated-Value, or “List,” Binding

	How Data Binding Works

	Single-Value Data Binding
	A Simple Data Binding Example
	Simple Data Binding with Properties
	Problems with Single-Value Data Binding
	Using Code Instead of Simple Data Binding

	Repeated-Value Data Binding
	Data Binding with Simple List Controls
	A Simple List Binding Example
	Strongly Typed Collections
	Multiple Binding
	Data Binding with a Dictionary Collection
	Using the DataValueField Property
	Data Binding with ADO.NET
	Creating a Record Editor

	Data Source Controls
	The Page Life Cycle with Data Binding
	The SqlDataSource
	Selecting Records
	How the Data Source Controls Work

	Parameterized Commands
	Other Types of Parameters
	Setting Parameter Values in Code

	Handling Errors
	Updating Records
	Strict Concurrency Checking

	The Last Word

	The Data Controls
	The GridView
	Automatically Generating Columns
	Defining Columns
	Configuring Columns
	Generating Columns with Visual Studio

	Formatting the GridView
	Formatting Fields
	Using Styles
	Configuring Styles with Visual Studio

	Formatting-Specific Values

	Selecting a GridView Row
	Adding a Select Button
	Using a Data Field As a Select Button

	Using Selection to Create Master-Details Pages

	Editing with the GridView
	Sorting and Paging the GridView
	Sorting
	Sorting and Selecting

	Paging

	Using GridView Templates
	Using Multiple Templates
	Editing Templates in Visual Studio
	Handling Events in a Template
	Editing with a Template
	Editing with Validation
	Editing Without a Command Column

	The DetailsView and FormView
	The DetailsView
	Defining Fields

	The FormView

	The Last Word

	Files and Streams
	Files and Web Applications
	File System Information
	The Path Class
	The Directory and File Classes
	Dissecting the Code . . .

	The DirectoryInfo and FileInfo Classes
	The DriveInfo Class
	A Sample File Browser
	Dissecting the Code . . .

	Reading and Writing with Streams
	Text Files
	Binary Files
	Shortcuts for Reading and Writing Files
	A Simple Guest Book
	Dissecting the Code . . .

	Allowing File Uploads
	The FileUpload Control
	Dissecting the Code . . .

	The Last Word

	XML
	XML’s Hidden Role in .NET
	Configuration Files
	XHTML
	ADO.NET Data Access
	Anywhere Miscellaneous Data Is Stored

	XML Explained
	Improving the List with XML
	XML Basics
	Attributes
	Comments

	The XML Classes
	The XML TextWriter
	The XML Text Reader
	Dissecting the Code . . .

	Working with XML Documents in Memory
	Dissecting the Code . . .

	Reading an XML Document
	Searching an XML Document

	XML Validation
	XML Namespaces
	XML Schema Definition
	Dissecting the Code . . .

	Validating an XML Document

	XML Display and Transforms
	The Xml Web Control

	XML Data Binding
	Nonhierarchical Binding
	Hierarchical Binding with the TreeView
	Binding to XML Content from Other Sources

	The Last Word

	Security Fundamentals
	Determining Security Requirements
	The ASP.NET Security Model
	The Visual Studio Web Server
	Authentication and Authorization

	Forms Authentication
	Web.config Settings
	Authorization Rules
	Controlling Access to Specific Directories
	Controlling Access to Specific Files
	Controlling Access for Specific Users

	The WAT
	The Login Page
	Retrieving the User’s Identity
	Signing Out

	Windows Authentication
	Web.config Settings
	IIS Settings
	A Windows Authentication Test

	Impersonation
	Understanding Impersonation
	Programmatic Impersonation

	Confidentiality with SSL
	Creating a Certificate Request
	Secure Sockets Layer

	The Last Word

	Membership
	The Membership Data Store
	Membership with SQL Server 2005 Express
	Using the Full Version of SQL Server
	Configuring the Membership Provider
	Creating Users with the WAT
	The Membership and MembershipUser Classes
	Authentication with Membership
	Disabled Accounts

	The Security Controls
	The Login Control
	The CreateUserWizard Control
	The PasswordRecovery Control

	Role-Based Security
	Creating and Assigning Roles
	Restricting Access Based on Roles
	The LoginView Control

	The Last Word

	Profiles
	Understanding Profiles
	Profile Performance
	How Profiles Store Data

	Using the SqlProfileProvider
	Enabling Authentication
	Using the Full Version of SQL Server
	The Profile Databases
	Defining Profile Properties
	Using Profile Properties
	Profile Serialization
	Profile Groups
	Profiles and Custom Data Types
	Dissecting the Code . . .
	Custom Type Serialization
	Automatic Saves

	The Profile API
	Anonymous Profiles
	Migrating Anonymous Profiles

	The Last Word

	Component-Based Programming
	Why Use Components?
	Component Jargon
	Three-Tier Design
	Encapsulation
	Business Objects
	Data Objects
	Components and Classes

	Creating a Component
	Classes and Namespaces
	Class Members
	Adding a Reference to the Component
	Using the Component

	Properties and State
	A Stateful Account Class
	A Stateless AccountUtility Class

	Data-Access Components
	A Simple Data-Access Component
	Dissecting the Code . . .

	Using the Data-Access Component
	Dissecting the Code . . .

	Enhancing the Component with Error Handling
	Enhancing the Component with Aggregate Information

	The ObjectDataSource
	Making Classes the ObjectDataSource Can Understand
	Selecting Records
	Using Method Parameters
	Updating Records

	The Last Word

	Caching
	Understanding Caching
	When to Use Caching
	Caching in ASP.NET

	Output Caching
	Caching on the Client Side
	Caching and the Query String
	Caching with Specific Query String Parameters
	A Multiple Caching Example
	Custom Caching Control
	Fragment Caching
	Cache Profiles

	Data Caching
	Adding Items to the Cache
	A Simple Cache Test
	Caching to Provide Multiple Views
	Caching with the Data Source Controls
	Caching with SqlDataSource
	Caching with ObjectDataSource

	Caching with Dependencies
	File Dependencies
	Cache Item Dependencies
	SQL Server 2000 Cache Dependencies
	Enabling Notifications
	How Notifications Work
	Enabling ASP.NET Polling
	Creating the Cache Dependency

	SQL Server 2005 and 2008 Cache Dependencies
	Enabling the Service Broker
	Initializing the Caching Service
	Creating the Cache Dependency

	The Last Word

	ASP.NET AJAX
	Understanding Ajax
	Ajax: The Good
	Ajax: The Bad
	The ASP.NET AJAX Toolkit
	The ScriptManager

	Partial Refreshes
	A Simple UpdatePanel Test
	Handling Errors
	Conditional Updates
	Triggers

	Progress Notification
	Showing a Simulated Progress Bar
	Cancellation

	Timed Refreshes
	The ASP.NET AJAX Control Toolkit
	Installing the ASP.NET AJAX Control Toolkit
	The Accordion
	The AutoCompleteExtender
	Getting More Controls

	The Last Word

	Index

