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Preface
It's been quite a while since the people from whom we get our project assignments 
accepted the excuse "Gimme a break! I can only do one thing at a time!" It used to be 
such a good excuse, too, when things moved just a bit slower and a good day was 
measured in written lines of code. In fact, today we often do many things at a time. We 
finish off breakfast on the way into work; we scan the Internet for sports scores and stock 
prices while our application is building; we'd even read the morning paper in the shower if 
the right technology were in place! 

Being busy with multiple things is nothing new, though. (We'll just give it a new computer-
age name, like multitasking, because computers are happiest when we avoid describing 
them in anthropomorphic terms.) It's the way of the natural world—we wouldn't be able to 
write this book if all the body parts needed to keep our fingers moving and our brains 
engaged didn't work together at the same time. It's the way of the mechanical world—we 
wouldn't have been able to get to this lovely prefabricated office building to do our work if 
the various, clanking parts of our automobiles didn't work together (most of the time). It's 
the way of the social and business world—three authoring tasks went into the making of 
this book, and the number of tasks, all happening at once, grew exponentially as it went 
into its review cycles and entered production. 

Computer hardware and operating systems have been capable of multitasking for years. 
CPUs using a RISC (reduced instruction set computing) microprocessor break down the 
processing of individual machine instructions into a number of separate tasks. By 
pipelining each instruction through each task, a RISC machine can have many 
instructions in progress at the same time. The end result is the heralded speed and 
throughput of RISC processors. Time-sharing operating systems have been allowing 
users nearly simultaneous access to the processor for longer than we can remember. 
Their ability to schedule different tasks (typically called processes) really pays off when 
separate tasks can actually execute simultaneously on separate CPUs in a 
multiprocessor system. 

Although real user applications can be adapted to take advantage of a computer's ability 
to do more than one thing at once, a lot of operating system code must execute to make 
it possible. With the advent of threads we've reached an ideal state—the ability to 
perform multiple tasks simultaneously with as little operating system overhead as 
possible. 

Although threaded programming styles have been around for some time now, it's only 
recently that they've been adopted by the mainstream of UNIX programmers (not to 
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mention those erstwhile laborers in the vineyards of Windows NT and other operating 
systems). Software sages swear at the lunchroom table that transaction processing 
monitors and real-time embedded systems have been using thread-like abstractions for 
more than  twenty years. In the mid-to-late eighties, the general operating system 
community embarked on several research efforts focused on threaded programming 
designs, as typified by the work of Tom Doeppner at Brown University and the Mach OS 
developers at Carnegie-Mellon. With the dawn of the nineties, threads became 
established in the various UNIX operating systems, such as USL's System V Release 4, 
Sun Solaris, and the Open Software Foundation's OSF/1. The clash of platform-specific 
threads programming libraries advanced the need of some portable, platform-
independent threads interface.  The IEEE has just this year met this need with the 
acceptance of the IEEE Standard for Information Technology Portable Operating System 
Interface  (POSIX) Part 1: System Application Programming Interface (API) Amendment 
2: Threads Extension [C Language]—the Pthreads standard, for short.  

This book is about Pthreads—a lightweight, easy-to-use, and portable mechanism for 
speeding up applications. 

Organization

We'll start off Chapter 1,   Why Threads?  , by introducing you to multithreading as a way of 
performing the many tasks of a program with greater efficiency and speed than would be 
possible in a serial or multiprocess design. We'll then examine the pitfalls of serial and 
multiprocess programming, and discuss the concept of potential parallelism, the 
cornerstone of any decision to write a multitasking program. We'll introduce you to your 
first Pthreads call—pthread_create—and look at those structures by which a thread is 
uniquely identified. We'll briefly examine the ways in which multiple threads in the same 
process exchange data, and we'll highlight some synchronization issues. 

We'll continue our discussion of planning and structuring a multithreaded program in 
Chapter 2,   Designing Threaded Programs  . Here, we'll look at the types of applications 
that can benefit most from multithreading. We'll present the three classic methods for 
distributing work among threads—the boss/worker model, the peer model, and the 
pipeline model. We'll also compare two strategies for creating threads—creation on 
demand versus thread pools. After a brief discussion of thread data-buffering techniques, 
we'll introduce the ATM server application example that we'll use as the proving ground 
for thread concepts we'll examine throughout the rest of the book. 

In Chapter 3,   Synchronizing Pthreads  , we'll look at the tools that the Pthreads library 
provides to help you ensure that threads access shared data in an orderly manner. This 
chapter includes lengthy discussions of mutex variables and condition variables, the two 
primary Pthreads synchronization tools. It also describes reader/writer locks, a more 
complex synchronization tool built from mutexes and condition variables. By the end of 
the chapter, we will have added synchronization to our ATM server example and 
presented most of what you'll need to know to write a working multithreaded program. 

We'll look at the special characteristics of threads and the more advanced features of the 
Pthreads library in Chapter 4,   Managing Pthreads  . We'll cover some large topics, such as 
keys (a very handy way for threads to maintain private copies of shared data) and 
cancellation (a practical method for allowing your threads to be terminated 
asynchronously without disturbing the state of your program's data and locks). We'll cover 
some smaller topics, such as thread attributes, including the one that governs the 
persistence of a thread's internal state. (When you get to this chapter, we promise that 
you'll know what this means, and you may even value it!) A running theme of this chapter 
are the various tools that, when combined, allow you to control thread scheduling policies 
and priorities. You'll find these discussions especially important if your program includes 
one or more real-time threads. 

In Chapter 5,   Pthreads and UNIX  , we'll describe how multithreaded programs interact 
with features of the UNIX operating system that many serial programs take for granted. 
First, we'll examine the special challenges UNIX signals pose to multithreaded programs; 
we'll look at the types of signals threads must worry about and how you can direct certain 
signals to specific threads. We'll then focus on the requirements the Pthreads library 
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imposes on system calls and libraries to allow them to work correctly when multiple 
threads from the same process are using them at the same time. Finally, we'll show you 
what the UNIX fork and exec calls do to threads. (It isn't always pretty.) 

After we've dealt with the fundamentals of Pthreads programming in the earlier chapters, 
we turn to the more basic issues you'll face in deploying a multithreaded application in 
Chapter 6,   Practical Considerations  . The theme of this chapter is speed. We'll look at 
those performance concerns over which you have little control—those that are inherent in 
a given platform's Pthreads implementation. Here, we'll profile the three major ways 
implementors design a Pthreads-compliant platform, listing the advantages and 
drawbacks of each. We'll move on to a discussion of debugging threads, where we'll 
illustrate a number of debugging strategies using a thread-capable debugger. Finally, 
we'll look at various alternatives for improving our program's performance. We'll run some 
tests on various versions of our ATM server to test their performance as contention and 
workload increase. 

We've also included three brief appendixes: 

 • Appendix A,   Pthreads and DCE  , shows how a multithreaded program might be written 
using the Open Software Foundation's Distributed Computing Environment (DCE). 

 • Appendix B,   Pthreads Draft 4 vs. the Final Standard  , lists the differences between 
Draft 4 of the Pthreads standard and Draft 10, its final version. 

 • Appendix C,   Pthreads Quick Reference  , is meant to help you find the syntax of any 
Pthreads library call quickly, without the need for another book. 
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Example Programs

You can obtain the source code for the examples presented in this bookfromO'Reilly & 
Associates through their Internet server.

The example programs in this book are available electronically by FTP.

FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is 
shown, with what you should type in boldface.

%ftp ftp.uu.net

Connected to ftp.uu.net.

220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.

Name (ftp.uu.net:yourname): anonymous

331 Guest login ok, send domain style e-mail address as password.

Password: yourname@ora.com (use your user name and host here) 
230 Guest login ok, access restrictions apply.

ftp> cd /published/oreilly/nutshell/pthreads

250 CWD command successful.

ftp> binary (Very important! You must specify binary transfer for
compressed files.) 

200 Type set to I.

ftp> get examples.tar.gz

200 PORT command successful.

150 Opening BINARY mode data connection for examples.tar.gz. 
226 Transfer complete.

ftp> quit

221 Goodbye.

%

The file is a compressed tar archive; extract the files from the archive by typing: 

% gzcat examples.tar.gz | tar xvf -

System V systems require the following tar command instead: 

% gzcat examples.tar.gz | tar xof -

If gzcat is not available on your system, use separate gunzip and tar or shar 
commands. 

% gunzip examples.tar.gz

% tar xvf examples.tar



Typographical Conventions

The following font conventions are used in this book: 

 • Italic is used for function names, filenames, program names, commands, and 
variables. It's also used to identify new terms and concepts when they are introduced. 

 • Constant Width is used for code examples and for the system output portion of 
interactive examples.

 • Constant Bold is used in interactive examples to show commands or other text that 
would be typed literally by the user. 

 • Constant Italic identifies programmer-supplied variables in the C language 
function bindings that appear in Appendix C,   Pthreads Quick Reference  .
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Chapter 1: Why Threads?

Overview

When describing how computers work to someone new to PCs, it's often easiest to haul 
out the old notion that a program is a very large collection of instructions that are 
performed from beginning to end. Our notion of a program can include certain 
eccentricities, like loops and jumps, that make a program more resemble a game of 
Chutes and Ladders than a piano roll. If programming instructions were squares on a 
game board, we can see that our program has places where we stall, squares that we 
cross again and again, and spots we don't cross at all. But we have one way into our 
program, regardless of its spins and hops, and one way out.

Not too many years ago, single instructions were how we delivered work to computers. 
Since then, computers have become more and more powerful and grown more efficient 
at performing the work that makes running our programs possible. Today's computers 
can do many things at once (or very effectively make us believe so). When we package 
our work according to the traditional, serial notion of a program, we're asking the 
computer to execute it close to the humble performance of a computer of yesterday. If all 
of our programs run like this, we're very likely not using our computer to its fullest 
capabilities.

One of those capabilities is a computing system's ability to perform multitasking. Today, 
it's frequently useful to look at our program (our very big task) as a collection of subtasks. 
For instance, if our program is a marine navigation system, we could launch separate 
tasks to perform each sounding and maintain other tasks that calculate relative depth, 
correlate coordinates with depth measurements, and display charts on a screen. If we 
can get the computer to execute some of these subtasks at the same time, with no 
change in our program's results, our overall task will continue to get as much processing 
as it needs, but it will complete in a shorter period of time. On some systems, the 
execution of subtasks will be interleaved on a single processor; on others, they can run in 
parallel. Either way, we'll see a performance boost.

Up until now, when we divided our program into multiple tasks, we had only one way of 
delivering them to the processor—processes. Specifically, we started designing programs 
in which parent processes forked child processes to perform subtasks. In this model, 
each subtask must exist within its own process. Now, we've been given an alternative 
that's even more efficient and provides even better performance for our overall program—
threads. In the threads model, multiple subtasks exist as individual streams of control 
within the same process.

The threads model takes a process and divides it into two parts:

 
• One contains resources used across the whole program (the processwide 

information),such as program instructions and global data. This part is still referred to 
as the process.

 • The other contains information related to the execution state, such as a program 
counter and a stack. This part is referred to as a thread.

To compare and contrast multitasking between cooperating processes and multitasking 
using threads, let's first look at how the simple C program in Example 1-1 can be 
represented as a process (Figure 1-1), a process with a single thread (Figure 1-2), and, 
finally, as a process with multiple threads (Figure 1-3). 

Example 1-1: A Simple C Program (simple.c)

#include <stdio.h>

void do_one_thing(int *);

void do_another_thing(int *);

void do_wrap_up(int, int);
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int r1 = 0, r2 = 0;

extern int

main(void)

{

  do_one_thing(&r1);

  do_another_thing(&r2);

  do_wrap_up(r1, r2);

  return 0;
}

void do_one_thing(int *pnum_times)

{

  int i, j, x;

  for (i = 0;  i < 4; i++) {

    printf("doing one thing\n");

    for (j = 0; j < 10000; j++) x = x + i;

    (*pnum_times)++;

  }
}

void do_another_thing(int *pnum_times)

{

  int i, j, x;

  for (i = 0;  i < 4; i++) {

    printf("doing another \n");

    for (j = 0; j < 10000; j++) x = x + i;

    (*pnum_times)++;

  }
}

void do_wrap_up(int one_times, int another_times)

{

int total;

total = one_times + another_times;

printf("wrap up: one thing %d, another %d, total %d\n",

one_times, another_times, total);

}

Figure 1-1 shows the layout of this program in the virtual memory of a process, indicating 
how memory is assigned and which resources the process consumes. Several regions of 
memory exist: 



 • A read-only area for program instructions (or "text" in UNIX parlance) 

 • A read-write area for global data (such as the variables r1 and r2 in our program) 

Figure 1-1: The simple program as a process

 • A heap area for memory that is dynamically allocated through malloc system calls 

 

• A stack on which the automatic variables of the current procedure are kept (along with 
function arguments and other information needed to link it to the procedure that called 
it), just below similar information for the procedure that called it, just below similar 
information for the procedure that called it, and so on and so on. Each of these 
procedure-specific areas is known as a stack frame, and one exists for each 
procedure in the program that remains active. In the stack area of this illustration you 
can see the stack frames of our procedures do_one_thing and main. 

To complete our inventory of system resources needed to sustain this process, notice: 

 • Machine registers, including a program counter (PC) to the currently executing 
instruction and a pointer (SP) to the current stack frame 

 
• Process-specific include tables, maintained by the operating system, to track system-

supplied resources such as open files (each requiring a file descriptor), communication 
end points (sockets), locks, and signals 

Figure 1-2 shows the same C program as a process with a single thread. Here, the 
machine registers (program counter, stack pointer, and the rest) have become part of the 
thread, leaving the rest as the process. As far as the outside observer of the program is 
concerned, nothing much has changed. As a process with a single thread, this program 
executes in exactly the same way as it does when modeled as a nonthreaded process. It 
is only when we design our program to take advantage of multiple threads in the same 
process that the thread model really takes off. 

Figure 1-2: The simple program as a process with a thread

Figure 1-3 shows our program as it might execute if it were designed to operate in two 
threads in a single process. Here, each thread has its own copy of the machine registers. 
(It's certainly very handy for a thread to keep track of the instruction it is currently 

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/01FIG01_0.gif
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/01FIG02_0.gif


executing and where in the stack area it should be pushing and popping its procedure-
context information.) This allows Thread 1 and Thread 2 to execute at different locations 
(or exactly the same location) in the program's text. Thread 1, the thread in which the 
program was started, is executing do_one_thing, while Thread 2 is executing 
do_another_thing. Each thread can refer to global variables in the same data area. 
(do_one_thing uses r1 as a counter; do_another_thing uses r2.) Both threads can refer to 
the same file descriptors and other resources the system maintains for the process. 

Figure 1-3: The simple program as a process with multiple threads

What Are Pthreads?

How do you design a program so that it executes in multiple threads within a process? 
Well, for starters, you need a thread creation routine and a way of letting the new thread 
know where in the program it should begin executing. But at this point, we've passed 
beyond the ability to generalize. 

Up to this point, we've discussed the basics of threads and thread creation at a level 
common to all thread models. As we move on to discuss specifics (as we will in the 
remainder of this book), we encounter differences among the popular thread packages. 
For instance, Pthreads specifies a thread's starting point as a procedure name; other 
thread packages differ in their specification of even this most elementary of concepts. 
Differences such as this motivated IEEE to create the Pthreads standard. 

Pthreads is a standardized model for dividing a program into subtasks whose execution 
can be interleaved or run in parallel. The "P" in Pthreads comes from POSIX (Portable 
Operating System Interface), the family of IEEE operating system interface standards in 
which Pthreads is defined (POSIX Section 1003.1c to be exact). There have been and 
still are a number of other threads models—Mach Threads and NT Threads, for example. 
Programmers experience Pthreads as a defined set of C language programming types 
and calls with a set of implied semantics. Vendors usually supply Pthreads 
implementations in the form of a header file, which you include in your program, and a 
library, to which you link your program. 

Pthreads is a standardized model for dividing a program into subtasks whose execution 
can be interleaved or run in parallel. The "P"in Pthreads comes from POSIX (Portable 
Operating System Interface), the family of IEEE operating system interface standards in 
which Pthreads is defined (POSIX Section 1003.1c to be exact). There have been and still 
are a number of other threads models—Mach Threads and NT Threads, for example. 
Programmers experience Pthreads as a defined set of C language programming types and 
calls with a set of implied semantics. Vendors usually supply Pthreads implementations in 
the form of a header file, which you include in your program, and a library, to which you link 
your program.
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Potential Parallelism

If we return to the simple program in our examples, we see that it has three tasks to 
complete. The three tasks are represented by the routines do_one_thing, 
do_another_thing, and do_wrap_up. The do_one_thing and do_another_thing tasks are 
simply loops that print out slightly different messages and then perform some token 
calculations to while away the time. The do_wrap_up task adds together the return values 
from the other two tasks and prints the result. Many real programs can be split, in a 
similar way, into individual tasks representing different CPU-based and I/O-based 
activities. For instance, a program that retrieves blocks of data from a file on disk and 
then performs computations based on their contents is an eminent candidate for 
multitasking.

When we run the program, it executes each routine serially, always completely finishing 
the first before starting the second, and completely finishing the second before starting 
the third. If we take a closer look at the program, we see that the order in which the first 
two routines execute doesn't affect the third, as long as the third runs after both of them 
have completed. This property of a program—that statements can be executed in any 
order without changing the result—is called potential parallelism.

To illustrate parallelism, Figure 1-4 shows some possible sequences in which the 
program's routines could be executed. The first sequence is that of the original program; 
the second is similar but with the first two routines exchanged. The third shows 
interleaved execution of the first routines; the last, their simultaneous execution. All 
sequences produce exactly the same result.

Figure 1-4: Possible sequences of the routines in the simple program

An obvious reason for exploiting potential parallelism is to make our program run faster 
on a multiprocessor. However, there are additional reasons for investigating a program's 
potential parallelism:

Overlapping I/O

If one or more tasks represent a long I/O operation that may block while waiting for an 
I/O system call to complete, there may be performance advantages in allowing CPU-
intensive tasks to continue independently. For example, a word processor could 
service print requests in one thread and process a user's editing commands in 
another.

Asynchronous events

If one or more tasks is subject to the indeterminate occurrence of events of unknown 
duration and unknown frequency, such as network communications, it may be more 
efficient to allow other tasks to proceed while the task subject to asynchronous events 
is in some unknown state of completion. For example, a network-based server could 
process in-progress requests in one group of threads while another thread waits for 
the asynchronous arrival of new requests from clients through network connections.
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Real-time scheduling

If one task is more important than another, but both should make progress whenever 
possible, you may wish to run them with independent scheduling priorities and 
policies. For example, a stock information service application could use high priority 
threads to receive and update displays of online stock prices and low priority threads 
to display static data, manage background printing, and perform other less important 
chores.

Threads are a means to identify and utilize potential parallelism in a program. You can use 
them in your program design both to enhance its performance and to efficiently structure 
programs that do more than one thing at a time. For instance, handling signals, handling 
input from a communication interface, and managing I/O are all tasks that can be done—
and done very well—by multiple threads executing simultaneously.

Specifying Potential Parallelism in a Concurrent 
Programming Environment

Now that we know the orderings that we desire or would allow in our program, how do we 
express potential parallelism at the programming level? Those programming 
environments that allow us to express potential parallelism are known as concurrent 
programming environments. A concurrent programming environment lets us designate 
tasks that can run in parallel. It also lets us specify how we would like to handle the 
communication and synchronization issues that result when concurrent tasks attempt to 
talk to each other and share data.

Because most concurrent programming tools and languages have been the result of 
academic research or have been tailored to a particular vendor's products, they are often 
inflexible and hard to use. Pthreads, on the other hand, is designed to work across 
multiple vendors' platforms and is built on top of the familiar UNIX C programming 
interface. Pthreads gives you a simple and portable way of expressing multithreading in 
your programs.

UNIX Concurrent Programming: Multiple Processes

Before looking at threads further, let's examine the concurrent programming interface that 
UNIX already supports: allowing user programs to create multiple processes and 
providing services the processes can use to communicate with each other.

Example 1-2 recasts our earlier single-process program as a program in which multiple 
processes execute its procedures concurrently. The main routine starts ina single 
process (which we will refer to as the parent process). The parent process then creates a 
child process to execute the do_one_thing routine and another to execute the 
do_another_thing routine. The parent waits for both children to finish (as parents of the 
human kind often do), calls the do_wrap_up routine, and exits.

Example 1-2: A Simple C Program with Concurrent Processes

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/wait.h>

void do_one_thing(int *);

void do_another_thing(int *);



void do_wrap_up(int, int);

int   shared_mem_id;

int   *shared_mem_ptr;

int   *r1p;

int   *r2p;

extern int

main(void)

{

  pid_t  child1_pid, child2_pid;

  int  status;

  /* initialize shared memory segment */

  shared_mem_id = shmget(IPC_PRIVATE, 2*sizeof(int), 0660);

  shared_mem_ptr = (int *)shmat(shared_mem_id, (void *)0, 0);

  r1p = shared_mem_ptr;

  r2p = (shared_mem_ptr + 1);

  *r1p = 0;

  *r2p = 0;

  if ((child1_pid = fork()) == 0) {

    /* first child */

    do_one_thing(r1p);

    exit(0);

  }

  /* parent */

  if ((child2_pid = fork()) == 0) {

    /* second child */

    do_another_thing(r2p);

    exit(0);

  }

  /* parent */

  waitpid(child1_pid, &status, 0);

  waitpid(child2_pid, &status, 0);

  do_wrap_up(*r1p, *r2p);

  return 0;

}

Creating a new process: fork

The UNIX system call that creates a new process is fork. The fork call creates a child 



process that is identical toits parent process at the time the parent called fork with the 
following differences:

 • The child has its own process identifier, or PID.

 • The fork call provides different return values to the parent and the child processes.

Figure 1-5 shows a process as it forks. Here, both parent and child are executing at the 
point in the program just following the fork call. Interestingly, the child begins executing 
as if it were returning from the fork call issued by its parent. It can do so because it starts 
out as a nearly identical copy of its parent. The initial values of all of its variables and the 
state of its system resources (such as file descriptors) are the same as those of its 
parent.

Figure 1-5: A program before and after a fork

If the fork call returns to both the parent and child, why don't the parent and child execute 
the same instructions following the fork? UNIX programmers specify different code paths 
for parent and child by examining the return value of the fork call. The fork call always 
returns a value of 0 to the child and the child's PID to the parent. Because of this 
semantic we almost always see fork used as shown in Example 1-3.

Example 1-3: A fork Call (simple_processes.c)

if ((pid = fork()) < 0 ) {

           /* Fork system call failed */

           .

           .

           .

           perror("fork"), exit(1);
}else if (pid == 0) {

           /* Child only, pid is 0 */

           .

           .

           .

           return 0;
}else {
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           /* Parent only , pid is child's process ID */

           .

           .

           .
}

After the program forks into two different processes, the parent and child execute 
independently unless you add explicit synchronization. Each process executes its own 
instructions serially, although the way in which the statements of each may be interwoven 
by concurrency is utterly unpredictable. In fact, one process could completely finish 
before the other even starts (or resumes, in the case in which the parent is the last to the 
finish line). To see what we mean, let's look at the output from some test runs of our 
program in Example 1-2.

# simple_processes

doing another

doing one thing

doing another

doing one thing

doing another

doing one thing

doing one thing

doing another

wrap up: one thing 4, another 4, total 8

# simple_processes

doing another

doing another

doing one thing

doing another

doing one thing

doing one thing

doing another

doing one thing

wrap up: one thing 4, another 4, total 8

#

This program is a good example of parallelism and it works—as do the many real UNIX 
programs that use multiple processes. When looking for concurrency, then, why choose 
multiple threads over multiple processes? The overwhelming reason lies in the single 
largest benefit of multithreaded programming: threads require less program and system 
overhead to run than processes do. The operating system performs less work on behalf 
of a multithreaded program than it does for a multiprocess program. This translates into a 
performance gain for the multithreaded program.

Pthreads Concurrent Programming: Multiple Threads

Now that we've seen how UNIX programmers traditionally add concurrency to a program, 
let's look at a way of doing so that employs threads. Example 1-4 shows how our single-
process program would look if multiple threads execute its procedures concurrently. The 
program starts in a single thread, which, for reasons of clarity, we'll refer to as the main 
thread. For the most part, the operating system does not recognize any thread as being a 
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parent or master thread—from its viewpoint, all threads in a process are equal.

Using Pthreads function calls, the creator thread spawns a thread to execute the 
do_one_thing routine and another to execute the do_another_thing routine. It waits for 
both threads to finish, calls the do_wrap_up routine, and exits. In the same way that the 
processes behave in our multiprocess version of the program, each thread executes 
independently unless you add explicit synchronization. 

Example 1-4: A Simple C Program with Concurrent Threads (simple_threads.c)

#include <stdio.h>

#include <pthread.h>

void do_one_thing(int *);

void do_another_thing(int *);

void do_wrap_up(int, int);

int r1 = 0, r2 = 0;

extern int

main(void)

{

  pthread_t       thread1, thread2;

  pthread_create(&thread1,

          NULL,

          (void *) do_one_thing,

          (void *) &r1);

  pthread_create(&thread2,

          NULL,

          (void *) do_another_thing,

          (void *) &r2);

  pthread_join(thread1, NULL);

  pthread_join(thread2, NULL);

  do_wrap_up(r1, r2);

  return 0;
}

Creating a new thread: pthread_create

Whereas you create a new process by using the UNIX fork system call, you create a new 
thread by calling the pthread_create Pthreads function. You provide the following 
arguments: 

 
• A pointer to a buffer to which pthread_create returns a value that identifies the newly 

created thread. This value, or handle, is of type pthread_t.* You can use it in all 
subsequent calls to refer to this specific thread. 

 * The pthread_t type may look a little strange to you if you're used to the data types 



returned by C language system calls on many UNIX systems. Because many of 
these types (like int) reveal quite a bit about the underlying architecture of a given 
platform (such as whether its addresses are 16, 32, or 64 bits long), POSIX prefers 
to create new data types that conceal these fundamental differences. By 
convention, the names of these data types end in _t.

 
• A pointer to a structure known as a thread attribute object. A thread attribute object 

specifies various characteristics for the new thread. In the example program, we pass 
a value of NULL for this argument, indicating that we accept the default characteristics 
for the new thread. 

 • A pointer to the routine at which the new thread will start executing. 

 • A pointer to a parameter to be passed to the routine at which the new thread starts. 

Like most Pthreads functions, pthread_create returns a value that indicates whether it 
has succeeded or failed. A zero value represents success, and a nonzero value indicates 
and identifies an error. 

The formal prototype of a start routine is (void*)routine(void*arg). In our code example, 
we are adding threads to an existing program (a not atypical scenario) and using the 
(void *) cast to quit the compiler. In later examples, we redeclare the routine to the correct 
prototype where possible. 

Threads are peers

In the multiprocess version of our example (Example 1-2), we could refer to the caller of 
fork as the parent process and the process it creates as the child process. We could do 
so because UNIX process management recognizes a special relationship between the 
two. It is this relationship that, for instance, allows a parent to issue a wait system call to 
implicitly wait for one of its children. 

The Pthreads concurrent programming environment maintains no such special 
relationship between threads. We may call the thread that creates another thread the 
creator thread and the thread it creates the spawned thread, but that's just semantics. 
Creator threads and spawned threads have exactly the same properties in the eyes of 
the Pthreads. The only thread that has slightly different properties than any other is the 
first thread in the process, which is known as the main thread. In this simple program, 
none of the differences have any significance. 

Once the two pthread_create calls in our example program return, three threads exist 
concurrently. Which will run first? Will one run to completion before the others, or will their 
execution be interleaved? It depends on the default scheduling policies of the underlying 
Pthreads implementation. It could be predictable, but then again, it may not be. The 
output on our system looks like this: 

# simple_threads

doing another

doing one thing

doing another

doing one thing

doing another

doing one thing

doing another

doing one thing

wrap up: one thing 4, another 4, total 8

# simple_threads

doing another
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doing one thing

doing another

doing one thing

doing one thing

doing another

doing one thing

doing another

wrap up: one thing 4, another 4, total 8

#

Parallel vs. Concurrent Programming

Let's make a distinction between concurrent and parallel programming for the remainder 
of the book. We'll use concurrent programming in a general sense to refer to 
environments in which the tasks we define can occur in any order. One task can occur 
before or after another, and some or all tasks can be performed at the same time. We'll 
use parallel programming to specifically refer to the simultaneous execution of concurrent 
tasks on different processors. Thus, all parallel programming is concurrent, but not all 
concurrent programming is parallel. 

The Pthreads standard specifies concurrency; it allows parallelism to be at the option of 
system implementors. As a programmer, all you can do is define those tasks, or threads, 
that can occur concurrently. Whether the threads actually run in parallel is a function of 
the operating system and hardware on which they run. Because Pthreads was designed 
in this way, a Pthreads program can run without modification on uniprocessor as well as 
multiprocessor systems. 

Okay, so portability is great, but what of performance? All of our Pthreads programs will be 
running with specific Pthreads libraries, operating systems, and hardware. To squeeze the 
best performance out of a multithreaded application, you must understand the specifics of 
the environment in which it will be running—especially those details that are beyond the 
letter of the standard. We'll spend some time in the later sections of this book identifying 
and describing the implementation-specific issues of Pthreads.

Synchronization

Even in our simple program, in Examples 1-1 through 1-4, some parts can be executed in 
any order and some cannot. The first two routines, do_one_thing and do_another_thing, 
can run concurrently because they update separate variables and therefore do not 
conflict. But the third routine, do_wrap_up, must read those variables, and therefore must 
ensure that the other routines have finished using them before it can read them. We must 
force an order upon the events in our program, or synchronize them, to guarantee that 
the last routine executes only after the first two have completed. 

In threads programming, we use synchronization to make sure that one event in one 
thread happens before another event in another thread. A simple analogy would involve 
two people working together to jump start a car, one attaching the cables under the hood 
and one in the car getting ready to turn the key. The two must use some signal between 
them so that the person connecting the cables completes the task before the other turns 
the key. This is real life synchronization. 

In general, cooperation between concurrent procedures leads to the sharing of data, files, 
and communication channels. This sharing, in turn, leads to a need for synchronization. 
For instance, consider a program that contains three routines. Two routines write to 
variables and the third reads them. For the final routine to read the right values, you must 
add some synchronization. It's telling that, of all the function calls supplied in a Pthreads 
library, only one—pthread_create—is used to enable concurrency. Almost all of the other 



function calls are there to replace the synchronization that was inherent in the program 
when it executed serially—and slowly! 

In the multiprocess version of our program, Example 1-2, we used the UNIX waitpid 
system call to prevent the parent process from executing the do_wrap_up routine before 
the other two processes completed the do_one_thing and do_another_thing routines and 
exited. The waitpid call provides synchronization by suspending its caller until a child 
process exits. (Notice that we use the waitpid call only in the code path of the parent.) In 
the Pthreads version of our program (Example 1-4), we use the pthread_join call to 
synchronize the threads' execution. The pthread_join call provides synchronization for 
threads similar to that which waitpid provides for processes, suspending its caller until 
another thread exits. Unlike waitpid, which is specifically intended for parent and child 
processes, you can use pthread_join between any two threads in a program. 

Both the multiprocess and multithreaded versions of our program use coarse methods to 
synchronize. One process or thread just stalled until the others caught up and finished. In 
later sections of this book we'll go into great detail on the finer methods of Pthreads 
synchronization, namely mutex variables and condition variables. The finer methods 
allow you to synchronize thread activity on a thread's access to one or more variables, 
rather than blocking the execution of an entire routine and thread in which it executes. 
Using the finer synchronization techniques, threads can spend less time waiting on each 
other and more time accomplishing the tasks for which they were designed. 

As a quick introduction to mutex variables, let's make a slight modification to the Pthreads 
version of our simple program. In Example 1-5, we'll add a new variable, r3. Because all 
routines will read from and write to this variable, we'll need some synchronization to 
control access to it. For this, we'll define a mutex variable (of type pthread_mutex_t) and 
initialize it. (Just as a thread can have a thread attribute object, a mutex can have a 
mutex attribute object that indicates its special characteristics. Here, too, we'll pass a 
value of NULL for this argument, indicating that we accept the default characteristics for 
the new mutex.) 

Example 1-5: A Simple C Program with Concurrent Threads and a Mutex 
(simple_mutex.c)

#include <stdio.h>

#include <pthread.h>

void do_one_thing(int *);

void do_another_thing(int *);

void do_wrap_up(int, int);

int r1 = 0, r2 = 0, r3 = 0;

pthread_mutex_t r3_mutex=PTHREAD_MUTEX_INITIALIZER;

extern int

main(int argc, char **argv)

{

  pthread_t       thread1, thread2;

  r3 = atoi(argv[1]);

  pthread_create(&thread1,

          NULL,

          (void *) do_one_thing,

          (void *) &r1);
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  pthread_create(&thread2,

          NULL,

          (void *) do_another_thing,

          (void *) &r2);

  pthread_join(thread1, NULL);

  pthread_join(thread2, NULL);

  do_wrap_up(r1, r2);

  return 0;
}

We'll also make changes to the routines that will read from and write to r3. We'll 
synchronize their access to r3 by using the mutex we created in the main thread. When 
we're finished, the code for do_another_thing and do_wrap_up will resemble the code in 
do_one_thing in Example 1-6. 

Example 1-6: Concurrent Threads and a Mutex: do_one_thing Routine

void do_one_thing(int *pnum_times)

{

  int i, j, x;

  pthread_mutex_lock(&r3_mutex);

  if (r3 > 0) {

     x = r3;

     r3--;

  }else {

     x = 1;

  }

  pthread_mutex_unlock(&r3_mutex);

  for (i = 0;  i < 4; i++) {

    printf("doing one thing\n");

    for (j = 0; j < 10000; j++) x = x + i;

    (*pnum_times)++;

  }
}

The mutex variable acts like a lock protecting access to a shared resource—in this case 
the variable r3 in memory. Whichever thread obtains the lock on the mutex in a call to 
pthread_mutex_lock has the right to access the shared resource it protects. It 
relinquishes this right when it releases the lock with the pthread_mutex_unlock call. The 
mutex gets its name from the term mutual exclusion—all threads have a mutual 
relationship with regard to the mutex variable; whichever thread holds the lock excludes 
all others from access. 

You'll notice in Example 1-6 that you must make special Pthreads calls to manipulate 



mutexes. You can't just invent mutexes in your C code by testing and setting some sort of 
synchronization flag. If your code tests the mutex and then sets it, you leave a tiny (but 
potentially fatal) length of time during which another thread could also test and set the 
same mutex. Pthreads implementors avoid this window of vulnerability by taking 
advantage of operating system services or special machine instructions. 

Sharing Process Resources

From a programming standpoint, the major difference between the multiprocess and 
multithreaded concurrency models is that, by default, all threads share the resources of 
the process in which they exist. Independent processes share nothing. Threads share 
such process resources as global variables and file descriptors. If one thread changes 
the value of any such resource, the change will be evident to any other thread in the 
process, if anyone cares to look. The sharing of process resources among threads is one 
of the multithreaded programming model's major performance advantages, as well as 
one of its most difficult programming aspects. Having all of this context available to all 
threads in the same memory facilitates communication between threads. However, at the 
same time, it makes it easy to introduce errors of the sort in which one thread affects the 
value of a variable used by another thread in ways the other thread did not expect. 

In Example 1-6, because the do_one_thing and do_another_thing routines simply place 
their results into global variables, the main thread can also access them should it need to. 
Because shared data calls for synchronization, the program uses the pthread_join call to 
enforce the order in which different threads write to and read from these global variables. 
The way this works is pretty simple. The two spawned threads know that, as long as they 
are running, the main thread has not passed its pthread_join call and, so, won't look at 
their output values. The main thread knows that, once it has passed the second 
pthread_join call, no other threads are active. The values of the output parameters are 
set to their final value and can be used. 

The processes in the multiprocess version of our program also use shared memory, but 
the program must do something special so that they can use it. We used the System V 
shared memory interface. Before it creates any child processes, the parent initializes a 
region of shared memory from the system using the shmget and shmat calls. After the 
fork call, all the processes of the parent and its children have common access to this 
memory, using it in the same way as the multithreaded version uses global variables, and 
all the parent and children processes can see whatever changes any of them may make 
to it. 

Communication

When two concurrent procedures communicate, one writing data and one reading data, 
they must adopt some type of synchronization so that the reader knows when the writer 
has completed and the writer knows that the reader is ready for more data. Some 
programming environments provide explicit communication mechanisms such as 
message passing. The Pthreads concurrent programming environment provides a more 
implicit (some would call it primitive) mechanism. Threads share all global variables. This 
affords threads programmers plenty of opportunities for synchronization. 

Multiple processes can use any of the many other UNIX Interprocess Communication 
(IPC) mechanisms: sockets, shared memory, and messages, to name a few. The 
multiprocess version of our program uses shared memory, but the other methods are 
equally valid. Even the waitpid call in our program could be used to exchange 
information, if the program checked its return value. However, in the multiprocess world, 
all types of IPC involve a call into the operating system—to initialize shared memory or a 
message structure, for instance. This makes communication between processes more 
expensive than communication between threads. 

Scheduling

We can also order the events in our program by imposing some type of scheduling policy 
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on them. Unless our program is running on a system with an infinite number of CPUs, it's 
a safe bet that, sooner or later, there will be more concurrent tasks ready to run in our 
program than there are CPUs available to run them. The operating system uses its 
scheduler to select from the pool of ready and runnable tasks those that it will run. In a 
sense, the scheduler synchronizes the tasks' access to a shared resource: the system's 
CPUs. 

Neither the multithreaded version of our program nor the multiprocess version imposes any 
specific scheduling requirements on its tasks. POSIX defines some scheduling calls as an 
optional part of its Pthreads package, allowing you to select scheduling policies and 
priorities for threads. 

Who Am I? Who Are You?

When you create a thread, pthread_create returns a thread handle of type pthread_t. You 
can save this handle and use it to determine a thread's identity using the pthread_self 
and pthread_equal function calls. The pthread_self call returns the thread handle of the 

calling thread and pthread_equal compares two thread handles.* You might use the two 
calls to identify a thread when it enters a routine, as shown in Example 1-7. 

 

* The Pthreads standard leaves the exact definition of the pthread_t type up to system 
implementors. Because a system implementor might define a thread handle to be a 
structure, you should always use pthread_equal  to compare threads. A direct 
comparison (such as io_thread == thread) may not work.

Example 1-7: Code that Examines the Identity of the Calling Thread (ident.c)

.

.

.

pthread_t io_thread;

.

.

extern int

main(void)

{

      .

      .

      .

      pthread_create(&io_thread,

                         .... );

      .

      .

      .
}

void routine_x(void)

{

pthread_t thread;

      .

      .



      .

      thread = pthread_self();

      if (pthread_equal(io_thread, thread)) {

      .

      .

      .

      }

      .

      .

      .
}

Terminating Thread Execution

A process terminates when it comes to the end of main. At that time the operating system 
reclaims the process's resources and stores its exit status. Similarly, a thread exits when 
it comes to the end of the routine in which it was started. (By the way, all threads expire 
when the process in which they run exits.) When a thread terminates, the Pthreads library 
reclaims any process or system resources the thread was using and stores its exit status. 
A thread can also explicitly exit with a call to pthread_exit. You can terminate another 
thread by calling pthread_cancel. In any of these cases, the Pthreads library runs any 
routines in its cleanup stack and any destructors in keys in which it has store values. 
We'll describe these features in Chapter 4,   Managing Pthreads  . 

Exit Status and Return Values

The Pthreads library may or may not save the exit status of a thread when the thread 
exits, depending upon whether the thread is joinable or detached. A joinable thread, the 
default state of a thread at its creation, does have its exit status saved; a detached thread 
does not. Detaching a thread gives the library a break and lets it immediately reclaim the 
resources associated with the thread. Because the library will not have an exit status for 
a detached thread, you cannot use a pthread_join to join it. We'll show you how to 
dynamically set the state of a thread to detached in Chapter 2,   Designing Threaded   
Programs, when we introduce the pthread_detach call. In Chapter 4, we'll show you how 
to create a thread in the detached state by specifying attribute objects. 

What is the exit status of a thread? You can associate an exit status with a thread in 
either of two ways: 

 • If the thread terminates explicitly with a call to pthread_exit, the argument to the call 
becomes its exit status. 

 • If the thread does not call pthread_exit, the return value of the routine in which it 
started becomes its exit status. 

As defined by the Pthreads standard, the thread-start routine (specified in the 
pthread_create call) returns a (void *) type. However, you'll often find that your thread-
start routines must return something other than an address—e.g., a binary TRUE/FALSE 
indicator. They can do this quite easily as long as you remember to cast the return value 
as a (void *) type and avoid using a value that conflicts with PTHREAD_CANCELED, the 
only status value that the Pthreads library itself may return. (Pthreads implementations 
cannot define PTHREAD_CANCELED as a valid address or as NULL, so you're always 
safest when returning an address.) Of course, if the thread running the thread-start 
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routine cannot be canceled (peek ahead to Chapter 4 to learn a bit about cancellation), 
you can ignore this restriction. 

In Example 1-8, we've defined three possible exit status values and elected to have 
routine_x return pointers to integer constants with these values. We use pthread_exit and 
return interchangeably. 

Example 1-8: Specifying a Thread's Exit Status (exit_status_alternative.c)

#include <stdio.h>

#include <pthread.h>

pthread_t thread;

static int arg;

static const int internal_error = -12;

static const int normal_error = -10;

static const int success = 1;

void * routine_x(void *arg_in)

{

  int *arg = (int *)arg_in;

  .

  .

  .

  if ( /* something that shouldn't have happened */) {

    pthread_exit((void *) &real_bad_error);

  }else if ( /* normal failure */ ) {

    return ((void *) &normal_error);

  }else {

    return ((void *) &success);

  }
}

extern int

main(int argc, char **argv)

{

  pthread_t thread;

  void *statusp;

  .

  .

  .

  pthread_create(&thread, NULL, routine_x, &arg);

  pthread_join(thread, &statusp);

  if (*statusp == PTHREAD_CANCELED) {

    printf("Thread was canceled.\n");

  }else {
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    printf("Thread completed and exit status is %ld.\n", *(int 
*)statusp);

  }
return 0;

}

A final note on pthread_join is in order. Its purpose is to allow a single thread to wait on 
another's termination. The result of having multiple threads concurrently call pthread_join 
is undefined in the Pthreads standard. 

Pthreads Library Calls and Errors

Most Pthreads library calls return zero on success and an error number otherwise.* 

Errors numbers are defined in the errno.h header file. The Pthreads standard doesn't 
require library calls to set errno, the global variable traditionally used by UNIX and 
POSIX.1 calls to deliver an error to their callers. 

 
* The two Pthreads library calls that don't return an error code upon failure are 

pthread_getspecific and pthread_self. A pthread_getspecific call returns NULL if it's 
unsuccessful. A pthread_self call always succeeds.</footnote>

You can use code similar to that in Example 1-9 to perform error checking on a Pthreads 
call. 

Example 1-9: Full Error-Checking for a Pthreads Library Call

#include <errno.h>

#include <stdio.h>

.

.

.

if (rtn = pthread_create(...)) {

   /* error has occurred */

   fprintf(stderr,"Error: pthread_create, ");

   if (rtn == EAGAIN)

      fprintf(stderr,"Insufficent resources\n");

      else if (rtn == EINVAL)

              fprintf(stderr, "Invalid arguments\n");

   exit(1);
}

/* no error */

.

.

.

If your platform supports a routine to convert error numbers to a readable string such as 
the XPG4 call, strerror, your code could be simplified as in Example 1-10. 



Example 1-10: Full Error-Checking for a Pthreads Library Call, Simplified

#include <string.h>

#include <stdio.h>

.

.

.

if (rtn = pthread_create(...))

   fprintf(stderr, "Error: pthread_create, %s\n", strerror(rtn)), 
exit(1);

/* no error */

.

.

.

In both examples, we made the rather typical decision to terminate the entire program 
rather than the individual thread that encountered the error (that is, we called exit rather 
than pthread_exit). What you do depends upon what your program is doing and what 
type of error it encounters. 

As you may have noticed, we normally don't test the return values of the Pthreads library 
calls we make in the code examples in this book. We felt that doing so would get in the way 
of the threads programming practices the examples are meant to illustrate. If we were 
writing this code for a commercial product, we would diligently perform all required error 
checking. 

Why Use Threads Over Processes?

If both the process model and threads model can provide concurrent program execution, 
why use threads over processes? 

Creating a new process can be expensive. It takes time. (A call into the operating system 
is needed, and if the process creation triggers process rescheduling activity, the 
operating system's context-switching mechanism will become involved.) It takes memory. 
(The entire process must be replicated.) Add to this the cost of interprocess 
communication and synchronization of shared data, which also may involve calls into the 
operating system kernel, and threads provide an attractive alternative. 

Threads can be created without replicating an entire process. Furthermore, some, if not 
all, of the work of creating a thread is done in user space rather than kernel space. When 
processes synchronize, they usually have to issue system calls, a relatively expensive 
operation that involves trapping into the kernel. But threads can synchronize by simply 
monitoring a variable—in other words, staying within the user address space of the 
program. 

We'll spell out the advantages of threads over the multiprocess model of multitasking in our 
performance measurements in Chapter 6,   Practical Considerations  . In the meantime, we'll 
show you how to build a multithreaded program. 

A Structured Programming Environment

Revisiting the techniques used to obtain concurrency that we discussed earlier—potential 
parallelism, overlapping I/O, asynchronous events, and real-time scheduling—we find 
that UNIX offers many disjointed mechanisms to accomplish them between processes. 
They include the select system call, signals, nonblocking I/O, and the setjmp/longjmp 
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system call pair, plus many calls for real time (such as aio_read and aio_write) and 
parallel processing. Pthreads offers a clean, consistent way to address all of these 
motivations. If you're a disciplined programmer, designing and coding a multithreaded 
program should be easier than designing and coding a multiprocess program.

Now, we know that the example program we've been looking at in this chapter is far too 
simple to convince anyone that a particular programming style is more structured or 
elegant than another. Subsequent examples will venture into more complex territory and, in 
doing so, illustrate Pthreads mechanisms for a more practical set of coding problems. We 
hope that they may make the case for Pthreads. 

Choosing Which Applications to Thread

The major benefit of multithreaded programs over nonthreaded ones is in their ability to 
concurrently execute tasks. However, in providing concurrency, multithreaded programs 
introduce a certain amount of overhead. If you introduce threads in an application that 
can't use concurrency, you'll add overhead without any performance benefit. 

So what makes concurrency possible? First, of course, your application must consist of 
some independent tasks—tasks that do not depend on the completion of other tasks to 
proceed. Secondly, you must be confident that concurrent execution of these tasks would 
be faster than their serial execution. 

On a uniprocessing system, the concurrent execution of independent tasks will be faster 
than their serial execution if at least one of these tasks issues a lot of I/O requests and 
must wait for the device to complete each request. On a multiprocessor, even CPU-
bound tasks can benefit from concurrency because they can truly proceed in parallel. 

If you are writing an application for a uniprocessor, look at overlapping I/O and 
asynchronous events as the motivation for threading an application. If your program is 
hung up in doing a lot of disk, file, or network accesses when it could be doing other 
useful things, threads offer a means of doing them while the thread that handles the I/O is 

waiting.* If your program must deal with many asynchronous events, such as the receipt 
of an out-of-band message, threads give you an efficient way to structure its event 
handling where the only alternatives for a single-threaded process would be to either 
abruptly change context or put off handling the event to a more convenient time. The 
server portion of a client/server program often meets both of these criteria for 
concurrency: it must handle asynchronous requests and wait while retrieving and storing 
data in secondary storage. 

 

* A side benefit is that your code is ready to take advantage of multiprocessing systems 
in the future. Multiprocessing UNIX hosts are not restricted to exotic scientific number 
crunching anymore as two- to four-CPU server and desktop platforms have become 
commonplace.

If your application has been designed to use multiple processes, it's likely that it would 
benefit from threading. A common design model for a UNIX server daemon is to accept 
requests and fork a child image of itself to process the request. If the benefits of 
concurrency outweighed the overhead of using separate processes in the application, 
threading is bound to improve its performance because threads involve less overhead. 

The remaining class of applications that can benefit from threads are those that execute 
on multiprocessing systems. Purely CPU-bound applications can achieve a performance 
boost with threads. A matrix-multiply program (or similar analytical program) with 
independent computational tasks but no excessive I/O requirements would not benefit 
from threads on a uniprocessing system. However, on a multiprocessor, this same 
application could speed up dramatically as the threads performed their computations in 
parallel. 

As we'll see in Chapter 6, there are commonly three different types of Pthreads 
implementations. To take full advantage of a multiprocessing system, you'll need an 
implementation that's sophisticated enough to allow multiple threads in a single process to 
access multiple CPUs. 
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Chapter 2: Designing Threaded Programs

Overview

So far you've seen only a couple of Pthreads calls, but you know enough about the 
programming model to start considering real design issues. In this chapter we'll examine 
a number of broad questions. How much work is worth the overhead of creating a 
thread? How can I subdivide my program into threads? What relationship do the threads 
have to the functions in my program?

To give us a sample application worth threading, we'll introduce an application that will take 
us through most of the book: a server for automatic teller machines (ATMs). We'll try out 
our design ideas on this server.

Suitable Tasks for Threading

To find the places in your program where you can use threads, you essentially must look 
for the properties we identified in Chapter 1,   Why Threads?  : potential parallelism, 
overlapping I/O, asynchronous events, and real-time scheduling. Whenever a task has 
one or more of these properties, consider running it in a thread. You can identify a task 
that is suitable for threading by applying to it the following criteria:

 • It is independent of other tasks.

Does the task use separate resources from other tasks? Does its execution depend on 
the results of other tasks? Do other tasks depend on its results? We want to maximize 
concurrency and minimize the need for synchronization. The more tasks depend on 
each other and share resources, the more the threads executing them will end up 
blocked waiting on each other.

 • It can become blocked in potentially long waits.

Can the task spend a long time in a suspended state? A program can typically perform 
millions of integer operations in the time it would take to perform a single I/O operation. 
If you dedicate a thread to the I/O task, the rest of the program could accomplish a lot 
more work in less time.

 • It can use a lot of CPU cycles.

Does the task perform long computations, such as matrix crunching, hashing, or 
encryption? Time-consuming calculations that are independent of activities elsewhere 
in the program are good candidates for threading. In a multiprocessing environment, 
you might let a thread executing on one CPU process a long computation while other 
threads on other CPUs handle input.

 • It must respond to asynchronous events.

Must the task handle events that occur at random intervals, such as network 
communications or interrupts from hardware and the operating system? Use threads 
to encapsulate and synchronize the servicing of these events, apart from the rest of 
your application.

 • Its work has greater or lesser importance than other work in the application.

Must the task perform its work in a given amount of time? Must it run at specific times 
or specific time intervals? Is its work more time critical than that of other tasks? 
Scheduling considerations are often a good reason for threading a program. For 
instance, a window manager application would assign a high priority thread to user 
input and a much lower priority thread to memory garbage collection.
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Server programs—such as those written for database managers, file servers, or print 
servers—are ideal applications for threading. They must be continuously responsive to 
asynchronous events—requests for services coming over communications channels from 
a number of client programs. Processing these requests typically requires I/O to 
secondary storage.

Computational and signal-processing applications that will run on multiprocessing 
systems are another good candidate for threading. They contain many CPU-intensive 
tasks that can be spread out over a number of available CPUs.

Finally, real-time developers are attracted to threads as a model for servers and 
multiprocessing applications. Multithreaded applications are more efficient than 
multiprocess applications. The threads model also allows the developers to set specific 
scheduling policies for threads. What's more, threads eliminate some of the complexity that 
comes with asynchronous programming. Threads wait for events whereas a serial program 
would be interrupted and would jump from context to context.

Models

There are no set rules for threading a program. Every program is different, and when you 
first try to thread a program, you'll likely discover that it's a matter of trial and error. You 
may initially dedicate a thread to a particular task only to find that your assumptions about 
its activity have changed or weren't true in the first place.

Over time a few common models for threaded programs have emerged. These models 
define how a threaded application delegates its work to its threads and how the threads 
intercommunicate. Because the Pthreads standard imposes little structure on how 
programmers use threads, you would do well to start your multithreaded program design 
with a close look at each model. Although none has been explicitly designed for a specific 
type of application, you'll find that each model tends to be better suited than the others for 
certain types. We discuss:

 • The boss/worker model

 • The peer model

 • The pipeline model

Boss/Worker Model

Figure 2-1: The boss/worker model.

Figure 2-1 depicts the boss/worker model. A single thread, the boss, accepts input for the 
entire program. Based on that input, the boss passes off specific tasks to one or more 
worker threads.

The boss creates each worker thread, assigns it tasks, and, if necessary, waits for it to 
finish. In the pseudo code in Example 2-1, the boss dynamically creates a new worker 
thread when it receives a new request. In the pthread_create call it uses to create each 
worker thread, the boss specifies the task-related routine the thread will execute. After 
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creating each worker, the boss returns to the top of its loop to process the next request. If 
no requests are waiting, the boss loops until one arrives.

Once finished, each worker thread can be made responsible for any output resulting from 
its task, or it can synchronize with the boss and let it handle its output.

Example 2-1: Boss/Worker Model Program (Pseudocode)

main()

/* The boss */

{

forever {

          get a request

          switch request

          case X : pthread_create( ... taskX)

          case Y : pthread_create( ... taskY)

          .

          .

          .
}

}

taskX() /* Workers processing requests of type X */

{

perform the task, synchronize as needed if accessing shared 
resources

done

}

taskY() /* Workers processing requests of type Y */

{

perform the task, synchronize as needed if accessing shared 
resources

done

}

.

.

.

If the boss creates its workers dynamically when requests arrive, as it does in our 
pseudocode, there will be as many concurrent worker threads as there are concurrent 
requests. Alternatively, the boss could save some run-time overhead by creating all 
worker threads up front. In this variant of the boss/worker model, known as a thread pool 
and shown in Example 2-2,the boss creates all worker threads at program initialization. 
Each worker immediately suspends itself to wait for a wake-up call from the boss when a 
request arrives for it to process. The boss advertises work by queuing requests on a list 
from which workers retrieve them.

Example 2-2: Boss/Worker Model Program with a Thread Pool (Pseudocode)

main()



/* The boss */

{

for the number of workers

         pthread_create( ... pool_base )

forever {

         get a request

         place request in work queue

         signal sleeping threads that work is available
}

}

pool_base() /* All workers */

{

forever {

         sleep until awoken by boss

         dequeue a work request

         switch

           case request X: taskX()

           case request Y: taskY()

                  .

                  .

                  .
}

}

The boss/worker model works well with servers (database servers, file servers, window 
managers, and the like). The complexities of dealing with asynchronously arriving 
requests and communications are encapsulated in the boss. The specifics of handling 
requests and processing data are delegated to the workers. In this model, it is important 
that you minimize the frequency with which the boss and workers communicate. The 
boss can't spend its time being blocked by its workers and allow new requests to pile up 
at the inputs. Likewise, you can't create too many interdependencies among the workers. 
If every request requires every worker to share the same data, all workers will suffer a 
slowdown. 

Peer Model

Unlike the boss/worker model, in which one thread is in charge of work assignments for 
the other threads, in the peer model, illustrated in Figure 2-2, all threads work 
concurrently on their tasks without a specific leader.



Figure 2-2: The peer model

In the peer model, also known as the workcrew model, one thread must create all the 
other peer threads when the program starts. However, unlike the boss thread in the boss/
worker model, this thread subsequently acts as just another peer thread that processes 
requests, or suspends itself waiting for the other peers to finish.

Whereas the boss/worker model employs a stream of input requests to the boss, the peer 
model makes each thread responsible for its own input. A peer knows its own input 
ahead of time, has its own private way of obtaining its input, or shares a single point of 
input with other peers. The structure of such a program is shown in Example 2-3.

Example 2-3: Peer Model Program (Pseudocode)

main()

{

   pthread_create( ... thread1 ... task1 )

   pthread_create( ... thread2 ... task2 )

   .

   .

   .

   signal all workers to start

   wait for all workers to finish

   do any clean up
}

task1()

{

   wait for start

   perform task, synchronize as needed if accessing shared 
resources

   done
}

task2()

{

   wait for start

   perform task, synchronize as needed if accessing shared 
resources

   done
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}

The peer model is suitable for applications that have a fixed or well-defined set of inputs, 
such as matrix multipliers, parallel database search engines, and prime number 
generators. Well-defined input allows programs to adopt what could be construed as a 
boss/worker model without the boss. Because there is no boss, peers themselves must 
synchronize their access to any common sources of input. However, like workers in the 
boss/worker model, peers can also slow down if they must frequently synchronize to 
access shared resources.

Consider an application in which a single plane or space is divided among multiple 
threads, perhaps so they can calculate the spread of a life form (such as in the SimLife 
computer game) or changes in temperature as heat radiates across geographies from a 
source. Each thread can calculate one delta of change. However, because the results of 
each thread's calculations require the adjustment of the bounds of the next thread's 
calculations, all threads must synchronize afterward to exchange and compare each 
other's results. This is a classic example of a peer model application. 

Pipeline Model

The pipeline model assumes:

 • A long stream of input

 • A series of suboperations (known as stages or filters) through which every unit of input 
must be processed

 • Each processing stage can handle a different unit of input at a time

An automotive assembly line is a classic example of a pipeline. Each car goes through a 
series of stages on its way to the exit gates. At any given time many cars are in some 
stage of completion. A RISC (reduced instruction set computing) processor also fits the 
pipeline model. The input to this pipeline is a stream of instructions. Each instruction must 
pass through the stages of decoding, fetching operands, computation, and storing results. 
That many instructions may be at various stages of processing at the same time 
contributes to the exceptionally high performance of RISC processors.

In each of these examples, a pipeline improves throughput because it can accomplish the 
many different stages of a process on different input units (be they cars or instructions) 
concurrently. Instead of taking each car or instruction from start to finish before starting 
the next, a pipeline allows as many cars or instructions to be worked on at the same time 
as there are stages to process them. It still takes the same amount of time from start to 
finish for a specific car (that red one, for instance) or instruction to be processed, but the 
overall throughput of the assembly line or computer chip is greatly increased.

Figure 2-3 shows a thread pipeline.

Figure 2-3: A thread pipeline

As the pseudocode in Example 2-4 illustrates, a single thread receives input for the entire 
program, always passing it to the thread that handles the first stage of processing. 
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Similarly a single thread at the end of the pipeline produces all final output for the 
program. Each thread in between performs its own stage of processing on the input it 
received from the thread that performed the previous stage, and passes its output to the 
thread performing the next. Applications in which the pipeline might be useful are image 
processing and text processing or any application that can be broken down into a series 
of filter steps on a stream of input.

Example 2-4: Pipeline Model Program (pseudocode)

main()

{

  pthread_create( ... stage1 )

  pthread_create( ... stage2 )

  .

  .

  .

  wait for all pipeline threads to finish

  do any clean up
}

stage1()

{

forever {

         get next input for the program

         do stage 1 processing of the input

         pass result to next thread in pipeline

         }
}

stage2()

{

forever {

         get input from previous thread in pipeline

         do stage 2 processing of the input

         pass result to next thread in pipeline

         }
}

stageN()

{

forever {

         get input from previous thread in pipeline

         do stage N processing to the input

         pass result to program output

         }
}



We could add multiplexing or demultiplexing to this pipeline, allowing multiple threads to 
work in parallel on a particular stage. We could also dynamically configure the pipeline at 
run time, having it create and terminate stages (and the threads to service them) as 
needed.

Note that the overall throughput of a pipeline is limited by the thread that processes its 
slowest stage. Threads that follow it in the pipeline cannot perform their stages until it has 
completed. When designing a multithreaded program according to the pipeline model, you 
should aim at balancing the work to be performed across all stages; that is, all stages 
should take about the same amount of time to complete.

Buffering Data Between Threads

The boss/worker, peer, and pipeline are models for complete multithreaded programs. 
Within any of these models threads transfer data to each other using buffers. In the boss/
worker model, the boss must transfer requests to the workers. In the pipeline model, each 
thread must pass input to the thread that performs the next stage of processing. Even in 
the peer model, peers may often exchange data.

A thread assumes either of two roles as it exchanges data in a buffer with another thread. 
The thread that passes the data to another is known as the producer; the one that 
receives that data is known as the consumer: Figure 2-4 depicts this relationship.

Figure 2-4: Producer-consumer

The ideal producer/consumer relationship requires:

A buffer

The buffer can be any data structure accessible to both the producer and the 
consumer. This is a simple matter for a multithreaded program, for a such a shared 
buffer need only be in the process's global data region. The buffer can be just big 
enough to hold one data item or it can be larger, depending upon the application.

A lock

Because the buffer is shared, the producer and consumer must synchronize their 
access to it. With Pthreads, you would use a mutex variable as alock.

A suspend/resume mechanism

The consumer may suspend itself when the buffer contains no data for it to consume. 
If so, the producer must be able to resume it when it places a new item in the buffer. 
With Pthreads, you would arrange this mechanism using a condition variable.

State information

Some flag or variable should indicate how much data is in the buffer.

In the pseudocode in Example 2-5, the producer thread takes a lock on the shared buffer, 
places a work item in it, releases the lock, and resumes the consumer thread. The 
consumer thread is more complex. It first takes a lock on the shared buffer. If it finds the 
buffer empty, it releases the lock (thus giving the producer a chance to populate it with 
work) and hibernates. When the consumer thread awakens, it reacquires the lock, and 
removes a work item from the buffer.
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Example 2-5: Producer/Consumer Threads (Pseudocode)

producer()

{

  .

  .

  .
lock shared buffer

place results in buffer

unlock buffer

wake up any consumer threads

  .

  .

  .
}

consumer()

{

  .

  .

  .
lock shared buffer

while state is not full {

      release lock and sleep

      awake and reacquire lock

      }
remove contents

unlock buffer

  .

  .

  .
}

If the threads share a buffer that can hold more than one data item, the producer can 
keep producing new items even if the consumer thread has not yet processed the 
previous one. In this case the producer and consumer must agree upon a mechanism for 
keeping track of how many items are currently in the buffer.

You can devise other permutations of the producer/consumer relationship based on the 
number of producer and consumer threads that access the same buffer. For example, an 
application that adopts the boss/worker model and uses a thread pool must 
accommodate a single producer (the boss) and many consumers (the workers).

A more specialized producer/consumer relationship, often used in pipelines for signal 
processing applications, uses a technique known as double buffering. Using double 
buffering, threads act as both producer and consumer to each other. In the example of 
double buffering shown in Figure 2-5,one set of buffers contains unprocessed data and 
another set contains processed data. One thread—the I/O thread—obtains unprocessed 
data from an I/O device and places it in a shared buffer.(In other words, it's the producer 



of unprocessed data.) The I/O thread also obtains processed data from another shared 
buffer and writes it to an I/O device. (That is, it's the consumer of processed data.) A 
second thread—the calculating thread—obtains unprocessed data from the shared buffer 
filled by the I/O thread, processes it, and places its results in another shared buffer. The 
calculating thread is thus the consumer of unprocessed data and the producer of 
processed data.

Figure 2-5: Double buffering

Some Common Problems

Regardless of the model you select, a few classes of bugs creep into nearly every 
threaded application at some point during its development. Avoiding them takes a lot of 
concentration. Finding them once they've crept in requires patience and persistence. 
Most bugs result from oversights in the way the application manages its shared 
resources. Either you forget to keep one thread out of a resource while another is 
modifying it, or the way in which you attempt to synchronize access to the resource 
causes your threads to hang. We'll walk through a debugging session for a multithreaded 
program in Chapter 6,   Practical Considerations  . For the time being, we'll rest content with 
pronouncing a few basic rules and noting the most common pitfalls.

The basic rule for managing shared resources is simple and twofold:

 • Obtain a lock before accessing the resource.

 • Release the lock when you are finished with the resource.

Unfortunately, there are many borderline areas of usage where it is difficult to clearly 
apply this rule. In those applications in which locks and resources must be created 
dynamically—while multiple threads are already running—you can get into trouble very 
easily. The symptoms of sharing without proper synchronization are often subtle: 
incorrect answers and corrupted data. It is often quite hard to track down the point in the 
program where the error or corruption occurred. Further, the effort of debugging is often 
exacerbated by difficulties you may have in reproducing the bug. It is much easier to run 
a single-threaded program with the same inputs and get the same outputs. Programs that 
take advantage of concurrency aren't like that. A multithreaded program with a 
synchronization bug may run correctly hundreds of times for every time that it fails.

The other common bug in threaded programs results from assumptions about the 
"liveliness" of its threads. When a thread attempts to obtain a lock, it assumes that any 
thread currently holding that lock will eventually let it go. If that thread fails to release the 
lock for whatever reason—it hangs or it simply forgets—other threads will grind to a halt as 
they wait for it to release its lock. You can encounter the same problem if you make a 
thread wait for some variable to reach an unreachable value or wait on a condition variable 
that is never signaled.
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Performance

When considering the performance of a threaded application, note that threads can 
represent negligible to significant overhead, depending on how they are implemented and 
how they are used. Before you add threads to a program, be sure that the benefits of 
threading outweigh the costs. Some of the costs of threading include:

 
• The memory and CPU cycles required to manage each thread, including the structures 

the operating system uses to manage them, plus the overhead for the Pthreads library 
and any special code in the operating system that supports the library.

 • The CPU cycles spent for synchronization calls that enforce orderly access to shared 
data. These calls cost in CPU cycles to execute the calls.

 
• The time during which the application is inactive while one thread is waiting on another 

thread. This cost results from too many dependencies among threads and can be 
allayed by improved program design.

Example: An ATM Server

Example 2-6 is a client/server program that implements an imaginary automated teller 
machine (ATM) application. This server will give us an opportunity to exercise our 
thinking about multithreaded program design and explore more realistic—and more 
complicated—thread handling applications.

As shown in Figure 2-6, the example is made up of a client that provides a user interface* 

and a server that processes requests from the client. On disk, the server stores a 
database of bank accounts, each including an account ID, password, and balance.

 
* The client for an ATM application should be an actual machine, but, for the purposes of 

this book, we'll just make it a command-line program that accepts typed-in requests. 
(Unfortunately, this type of client isn't realistic enough to spit out ten dollar bills.)

Figure 2-6: The ATM and bank database server example

In a typical ATM operation, a customer chooses a withdrawal from a menu presented by 
the client and enters the amount to be withdrawn. The client packages this information 
into a request that it sends to the server. The server spawns a thread that checks the 
user's password against the one in the database, decrements the amount of money in the 
user's account, and sends back an indication of whether the operation succeeded. The 
client and server process communicate using UNIX sockets. The client reports any 
information returned from the server back to the user. Multiple clients can run 
simultaneously.

We want the server to be capable of overlapping I/O, because the account data is stored 
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in secondary storage and its access will require a significant amount of time. The 
environment is asynchronous because multiple clients may exist simultaneously, sending 
requests of unpredictable type, order, and frequency.

In the following sections of this chapter, we'll discuss two different implementations of this 

program: a serial version and a multithreaded version that uses Pthreads* The 
multithreaded version of the program uses the boss/worker model inside the server. The 
boss looks at the first field of each request, then spawns a thread or process to handle 
that request. When the worker completes the request, it communicates the results 
directly back to the client program.

 

* You can obtain the complete source code for all versions of the ATM example, 
including that for the multiprocess version used in our performance testing in Chapter 
6, from our ftp site. Throughout this chapter, we'll show only those interfaces and 
routines pertinent to the current discussion.

For simplicity's sake, we've partitioned the client and server into modules. The interfaces 
between these modules will remain unchanged throughout all versions of our example. 
We'll change only the dispatch and service routine module from one version to another. 
Table 2-1 shows the contents of the client and server modules.

Table 2-1: The ATM Example Program Modules

Module

Component
Description

Client program

User interface (main)

Prompts a 
customer 
for a 
request, 
parses the 
response, 
and 
makes a 
remote 
procedure 
call (RPC) 
to access 
the 
server.

RPC
Includes a 
procedure for 
each possible 
type of 
request. Each 
procedure 
copies its 
arguments into 
a buffer and 
passes the 
buffer to the 
communication 
module for 
transmission to 
the server. 
When a 
response 
arrives from 
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the server, the 
procedure 
checks its 
return values.

Communication 
Finds 
and 
passes 
buffers 
to and 
from the 
server 
using 
UNIX 
sockets.

Server program

Communication

Receives 
and 
transmits 
buffers to 
clients 
using 
UNIX 
sockets.

Dispatch (and service) 
routines (main)

Obtains input 
buffers from 
clients by 
means of the 
communication 
module, 
identifies the 
request type 
and copies out 
arguments, 
and calls the 
service routine 
that handles 
the requested 
operation. 
Together, the 
dispatch and 
service 
routines make 
up the server-
side 
procedures of 
the client's 
RPC. When 
request 
processing is 
complete, the 
dispatch 
routine 
prepares and 
transmits a 
response 
buffer to the 
client.



Database routines
Reads 
from and 
writes to 
the 
account 
database 
file using 
standard 
file I/O.

The Serial ATM Server

If we didn't have threads, what would be the simplest implementation of the ATM server? 
One that comes to mind is a program that runs in a loop, processing available requests 
serially. If a request is available, the program processes it in a request-specific service 
routine and sends a response to the client. The main routine for this version of the server 
is shown in Example 2-6.

Example 2-6: Serial ATM Server: main Routine (atm_svr_serial.c)

   extern int

  main(argc, argv)

  int argc;

  char **argv;

  {

    char req_buf[COMM_BUF_SIZE], resp_buf[COMM_BUF_SIZE];

    int  conn;

    int  trans_id;

    int  done=0;

    atm_server_init(argc, argv);

    /* loop forever */

    for(;;) {

      server_comm_get_request(&conn, req_buf);

      sscanf(req_buf, "%d", &trans_id);

      switch(trans_id) {

        case CREATE_ACCT_TRANS:

             create_account(resp_buf);

             break;

        case DEPOSIT_TRANS:

             deposit(req_buf, resp_buf);

             break;

        case WITHDRAW_TRANS:



             withdraw(req_buf, resp_buf);

             break;

        case BALANCE_TRANS:

             balance(req_buf, resp_buf);

             break;

        case SHUTDOWN:

             if (shutdown_req(req_buf, resp_buf)) done = 1;

             break;

        default:

             handle_bad_trans_id(req_buf, resp_buf);

             break;

        }

      server_comm_send_response(conn, resp_buf);

      if(done) break;

    }

    server_comm_shutdown();

  }
return 0;

The serial version of our ATM server can process only a single request at a time, no 
matter how many clients are requesting service.

Handling asynchronous events: blocking with select

The server handles the asynchronous arrival of requests from clients by waiting. When 
the server's main routine calls server_comm_get_request, the server's communication 
layer uses a UNIX select call to determine which channels have data on them waiting to 
be read. If none do, the select call (and consequently the server_comm_get_request call) 
blocks until data arrives.

Handling file I/O: blocking with read/write

The server in Example 2-6 does nothing but block when performing file operations. When 
it issues a read or write call to the file, the server waits until the operating system 
completes the operation and the call returns.

The server could have used UNIX signals to access the file without blocking. If so, it 
would need to establish a signal handler that processes the results of its I/O requests and 
to register this handler with the operating system such that it takes control when the 
completion of an I/O request is signaled. This would allow the server to make 
asynchronous I/O calls that return immediately. When the request completes at a later 
time, the server is interrupted and put into its signal handler to process the results.

The big drawback for using asynchronous I/O in a serial server is in the complicated state 
management and synchronization problems that arise between the server and its signal 
handler. The program must keep track of the state of all in-progress requests. It must 
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create and maintain locks for various resources (such as account records) so that they 
are not simultaneously accessed in program and signal contexts. Finally, the clean 
division of the program into modules breaks down. The communication, server, and 
database modules all get mixed together.

All in all, the experiment of using asynchronous I/O in a serial ATM server is a good 
argument for designing such a server to use threads. It's much cleaner to let a single 
thread wait for I/O to complete than it is to manage the complexity of signals and 
synchronization.

The serial version of our ATM server works—in fact, it works quite well—when the input 
stream of requests is light. However, the performance of the serial server degrades 
rapidly as more and more clients request access to its data. Clients begin to see longer 
and longer delays in the processing of their requests because all are blocked by server 
access to the database. In Chapter 6, we'll run some tests on single-threaded and 
multithreaded versions of the server that show the point at which it becomes inefficient to 
use the serial version.

What can we do to improve the performance of our server underload? It can help a lot to 
allow it to move on to another client request while its I/O to the database is proceeding. 
The next versions of our server will do just that.

The Multithreaded ATM Server

Let's add threads to our example. We'll begin by identifying those tasks we want 
individual threads to process. Having each request processed by a separate thread may 
or may not be a good starting point.

Before we pursue our design, let's step back and look again at the general criteria for 
selecting tasks for threads. In general we'd like to select tasks for our ATM server's 
threads based on whether:

 • They are independent of each other.

If we assume that simultaneous accesses to the same account are rare, it makes 
sense to have each request processed by a separate thread. Threads will not compete 
for account data. No individual thread will rely on the work accomplished by another 
thread to complete its work.

 • They can become blocked in potentially long waits.

This is true of all requests to our server, because any access to the account database 
could involve disk access to a file.

 • They can use a lot of CPU cycles.

Our server contains no tasks that can be defined as compute intensive.

 • They must respond to asynchronous events.

This is true of the manner in which the communication layer of our server accepts 
client requests.

 • They require scheduling.

In our first pass at a multithreaded version of our ATM server we won't use scheduling. 
But we can imagine that certain operations could be given higher priority than others. 
A thread handling a shutdown request might be given priority over other requests. If 
we used the database to generate monthly account statements, we could give those 
requests lower priority than direct customer requests to bank accounts.

We must also bear in mind some key constraints our ATM server places on our program 
design:

 • We must maintain correctness.
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For the multithreaded version of our ATM server to produce correct and consistent 
results, we must ensure that two threads don't corrupt an account by writing 
information to it simultaneously. Thus, we'll use locks to protect the account data.

 • We must maintain the liveliness of the threads.

We must avoid those types of programming bugs in which a worker thread obtains a 
lock on account data and then exits without releasing the lock. Other worker threads 
that subsequently attempt to obtain the lock on the same data will deadlock, waiting 
forever.

 • We must minimize overhead.

Our threads can't spend all their time synchronizing with each other or they are not 
worth their overhead. As a simplification, we'll start out in our example by allocating a 
thread for each request. We can later enhance it by allowing threads to remain active, 
waiting for new requests (that is, we could use a thread pool).

Model: boss/worker model

Because it's a classic server program, we'll use the boss/worker model for our ATM 
server. A boss thread accepts input from remote clients through the communication 
module. Worker threads handle each client account request.

Figure 2-7 shows the structure of our ATM example program using the boss/worker ATM 
server. The boss thread is neatly encapsulated by the server's main routine. Each worker 
thread runs one service routine: deposit, withdraw, and so on.

Figure 2-7: The boss/worker Pthreads ATM Server

The boss thread

We'll start building our multithreaded ATM server's boss thread from our serial server's 
main routine. The boss thread simply manages the receipt of incoming requests using the 
server_comm_get_request routine. After it obtained each request from the 
communication module, the serial server's main routine unpacked it and called the 
appropriate service routine. The boss thread's main routine will create a worker thread to 
which it will pass the request. The worker thread begins by executing a generic request-
processing routine called process_request, as shown in Example 2-7.

Example 2-7: Multithreaded ATM Server: boss Thread (atm_svr.c)

   typedef struct workorder{

          int conn;

          char req_buf[COMM_BUF_SIZE];

          } workorder_t;

  extern int
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  main(argc, argv)

  int argc;

  char **argv;

  {

    workorder_t *workorderp;

    pthread_t   *worker_threadp;

    int  conn;

    int  trans_id;

    atm_server_init(argc, argv);

    for(;;) {

      /*** Wait for a request ***/

      workorderp = (workorder_t *)malloc(sizeof(workorder_t));

      server_comm_get_request(&workorderp->conn, workorderp-
>req_buf);

      sscanf(workorderp->req_buf, "%d", &trans_id);

      if (trans_id == SHUTDOWN) {

               .

               .

               .

               break;

               }

      /*** Spawn a thread to process this request ***/

      worker_threadp=(pthread_t *)malloc(sizeof(pthread_t));

      pthread_create(worker_threadp, NULL, process_request, (void 
*)workorderp);

      pthread_detach(*worker_threadp);

      free(worker_threadp);

    }

    server_comm_shutdown();

    return 0;

  }

Dynamically detaching a thread

In the code for our boss thread's main routine, we've introduced a new Pthreads call—
pthread_detach. The pthread_detach function notifies the Pthreads library that we don't 
want to join our worker threads: that is, we will never request their exit status. If we don't 
explicitly tell the Pthreads library that we don't care about a thread's exit status, it'll keep 
the shadow of the thread alive indefinitely after the thread terminates (in the same way 



that UNIX keeps the status of zombie processes around). Detaching our worker threads 
frees the Pthreads library from storing this information, thus saving space and time. We 
are still responsible for freeing any space we dynamically allocated to hold the pthread_t 
itself.

Aside from using pthread_detach on an existing thread, you can create threads already in 
the detached state. We'll discuss this method in Chapter 4,   Managing Pthreads  .

A worker thread

In our multithreaded ATM server, each worker thread begins its life in a new request-
parsing routine called process_request. This is a generic request-parsing routine that all 
workers use regardless of which requests they actually process. Because different 
service routines process different requests, the primary job of process_request is to 
select the proper service routine. We accomplish this by means of a simple case 
statement, shown in Example 2-8.

Example 2-8: Multithreaded ATM Server: Worker Thread process_request

   void process_request(workorder_t *workorderp)

  {

    char resp_buf[COMM_BUF_SIZE];

    int  trans_id;

    sscanf(workorderp->req_buf, "%d", &trans_id);

    switch(trans_id) {

        case CREATE_ACCT_TRANS:

             create_account(resp_buf);

             break;

        case DEPOSIT_TRANS:

             deposit(workorderp->req_buf, resp_buf);

             break;

        case WITHDRAW_TRANS:

             withdraw(workorderp->req_buf, resp_buf);

             break;

        case BALANCE_TRANS:

             balance(workorderp->req_buf, resp_buf);

             break;

        default:

             handle_bad_trans_id(workorderp->req_buf, resp_buf);

             break;

        }

    server_comm_send_response(workorderp->conn,

                           resp_buf);
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    free(workorderp);

  }

In our ATM example, the boss thread is always active. It creates worker threads, as 
needed, to process requests. Each active worker could be processing a request on a 
different account, or each worker could be performing a separate operation on the same 
account. It shouldn't matter to our program. The boss thread limits the number of active 
worker threads in the server.

At any given time in the ATM example, a request could be in one of three places:

 • Queued at the server's communication module, waiting to be picked up by the boss 
thread

 • In the boss thread's hands, about to be passed off to a worker thread

 • In the hands of a worker thread, being processed

Synchronization: what's needed

So far, we haven't shown any synchronization between the threads in our multithreaded 
ATM server. We'll go into the details in Chapter 3,   Synchronizing Pthreads  , and Chapter 
4.

Right now we'll just list what synchronization we'll need:

 • Accounts

Now that we have multiple workers accessing the database through the service 
routines (deposit, withdraw, and balance), we'll need to deal with the possibility that 
two routines may try to manipulate the same account balance at the same time. To 
prevent simultaneous access, we'll protect database accesses with a mutex variable.

 • Limiting the number of workers

To keep from overloading the CPUs, the boss must limit the number of worker threads 
that can exist concurrently. It must maintain an ongoing count of worker threads and 
decrement the count as threads exit. We'll do that and add a check for exiting worker 
threads.

 • Server shutdown

The ATM client lets privileged users shut down the server. To make our server more 
robust, we must ensure that the server has completed the requests that are already in 
progress before it stops accepting new requests and shuts itself down. We'll do this by 
adding code so that the boss can tell when threads are active.

Future enhancements

We'll add the synchronization we discussed to our multithreaded ATM server in Chapter 
3. We'll also enhance our server throughout the remainder of this book. Among the 
design refinements we'll consider are: 

 • Thread pools

Our ATM server creates a worker thread each time it receives a request and pays the 
cost of thread creation each time. What if we allowed our server to reuse worker 
threads? When the server starts, it can create a predetermined number of workers in 
an idle state. Each worker thread could take requests off a queue and return to an idle 
state (instead of exiting) after completing each request. The reduction in overhead 
would pay off in performance.
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 • Cancellation

In a couple of situations it would be useful if the boss thread could interrupt and 
terminate a worker thread: to cancel an in-progress request that is no longer wanted or 
to support a quick shutdown.

 • Scheduling

We could give some threads—possibly shutdown threads and deposit threads—priority 
over other threads. When a CPU becomes available, we could give these threads first 
crack at it.

Example: A Matrix Multiplication Program

In this section we'll look at a program very different from the ATM client/server example: 
one that exemplifies how you can break down a program into tasks. Whereas we used 
the boss/worker model to design our ATM server, we'll use the peer model for this one.

A large class of programs are computationally intensive and work on large sets of data: 
image processing, statistical analysis, and finite element modeling, to name a few. In 
some cases these programs may require I/O to databases or to multiple devices. Our 
example uses a simple matrix-multiply program to look at the peer design model, which is 
commonly used in these programs. 

Matrix multiplication takes two two-dimensional input arrays of data and computes a third. 
If you remember your matrix algebra, the multiplication goes like this:

A program that performs a matrix multiplication must compute the value of every element 
in the result array. If the program is nonthreaded, the total time for the program is the 
time it takes to compute an individual element multiplied by the number of elements.

For other programs in this class, the operation on each element of input may not be 
specifically multiplication—perhaps encryption, translation, or comparison. Also, the input 
data may not always be a well-formed array. However, all will have the characteristic of 
repeating some basic operation over and over again on subsets of their data. We can 
improve the performance of these programs using threads in two ways: by providing 
overlapping I/O and by parallel processing.

If processing the input elements required I/O, threading would allow the program to 
continue while one thread blocked waiting for I/O completion (see Figure 2-8). If the input 
and output arrays of our matrix-multiply program were stored on disk (or even were the 
input from individual remote sensors), threads could block individually on the I/O 
operations they needed to complete while other threads continued.

Figure 2-8: Improving performance with overlapping I/O

When our matrix-multiply program is run on a multiprocessing system, as shown in 
Figure 2-9, the threads assigned to different elements of the matrix could run in parallel 
on different CPUs, thus decreasing the time it takes for the program to complete.
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Figure 2-9: Improving performance with parallel processing

Although our matrix-multiply program is a gross simplification of these kinds of programs, 
it is still a useful example of the benefits of threading. Our program will have small fixed-
sized in-memory arrays; it has no I/O, so we won't be demonstrating overlapping I/O in 
this case. Also, the computation time for an element is so short in comparison to the 
setup time and overhead of a thread that, even if you ran it on a multiprocessing system, 
you might not notice a performance improvement.

The Serial Matrix-Multiply Program

Before we develop a threaded version of this program, let's look at the serial version in 
Example 2-9.

Example 2-9: Serial Matrix-Multiply Program (matrix_serial.c) 

#include <stdio.h>

#define ARRAY_SIZE 10

typedef int matrix_t[ARRAY_SIZE][ARRAY_SIZE];

matrix_t MA,MB,MC;

/* Routine to multiply a row by a column and place element in the 
result matrix. */

void mult(int size,             /* size of the matrix */

          int row,              /* row of result to compute */

          int column,           /* column of result to compute */

          matrix_t MA,          /* input matrix */

          matrix_t MB,          /* input matrix */

          matrix_t MC) {       /* result matrix */

      int position;

      MC[row][column] = 0;

      for(position = 0; position < size; position++) {

            MC[row][column] = MC[row][column] +

              ( MA[row][position]  *  MB[position][column] ) ;

      }
}

/* Main: allocates matrix, assigns values, computes the results */
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extern int

main(void) {

      int size = ARRAY_SIZE, row, column;

      /* Fill in matrix values */

       .

       .

       .

      /* Process matrix, by row, column */

      for(row = 0; row < size; row++)     {

        for (column = 0; column < size; column++) {

               mult(size, row, column, MA, MB, MC);

        }

      }

      /* Print matrix */

      printf("MATRIX: The resulting matrix C is:\n");

      for(row = 0; row < size; row ++) {

        for (column = 0; column < size; column++) {

        printf("%5d ",MC[row][column]);

        }

      printf("\n");

      }

      return 0
}

The arrays are named MA, MB, and MC (MA x MB = MC). The mult routine computes the 
result for an individual element in MC by multiplying the proper elements of MA by MB 
and adds the products. In the main program, a loop calls this routine for each element of 
MC. 

The Multithreaded Matrix-Multiply Program

For the threaded version in Example 2-10, we'll use the peer model to organize the 
program's threads. We'll create a peer thread for each individual element in the result 
array MC and assign it to compute the result. A main thread will also exist—not so much 
as a peer thread but as a setup and cleanup thread. It performs all of the setup tasks for 
the program, creates the peer threads, and waits for them to complete. When they do, the 

main thread prints the results and terminates the program.* 

 

* This design might cause a problem on some systems when the number of threads that 
must be created to handle a very large matrix swamp the system. A more 
sophisticated solution would be to limit the number of created threads based on the 
number of available CPUs.

Example 2-10: Multithreaded Matrix-Multiply Program main Routine

/* main: allocates matrix, assigns values, computes the results */



.

.

.

typedef struct {

int       id;

int       size;

int       row;

int       column;

matrix_t  *MA,

matrix_t  *MB,

matrix_t  *MC;

} matrix_work_order_t;

.

.

extern int

main(void) {

    int size = ARRAY_SIZE, row, column;

    matrix_t MA,MB,MC;

    matrix_work_order_t *work_orderp;

    pthread_t peer[size*size];
.

    .

    .

    /* Process Matrix, by row, column */

    for(row = 0; row < size; row++)     {

      for (column = 0; column < size; column++) {

           id = column + row*10;

           work_orderp =

           (work_order_t *)malloc(sizeof(matrix_work_order_t));

           work_orderp->id = id;

           work_orderp->size = size;

           work_orderp->row = row;

           work_orderp->column = column;

           work_orderp->MA = &MA;

           work_orderp->MB = &MB;

           work_orderp->MC = &MC;

           pthread_create(&(peer[id]), NULL, (void *)peer_mult,

                           (void *)work_orderp);

      }



    }

           /* Wait for peers to exit */

    for (i = 0; i < (size * size); i++) {

       pthread_join(peer[i], NULL);

    }

    .

    .

    return 0;
}

In the serial version of our matrix-multiply program (Example 2-9), the main routine made 
a procedure call to invoke the mult routine. In the multithreaded version (Example 2-10), 
the main routine creates a peer thread to do the job. There is one complication, though—
the mult routine as used in the serial version has many arguments, but the 
pthread_create function lets threads start only in routines that are passed a single 
argument. We'll explain the solution in the next section.

Passing data to a new thread

This limitation of pthread_create is annoying, but there is a standard solution that we 
employ in Example 2-11. We bundle everything the main routine wants to pass to its peer 
threads into a single structure. We call this structure the matrix_work_order_t, and it 
contains fields for all of the arguments passed to the serial program's mult routine. Our 
main routine passes each peer thread a pointer to a matrix_work_order_t structure as the 
last argument in the pthread_create call.

A common error is not passing the new thread a work order structure that is unique. You 
may have noticed that our ATM and matrix-multiply programs allocate the data they 
intend to pass to their threads by using a malloc call just prior to the pthread_create call. 
If instead they used a static structure, or placed the malloc outside of the "for" loop, the 
main would continuously overwrite the contents of the same structure, and all threads 
would see values that were intended only for the most recently created thread.

Using the matrix_work_order_t structure lets the main routine bundle various pieces of 
information into a single pthread_create argument, but the thread's start routine must 
accept only a single argument. It would be nice to reuse our mult routine as a start 
routine, but its multiple arguments make that impossible. This is common occurrence 
when trying to use legacy code with threads. Here too we'll use a standard solution. We'll 
define a new start routine for the peer threads. It'll be a simple wrapper over the 
preexisting mult routine. The peer_mult routine takes the pointer to the 
matrix_work_order_t structure that was passed in through pthread_createand uses the 
information from the structure to call the mult routine.
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Example: 2-11: Multithreaded Matrix-Multiply Program peer_multi Routine

/*

* Routine to start off a peer thread

*/

void peer_mult(matrix_work_order_t *work_orderp)

{

mult(work_orderp->size,

     work_orderp->row,

     work_orderp->column,

     *(work_orderp->MA),

     *(work_orderp->MB),

     *(work_orderp->MC));

free(work_orderp);

}

Synchronization in the matrix-multiply program

Our multithreaded matrix-multiply example doesn't need much unusual synchronization:

 • The main thread must wait for the peers to complete. It uses pthread_join to do so.

 • No data synchronization is required because the peers never write to any shared 
locations.

 • Threads only read the values in the input arrays; we don't have to worry about 
synchronizing access because someone may change those values.

 
• The computation of each element in the result array is completely independent of the 

results for any other element in the result array. We don't need to be concerned about 
the order in which threads complete the computation of their elements.

Because thread programmers are rarely this lucky, we need to turn the page to Chapter 3.
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Chapter 3: Synchronizing Pthreads

Overview

Creating threads is the easy part. It's harder to get them to share data properly. We're 
tempted to make the obvious analogy to children. To prevent damage to the Nintendo 
(and the children), we'll only let the one who folds the laundry that evening play Donkey 
Kong. Similarly, to make threads share data safely, we must ensure that threads that 
would otherwise behave independently access shared data in an orderly and controlled 
way. This concept is called synchronization.(The other concept is called good parenting.)

Sooner or later, you'll probably make a programming error and fail to synchronize 
threads. It would be nice if you could get a feel for the symptoms of synchronization 
failures so that you can react quickly and expertly to such a disaster. Unfortunately, as 
we'll see, almost any type of quirky behavior might be regarded as a symptom of a 
synchronization failure. Worse, you may see problems only every so often when you run 
your program; at other times, if the threads in the program just happen to access data in 
the right order in a particular run, the program may run fine. So you may notice incorrect 
output at random times—perhaps in one run out of a hundred. In fact, this come-and-go 
quality of errors may be the best indicator that your bug is in the way in which you've 
handled thread synchronization.

Let's suppose we forgot to include synchronization in the ATM server we created in 
Chapter 2,   Designing Threaded Programs  . When one of our imaginary bank's customers 
deposits money in an account, she expects that, ultimately, her account balance will be 
its original value plus the amount she deposited. She probably can't even conceive of 
anything our bank could do to interfere with her transaction and cause her end balance to 
be any different than she expects. In other words, she assumes that her deposit is a 
single, indivisible transaction (if she were a software engineer, she'd know that the word 
for that type of transaction is atomic)that occurs in isolation from other transactions. It's 
anything but. Her deposit may consist of many, many separate tasks: disk reads, memory 
reads, calculations, data modifications, memory writes, disk writes, and more. Worse, 
without synchronization in our ATM server, we'll allow a similar transaction to preempt her 
deposit at any step—before all of the steps required to make it a deposit have completed.

But it's likely she'll have no problems until, for instance, she tries to withdraw $50 from 
her account at the same time her husband across town also tries to withdraw $50. This 
type of problem is known as a race condition. A race condition is illustrated in Figure 3-1.

Figure 3-1: ATM race condition with two withdraw threads

In a race condition, two or more threads access the same resource at the same time. In 
Figure 3-1, Thread 1 and Thread 2 simultaneously attempt a withdrawal from the same 
bank account. Thread1 reads the current balance of the account—$125. However, before 
it can proceed with the other steps that complete the withdrawal (the arithmetic, the 
storing of the new result, and the dispensing of cash), it is preempted by Thread 2. 
Thread 2 also reads the account balance—$125, but Thread 2 continues on to complete 
the transaction. It subtracts $50 from$125, stores the new balance, $75, in the account 
database, and hands the customer a $50 bill. Sometime thereafter, Thread 1 resumes, 
subtracts $50from $125 (which is what it thinks is the account balance), stores the new 
balance, $75, in the account database, and hands the other customer a$50 bill. Nothing 
looks wrong to either thread, but in actuality, we've allowed one thread to clobber the 
write of another. We've subtracted a total of $100 from $125 and have come up with $75. 
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A bank could lose a lot of money if this was allowed to happen.*

 
* Actually, the error just happened to be in the customer's favor because the operations 

were both withdrawals. If the operations were deposits, the error would be in the 
bank's favor.

The problem with our ATM server is that the three key steps in the withdraw transaction—
the reading of the balance, the calculation of the new balance, and the storing of the new 
balance in the account database—should be atomic. Either all of the steps are performed 
together without interruption, or none of them are.

Selecting the Right Synchronization Tool

You can choose from among many Pthreads functions to obtain some type of 
synchronization:

pthread_join function

pthread_join allows one thread to suspend execution until another has terminated. We 
discussed the pthread_join function in Chapter 1,   Why Threads?  

Mutex variable functions 

A mutex variable acts as a mutually exclusive lock, allowing threads to control access 
to data. The threads agree that only one thread at a time can hold the lock and access 
the data it protects. We'll discuss mutex variables in this chapter.

Condition variable functions

A condition variable provides a way of naming an event in which threads have a 
general interest. An event can be something as simple as a counter's reaching a 
particular value or a flag being set or cleared; it may be something more complex, 
involving a specific coincidence of multiple events. Threads are interested in these 
events, because such events signify that some condition has been met that allows 
them to proceed with some particular phase of their execution. The Pthreads library 
provides ways for threads both to express their interest in a condition and to signal that 
an awaited condition has been met. We'll discuss condition variables in this chapter.

pthread_once function

pthread_once is a specialized synchronization tool that ensures that initialization 
routines get executed once and only once when called by multiple threads. We'll 
discuss the pthread_once function in Chapter 4,   Managing Pthreads  .

These synchronization tools provide all that you need to write almost any program you 
can imagine. We can safely say that you can create whatever complex synchronization 
tools you may need from these basic building blocks. Some of the common 
synchronization mechanisms are:

Reader/writer exclusion

Reader/writer locks allow multiple threads to read data concurrently but ensure that 
any thread writing to the data has exclusive access.

Threadsafe data structures

You may find it useful to build synchronization primitives into a complex data structure 
so that each time you access it you don't need to make a separate call to synchronize 
concurrent access. For instance a queue library may include enqueue and dequeue 
functions that transparently include synchronization calls.

Semaphores

If your platform supports POSIX real-time extensions (POSIX.1b), you can take 
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advantage of yet another common synchronization primitive for concurrent 
environments—semaphores. A counting semaphore is like a mutex but is associated 
with a counter. If your platform supports both the POSIX real-time extensions and 
Pthreads, you can use semaphores on a per-thread basis in the same way you would 

use a mutex*. We'll briefly discuss semaphores in Chapter 5,   Pthreads and UNIX  .

 

* A full discussion of semaphores is beyond the scope of this book. For a detailed 
discussion of all of the POSIX real-time extensions, see the book 
POSIX.4:Programming for the Real World by Bill O. Gallmeister from O'Reilly & 
Associates. 

Later in this chapter we'll provide examples of a thread safe linked list and a reader/writer 
lock implementation. These will give you a idea of what it is like to implement higher-level 
synchronization facilities on top of the standard Pthreads ones.

Mutex Variables

To protect a shared resource from a race condition, we use a type of synchronization 
called mutual exclusion, or mutex for short. Using mutexes, we give threads turns at 
having exclusive access to data. When one thread has exclusive access to data, other 
threads cannot simultaneously be accessing the same data.

So far, we've focused almost entirely on providing exclusive access to data. However, we 
could take a different perspective and provide exclusive access to the code paths or 
routines that access data. We call that piece of code that must be executed atomically a 
critical section.

How large does a critical section have to be to require protection through a mutex? Not 
very large at all—even a single statement might need to be guarded by a mutex. To 
answer this question for your program, it's important for you to understand something 
about what your C language statements might look like at an instruction level. Where 
your C language program might have a single assignment statement, the compiler might 
substitute a number of machine instructions operating on one or more memory locations. 
In a multithreaded environment, the original single statement is no longer atomic at the 
hardware level. For example:

 • Double-precision floating-point multiplies and adds on many systems require multiple 
loads and stores.

 • A platform may have alignment restrictions that cause an integer to be accessed by 
multiple loads or stores when it straddles an alignment boundary.

Be conservative. Because a platform's machine architecture ultimately decides which 
operations are performed atomically and which are not, you should always use mutexes 
to ensure a thread's shared data operations are atomic with respect to other threads. For 
the time being, you can assume that the Pthreads standard arranges things so that 
Pthreads library operations (such as mutex locks and unlocks) work properly regardless 
of the platform you are using and the number of CPUs in the system. We'll provide 
enough background on this topic in Chapter 5, to make you confident that this is so.

Using mutex variables in Pthreads is quite simple. Here's what you do:

 1. Create and initialize a mutex for each resource you want to protect, like a record in a 
database.

 

2. When a thread must access the resource, use pthread_mutex_lock to lock the 
resource's mutex. The Pthreads library makes sure that only one thread at a time can 
lock the mutex; all other calls to the pthread_mutex_lock function for the same mutex 
must wait until the thread currently holding the mutex releases it.

 3. When the thread is finished with the resource, unlock the mutex by calling 
pthread_mutex_unlock.

It's up to you to put lock and unlock calls in the right place. Unlike some higher-level 
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programming interfaces, the Pthreads library does not enforce locks. Pthreads locks are 
merely advisory. If each thread locks the mutex when it's supposed to, the system works; 
if each thread does what it feels like, the data goes unprotected. If your locking code is 
correct, the thread that holds a lock on a mutex can assume that:

 • No other thread will write to the data. Data protected by the mutex will not change out 
from under it.

This is important because a thread may take some action based on the current value 
of the data. For instance, the ATM example allows a withdrawal whenever the bank 
balance is greater than the amount to be withdrawn. You certainly wouldn't want a 
thread to come in and decrease the balance while another thread is giving out the 
money.

 • No other thread will read the data while it is in some sort of intermediate state. After 
this thread releases the lock, other threads will see only the final data it has written.

This is important because a thread might need many steps to process the data. The 
only way to make the data appear atomic to other threads is to prevent them from 
seeing its intermediate states.

You can use a single mutex lock in our ATM server example to protect the account 
database from corruption. We'll globally define the mutex and call it global_data_mutex. 
Our server's main routine will statically initialize global_data_mutex before it creates any 
worker threads:

pthread_mutex_t global_data_mutex = PTHREAD_MUTEX_INITIALIZER;

Once it's initialized, the mutex can be used by any worker thread accessing the database, 
such as the threads that run the deposit routine in Example 3-1.

Example 3-1: Using a Single Mutex Lock for the ATM Database (atm_svr.c)

void deposit(char *req_buf, char *resp_buf)

{

  int rtn;

  int temp, id, password, amount;

  account_t *accountp;

  /* Parse input string */

  sscanf(req_buf, "%d %d %d %d ", &temp, &id, &password, &amount);

  /* Check inputs */

  if ((id < 0) || (id >= MAX_NUM_ACCOUNTS)) {

    sprintf(resp_buf, "%d %s", TRANS_FAILURE, ERR_MSG_BAD_ACCOUNT);

    return;

  }

  pthread_mutex_lock(&global_data_mutex);

  /* Retrieve account from database */

  if ((rtn = retrieve_account( id, &accountp)) != 0) {

    sprintf(resp_buf, "%d %s", TRANS_FAILURE, atm_err_tbl[-rtn]);

    .

    .



    .

  }

  pthread_mutex_unlock(&global_data_mutex);
}

Although we've shown only the deposit routine in Example 3-1, all the routines in our 
server that access the database work in the same way. They lock the mutex before 
retrieving the account balance, then release it after they've changed the account balance. 
This may be the simplest solution for our ATM server, but it's not the best. We've limited 
access to the entire database to a single thread at a time, thus slowing performance 
considerably. Later in this chapter, as a performance enhancement, we'll add mutexes for 
individual account records to our server.

Using Mutexes

Mutex variables are of type pthread_mutex_t. Before you can use a mutex in your 
program, you must initialize it, either dynamically or statically. We previously showed an 
example of static initialization.

You dynamically initialize a mutex by calling pthread_mutex_init as shown in Example 3-
2.

Example 3-2: Dynamically Initializing a Single Mutex Lock (atm_svr.c)

pthread_mutex_t *mutexp;

  .

  .

  .

  mutexp=(pthread_mutex_t *)malloc(sizeof(pthread_mutex_t));

  pthread_mutex_init(mutexp, NULL);

When Pthreads initializes a mutex, it defines an attribute object for the mutex 
(pthread_mutex_attr_t) that you use to customize its behavior. To assign default 
attributes to a mutex, pass a NULL attribute argument in the pthread_mutex_init call. 
Unlike the pthread_attr_t object, which we introduced in our discussion of pthread_create 
in Chapter 1, the pthread_mutex_attr_t object has no mandatory attributes. We'll discuss 
its optional attributes—a process-shared attribute and two priority-inversion attributes 
(priority ceiling and priority inheritance)—a bit later.

Because you want to protect data from being accessed by more than one thread at a 
time, the main routine usually initializes all mutexes before it creates additional threads. 
Sometimes this is impractical—for instance, in a system library (it has no main!).When 
this is the case, use the pthread_once function, which we'll cover in Chapter 4.

Once you've initialized a mutex, you can lock it by calling pthread_mutex_lockor 
pthread_mutex_trylock. The pthread_mutex_lock call blocks the calling thread until it's 
granted the lock. If the mutex is unlocked at the time of the call, the lock's granted 
immediately; otherwise, it's granted after it's released by the thread that's holding it. We'll 
discuss pthread_mutex_trylock momentarily.

To release a lock, use pthread_mutex_unlock. If you should forget to call 
pthread_mutex_unlock for a locked mutex, a deadlock may occur in which other threads 
that are requesting the lock wait indefinitely for you to release it.

Error Detection and Return Values
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The Pthreads standard allows implementations to define the exact level of error detection 
and reporting for some library calls. Although this allows vendors to design efficient 
library calls, it can pose a particular problem when you use mutex library calls.

In general, the Pthreads library reports all errors associated with resource availability and 
system constraints on function operation. For example, if the library realizes that it cannot 
initialize a mutex for a thread because the library itself hasn't enough space in its internal 
tables, it returns a value of EAGAIN or ENOMEM to the caller of pthread_mutex_init. 
However, the library does not have to detect improper uses of a mutex and report any 
errors that might result. Such improper uses include:

 • Locking a mutex that you have not initialized

 • Locking a mutex that you already own

 • Unlocking a mutex that you don't own

Hopefully, the library you use does detect these misuses. If it does not in its default 
mode, see if it has a debug mode that provides additional error detection.

Using pthread_mutex_trylock

The pthread_mutex_trylock function, like pthread_mutex_lock, locks a previously 
initialized mutex. Unlike pthread_mutex_lock, though, it does not suspend its caller if 
another thread already holds the mutex. Instead, it returns immediately, indicating that 
the mutex is currently locked. The pthread_mutex_trylock function can be useful, but 
using it is not as simple as it seems.

Be careful.

Philosophically, using pthread_mutex_trylock seems contrary to the basics of 
multithreaded program design. We are callingpthread_mutex_trylock to prevent a thread 
from blocking, but we've designed threads into our program so that some threads could 
block while others continue. When we see a pthread_mutex_trylock call, we often wonder 
why the program's designer didn't simply create another thread for whatever it is that the 
thread might do while it would be waiting for the lock. This would make the program 
easier to understand rather than having the one thread, essentially assigned to more than 
one task, asynchronously bouncing between tasks based on the availability of locks.

Practically, using pthread_mutex_trylock represents a kind of polling for a resource—
repeatedly trying and backing off until the resource is obtained. This polling leads to some 
overhead and, worse, potential resource starvation. If the lock is in high demand, the 
thread that polls for it may never get it. It's like trying to get tickets for a concert by a really 
hot band—Pink Floyd, for instance. The line forms well before the tickets go on sale and 
lasts until they are all gone. If you don't keep your place in line, you may never get your 
tickets. Similarly, a thread that is not patient enough to block and wait may never try the 
lock and find it available—there is always at least one other thread blocked waiting for the 
lock. Somewhat more acceptable is the specialized use of pthread_mutex_trylock by real-
time programmers to poll for state changes. This practice may be inefficient, but it does 
allow real-time programs to respond quickly to a condition that warrants speed.

Another situation in which a pthread_mutex_trylock is often used is in detecting and 
avoiding deadlock in locking hierarchies and priority inversion situations. Later in this 
chapter, we'll discuss a more standard solution to locking hierarchy problems that 
involves defining an order in which any given thread must pursue locks. In Chapter 4, 
we'll discuss how you can avoid priority inversion problems by using attributes to assign 
priorities to mutexes.

When Other Tools Are Better

Mutexes are best used for controlling direct access to data and resources.  Although you 
can use mutexes as building blocks for more complex synchronization mechanisms, 
Pthreads often provides a more appropriate tool for doing so.
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In particular, a common task in thread programming is event synchronization: each 
thread in a program reaches a certain point and must wait for other threads to get there. 
You might adopt this technique, for instance, when your threads are working on different 
chunks of an array and must exchange results at regular points. Your best choice to 
impose this type of synchronization is a condition variable. If condition variables were not 
available, you'd likely use a counter to let threads know when they've all reached a barrier 
in your program. Not only would each thread need to lock a mutex to decrement the 
counter, but it would also have to repeatedly lock the mutex to check if the counter had 
reached zero. If you find code that polls a counter to determine if all threads have 
synchronized on an event, it's time to use a condition variable. We'll have more to say 
about condition variables later in this chapter.

Some Shortcomings of Mutexes

Mutexes are the most restrictive type of access control. When a thread locks a mutex on 
a resource—even if it's only interested in checking the resource's value—it prevents all 
other threads from accessing the resource. This is effective synchronization for all 
situations but may not be the most efficient type of lock for situations that allow less 
restrictive access.

Sometimes you have many threads that read data but only an occasional thread that 
writes it. There should be a type of lock that allows any number of readers but works like 
a mutex whenever a writer enters the scene. That is, the writer should not be allowed 
access whenever any readers are using the data. But when a writer is using it, neither 
readers nor other writers are allowed in. Reader/writer locks provide this type of access 
control. Although Pthreads does not specify them, we'll show you later on how to "roll 
your own" using mutexes and condition variables.

In some circumstances, it would be useful if we could define a recursivelock: that is a lock 
that can be relocked any number of times by its current holder. It would be nice if we 
could specify this ability in a mutex attribute object. We can imagine the Pthreads library 
associating an internal counter with a recursive mutex to count the number of times its 
current holder has called pthread_mutex_lock. Each time the current holder calls 
pthread_mutex_unlock, the library would decrement this counter. The lock would not be 
released until the call that brings the count down to zero is issued.

A recursive mutex is useful for a thread that makes a number of nested calls to a routine 
that locks and manipulates a resource. You lock the mutex recursively each time the 
thread enters the routine and unlock it at all exit points. If the thread already holds the 
lock, the calls merely increase and decrease the recursive count and don't deadlock the 
thread. If you did not use a recursive mutex, you'd need to distinguish somehow between 
the times when the thread already holds the lock when it calls the routine and those when 
it needs to make a prior mutex lock call.

Contention for a Mutex

If more than one thread is waiting for a locked mutex, which thread is the first to be 
granted the lock once it's released? The choice is made according to the scheduling 
priorities of the individual threads.

The thread with the highest priority gets the lock. We'll discuss scheduling policies and 
priorities in Chapter 4. For now, it's worth noting that they allow you to mark one thread 
as more important than another.

Many threaded programs, however, don't assign different priorities to different threads. 
Most of these programs are designed for real-time applications and allow the choice of 
which thread gets a lock first to be made randomly.

The use of priorities in a multithreaded program can lead to a classic multiprocessing 
problem: priority inversion. Priority inversion involves a low priority thread that holds a 
lock that a higher priority thread wants. Because the higher priority thread cannot 
continue until the lower priority thread releases the lock, each thread is actually treated 
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as if it had the inverse of its intended priority.

The best way to avoid priority inversion is to minimize the degree to which threads of 
different priorities share the same locks. This may not always be possible, though. In 
Chapter 4, we'll show you how to eliminate the risk of priority inversion by using mutex 
attributes.

Example: Using Mutexes in a Linked List

Linked lists are common structures in programming—and in programming books! But, 
when multiple threads become involved, there's a new twist: how do multiple threads 
access a list without screwing it up? In this version of the venerable linked-list example, 
we'll have multiple threads accessing a list, searching for a node (that is, reading the list), 
removing a node, and changing its contents (that is, writing to the list).Our include file for 
this example is shown in Example 3-3.

Example 3-3: Include File for a Linked List Module (llist.h)

/* llist.h */

typedef struct llist_node {

   int            index;

   void          *datap;

   struct llist_node    *nextp;
} llist_node_t;

typedef llist_node_t *llist_t;

int llist_init(llist_t *llistp);

int llist_insert_data(int index; void *datap, llist_t *llistp);

int llist_remove_data(int index; void **datapp, llist_t *llistp);

int llist_find_data(int index,  void **datapp, llist_t *llistp);

int llist_change_data(int index, void *datap, llist_t *llistp);

int llist_show(llist_t *llistp);

We've set up calls in our llist.h file to initialize a linked list of type llist_t, insert nodes, 
remove nodes, retrieve data from nodes, and set variables in nodes. In this simple 
example, each node has an integer index that indicates its place in the list. A partial 
implementation of the module including the initialization routine (llist_init) and the insert 
routine (llist_insert_data) is shown in Example 3-4.

Example 3-4: Nonthreaded Linked List Code (llist.c)

/* llist.c */

#include "llist.h";

/* Right now, this routine simply ensures that we don't initialize 
a list

   that has data on it. */

int llist_init(llist_t *llistp)

{

   if (*llistp == NULL)

          return 0;
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   else

          return -1;
}

int llist_insert_data(int index, void *datap, llist_t *llistp)

{

   llist_node_t *cur, *prev, *new;

   int found = FALSE;

   for (cur = prev = *llistp; cur != NULL; prev = cur, cur= cur-
>nextp) {

          if (cur->index == index) {

                    free(cur->datap);

                    cur->datap = datap;

                    found = TRUE;

                    break;

          } else if (cur->index > index) {

                    break;

          }

   }

1   if (!found) {

2          new = (llist_node_t *)malloc(sizeof(llist_node_t));

3         new->index = index;

4          new->data = datap;

5          new->nextp = cur;

6          if (cur == list)

7                    *llistp = new;

8          else

                     prev->nextp = new;

   }

   return 0;
}

As we've written it so far, our linked list code would present many opportunities for race 
conditions if we divided its tasks among multiple threads. If we allowed two or more 
threads to concurrently execute these routines, unexpected results might arise.

Complex Data Structures and Lock Granularity

When a linked list is being accessed by more than one thread, we're not only concerned 
about the data it contains, but also about the integrity of its structure. Consider a situation 
in which two threads are inserting nodes in our list at the same time, with the result that 
the execution of lines 1 through 8 in Example 3-4 are interleaved. Each thread has 
passed the test at line 6 and thus thinks that it should insert its node on the top of the list. 
When it executes line 7, each thread makes the head of the list point to the node it will be 
inserting. Whichever thread is the last to do so will succeed in inserting its node on the 
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list; the other thread's node will be lost forever, occupying inaccessible memory 
somewhere on the heap. A similar mishap could result from the race condition in which a 

thread reads a node that is being concurrently removed by another thread.* 

 

* Our expectations on the structure and value of that data are sometimes called 
invariants. When we have a linked list, we expect it to remain well formed as long as 
our program is executing. It should always have a valid head and tail and correctly 
linked nodes that don't disappear—no matter which thread in our program references 
it. 

Programmers often want to use a preexisting code library or module with a multithreaded 
program only to discover that to do so might create race conditions among the threads. 
We say that it contains non-threadsafe,or nonreentrant, code. In our linked list example, 
we'll rewrite the previous module to make it thread safe. In other cases, we may not have 
had the option of rewriting our code, perhaps because we were using a precompiled 
library of code. If this were the situation, we'd add a mutex as a wrapper around our calls 
to library functions. We'll discuss the issues that arise from using non-threadsafe code in 
Chapter 5.

Requirements and Goals for Synchronization

When designing the synchronization for our data structures, we'll keep to two strict 
requirements:

 • Eliminate all race conditions.

 • Do not introduce deadlock.

We'll try to meet these requirements with as little impact on the performance of our 
program as possible.

The lock potentially blocks other threads that must access the resource it protects. You 
can control this expense to some extent by economizing on the length of time a thread 
spends in a critical section of code. (It's how long this code takes to complete that 
determines how long other threads must wait on a mutex.) We'll revisit performance 
issues in Chapter 6,   Practical Considerations  .

The simplest way to synchronize our program would be have a single mutex protect all 
types of access to the entire list—insertion, deletion, reading data, and writing data. This 
approach would eliminate all race conditions for these operations and prevent deadlock, 
thus meeting our requirements. We'll need to first modify the llist_t data structure in our 
header file, as follows:

typedef  struct llist {

    llist_node_t *first;

    pthread_mutex_t mutex;

    } llist_t;

We'll then change our initialization and insert routines as shown in Example 3-5.

Example 3-5: Multithreaded Linked List Code (llist_threads.c, llist_threads.h)

int llist_init(llist_t *llistp)

{

  llistp->first = NULL;

  pthread_mutex_init(&(llistp->mutex), NULL);

  return 0;
}
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int llist_insert_data(int index, void *datap, llist_t *llistp)

{

   llist_node_t *cur, *prev, *new;

   int found = FALSE;

   pthread_mutex_lock(&(llistp->mutex));

   for (cur = prev = llistp->first; cur != NULL; prev = cur, cur= 
cur->nextp) {

          if (cur->index == index) {

                    free(cur->datap);

                    cur->datap = datap;

                    found = TRUE;

                    break;

          } else if (cur->index > index) {

                      break;

          }

   }

   if (!found) {

          new = (llist_node_t *)malloc(sizeof(llist_node_t));

          new->index = index;

          new->data = datap;

          new->nextp = cur;

          if (cur == llistp->first)

                    llistp->first = new;

          else prev->nextp = new;

   }

   pthread_mutex_unlock(&(llistp->mutex));

   return 0;
}

The llist_t structure now includes a mutex lock that protects the entire list. The llist_init  
routine initializes the mutex in the pthread_mutex_init call that follows the malloc that 
allocates the list. Each routine that accesses the list, like llist_insert_data in Example 3-5, 
must first obtain this mutex (by calling pthread_mutex_lock).It releases the mutex (by 
calling pthread_mutex_unlock)just before exiting.

By putting the synchronization inside our module, we've created a thread safe data type 
without changing its interface.

Although this solution does meet our design requirements, it may not provide the best 
possible performance. The mutex controls access to the entire list. That is, while the list 
is being accessed by any thread, it is unavailable to all other threads. If concurrent 
accesses to the list are uncommon, this may be fine; but what if this isn't true?



Access Patterns and Granularity

Your choices for optimizing performance in a multithreaded program are tied to how its 
threads access the shared data on the list. If almost all accesses are reads and writes of 
existing data nodes, as opposed to insertions and removes, your most efficient approach 
might be to allow nodes to be individually locked. This would allow threads to read and 
write different nodes simultaneously. However, if threads often insert and remove nodes 
to and from the list, this solution would add another layer of complexity.

This basic design decision concerns lock granularity—that is, the level at which we apply 
locks to our shared data (and, thus, the number of locks we use to protect the data). On 
one hand, we could use coarse-grain locking and use a single mutex to control access to 
all shared data. This is what we've been using up to this point. On the other hand, we 
could use fine-grain locking and place a lock on every individually accessible piece of 
data. Fine-grain locking may result in improved concurrency, but it requires the most 
coding and overhead in synchronization calls.

In practice, locking systems adopt a lock granularity design that falls somewhere in 
between these extremes. The programmer takes anticipated usage into account—for 
instance, whether it's likely for more than one thread to request withdrawals on the same 
account at the same time. It's an art to provide the most efficient implementation while 
ensuring that the application works correctly.

Locking Hierarchies

If your shared data has some hierarchical structure—for instance, it's a tree with some 
depth to it—you may want to allow threads to lock separate subtrees of the structure 
simultaneously. This assumes a finer-grain lock design.

Figure 3-2 shows a tree with a root and three levels—L1, L2, and L3. We've assigned a 
mutex to each level to control access to the sublevels below.

Figure 3-2: Locking in hierarchical data structures

This is all well and good, but beware! If we now allow threads to acquire these locks in 
any order they please, the kind of deadlock known as a deadly embrace can occur. For 
example, consider two threads that intend to lock the same section of the tree (see 
Figure 3-3).The first thread tries to obtain the L1, L2, and L3 locks in succession, and the 
second thread goes after L3, L2, and L1 in the reverse order at the same time. If their 
execution overlapped, it's quite possible that each would stall waiting for a lock already 
held by the other. (Here, the first thread blocks waiting for the L3 lock that the second 
thread holds, and the second thread blocks waiting for the L2 lock that the first thread 
holds.) Our threads are deadlocked waiting for each other.
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Figure 3-3: Deadly embrace in a locking hierarchy

To avoid a deadly embrace such as this, we must enforce a fixed locking hierarchy. To 
access data at any given level, all threads in our program must obtain the lock at each 
lower level in exactly the same order. If threads always took L1 before L2, and L2 before 
L3, any thread obtainingL1 can assume that L2 is either unlocked or locked by another 
thread. It can also assume that the other thread that currently owns L2 will not try to lock 
L1. Presumably, the second thread will release L2 sometime, giving the first thread an 
opportunity to proceed through the hierarchy. Thus, our threads avoid deadlock. Note that 
this scheme allows a thread with a lock in the hierarchy to release locks of lower levels so 
that other threads can pursue data off other branches of the subtree.

Some locking systems have built-in support for locking hierarchies—Pthreads isn't one of 
them. In these systems, you can define each lock's place in the hierarchy to the locking 
system. When you subsequently try to obtain a lock, the system checks if you own all 
required prior locks. If not, it gives you an error.

In systems without this support, locking hierarchies must exist entirely in the 
programmer's head or, perhaps, be written profusely into program comments.

Sharing a Mutex Among Processes

A mutex has a single attribute that determines whether or not it can be seen by threads in 
other processes: process-shared. (A mutex object also has two attributes that assist in 
scheduling threads. We'll discuss them in Chapter 4.) If your platform allows you to set 
the process-shared attribute, the compile-time constant 
_POSIX_THREAD_PROCESS_SHARED will be TRUE.

When you initialize a mutex dynamically (that is, by calling pthread_mutex_init),the 
Pthreads library creates a mutex attribute object for it. A Pthreads mutex attribute object 
is of type pthread_mutex_attr_t.You initialize and deinitialize it by calling 
pthread_mutexattr_initand pthread_mutexattr_destroy, respectively. To set the process-
shared attribute, supply the PTHREAD_PROCESS_SHARED constant in a 
pthread_mutexattr_setshared call. To revert to a process-private mutex, specify the 
PTHREAD_PROCESS_PRIVATE constant. Processes that share a mutex must be able 
to access it in shared memory (created through System V shared memory mechanisms 
or through mmap calls). The mutex is initialized once by a thread in any of the processes 
that plan to use it. Example 3-6 shows one way of initializing a process-shared mutex.

Example 3-6: A Process-Shared Mutex (process_shared_mutex.c)

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/wait.h>

#ifndef _POSIX_THREAD_PROCESS_SHARED

#error "This platform does not support process shared mutex"

#endif

int   shared_mem_id;

int   *shared_mem_ptr;

pthread_mutex_t *mptr;

pthread_mutex_attr_t mutex_shared_attr;
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extern int

main(void)

{

  pid_t  child_pid;

  int  status;

  /* initialize shared memory segment */

  shared_mem_id = shmget(IPC_PRIVATE, 1*sizeof(pthread_mutex_t), 
0660);

  shared_mem_ptr = (int *)shmat(shared_mem_id, (void *)0, 0);

  mptr = shared_mem_ptr;

  pthread_mutexattr_init(&mutex_shared_attr);

  pthread_mutexattr_setshared(&mutex_shared_attr, 
PTHREAD_PROCESS_SHARED);

  pthread_mutex_init(mptr, &mutex_shared_attr);

  if ((child_pid = fork()) == 0) {

  /* child */

           /* create more threads */

           .

           .

           pthread_mutex_lock(mptr);

           .

           .

  } else {

  /* parent */

           /* create more threads */

           .

           .

           pthread_mutex_lock(mptr);

           .

           .
}

In Example 3-6, we allocate storage for the mutex from the shared memory segment. The 
main thread in the parent process initializes it, using a mutex attribute object we've set to 
the PTHREAD_PROCESS_SHARED constant in a call to the function 
pthread_mutexattr_setshared.After it initializes the mutex, the parent process forks. 
Subsequently, the main threads of both the parent and child processes can create more 
threads, all of which can use the mutex to synchronize access to mutually shared data. 
When using a process-shared mutex, consider the following:

 
• Once a process has multiple threads, forking has many pitfalls. (If youwish to steer this 

course, see Chapter 5, before going any further.) In Example 3-6, we took care to 
initialize the mutex before forking and to fork before we created multiple threads from 
multiple processes.
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• For strict, process-to-process synchronization, use System V or POSIX.1bsemaphores. 

For thread-to-thread synchronization across processes, youcan use POSIX.1b 
semaphores as an alternative to process-shared mutexes.

Condition Variables

While a mutex lets threads synchronize by controlling their access to data, a condition 
variable lets threads synchronize on the value of data. Cooperating threads wait until 
data reaches a particular state or until a certain event occurs. Condition variables provide 
a kind of notification system among threads. As mentioned earlier, if Pthreads didn't offer 
condition variables, but only provided mutexes, threads would need to poll the variable to 
determine when it reached a certain state.

Example 3-7 shows a simple use of a condition variable. We'll make the global variable 
count a shared resource that two threads increment and create the mutex count_mutex 
(in global scope) to protect it. We'll use the count_threshold_cv condition variable to 
represent an event—the count variable's reaching a defined threshold value, 
WATCH_COUNT.

The main routine creates two threads. Each of these threads runs the inc_count routine. 
The inc_count routine locks count_mutex, increments count, reads count in a printf 
statement, and tests for the threshold value. If count has reached its threshold value, 
inc_count calls pthread_cond_signal to notify the thread that's waiting for this particular 
event. Before exiting, inc_count releases the mutex. We'll create a third thread to run the 
watch_count task. The watch_count routine waits for inc_count to signal our 
count_threshold_cv condition variable.

Example 3-7: A Simple Condition Variable Example (cvsimple.c)

#include <stdio.h>

#include <pthread.h>

#define TCOUNT 10

#define WATCH_COUNT 12

int count = 0;

pthread_mutex_t count_mutex = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t count_threshold_cv = PTHREAD_COND_INITIALIZER;

int  thread_ids[3] = {0,1,2};

extern int

main(void)

{

     int      i;

     pthread_t threads[3];

     pthread_create(&threads[0],NULL,inc_count, &thread_ids[0]);

     pthread_create(&threads[1],NULL,inc_count, &thread_ids[1]);

     pthread_create(&threads[2],NULL,watch_count, &thread_ids[2]);

     for (i = 0; i < 3; i++) {

              pthread_join(threads[i], NULL);

     }

     return 0;



}

void watch_count(int *idp)

{

     pthread_mutex_lock(&count_mutex)

     while (count <= WATCH_COUNT) {

              pthread_cond_wait(&count_threshold_cv,

                               &count_mutex);

              printf("watch_count(): Thread %d,Count is %d\n",

                   *idp, count);

     }

     pthread_mutex_unlock(&count_mutex);
}

void inc_count(int *idp)

{

     for (i =0; i < TCOUNT; i++) {

              pthread_mutex_lock(&count_mutex);

              count++;

              printf("inc_count(): Thread %d, old count %d,\

                   new count %d\n", *idp, count - 1, count );

              if (count == WATCH_COUNT)

                   pthread_cond_signal(&count_threshold_cv);

              pthread_mutex_unlock(&count_mutex);

     }
}

A condition variable has a data type of pthread_cond_t. You can initialize it statically as 
we do in Example 3-7, or you can initialize it dynamically by calling pthread_cond_init, as 
follows:

pthread_cond_init(&count_threshold_cv, NULL);

After you initialize a condition variable, a thread can use it in one of two ways:

 • The thread can wait on the condition variable.

To wait on a condition variable, a thread calls pthread_cond_wait or 
pthread_cond_timedwait. Both of these functions suspend the caller until another 

thread signals* on the condition variable. In addition, the pthread_cond_timedwait call 
lets you specify a timeout argument. If the condition is not signaled in the specified 
time, the thread is released from its wait.

Note that we do not use the term signals in the sense used in discussions of
UNIX signaling mechanisms. See the section called "Condition Variables
and UNIX Signals" later in this chapter.

 • It can signal other threads waiting on the condition variable.

To release threads that are waiting on a condition variable, a thread calls 
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pthread_cond_signal or pthread_cond_broadcast. The pthread_cond_signal function 
wakes up only one of the potentially many threads waiting on the condition; the 
pthread_cond_broadcast function awakens all of them.

In Example 3-7, the only thread waiting is the one running the watch_count task. The 

threads that signal are running the inc_count task.* The thread running watch_count first 
locks the count mutex before checking the count. This is important because, condition or 
no condition, that counter is still a shared piece of data. We don't want it to change while 
we're in the middle of checking it. If count is not the desired value, the thread calls 
pthread_cond_wait to put itself into a wait on the count_threshold_cv condition variable. 
The pthread_cond_wait function releases the count mutex while the thread is waiting so 
other threads have the opportunity to modify count. When the condition occurs and it is 
awakened, the thread running watch_count prints a message, unlocks the mutex, and 
exits. The threads running inc_count check the value of the count after each increment. If 
count reaches WATCH_COUNT, they use pthread_cond_signal to awaken the waiter.

 

* Although the pthread_cond_broadcast function wakes all threads waiting on the 
condition, they all immediately compete for the associated mutex. Only one of them will 
succeed in locking the mutex and be able to continue in the code after 
thepthread_cond_wait call. See the discussion in the section called "When Many 
Threads Are Waiting" coming up.

Using a Mutex with a Condition Variable

It is important to use condition variables and mutexes together properly.

A call to pthread_cond_wait requires that a locked mutex be passed in along with the 
condition variable. The system releases the mutex on the caller's behalf when the wait for 
the condition begins. In concert with the actions of the waiting thread, the thread that 
issues the pthread_cond_signal or pthread_cond_broadcast call holds the mutex at the 
time of the call but must release it after the call. Then, when the system wakes it up, a 
waiting thread can regain control of the mutex. It too must release the mutex when it's 
finished with it.

It all sounds complicated, but what if the mutex and the condition variable weren't linked? 
If the condition were signaled without a mutex, the signaling thread might signal the 
condition before the waiting thread begins waiting for it—in which case the waiting thread 
would never wake up. If the system did not release the lock when the waiting thread 
entered the wait, no other thread could get the mutex and change the value of count such 
that the condition is met. The condition would never be signaled, and the program would 
deadlock. If the waiting thread didn't release the mutex, no other thread could get the 
mutex. Here, too, we'd wind up in a deadlock.

When Many Threads Are Waiting

If multiple threads are waiting on a condition variable, who gets awakened first when 
another thread issues a pthread_cond_signal call? As with threads waiting in a lock call 
to a mutex variable, the waiting threads are released according to their scheduling 
priority. If all waiting threads are of the same priority, they are released in a first-in first-
out order for each pthread_cond_signal call that's issued.

The pthread_cond_broadcast function releases all threads at once from their waits on the 
condition variable, but there is a hitch. The system can select only one to which to give 
possession of the mutex. It does so by applying the same criterion it uses when selecting 
the thread it wakes when a phread_cond_signal call signals a condition—scheduling 
order. The chosen thread is given the mutex lock and continues in the code following its 
pthread_cond_wait call. The other threads are moved to the queue of threads that are 
waiting to acquire the mutex. Each will resume as each previous thread in the queue 
acquires the mutex and then releases it.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_28.html#508837
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_28.html#508837
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_28.html#492233


Checking the Condition on Wake Up: Spurious Wake Ups

This brings us to another aspect of using condition variables. After it's just been 
awakened, the waiting thread in our example reenters its while loop to check the value of 
count one more time. Is that really necessary, or are we guilty of sloppy coding? After all, 
count must have reached its threshold limit, mustn't it, if the thread is now awake and that 
was the event on which it was sleeping?

Well, we check the event one more time primarily to ensure correctness: if multiple 
threads were waiting on the same condition variable, another thread could have already 
been awakened, perhaps decrementing the count, before our thread was able to run. 
Second, we want to guard against a condition known as a spurious wake up. Perhaps a 
signaling thread has, in error or due to an unexpected condition, awakened our waiting 
thread when the expected condition has not in fact been met. In addition, the Pthreads 
library allows an underlying threads library to issue spurious wake ups to a waiting thread 
without violating the standard. We need to guard against this possibility as well.

Condition Variable Attributes

When you initialize a condition variable dynamically (that is, by calling the 
pthread_cond_init function), the Pthreads library creates a condition variable attribute 
object for it. A Pthreads condition variable attribute object is of data type 
pthread_condattr_t.You initialize and deinitialize the condition variable attribute object by 
calling pthread_condattr_init and pthread_condattr_destroy, respectively.

A condition variable attribute object has a single, optional attribute that determines 
whether or not it can be seen by threads in other processes: process-shared. Using the 
process-shared attribute for condition variables is similar to using it for mutexes and 
involves many of the same issues. If you can set the process-shared attribute on your 
platform, _POSIX_THREAD_PROCESS_SHARED, the compile-time constant, will be 
TRUE. To set the process-shared attribute, supply either the 
PTHREAD_PROCESS_SHARED or the PTHREAD_PROCESS_PRIVATE constant in a 
call to pthread_condattr_setshared. To test the attribute's value, issue a call to 
pthread_condattr_getshared.

If you want the default attributes for a condition variable, pass the function 
pthread_condattr_init an attribute argument of NULL.

Condition Variables and UNIX Signals

The Pthreads standard does not define what should happen when a condition variable is 
signaled from within a <acronym>UNIX</acronym> signal handler. We'll provide some 
detail in Chapter 5, but, for now, let's make this clear: unlike UNIX signals, condition 
variables are synchronous. You wait on a condition variable, and you start up again when 
another thread signals you. The signal is not delivered by the system itself, and it is not 
delivered asynchronously. If you want asynchronous signals, you can certainly use them. 
In Chapter 5, we'll show how.

Condition Variables and Cancellation

There are also issues with cancellation and waiting on a condition variable. See the section 
called "The Complication with Cancellation" in Chapter 4.
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Reader/Writer Locks

This next example can be a mind-bender if you're not used to synchronization. It takes 
two synchronization primitives, the mutex and the condition variable, and creates a third
—the reader/writer lock.

Let's review the reasons for reader/writer locks and the rules by which they operate. If a 
thread tries to get a read lock on a resource, it will succeed only if no other thread holds a 
lock on the resource or if all threads that hold a lock are readers. If another thread holds 
a write lock on the resource, the would-be reader must wait. Conversely, if a thread tries 
to get a write lock on the resource, it must wait if any other thread holds a read or write 
lock.

We'll start by defining a reader/writer variable of type pthread_rdwr_tand by creating the 

functions that operate on it, as listed in Table 3-1*

 
* By convention, functions that extend the Pthreads standard should start with pthread 

and end with np  (for nonportable). We'll follow this convention in this section.

Table 3-1: Reader/Writer Lock Functions

Function

Description

pthread_rdwr_init_np

Initialize reader/writer lock

pthread_rdwr_rlock_np

Obtain read lock

pthread_rdwr_wlock_np

Obtain write lock

pthread_rdwr_runlock_np

Release read lock

pthread_rdwr_wunlock_np

Release write lock

How could threads use this type of lock? We'll modify our linked list program in Example 
3-5 to provide Example 3-8.

Example 3-8: Using Reader/Writer Locks (llist_threads_rw.c)

typedef struct llist{

   llist_node_t *first;

   pthread_rdwr_t rwlock;

   } llist_t;
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.

.

.

int llist_init(llist_t *llistp)

{

  llistp->first = NULL;

  pthread_rdwr_init_np(&(llistp->rwlock), NULL);

  return 0;
}

int llist_insert_data(int index; void *datap, llist_t *llistp)

{

   llist_node_t *cur, *prev, *new;

   int found = FALSE;

   pthread_rdwr_wlock_np(&(llistp->rwlock));

   for (cur = prev = llistp->first; cur != NULL; prev = cur, cur= 
cur->nextp) {

            if (cur->index == index) {

                      free(cur->datap);

                      .

                      .

                      .

   pthread_rdwr_wunlock_np(&(llistp->rwlock));

   .

   .

   .
}

int llist_find_data(int index; void **datapp, llist_t *llistp)

{

   llist_node_t *cur, *prev, *new;

   int found = FALSE;

   pthread_rdwr_rlock_np(&(*llistp->rwlock));

   for (cur = prev = *llistp->first; cur != NULL;

                             prev = cur, cur= cur->nextp) {

          if (cur->index == index) {

                             free(cur->datap);

                             .



                             .

                             .

   pthread_rdwr_runlock_np(&(*llistp->rwlock));

   .

   .

   .
}

In Example 3-8, our linked list is protected by a reader/writer lock instead of a mutex. The 
llist_insert_data routine obtains a write lock before it modifies the list. The llist_find_data 
routine needs only a read lock.

We show the include file in Example 3-9. We'll define a pthread_rdwr_t structure that 
includes a count of readers, a count of writers, a mutex, and a condition variable. The 
mutex protects the reader/writer counts in the structure. Threads will wait on the condition 
variable for a currently held lock to become free. We've effectively hidden both mutex and 
condition variable in the structure so their use will be transparent to end users of the 
pthread_rdwr_t structure and our reader/writer functions.

Example 3-9: Include File for Reader/Writer Locks (rdwr.h)

#include <pthread.h>

typedef struct rdwr_var {

        int readers_reading;

        int writer_writing;

        pthread_mutex_t mutex;

        pthread_cond_t lock_free;
} pthread_rdwr_t;

typedef void *pthread_rdwrattr_t;

#define pthread_rdwrattr_default NULL;

int pthread_rdwr_init_np(pthread_rdwr_t *rdwrp, 
pthread_rdwrattr_t  *attrp);

int pthread_rdwr_rlock_np(pthread_rdwr_t *rdwrp);

int pthread_rdwr_wlock_np(pthread_rdwr_t *rdwrp);

int pthread_rdwr_runlock_np(pthread_rdwr_t *rdwrp);

int pthread_rdwr_wunlock_np(pthread_rdwr_t *rdwrp);

Because all thread objects come with attribute objects (threads, mutexes, and so on), 
we've defined an attribute data type for our reader/writer locks and named it 
pthread_rdwrattr_t. We have no use for it now, but it may come in handy someday. When 
we pull it out of the closet, it'll act just like the other attribute objects—it'll be initialized in a 
create call and come with a default value of pthread_rdwrattr_default.

The next few pages show how we've implemented the five reader/writer lock functions 
the threads in Example 3-8 called.

The initialization function (pthread_rdwr_init_np), in Example 3-10, simply sets the 
members of the rdwr variable (a pthread_rdwr_t structure) to the values they should have 
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when the lock is not held. It initializes the mutex and condition variable to NULL. All other 
function calls lock the rdwr variable's mutex before proceeding to ensure that no other 
thread is reading or writing the variable's state at the same time.

Example 3-10: Initializing a Reader/Writer Lock (rdwr.c)

int pthread_rdwr_init_np(pthread_rdwr_t *rdwrp, 
pthread_rdwrattr_t  *attrp )

{

          rdwrp->readers_reading = 0;

          rdwrp->writer_writing = 0;

          pthread_mutex_init(&(rdwrp->mutex), NULL);

          pthread_cond_init(&(rdwrp->lock_free), NULL);

          return 0;
}

The get-read-lock function (pthread_rdwr_rlock_np)checks to see if another thread has a 
write lock on the rdwrp variable. If so, it calls the pthread_cond_wait function to wait on 
the lock_ free condition variable. When it is awakened and the rdwrp variable is no longer 
write-locked, pthread_rdwr_rlock_np increments the number of readers, releases the 
mutex, and returns. Note that the thread does not care about the actual value of the 
readers_reading member. If it were zero and the function incremented it to 1, the read 
lock is set and all subsequent writers must wait. If the readers_reading count were 
already greater than 1, the new reader would simply be added to the number of threads 
already reading. Example 3-11 illustrates how the function would look.

Example 3-11: Read Locking a Reader/Writer Lock (rdwr.c)

int pthread_rdwr_rlock_np(pthread_rdwr_t_np *rdwrp)

{

          pthread_mutex_lock(&(rdwrp->mutex));

          while(rdwrp->writer_writing) {

                  pthread_cond_wait(&(rdwrp->lock_free), &(rdwrp->mutex));

          }

          rdwrp->readers_reading++;

          pthread_mutex_unlock(&(rdwrp->mutex));

          return 0;
}

The get-write-lock function (pthread_rdwr_wlock_np)call, shown in Example 3-12, is 
similar to pthread_rdwr_rlock_np, except that it must check not only for another thread 
that has a write lock on the rdwrp variable, but also for any threads that have read locks. 
If either is TRUE, the pthread_rdwr_wlock_np function calls the pthread_cond_wait 
function to wait on the lock_free condition variable. When it is awakened with no readers 
or writers, pthread_rdwr_wlock_np sets the value of writer_writing to 1 and releases the 
mutex. Its caller is now—and will be—the only writer until it calls 
pthread_rdwr_wunlock_np to release the write lock.

Example 3-12: Write Locking a Reader/Writer Lock (rdwr.c)

int pthread_rdwr_wlock_np(pthread_rdwr_t_np *rdwrp)



{

          pthread_mutex_lock(&(rdwrp->mutex));

          while (rdwrp->writer_writing || rdwrp->readers_reading) {

                   pthread_cond_wait(&(rdwrp->lock_free), &(rdwrp->mutex));

          }

          rdwrp->writer_writing++;

          pthread_mutex_unlock(&(rdwrp->mutex));

          return 0;
}

The unlock-read-lock function (pthread_rdwr_runlock_np)reduces the count of readers for 
a lock, decrementing the value of the readers_reading member of the rdwrp variable. It 
checks the readers_reading count and, if it is zero, calls pthread_cond_signal to tell any 
threads waiting on the lock_free condition variable that the lock has been released and 
can now be locked. Like all calls that unlock resources, pthread_rdwr_runlock_np 
assumes that it's being used correctly—in this case, by a thread that has previously 
called pthread_rdwr_rlock_np.

Example 3-13: Read Unlocking a Reader/Writer Lock (rdwr.c)

int pthread_rdwr_runlock_np(pthread_rdwr_t_np *rdwrp) {

          pthread_mutex_lock(&(rdwrp->mutex));

          if (rdwrp->readers_reading == 0) {

                    pthread_mutex_unlock(&(rdwrp->mutex));

                    return -1;

          } else {

                    rdwrp->readers_reading--;

                    if (rdwrp->readers_reading == 0)

                              pthread_cond_signal(&(rdwrp->lock_free));

                    pthread_mutex_unlock(&(rdwrp->mutex));

                    return 0;

          }
}

The unlock-write-lock function (pthread_rdwr_wunlock_np) is similar to 
pthread_rdwr_runlock_np. Because only one writer holds the lock at a time, running this 
routine to release that lock should always result in a signal on the lock_freecondition as 
shown in Example 3-14.

Example 3-14: Write Unlocking a Reader/Writer Lock (rdwr.c)

int pthread_rdwr_wunlock_np(pthread_rdwr_t_np *rdwrp) {

          pthread_mutex_lock(&(rdwrp->mutex));

          if (rdwrp->writer_writing == 0) {

                    pthread_mutex_unlock(&(rdwrp->mutex));

                    return -1;



          } else {

                    rdwrp->writer_writing = 0;

                    pthread_cond_broadcast(&(rdwrp->lock_free));

                    pthread_mutex_unlock(&(rdwrp->mutex));

                    return 0;

          }
}

This implementation doesn't address an important issue in using reader/writer locks. If the 
lock is currently held by a reader and a writer is already waiting, any reader that comes 
along next will get the lock before the waiting writer. As long as one or more readers are 
waiting for the lock, regardless of when they made their requests or where in the waiting 
lists they're queued relative to any potential writers, the lock will continue to be held for 
reading. More robust implementations might suspend read lock requests that arrive after a 
write request is waiting and resume them when there are no more writers. The decision of 
how to handle incoming reads versus pending writes depends on the priorities of a given 
system.

Synchronization in the ATM Server

To wrap up our discussion of mutex and condition variables, we'll return to our ATM 
example. In our discussion of mutexes earlier in this chapter, we added a single mutex to 
the example to protect the bank account database. As we noted at the time, this isn't the 
best way to impose synchronization inasmuch as it allows only one thread to access the 
database at a time. 

In this section, we'll provide a more optimal solution to our ATM server's synchronization 
problems. We'll focus on the following three areas:

 • Synchronizing access to the bank account database

 • Limiting the number of concurrent worker threads

 • Controlling the shutdown of the server

We'll continue to use mutex variables to synchronize access to account data. Imposing a 
limit on the number of simultaneously active worker threads and controlling server 
shutdown are event-driven tasks; we'll use both mutexes and condition variables when 
implementing them.

We first encountered the ATM server example in Chapter 2. We designed it according to 
the classic boss/worker model for a multithreaded program. In our server, the boss 
creates a new thread for each request it receives (be it a deposit, withdrawal, or balance 
inquiry), and the worker thread processes the request independently of the boss or any 
other worker thread. We've done only half the job by creating threads and adding 
concurrency to the server. Now we'll finish up by adding robust and efficient 
synchronization mechanisms.

Synchronizing Access to Account Data

Our multithreaded ATM server must contend with many potential race conditions between 
worker threads accessing account data. We expect its deposit and withdraw operations to 
be atomic. Because of this, in Example 3-1 we added a single mutex to the server to 
protect the integrity of the accounts database.

Although simple, this approach has major performance limitations. Because every worker 
thread accesses the database and only one at a time can lock the mutex, only one thread 
can be executing each time an account balance changes. When the server is heavily 
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loaded, the new result is that it behaves very like a single-threaded program. Because 
different requests frequently access different accounts in the database, multiple requests 
could often execute at the same time without interfering with each other. In this light, the 
single-mutex approach is overly conservative.

A much more appropriate solution would be to use finer-grained locking on our data. 
Thus, we'll associate a mutex with each database account.

The cleanest way to proceed with this decision would be to redesign the ATM server's 
database module to include mutexes in the account structures themselves. For our 
purposes, let's assume that the database module is legacy code and we can't—or don't 
want to—modify it. Instead, we'll place the mutex in a separate structure outside the 
database module.

In the code fragment in Example 3-15, we'll implement our locking scheme. We'll globally 
define an array of mutex variables, called account_mutex, that has an element for each 
account. Because accounts have IDs between zero and MAX_NUM_ACCOUNTS, we'll 
use the account ID as an index into the mutex array. The server's main routine will 
initialize the mutex array by calling atm_server_init.

Example 3-15: Initializing per-account locks for the ATM database (atm_svr.c)

pthread_mutex_t account_mutex[MAX_NUM_ACCOUNTS];

.

.

.

void atm_server_init(int argc, char **argv)

{

  .

  .

  .

  for (i = 0; i < MAX_NUM_ACCOUNTS; i++)

    pthread_mutex_init(&account_mutex[i], NULL);

  .

  .

  .
}

Now, with this set of mutexes, a worker thread need lock only the mutex for the specific 
account it is accessing. It no longer needs to lock up the entire database; other threads 
can concurrently lock other mutexes and access other accounts, as shown in Example 3-
16.

Example 3-16: Using Per-Account Locks for the ATM Database (atm_svr.c)

void deposit(char *req_buf, char *resp_buf)

{

  int rtn;

  int temp, id, password, amount;

  account_t *accountp;

  /* Parse input string */



  sscanf(req_buf, "%d %d %d %d ", &temp, &id, &password, &amount);

  /* Check inputs */

  if ((id < 0) || (id >= MAX_NUM_ACCOUNTS)) {

    sprintf(resp_buf, "%d %s", TRANS_FAILURE, ERR_MSG_BAD_ACCOUNT);

    return;

  }

  pthread_mutex_lock(&account_mutex[id]);

  /* Retrieve account from database */

  if ((rtn = retrieve_account( id, &accountp)) < 0) {

    sprintf(resp_buf, "%d %s", TRANS_FAILURE, atm_err_tbl[-rtn]);

    .

    .

    .

    /* Code to update and access account balance. */

  }

  pthread_mutex_unlock(&account_mutex[id]);

}

The thread that runs our create_open routine to create a new account poses a special 
problem. Which mutex should it lock? The account doesn't exist yet, and the worker 
thread has no account ID to use!

Let's look at how the database layer of our ATM server actually creates a new account.

The database contains a list of potential accounts, each with a flag indicating whether or 
not it's in use. The new_account routine looks for the first account whose in-use flag is 
clear, sets the flag, and plugs in the information about the new account.

Here is fertile ground for a classic race condition. If two threads execute new_account 
concurrently, they could interleave their flag-reading and flag-setting. Both could return 
with the same account ID for two different customer accounts—not a good idea. To 
remove this hazard, we'll need an additional mutex.

The revision of the create_account routine in Example 3-17 shows the new mutex. Any 
thread wishing to add an account must hold this mutex (which we've globally defined) 
before proceeding.

Example 3-17: A Special Mutex for Opening New Accounts (atm_svr.c)

pthread_mutex_t create_account_mutex = PTHREAD_MUTEX_INITIALIZER;

.

.

.

void create_account(char *resp_buf)

{

  int id;



  int rtn;

  account_t *accountp;

  pthread_mutex_lock(&create_account_mutex);

  /* Get a new account */

  if ((rtn = new_account(&id, &accountp)) < 0) {

    sprintf(resp_buf, "%d %d %d %s", TRANS_FAILURE, -1, -1, 
atm_err_tbl[-rtn]);

    .

    .

    .

  }

  pthread_mutex_unlock(&create_account_mutex);
}

Note that deleting an account will work the same way. There is symmetry in creating an 
object and destroying an object: both require the same kind of protection.

Limiting the Number of Worker Threads

Our next synchronization task will be to limit the number of worker threads that can exist 
at a single time. There are some good reasons for doing so. On some operating systems, 
the kernel manages threads as separate contenders for the CPU, just as it manages 
processes. These systems must limit the number of threads each user may run at a time. 
Even if your system imposes no limit or an extremely high one, you reach a practical limit 
at the point you find that you're getting diminishing returns by creating more and more 

threads.* We'll examine this phenomenon further in our performance measurements in 
Chapter 6.

 
* Thread pools don't have this problem. The number of worker threads is determined 

and fixed at initialization. At this point, the worker threads are created, and they live for 
the duration of the program.

To limit the number of worker threads, we'll need to keep a count of them. Both boss and 
worker threads must access this counter. The boss thread increments it when it creates a 
new worker, and each worker decrements it when it exits. We'll synchronize access to the 
counter using a mutex.

In Example 3-18, we'll modify our ATM to add a worker_info structure. It'll include a 
counter (num_active), a mutex (num_active_mutex), and a condition variable 
(thread_exit_cv). The server's main routine will set the counter to zero and initialize the 
mutex and the condition variable.

Example 3-18: Limiting the Number of Worker Threads—Boss (atm_svr.c)

#define MAX_NUM_THREADS 10

.

.

.

typedef struct {

  int             num_active;
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  pthread_cond_t  thread_exit_cv;

  pthread_mutex_t mutex;
}thread_info_t;

thread_info_t worker_info;

.

.

extern int

main(argc, argv)

int argc;

char **argv;

{

  workorder_t *workorderp;

  pthread_t   *worker_threadp;

  int  conn;

  int  trans_id;

  atm_server_init(argc, argv);

  for(;;) {

    /*** Wait for a request ***/

    workorderp = (workorder_t *)malloc(sizeof(workorder_t));

    server_comm_get_request(&workorderp->conn, workorderp->req_buf);

    .

    .

    .

    /*** Have we exceeded our limit of active threads ? ***/

    pthread_mutex_lock(&worker_info.mutex);

    while (worker_info.num_active == MAX_NUM_THREADS) {

      pthread_cond_wait(&worker_info.thread_exit_cv,

                &worker_info.mutex);

    }

    worker_info.num_active++;

    pthread_mutex_unlock(&worker_info.mutex);

    /*** Spawn a thread to process this request ***/

    pthread_create(worker_threadp, ...

    .

    .

    .
}

  server_comm_shutdown();



  return 0;
}

Now, when the boss thread receives a request, it locks the worker_info mutex and 
checks the count of active workers before creating a new worker thread. If the number of 
active workers has not yet reached its limit, the boss increments the counter, unlocks the 
mutex, and continues. If the limit has been reached, the boss waits on the thread_exit_cv 
condition variable. When the condition is signaled the boss wakes up and rechecks the 
counter. If the count of active workers is now below the limit, the boss increments the 
counter, unlocks the mutex, and continues.

In Example 3-19, we'll adjust the process_request code our worker threads execute.

Example 3-19: Limiting the Number of Worker Threads—Workers (atm_svr.c)

void process_request(workorder_t *workorderp)

{

  char resp_buf[COMM_BUF_SIZE];

  int  trans_id;

  sscanf(workorderp->req_buf, "%d", &trans_id);

  switch(trans_id) {

      case OPEN_ACCT_TRANS:

           open_account(resp_buf);

           break;

           .

           .

           .

      }

  server_comm_send_response(workorderp->conn, resp_buf);

  free(workorderp);

  pthread_mutex_lock(&worker_info.mutex);

  worker_info.num_active--;

  if (worker_info.num_active == (MAX_NUM_THREADS - 1))

     pthread_cond_signal(&worker_info.thread_exit_cv);

  pthread_mutex_unlock(&worker_info.mutex);
}

Each worker thread must decrement the active worker count when it exits. It does this in 
the process_request routine. If it finds that it has decremented the counter to one less 
than the limit, it calls pthread_cond_signal to signal thethread_exit_cv condition variable 
to the waiting boss thread.

Synchronizing a Server Shutdown

In the current version of our ATM server, the boss thread runs our program's main 
routine. When the boss thread finishes main, the system terminates the process and all 



its threads, including those worker threads that are still processing active requests. We 
can't allow this to happen, so our final synchronization task will be to handle server 
shutdown more gracefully.

To make sure that all worker threads get to complete active tasks before the boss thread 
exits main, we'll reuse the active worker counter and the thread_exit_cv condition 
variable. When we used them to control the number of concurrent workers, the boss 
thread requested a signal when the active worker count was one less than the active 
worker limit. This time, the boss will request the signal when the active worker count 
reaches zero. (Of course, at some time, the boss will stop creating new threads so that 
this can eventually happen.) We'll modify the main routine in the boss thread, as shown in 
Example 3-20.

Example 3-20: Processing a Shutdown in the Boss Thread (atm_svr.c) 

extern int

main(argc, argv)

int argc;

char **argv;

{

  workorder_t *workorderp;

  pthread_t   *worker_threadp;

  int  conn;

  int  trans_id;

  atm_server_init(argc, argv);

  for(;;) {

    /*** Wait for a request ***/

    workorderp = (workorder_t *)malloc(sizeof(workorder_t));

    server_comm_get_request(&workorderp->conn, workorderp->req_buf);

    /*** Is it a shutdown request? ***/

    sscanf(workorderp->req_buf, "%d", &trans_id);

    if (trans_id == SHUTDOWN)

      char resp_buf[COMM_BUF_SIZE];

      pthread_mutex_lock(&worker_info.mutex);

      /* Wait for in-progress requests threads to finish */

      while (worker_info.num_active > 0) {

           pthread_cond_wait(&worker_info.thread_exit_cv, 
&worker_info.mutex);

      }

      pthread_mutex_unlock(&worker_info.mutex);

      /* process it here with main() thread */

      if (shutdown_req(workorderp->req_buf, resp_buf)) {

            server_comm_send_response(workorderp->conn, resp_buf);



            free(workorderp);

            break;

      }

    }

    /*** Have we exceeded our limit of active threads ? ***/

    pthread_mutex_lock(&worker_info.mutex);

    .

    .

    .

  }

  server_comm_shutdown();

  return 0;
}

When the boss thread receives a shutdown request, it locks the worker_info mutex and 
checks the active worker counter. If the active worker counter is zero, the boss unlocks 
the mutex, runs a cleanup function, and leaves the main loop, thus terminating the 
program. If the counter is greater than zero, the boss must wait for the thread_exit_cv 
condition variable to be signaled. When it's awakened, the boss rechecks the active 
worker count. If the final worker has exited, the count is zero, and the boss proceeds to 
shut down the program. If not, the boss must wait on the condition variable again. 

We'll modify our process_request routine in Example 3-21 so that each worker thread 
signals the thread_exit_cv condition variable before it exits, as well as when it 
decrements the worker count to one below the limit. 

Example 3-21: Processing a Shutdown in the Worker Thread (atm_svr.c)

process_request(...)

{

  .

  .

  .

  server_comm_send_response(workorderp->conn, resp_buf);

  free(workorderp);

  pthread_mutex_lock(&worker_info.mutex);

  worker_info.num_active--;

  pthread_cond_signal(&worker_info.thread_exit_cv);

  pthread_mutex_unlock(&worker_info.mutex);
}

This works fine but is a bit inefficient. Although the boss can proceed with program 
shutdown only when the last worker has exited, each exiting worker thread will wake it up 
(and it will go right back to sleep) until the last worker decrements the active worker counter 
to 0. If ten worker threads are active when their boss receives the shutdown request, the 
boss will wake up and reenter its wait nine times before it can finally do something useful! 
We could fix this. Instead of using the thread_exit_cv condition variable for shutdown 



handling, we could define a new condition variable to indicate when the active worker count 
reaches zero. As it exits, each worker would call pthread_cond_signal on our new condition 
variable if it notices that the count has become zero. If the boss thread is waiting on the 
condition, it will wake up and shut down the program.

Thread Pools

We designed our ATM server according to the boss/worker model for multithreaded 
programs. The boss creates worker threads on demand. When it receives a request, the 
boss creates a new worker thread to service that request and that request alone. When 
the worker completes this request, it exits. This might be ideal if we got a nickel for each 
thread we created, but it can slow our server in a couple of different ways: 

 
• We don't reuse idle threads to handle new requests. Rather, we create—and destroy

—a thread for each request we receive. Consequently, our server spends a lot of time 
in the Pthreads library.

 
• We've added to each request's processing time (a request's latency, to use a term 

from an engineering design spec) the time it takes to create a thread. No wonder our 
ATM customers keep tapping the Enter button and scowling at the camera!

We'll address these performance snags by redesigning our server to use a thread pool, a 
very common and very important design technique. Ina server that uses a thread pool, 
the boss thread creates a fixed number of worker threads up front. Like their boss, these 
worker threads survive for the duration of the program. When the boss receives a new 
request, it places it on a queue. Workers remove requests from the queue and process 
them. When a worker completes a request, it simply removes another one from the 
queue.

Figure 3-4 shows the components of a thread pool.

Figure 3-4: Thread pool components

The focal point of a thread pool is the request queue. Each request describes a unit of 
work. (This description might be the name of a routine; it might be just a flag.) Worker 
threads continually monitor the queue for new work requests; the boss thread places new 
requests on the queue.

A thread pool has some basic characteristics:

 • Number of worker threads. This limits the number of requests that can be in progress 
at the same time.

 • Request queue size. This limits the number of requests that can be waiting for service.

 

• Behavior when all workers are occupied and the request queue is full. Some 
requesters may want to block until their requests can be queued and only then resume 
execution. Others may prefer immediate notification that the pool is full. (For instance, 
network-based applications typically depend on a status value to avoid "dropping 
requests on the floor" when the server is overloaded.)

An ATM Server Example That Uses a Thread Pool

We'll start on a version of our ATM server that uses a thread pool by adding some 
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definitions to its header file, as shown in Example 3-22.

Example 3-22: Interface to a Thread Pool (tpool.h)

typedef struct tpool_work {

         void (*routine)();

         void *arg;

         struct tpool_work *next;
} tpool_work_t;

typedef struct tpool {

         /* pool characteristics */

         int num_threads;

         int max_queue_size;

         int do_not_block_when_full;

         /* pool state */

         pthread_t *threads;

         int cur_queue_size;

         tpool_work_t *queue_head;

         tpool_work_t *queue_tail;

         pthread_mutex_t queue_lock;

         pthread_cond_t  queue_not_empty;

         pthread_cond_t  queue_not_full;

         pthread_cond_t  queue_empty;

         int queue_closed;

         int shutdown;
} *tpool_t;

tpool_init(tpool_t *tpoolp,

           int num_worker_threads,

           int max_queue_size,

           int do_not_block_when_full);

tpool_add_work(tpool_t tpool,

           void *routine,

           void *arg);

tpool_destroy(tpool_t tpoolp, int finish);

We've defined three routines that manipulate a thread pool and two new data types. The 
routines are tpool_init, tpool_add_work,and tpool_destroy.

 • The tpool_work_t type represents a single request on the request queue. It includes a 
pointer to the routine that should be executed by the worker that selects the request, a 
pointer to this routine's single argument (if any), and a pointer to the next request on 
the queue. When an external thread (such as the boss) calls tpool_add_work, a new 



request is added to the tail of the queue. When a worker comes along looking for 
something to do, it removes a request from the queue's head.

 

• The tpool_t type is a pointer to a structure that records the characteristics and state of 
a single thread pool. It contains pointers to the head and tail of the request queue. 
Because the queue is a shared data structure that may be accessed by all worker 
threads (as well as any thread that exists outside of the pool and calls 
tpool_add_work), we'll need to add some synchronization. We'll do so by incorporating 
a mutex (queue_lock) and three condition variables (queue_not_empty, 
queue_not_full,and queue_empty) in the tpool_t structure.

 

• When a worker looks at the queue and finds it empty, it sleeps on the 
queue_not_empty condition variable. When a caller in tpool_add_work adds an item to 
an empty queue, it wakes up a sleeping worker by signaling the queue_not_empty 
condition. Depending on the do_not_block_when_full characteristic of the queue, a 
thread calling tpool_add_work can wait on the queue_not_full condition variable. When 
a worker makes room on the queue by removing a request, it signals the 
queue_not_full condition variable, thus letting the thread in tpool_add_work continue.

 

• Finally, the tpool_t structure defines shutdown and queue_closed flags. Our 
tpool_destroy routine uses these flags to shut down the thread pool. The 
queue_closed flag is used in combination with the queue_empty condition variable to 
support a delayed shutdown. The delayed shutdown allows the currently queued work 
to complete.

Initializing a thread pool

The tpool_init routine, shown in Example 3-23, initializes a thread pool. The routine sets 
the basic characteristics of the thread pool by copying into the tpoolt structure the values 
of its three input parameters (num_worker_threads,max_queue_size, and 
do_not_block_when_full). It also initializes the thread pool's state.

Example 3-23: The Thread Pool Initialization Routine (tpool.c)

void tpool_init(tpool_t   *tpoolp,

                int       num_worker_threads,

                int       max_queue_size,

                int       do_not_block_when_full)
{

   int i, rtn;

   tpool_t tpool;

   /* allocate a pool data structure */

   if ((tpool = (tpool_t )malloc(sizeof(struct tpool))) == NULL)

     perror("malloc"), exit(-1);

   /* initialize the fields */

   tpool->num_threads = num_worker_threads;

   tpool->max_queue_size = max_queue_size;

   tpool->do_not_block_when_full = do_not_block_when_full;

   if ((tpool->threads =

         (pthread_t *)malloc(sizeof(pthread_t)*num_worker_threads))

           == NULL)



     perror("malloc"), exit(-1);

   tpool->cur_queue_size = 0;

   tpool->queue_head = NULL;

   tpool->queue_tail = NULL;

   tpool->queue_closed = 0;

   tpool->shutdown = 0;

   if ((rtn = pthread_mutex_init(&(tpool->queue_lock), NULL)) != 0)

        fprintf(stderr,"pthread_mutex_init %s",strerror(rtn)), exit(-
1);

   if ((rtn = pthread_cond_init(&(tpool->queue_not_empty), NULL)) !
= 0)

        fprintf(stderr,"pthread_cond_init %s",strerror(rtn)), exit(-
1);

   if ((rtn = pthread_cond_init(&(tpool->queue_not_full), NULL)) != 
0)

        fprintf(stderr,"pthread_cond_init %s",strerror(rtn)), exit(-
1);

   if ((rtn = pthread_cond_init(&(tpool->queue_empty), NULL)) != 0)

        fprintf(stderr,"pthread_cond_init %s",strerror(rtn)), exit(-
1);

   /* create threads */

   for (i = 0; i != num_worker_threads; i++) {

        if ((rtn = pthread_create( &(tpool->threads[i]),

                        NULL,

                        tpool_thread,

                        (void *)tpool)) != 0)

           fprintf(stderr,"pthread_create %d",rtn), exit(-1);

   }

   *tpoolp = tpool;
}

Checking for work

In Example 3-23, the tpool_init routine creates all worker threads, starting each one in the 
tpool_thread routine. The tpool_thread routine, in Example 3-24, contains the logic each 
worker uses to check the queue for work and take appropriate action depending upon 
whether or not a request is available. It takes a single argument—a pointer to the tpool_t 
structure for the pool to which the thread belongs.

Example 3-24: The Thread Pool Thread (tpool.c)

void tpool_thread(tpool_t tpool)

{

   tpool_work_t *my_workp;



   for (;;) {

            pthread_mutex_lock(&(tpool->queue_lock));

            while ( (tpool->cur_queue_size == 0) && (!tpool->shutdown)) 
{

                      pthread_cond_wait(&(tpool->queue_not_empty),

                      &(tpool->queue_lock));

            }

            if (tpool->shutdown) {

                      pthread_mutex_unlock(&(tpool->queue_lock));

                      pthread_exit(NULL);

            }

            my_workp = tpool->queue_head;

            tpool->cur_queue_size--;

            if (tpool->cur_queue_size == 0)

                      tpool->queue_head = tpool->queue_tail = NULL;

            else

                      tpool->queue->head = my_workp->next;

            if ((!tpool->do_not_block_when_full) &&

              (tpool->cur_queue_size == (tpool->max_queue_size - 1)))

                      pthread_cond_broadcast(&(tpool->queue_not_full));

            if (tpool->cur_queue_size == 0)

                      pthread_cond_signal(&(tpool->queue_empty));

            pthread_mutex_unlock(&(tpool->queue_lock));

            (*(my_workp->routine))(my_workp->arg);

            free(my_workp);

   }
}

The body of the routine is a loop in which the worker checks the request queue. If it's 
empty, the worker sleeps on the queue_not_empty condition variable. It can be 
awakened by either a shutdown request from tpool_destroy or a work item placed on its 
request queue. When awakened by a shutdown request, the worker exits. When 
awakened by a work request, however, it rechecks the queue, removes the request from 
the queue's head, and executes the routine specified in the request (using any 
associated argument). If the worker finds that the queue was full before it removed the 
node and knows that threads may be blocked waiting to add to the queue (because the 
pool's do_not_block_when_full characteristic is not set), it signals the queue_not_full  
condition. Likewise, if this thread empties the queue, it signals queue_empty to allow a 
delayed shutdown to proceed.

Adding work

In Example 3-25, the tpool_add_work routine adds work requests to the queue.



Example 3-25: Adding Work to a Thread Pool (tpool.c)

int tpool_add_work(tpool_t tpool, void *routine, void *arg)

{

        tpool_work_t *workp;

        pthread_mutex_lock(&tpool->queue_lock);

        if ((tpool->cur_queue_size == tpool->max_queue_size) &&

                                  tpool->do_not_block_when_full) {

                  pthread_mutex_unlock(&tpool->queue_lock);

                  return -1;

                 }

        while ((tpool->cur_queue_size == tpool->max_queue_size) &&

                                  (!(tpool->shutdown || tpool->queue_closed))) {

                  pthread_cond_wait(&tpool->queue_not_full, &tpool-
>queue_lock);

                 }

        if (tpool->shutdown || tpool->queue_closed) {

                  pthread_mutex_unlock(&tpool->queue_lock);

                  return -1;

        }

        /* allocate work structure */

        workp = (tpool_work_t *)malloc(sizeof(tpool_work_t));

        workp->routine = routine;

        workp->arg = arg;

        workp->next = NULL;

        if (tpool->cur_queue_size == 0) {

                  tpool->queue_tail = tpool->queue_head = workp;

                  pthread_cond_broadcast(&tpool->queue_not_empty);

        } else {

                  (tpool->queue_tail)->next = workp;

                  tpool->queue_tail = workp;

        }

        tpool->cur_queue_size++;

        pthread_mutex_unlock(&tpool->queue_lock);

        return 1;
}

The tpool_add_work routine checks the do_not_block_when_full flag and examines the 
current size of the request queue. If the queue is full, the routine either returns an error to 
its caller or suspends itself on the queue_not_full condition, depending on the value of 



the pool's do_not_block_when_full flag. In the latter case, the tpool_add_work routine 
resumes when the condition is signaled; it queues the request and returns to its caller.

Deleting a thread pool

The final routine in our thread pool interface, tpool_destroy (Example 3-26),deallocates a 
thread pool. It sets the shutdownflag in the tpool _t structure to indicate to workers (and 
threads calling tpool_add_work) that the pool is being deactivated. Worker threads exit 
when they find this flag set; the tpool_add_work routine returns a -1 to its caller, as shown 
in Example 3-26.

Example 3-26: Deleting a Thread Pool (tpool.c)

int tpool_destroy(tpool_t    tpool,

                  int        finish)
{

   int          i,rtn;

   tpool_work_t *cur_nodep;

   if ((rtn = pthread_mutex_lock(&(tpool->queue_lock))) != 0)

         fprintf(stderr,"pthread_mutex_lock %d",rtn), exit(-1);

   /* Is a shutdown already in progress? */

   if (tpool->queue_closed || tpool->shutdown) {

      if ((rtn = pthread_mutex_unlock(&(tpool->queue_lock))) != 0)

         fprintf(stderr,"pthread_mutex_unlock %d",rtn), exit(-1);

      return 0;

   }

   tpool->queue_closed = 1;

   /* If the finish flag is set, wait for workers to drain queue */

   if (finish == 1) {

     while (tpool->cur_queue_size != 0) {

        if ((rtn = pthread_cond_wait(&(tpool->queue_empty),

                          &(tpool->queue_lock))) != 0)

         fprintf(stderr,"pthread_cond_wait %d",rtn), exit(-1);

     }

   }

   tpool->shutdown = 1;

   if ((rtn = pthread_mutex_unlock(&(tpool->queue_lock))) != 0)

         fprintf(stderr,"pthread_mutex_unlock %d",rtn), exit(-1);

   /* Wake up any workers so they recheck shutdown flag */

   if ((rtn = pthread_cond_broadcast(&(tpool->queue_not_empty))) != 
0)



         fprintf(stderr,"pthread_cond_broadcast %d",rtn), exit(-1);

   if ((rtn = pthread_cond_broadcast(&(tpool->queue_not_full))) != 
0)

         fprintf(stderr,"pthread_cond_broadcast %d",rtn), exit(-1);

   /* Wait for workers to exit */

   for(i=0; i < tpool->num_threads; i++) {

        if ((rtn = pthread_join(tpool->threads[i],NULL)) != 0)

            fprintf(stderr,"pthread_join %d",rtn), exit(-1);

   }

   /* Now free pool structures */

   free(tpool->threads);

   while(tpool->queue_head != NULL) {

     cur_nodep = tpool->queue_head->next;

     tpool->queue_head = tpool->queue_head->next;

     free(cur_nodep);

   }

   free(tpool);

   return 0;
}

The tpool_destroy routine ensures that all threads are awake to see the shutdown flag by 
signaling both the queue_not_empty and queue_not_full conditions. Even still, some 
threads may be busy completing their current requests; it may still be some time before 
they learn that a shutdown has begun. To avoid interfering with in-progress requests, 
tpool_destroy waits for all worker threads to exit by calling pthread_join for each thread. 
When all workers have departed, tpool_destroy frees the pool's data structures.

The current edition of our tpool_destroy routine is not without its surprises. When it sets 
the shutdown flag, only those requests that are currently in progress are completed. Any 
requests that are still in the request queue are lost when the thread pool is deallocated. 
Instead, it could disallow additions to the queue and wait for the queue to empty before 
deactivating the thread pool. It could also speed performance by canceling workers rather 
than waiting for them to check the shutdown flag.

We'll leave the particulars of these enhancements to your imagination. In the meantime, 
we must move on to our next chapter, Managing Pthreads, in which we'll focus a bit more 
on some of the Pthreads features we've already introduced (such as attribute objects and 
keys) and add cancellation and scheduling capabilities to our multithreaded ATM server.

Adapting the atm_server_init and main routines

In Example 3-27, we'll make some quick changes to our atm_server_init so that it:

 • Uses a new global thread pool structure (tpool_t) instead of our thread information 
structure (thread_info_t).

 • Initializes the thread pool by supplying the maximum number of threads to tpool_init.

Example 3-27: Using the Thread Pool from the atm_server_init Routine 
(atm_svr_tpool.c)
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#define ATM_MAX_THREADS 10

#define ATM_MAX_QUEUE 10

tpool_t atm_thread_pool;

void atm_server_init(int argc, char **argv)

{

  /* Process input arguments */

  .

  .

  .

  tpool_init(&atm_thread_pool, ATM_MAX_THREADS, ATM_MAX_QUEUE, 0);

  /*  Initialize database and communications */

  .

  .

  .
}

Now, we simply need to change the main routine of our ATM server so that it:

 • Calls tpool_add_work for each new request instead of calling pthread_create directly 
to create a new thread.

 • Calls tpool_destroy to synchronize shutdown of the threads and to release resources. 
There's no need for the thread exit notification we used in the previous examples.

Example 3-28 implements these changes.



Example 3-28: Using the Thread Pool from the main Routine (atm_svr_tpool.c)

extern int

main(int argc, char **argv)

{

  workorder_t *workorderp;

  int  trans_id;

  void *status;

  atm_server_init(argc, argv);

  for(;;) {

    /*** Wait for a request ***/

    server_comm_get_request(&workorderp->conn, workorderp->req_buf);

    /*** Is it a shutdown request? ***/

    sscanf(workorderp->req_buf, "%d", &trans_id);

    if (trans_id == SHUTDOWN) {

      char resp_buf[COMM_BUF_SIZE];

      tpool_destroy(atm_thread_pool, 1);

      /* process it here with main() thread */

      if (shutdown_req(workorderp->req_buf, resp_buf)) {

        server_comm_send_response(workorderp->conn, resp_buf);

        free(workorderp);

        break;

      }

    }

    /*** Use a thread to process this request ***/

   

  }

  server_comm_shutdown();

  return 0;
}



Chapter 4: Managing Pthreads 

Overview

In previous chapters, we explored the advantages of multithreaded programs, examined 
various program design models, and experimented with simple and more complex 
synchronization mechanisms. Our ATM program is now a full-fledged, well-synchronized 
multithreaded server, designed after the boss/worker model and optimized to use a 
thread pool. On our way, we introduced many other Pthreads features in passing. It's now 
time to examine these features a little more closely and see how we can use them to 
enhance our ATM server. 

Our agenda includes: 

Thread attributes 

A thread attribute allows you to create a thread in the detached state. On some 
systems you can also specify attributes that control a thread's stack configuration and 
its scheduling behavior. 

The pthread_once mechanism

By using the pthread_once mechanism, you can ensure that an action is performed 
once—and only once— regardless of how many times the threads in your program 
attempt to perform it. This function is useful, for instance, when more than one thread 
shares a file or a procedure and you don't know which thread will execute first. 

Keys

Threads use keys to maintain private copies of a shared data item. A single, globally 
defined key points to a different memory location, depending upon which thread is 
executing, thus allowing the thread to access its own copy of the data. Use a key, for 
example, when your threads make deeply nested procedure calls and you can't easily 
pass thread-specific information in procedure arguments. 

Cancellation

Cancellation allows you to specify the conditions under which a thread allows itself to 
be terminated. You can also define a stack on which the terminating thread performs 
last-second cleanup before exiting. Use cancellation, for example, when threads are 
searching in parallel for an item in a database. The thread that started the search can 
terminate the other threads when one of the threads locates the item. 

Scheduling

You use the Pthreads scheduling features to set up a policy that determines which 
thread the system first selects to run when CPU cycles become available, and how 
long each thread can run once it is given the CPU. Scheduling is often necessary in 
real-time applications in which some threads have more important work than others. 
For example, a thread that controls equipment on a factory floor could be given priority 
over other threads doing background processing. The Pthreads standard defines 
scheduling as an optional feature. 

Mutex scheduling attributes

By using mutex attributes, you can avoid the phenomenon known as priority inversion. 
Priority inversion occurs when multiple threads of various scheduling priorities all 
compete for a common mutex. A higher priority thread may find that a lower priority 
thread holds a mutex it needs and may stop dead in its tracks until the mutex is 
released. 

To some extent you might consider these features to be just bells and whistles. Each has a 
specialized purpose that may or may not apply to your program. Nevertheless, the 



situations in which they are useful are common enough that it's good that they' re available 
to us in the portable Pthreads interface. We'll now look at some specific ways in which they 
can be used. 

Setting Thread Attributes 

Threads have certain properties, called attributes, that you can request through the 
Pthreads library. The Pthreads standard defines attributes that determine the following 
thread characteristics: 

 • Whether the thread is detached or joinable.  All Pthreads implementations provide this 
attribute. 

 • Size of the thread's private stack. An implementation provides this attribute if the 
_POSIX_THREAD_ATTR_STACKSIZE compile-time constant is defined. 

 • Location of the thread's stack. An implementation provides this attribute if the 
_POSIX_THREAD_ATTR_STACKADDR compile-time constant is defined. 

 
• A thread's scheduling policy (and other attributes that determine how it may be 

scheduled). An implementation provides these attributes if the 
_POSIX_THREAD_ATTR_PRIORITY_SCHEDULING compile-time constant is 
defined. 

Vendors often define custom attributes as a way of including extensions to the standard 
in their implementations. 

As we've mentioned before, a thread is created with a set of default attributes. Because 
the threads we've been using in our examples thus far are threads of the gray flannel 
variety, we've accepted the defaults by passing NULL as an attribute parameter to the 
pthread_create call. To set a thread's attributes to something other than the default, we'd 
perform the following steps: 

 1. Define an attribute object of type pthread_attr_t. 

 2. Call pthread_attr_init to declare and initialize the attribute object. 

 3. Make calls to specific Pthreads functions to set individual attributes in the object. 

 4. Specify the fully initialized attribute object to the pthread_create call that creates the 
thread. 

We'll walk through some specific examples of setting a thread's stack size, stack location, 
and detached state in the next few sections. We'll investigate the thread-scheduling 
attributes later in this chapter. 

Setting a Thread's Stack Size 

A thread uses its private stack to store local variables for each routine it has called (but 
not yet exited) up to its current point of execution.(It also leaves various pieces of 
procedure context information on the stack, like bread crumbs, so that it can find its way 
back to the previously executing routine when it exits the current one.) For instance, 
consider a worker thread in our ATM server. It calls process_request, does some 
processing, and pushes some of process_request's local variables on the stack. It then 
calls deposit, pushing some information that allows it to return to the next instruction in 
process_request when it exits deposit. Now, it pushes deposit's local variables on its 
stack. Suppose it then calls retrieve_account, and then some number-crunching routine, 
and then, and then....We'd certainly like our thread to have ample stack space for all 
routines in its current call chain. 

Two factors can affect whether a thread will have enough room on its stack: 

 • The size of the local variables to each routine 



 • The number of routines that may be in its call chain at any one time 

If our worker thread begins to call routines that locally declare kilobyte-sized buffers, we 
might have a problem. If it makes nested procedure calls to some pretty hefty libraries 
(like a Kerberos security library or an X graphics library), we'd better start stretching its 
stack. 

Even nonthreaded processes run out of stack space from time to time. However, an 
individual thread's stack is much smaller than that devoted to an entire process. The 
space for the stacks of all threads in a process is carved out of the memory previously 
allocated for the stack of the process as a whole. As shown in Figure 4-1, a process stack 
normally starts in high memory and works its way down in memory without anything in its 
way until it reaches 0. For a process with individual threads, one thread's stack is 
bounded by the start of the next thread's stack, even if the next thread isn't using all of its 
stack space. 

Figure 4-1: Process and thread stacks 

To set a thread's stack size, we call pthread_attr_init to declare and initialize a custom 
thread attribute object (pthread_attr_t) in Example 4-1. 

Example 4-1: Declaring a Custom Attribute (mattr.c) 

#define MIN_REQ_SSIZE 81920 

size_t default_stack_size; 

pthread_attr_t stack_size_custom_attr; 

   . 

   . 

   . 

   pthread_attr_init(&stack_size_custom_attr); 

   . 

   . 

   . 

Now that we've created and initialized our attribute object, we can set and check the 
value of any attribute in it, using the appropriate Pthreads function. In Example 4-2, we'll 
read and adjust the thread's stack size by calling pthread_attr_getstacksize and 
pthread_attr_setstacksize. The minimum stack size on the platform is always stored in 
PTHREAD_STACK_MIN and can be used to determine at run time if the default stack will 
be big enough. 

Example 4-2: Checking and Setting Stack Size (mattr.c) 
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#ifdef _POSIX_THREAD_ATTR_STACKSIZE 

pthread_attr_getstacksize(&stack_size_custom_attr, 

               &default_stack_size); 

if (default_stack_size < MIN_REQ_SSIZE) {; 

      . 

      . 

      . 

      pthread_attr_setstacksize(&stack_size_custom_attr, 

                   (size_t)MIN_REQ_SSIZE); 
} 

#endif 

In Example 4-3, we'll create a thread that has the desired attribute (a MIN_REQ_SSIZE 
stack) by specifying the attribute object in a pthread_create call. 

Example 4-3: Using an Attribute Object in pthread_create (mattr.c) 

pthread_create(&threads[num_threads], 

                &stack_size_custom_attr, 

                (void *) mult_worker, 

                (void *) p); 

Take special notice that fiddling with a thread's stack is inherently nonportable. Stack size 
and location are platform-dependent; the bytes and bounds of your threads' stacks on 
Platform A may not quite match those of the stacks on Platform B. 

Setting a Thread's Detached State 

Detaching from a thread informs the Pthreads library that no other thread will use the 
pthread_join mechanism to synchronize with the thread's exiting. Because the library 
doesn't preserve the exit status of a detached thread, it can operate more efficiently and 
make the library resources that were associated with a thread available for reuse more 
quickly. If no other thread cares when a particular thread in your program exits, consider 
detaching that thread. 

Back in Chapter 2,   Designing Threaded Programs  , we discussed how to use the 
pthread_detach function to dynamically place a joinable thread into a detached state. In 
Example 4-4, we'll show you how to do it with an attribute object at thread creation. 

Example 4-4: Setting the Detached State in an Attribute Object (mattr.c) 

pthread_attr_t detached_attr; 

. 

. 

. 

       pthread_attr_setdetachedstate(&detached_attr, 
PTHREAD_CREATE_DETACHED); 

       . 

       . 

       . 
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       pthread_create(&thread, &detached_attr, ...); 

       . 

       . 

       . 

The pthread_attr_setdetachedstate function sets the detached state in an attribute object 
to either the PTHREAD_CREATE_DETACHED constant (detached)or the 
PTHREAD_CREATE_ JOINABLE constant (joinable). The 
pthread_attr_getdetachedstate function returns the current detached setting of a thread 
attribute object. 

Setting Multiple Attributes 

You can set multiple individual attributes within a single attribute object. In the next 
example, Example 4-5, we'll use calls to the pthread_attr_setstacksize function and the 
pthread_attr_setdetachedstate function to set a thread's stack size and detached state in 
the same object. 

Example 4-5: Setting Multiple Attributes in an Attribute Object (mattr.c) 

pthread_attr_t custom_attr; 

       . 

       pthread_attr_init(&custom_attr); 

       . 

       pthread_attr_setstacksize(&custom_attr, MIN_REQ_SSIZE); 

       pthread_attr_setdetachedstate(&custom_attr, 
PTHREAD_CREATE_DETACHED); 

       . 

       . 

       pthread_create(&thread, &custom_attr, ...); 

       . 

       . 

       . 

Destroying a Thread Attribute Object 

Throughout this section, we've declared and initialized thread attribute objects using the 
pthread_attr_init call. When we're finished using a thread attribute object, we can call 
pthread_attr_destroy to destroy it. Note that existing threads that were created using this 
object are not affected when the object is destroyed. 



The pthread_once Mechanism 

When you create many threads that cooperate to accomplish a single task, you must 
sometimes perform a single operation up front so that all of these threads can proceed. 
For instance, you may need to open a file or initialize a mutex. Up to now, we've had our 
boss thread handle these chores, but that's not always feasible. 

The pthread_once mechanism is the tool of choice for these situations. It, like mutexes 
and condition variables, is a synchronization tool, but its specialty is handling 
synchronization among threads at initialization time. If the pthread_once function didn't 
exist, we'd have to initialize all data, mutexes, and condition variables before we could 
create any thread that uses them. After our program has started and spawned its first 
thread, it would be very difficult for it to create new resources that require protection 
should some asynchronous event require that it do so. 

If we're writing a library that can be called by a multithreaded application, this becomes 
more than just an annoyance. Perhaps we don't want (or can't have) a single function for 
our users to call that allows our library to initialize itself prior to its general use. Neither 
can we ask each of our library functions to first call an initialization routine. Remember, 
our library's multithreaded. How do we know whether or not another thread might be 
trying to initialize the same objects simultaneously? 

Example: The ATM Server's Communication Module 

Let's walk through an example that will help us illustrate the point. We'll use the 
communication module from our ATM server—that part of the server that receives 
requests from clients and unpacks them. The interface to the communication module is 
as shown in Example 4-6. 

Example 4-6: Interface to the ATM Server Communication Module (atm_com_svr.c) 

void server_comm_get_request(int *, char *); 

void server_comm_send_response(int, char *); 

void server_comm_close_conn(int); 

void server_comm_shutdown(void); 

Let's pretend that this is legacy code that we've been asked to incorporate into a 
multithreaded program. We'll also pretend that it contains an initialization routine and that 
we don't want to completely rewrite it to eliminate the routine. 

The server_comm_get_request routine shown in Example 4-7 is typical of the interfaces 
in this module. 

Example 4-7: Original server_comm_get_request Routine (atm_com_svr.c) 

void server_comm_get_request(int *conn, char *req_buf) 

{; 

  int i, nr, not_done = 1; 

  fd_set read_selects; 

  if (!srv_comm_inited) {; 

    server_comm_init(); 

    srv_comm_inited = TRUE; 

  } 



  /* loop, processing new connection requests until a client 

     buffer is read in on an existing connection. */ 

  while (not_done) {; 

  . 

  . 

  . 
} 

If the server_comm_inited flag is FALSE, theserver_comm_get_request routine calls an 
initialization routine (server_comm_init) and sets the flag to TRUE. If we allow multiple 
threads to call server_comm_init concurrently, we introduce a race condition on the 
srv_comm_inited flag and on all of server_comm_init's global variables and initializations. 
Consider: threads A and B enter the routine at the same time. Thread A checks the value 
of srv_comm_inited and finds FALSE. Thread B checks the value and also finds it 
FALSE. Then they both go forward and call srv_comm_init. 

We'll consider two viable solutions: 

 • Adding a mutex to protect the srv_comm_inited flag and server_comm_init routine. 
Using PTHREAD_MUTEX_INITIALIZER, we'll statically initialize this mutex. 

 • Designating that the entire routine needs special synchronization handling by calling 
the pthread_once function. 

Using a statically initialized mutex 

If we choose to protect the srv_comm_inited flag and server_comm_init routine by a 
statically initialized mutex, our code would look like that in Example 4-8. 

Example 4-8: The ATM with Static Initialization (atm_com_svr_init.c) 

pthread_mutex_t init_mutex = PTHREAD_MUTEX_INITIALIZER; 

void server_comm_get_request(int *conn, char *req_buf) 

{; 

  int i, nr, not_done = 1; 

  fd_set read_selects; 

  pthread_mutex_lock(&init_mutex) 

  if (!srv_comm_inited) {; 

    server_comm_init(); 

    srv_comm_inited = TRUE; 

  } 

  pthread_mutex_unlock(&init_mutex); 

  /* loop, processing new connection requests until a client 

     buffer is read in on an existing connection. */ 

  while (not_done) {; 

    . 



    . 

    . 
} 

Using a statically defined mutex to protect the initialization flag and routine works in this 
simple case but has its drawbacks as a module grows more complex: 

 
• When the initialization routine introduces dynamically allocated mutexes, it must 

initialize them dynamically. This is not an insurmountable problem; as long as at least 
one mutex is statically defined, it can control the initialization of all the other mutexes. 

 

• The mutex protecting the initialization flag routine will continue to act as a 
synchronization point long after it is needed. Each time any thread enters the library, it 
will lock and unlock the mutex to read the flag and learn the old news: initialization is 
complete. (Using the pthread_oncefunction may also involve this type of overhead. 
However, because the purpose of the pthread_once call is known to the library, a 
clever library could optimize its use after initialization is complete.) 

 
• You cannot define custom attributes for a statically initialized mutex. You can work 

around this problem, too; as long as at least one mutex is statically defined, it can 
control the initialization of all other mutexes that have custom attributes. 

Using the pthread_once mechanism

If we use the server_comm_init routine only through the pthread_once mechanism, we 
can make the following synchronization guarantees:

 • No matter how many times it is invoked by one or more threads, the routine will be 
executed only once by its first caller.

 • No caller will exit from the <emphasis>pthread_once</emphasis> mechanism until the 
routine's first caller has returned.

To use the pthread_once mechanism, you must declare a variable known as a once 
block (pthread_once_t),and you must statically initialize it to the value 
PTHREAD_ONCE_INIT. The Pthreads library uses a once block to maintain the state of 
pthread_once synchronization for a particular routine. Note that we are statically 
initializing the once block to the PTHREAD_ONCE_INIT value. If the Pthreads standard 
allowed us to dynamically initialize it (that is, if the library defined a pthread_once_init  
call), we'd run into a race condition if multiple threads tried to initialize a given routine's 
once block at the same time. 

In our ATM server, we'll call the once block srv_comm_inited_once and declare and 
initialize it globally: 

pthread_once_t      srv_comm_inited_once = PTHREAD_ONCE_INIT; 

Now that we've declared a once block, the server_comm_get_request routine no longer 
has to test a flag to determine whether to proceed with initialization. Instead, as shown in 
Example 4-9, it calls pthread_once, specifying the once block and the routine we've 
associated with it—server_comm_init. 

Example 4-9: Using a Once Block in the ATM (atm_com_svr_once.c) 

void server_comm_get_request(int *conn, char *req_buf) 

{; 

  int i, nr, not_done = 1; 

  fd_set read_selects; 

  pthread_once(&srv_comm_inited_once, server_comm_init); 



  /* loop, processing new connection requests until a client 

     buffer is read in on an existing connection. */ 

  while (not_done) {; 

    . 

    . 

    . 
} 

We'll change the other interface routines in our ATM server's communication module in 
the same manner. Any number of threads can call into the module. Each interface call will 
initially involve a call to pthread_once, but only the first thread will actually enter 
server_comm_init and execute our module's initialization routine. 

You can declare multiple once blocks in a program, associating each with a different 
routine. Be careful, though. Once you associate a routine with the pthread_once 
mechanism, you must always call it through a pthread_once call, using the same once 
block. You cannot call the routine directly elsewhere in your program without subverting 
the synchronization the pthread_once mechanism is meant to provide 

Notice that the pthread_once interface does not allow you to pass arguments to the routine 
that is protected by the once block. If you're trying to fit a predefined routine with arguments 
into the pthread_once mechanism, you'll have to fiddle a bit with global variables, wrapper 
routines, or environment variables to get it to work properly. 

Keys: Using Thread-Specific Data

As a thread calls and returns from one routine or another, the local data on its stack 
comes and goes. To maintain long-lived data associated with a thread, we normally have 
two options:

 • Pass the data as an argument to each call the thread makes.

 • Store the data in a global variable associated with the thread.

These are perfectly good ways of preserving some types of data for the lifetime of a 
thread. However, in some instances, neither solution would work. Consider what might 
happen if you're rewriting a library of related routines to support multithreading. Most 
likely you don't have the option of redefining the library's call arguments. Because you 
don't necessarily know at compile time how many threads will be making library calls, it's 
very difficult to define an adequate number of global variables with the right amount of 
storage. Fortunately, the Pthreads standard provides a clever way of maintaining thread-
specific data in such cases.

Pthreads bases its implementation of thread-specific data on the concept of a key—a 
kind of pointer that associates data with a specific thread. Although all threads refer to the 
same key, each thread associates the key with different data. This magic is accomplished 
by the threads library, which stores the pointer to data on a per-thread basis and keeps 
track of which item of data is associated with each thread. 

Suppose you were writing a communication module that allowed you to open a 
connection to another host name and read and write across it. A single-threaded version 
might look like Example 4-10. 

Example 4-10: A Communications Module (specific.c) 

static int cur_conn; 



int open_connection(char *host) 

{; 

       . 

       . 

       . 

       cur_conn = .... 

       . 

       . 

       . 
} 

int send_data(char *data) 

{; 

       . 

       . 

       . 

       write(cur_conn,...) 

       . 

       . 

       . 
} 

int receive_data(char **data) 

{; 

       . 

       . 

       . 

       read(cur_conn,...) 

       . 

       . 

       . 
} 

We've made the static variable cur_conn internal to this module. It stores the connection 
identifier between calls to send and receive data. When we add multiple threads to this 
module, we'll probably want them to communicate concurrently with the same or different 
hosts. As written, though, this module would have a rather surprising side effect for the 
thread that first opens a connection and starts to use it. Each subsequent 
open_connection call will reset the stored connection (cur_conn) in all threads! 

If we couldn't use thread-specific data with keys, we'd still have a few ways of fixing this 
problem: 

 • Add the connection identifier as an output argument to the open_connection call and 
as an input argument to the receive_data and send_data calls. 

Although this would certainly work, it's a rather awkward solution for a couple of 



reasons. First, it forces each routine that currently uses the module to change as well. 
Any routine that makes calls to the module must store the connection identifier it 
receives from the open_connection call so it can use it in subsequent receive_data 
and send_data calls. Second, the connection variable is just an arbitrary value with 
meaning only within the module. As such, it should naturally be hidden within the 
module. If we did not force its use as a parameter to our module's interfaces, the caller 
would otherwise never reference it. It shouldn't even need to know about it. 

 • Add an array (cur_conn) that contains entries for multiple connections. 

This alone would not work, because the current version of our module has no way of 
returning to the caller of open_connection the index of the array entry at which it stored 
the connection identifier. We could proceed to add an argument to 
open_connection,receive_data, and send_data to pass back and forth an index into 
the cur_connarray, but that leads to the same disadvantages as our first solution. 
Furthermore, we don't know how much space to allocate for the array because the 
number of threads making connections can vary during the run of the program. 

Now we can see more clearly the advantages of using thread-specific data. This way, our 
module can use a key to point to the connection identifier. We need no new arguments in 
the calls to the module. Each time a thread calls one of the routines in our module, our 
code uses the key to obtain its own particular connection identifier value. 

Certain applications also use thread-specific data with keys to associate special 
properties with a thread in one routine and then retrieve them in another. Some examples 
include: 

 
• A resource management module (such as a memory manager or a file manager) could 

use a key to point to a record of the resources that have been allocated for a given 
thread. When the thread makes a call to allocate more resources, the module uses the 
key to retrieve the thread's record and process its request. 

 • A performance statistics module for threads could use a key to point to a location 
where it saves the starting time for a calling thread. 

 • A debugging module that maintains mutex statistics could use a key to point to a per-
thread count of mutex locks and unlocks. 

 

• A thread-specific exception-handling module, when servicing a try call (which starts 
execution of the normal code path), could use a key to point to a location to which to 
jump in case the thread encounters an exception. The occurrence of an exception 
triggers a catch call to the module. The module checks the key to determine where to 
unwind the thread's execution. 

 
• A random number generation module could use a key to point to a location where it 

maintains a unique seed value and number stream for each thread that calls it to 
obtain random numbers. 

These examples share some common characteristics:

 • They are libraries with internal state.

 • They don't require their callers to provide context in interface arguments. They don't 
burden the caller with maintaining this type of context in the global environment.

 • In a nonthreaded environment, the data to which the key refers would normally be 
stored as static data.

Note that thread-specific data is not a distinct data section like global, heap, and stack. It 
offers no special system protection or performance guarantees; it's as private or shared 
as other data in the same data section. There are no special advantages to using thread-
specific data if you aren't writing a library and if you know exactly how many threads will 
be in your program at a given time. If this is the case, just allocate a global array with an 
element for each known thread and store each thread's data in a separate element.



Initializing a Key: pthread_key_create 

Let's rewrite our ATM server's communication module so that it uses a key to point to the 
connection information for each thread. When a thread calls the open_connection 
routine,the routine will store the thread-specific connection identifier using a key. We'll 
initialize the key, as shown in Example 4-11. 

Example 4-11: A Communication Module Using Keys (specific.c) 

#include <pthread.h> 

static pthread_key_t conn_key; 

int init_comm(void) 

{ 

       . 

       . 

       . 

       pthread_key_create(&conn_key, (void *)free_conn); 

       . 

       . 

       . 
} 

void free_conn(int *connp) 

{; 

       free(connp); 
} 

We've defined conn_key, the key we're using to point to the thread-specific connection 
identifier, as a static variable within the module. We initialize it by calling 
pthread_key_create in the init_comm routine. The pthread_key_create call takes two 
arguments: the key and a destructor routine. The library uses the destructor routine to 
clean up the data stored in the key when a thread stores a new value in the key or exits. 
We'll discuss destructor routines some more in a moment. 

When you're done with a key, call pthread_key_delete to allow the library to recover 
resources associated with the key itself. 

Although the pthread_key_create function initializes a key that threads can use, it neither 
allocates memory for the data to be associated with the key, nor associates the data to 
the key. Next we'll show you how to handle the actual data. 

Associating Data with a Key 

The chief trick to using keys is that you must never assign a value directly to a key, nor 
can you use a key itself in an expression. You must always use pthread_setspecific and 
pthread_getspecific to refer to any data item that is being managed by a key. In Example 
4-12, our communication module's open_connection routine calls pthread_setspecific to 
associate the conn_key key with a thread-specific pointer to an integer. 

Example 4-12: Storing Data in a Key (specific.c) 

int open_connection(char *host) 



{ 

       int *connp; 

       . 

       . 

       . 

       connp = (int *)malloc(sizeof(int)); 

       *connp = ... 

       pthread_setspecific(conn_key, (void *)connp); 

       . 

       . 

       . 
} 

When a thread calls the open_connection routine, the routine calls malloc to allocate 
storage for an integer on the heap and sets the pointer connp to point at it. The routine 
then uses connp to set up a connection and store the connection identifier. Once the 
connection is complete, the pthread_setspecific call stores connp in a thread-specific 
location associated with conn_key. 

The pthread_setspecific routine takes, as an argument, a pointer to the data to be 
associated with the key—not the data itself. Figure 4-2 shows what the conn_key key 
would look like after the first thread used it to store its thread-specific value. 

Figure 4-2: A key after a value is set 
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Figure 4-3: A second value stored in the key 

The open_connection routine, executing in Thread1's context, pushes the connp variable 
onto the thread's stack. After the call to malloc, connp points to storage for an integer in 
the heap section of the process. The detailed communication code then uses the connp 
pointer to set the value of the connection identifier to 15. Once the connection is set up, 
the pthread_setspecific call stores the pointer to the allocated heap storage for this thread 
with the conn_key key. When Thread 1 returns from its open_connection procedure call, 
its stack frame for the procedure call is deal located, including its connp pointer. The only 
place in which a pointer to Thread1's connection identifier remains is within the key. 

When another thread calls open_connection, as shown in Figure 4-3, the process is 
repeated. 

Now Thread 2 has a stack frame for its open_connection procedure call. After the call to 
malloc, connp points to storage for an integer in a different area of the process's heap 
section. The detailed communications code comes up with a different connection 
identifier for Thread 2, but the pthread_setspecific call stores a pointer to this value, 22, in 
the very same key as it stored a pointer to Thread 1's connection identifier. When Thread 
2 returns from its open_connection procedure call, its stack frame for the procedure call 
is deallocated, including its connp pointer. The only place in which a pointer to Thread2's 
connection identifier remains is within the key. 

Retrieving Data from a Key 

The send_data and receive_data routines call pthread_getspecific to retrieve the 
connection identifier for the calling thread. Each routine uses a pointer, saved_connp, to 
point to the connection identifier, as shown in Example 4-13. 

Example 4-13: Retrieving Data from a Key (specific.c) 

int send_data(char *data) 

{; 

       int *saved_connp; 

       . 

       . 

       . 

       pthread_getspecific(conn_key, (void **)&saved_connp); 

       write(*saved_connp,...); 

       . 

       . 

       . 
} 

int receive_data(char **data) 

{; 

       int *saved_connp; 

       . 

       . 

       . 



       saved_connp = pthread_getspecific(conn_key); 

       read(*saved_connp,...) 

       . 

       . 

       . 
} 

When Thread 1 calls the send_data or receive_data routine, as shown in Figure 4-4,the 
routine calls pthread_getspecific to return to saved_connp the thread-specific connection 
identifier associated with the conn_key key. It now has access to its connection identifier 
(15) and can write or read across the connection. When the second thread calls 
send_data or receive_data, it likewise retrieves its connection identifier (22) using the 
key. 

Figure 4-4: Retrieving a stored value from a key 

The pthread_getspecific function returns NULL if no value has been associated with a 
key. If a thread received a NULL return value from its call to receive_dataor send_data, 
it's likely that it neglected to make a prior call to open_connection. 

Destructors 

We've shown that keys often store pointers to thread-specific data that's been allocated 
on the heap. Memory leaks can occur when threads exit and leave their thread-specific 
data that was associated with keys. For this reason we must specify a destructor routine, 
or destructor for short, when we create a key. When a thread exits, the library invokes the 
destructor on the thread's behalf, passing to it the pointer to the thread-specific data 
currently associated with the key. In this manner, the destructor acts as a convenient plug 
for potential memory leaks, deallocating memory that would otherwise be forgotten and 
go to waste. 

The destructor can be any routine you choose. In our init_comm routine shown in Example 
4-11, we used a routine named free_conn. For the simple integer being stored, free_conn 
could have simply consisted of a free system call. If we were using more complex data, 
such as a linked list, the destructor would be a more complex routine that walked down the 
list, freeing each node. An even more complex example would be a data structure that 
includes handles on system resources, such as sockets and files, that the destructor would 
need to close. 
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Cancellation 

Cancellation allows one thread to terminate another. One reason you may want to cancel 
a thread is to save system resources (such as CPU time) when your program determines 
that the thread's activity is no longer necessary. In an odd sense, you can consider 
cancellation to be a very rough synchronization mechanism: after you've canceled a 
thread, you know exactly where it is in its execution! A simple example of a thread you 
might want to cancel would be a thread performing a read-only data search. If one thread 
returns the results you are looking for, all other threads running the same routine could 
be canceled. 

Okay, so you've decided that you'd like to cancel a thread. Now you must reckon whether 
the thread you've targeted can be canceled at all. The ability of a thread to go away or 
not go away when asked by another thread is known as its cancelability state. Let's 
assume that you can indeed cancel this thread. Now you must consider when it might go 
away—maybe immediately, maybe a bit later. The degree to which a thread persists after 
it has been asked to go away is known as its cancelability type. Finally, some threads are 
able to perform some special cleanup processing as part of being terminated (either 
through cancellation or through a pthread_exit call). These threads have an associated 
cleanup stack. 

We'll get into cancelability states, cancel ability types, and cleanup stacks a little bit later 
(probably not late enough for those of you who winced at the use of the term 
cancelability).Right now, remember that threads don't have a parent/child relationship as 
processes do. So, any thread can cancel any other thread, as long as the canceling 
thread has the thread handle of its victim. Because you want your application to be solidly 
structured, you'll cancel threads only from the thread that initially created them. 

The Complication with Cancellation 

Cancellation is not as convenient as you might think at first. Most tasks that make 
multithreading worthwhile involve taking thread-shared data through some intermediate 
states before bringing it to some final state. Any thread accessing this data must take and 
release locks, as appropriate, to maintain proper synchronization. If a thread is to be 
terminated in the middle of such a prolonged operation, you must first release its locks to 
prevent deadlock. Often, you must also reset the data to some correct or consistent state. 
A good example of this would be fixing forward or backward pointers that a thread may 
have left hanging in a linked list. 

For this reason, you must use cancellation very carefully. The simplest approach is to 
restrict the use of cancellation to threads that execute only in simple routines that do not 
hold locks or ever put shared data in an inconsistent state. Another option is to restrict 
cancellation to certain points at which a thread is known to have neither locks nor 
resources. Lastly, you could create a cleanup stack for the thread that is to be canceled; 
it can then use the cleanup stack to release locks and reset the state of shared data. 

These options are all well and good when you are in charge of all the code your threads 
might execute. What if your threads call library routines that you don't control? You may 
have no idea of the detailed operation of these interfaces. One solution to this problem is 
to create cancellation-safe library routines, a topic we'll defer to the next chapter along 
with other issues of integration into a UNIX environment. 

Cancelability Types and States 

Because canceling a thread that holds locks and manipulates shared data can be a tricky 
procedure, the Pthreads standard provides a mechanism by which you can set a given 
thread's cancel ability (that is, its ability to allow itself to be canceled). In short, a thread 
can set its cancel ability state and cancel ability type to any of the combinations listed in 
Table 4-1, thereby ensuring that it can safely obtain locks or modify shared data when it 
needs to. 

A thread can switch back and forth any number of times across the various permitted 



combinations of cancel ability state and type. When a thread holds no locks and has no 
resources allocated, asynchronous cancellation is a valid option. When a thread must 
hold and release locks, it might temporarily disable cancellation altogether. 

Note that the Pthreads standard gives you no attribute that would allow you to set a 
thread's cancel ability state or type when you create it. A thread can set its own cancel 
ability only at run time, dynamically, by calling into the Pthreads library. 

Table 4-1: Cancelability of a Thread 

Cancelability State

Cancelability Type
Description 

PTHREAD_ CANCEL_ 
DISABLE

Ignored

Disabled. 
The 
thread can 
never be 
canceled. 
Calls to 
pthread_c
ancel 
have no 
effect. The 
thread can 
safely 
acquire 
locks and 
resources. 

PTHREAD_ CANCEL_ 
ENABLE

PTHREAD_ CANCEL_ 
ASYNCHRONOUS

Asynchronous 
cancellation. 
Cancellation 
takes effect 

immediately.*

PTHREAD_ CANCEL_ 
ENABLE

PTHREAD_ CANCEL_ 
DEFERRED

Deferred 
cancellation 
(the 
default). 
Cancellation 
takes effect 
only if and 
when the 
thread 
enters a 
cancellation 
point. The 
thread can 
hold and 
release 
locks but 
must keep 
data in 
some 
consistent 
state. If a 
pending 
cancellation 



exists at a 
cancellation 
point, the 
thread can 
terminate 
without 
leaving 
problems 
behind for 
the 
remaining 
threads.

 
* The Pthreads standard states that cancellation will take place "at any time" We trust 

that most implementations interpret this phrase to mean "as soon as possible" The 
thread must avoid taking out locks and performing sensitive operations on shared data. 

Cancellation Points: More on Deferred Cancellation 

When a thread has enabled cancellation (that is, it has set its cancel ability state to 
PTHREAD_CANCEL_ENABLE) and is using deferred cancellation (that is, it has set its 
cancel ability type to PTHREAD_CANCEL_DEFERRED), time can elapse between the 
time it's asked to cancel itself and the time it's actually terminated. 

These pending cancellations are delivered to a thread at defined locations in its code 
path. These locations are known as cancellation points, and they come in two flavors: 

 

• Automatic cancellation points (pthread_cond_wait,pthread_cond_timedwait, and 
pthread_join). The Pthreads library defines these function calls as cancellation points 
because they can block the calling thread. Rather than maintain the overhead of a 
blocked routine that's destined to be canceled, the Pthreads library considers these 
calls to be a license to kill the thread. Note that, if the thread for which the cancellation 
is pending does not call any of these functions, it may never actually be terminated. 
This is one of the reasons you may need to consider using a programmer-defined 
cancellation point. 

 

• Programmer-defined cancellation points (pthread_testcancel).To force a pending 
cancellation to be delivered at a particular point ina thread's code path, insert a call to 
pthread_testcancel. The pthread_testcancel function causes any pending cancellation 
to be delivered to the thread at the program location where it occurs. If no cancellation 
is pending on the thread, nothing happens. Thus, you can freely insert this call at 
those places in a thread's code path where it's safe for the thread to terminate. It's also 
prudent to call pthread_testcancel before a thread starts a time-consuming operation. 
If a cancellation is pending on the thread, it's better to terminate it as soon as possible, 
rather than have it continue and consume system resources needlessly. 

The Pthreads standard also defines cancellation points at certain standard system and 
library calls. We'll address this topic in Chapter 5,   Pthreads and UNIX  . 

A Simple Cancellation Example 

Example 4-14 illustrates the basic mechanics of cancellation. The main routine creates 
three threads: bullet_proof, ask_for_it, and sitting_duck. Each thread selects a different 
cancellation policy: the bullet_proof routine disables cancellation, the ask_for_it routine 
selects deferred cancellation, and the sitting_duck routine enables asynchronous 
cancellation. 

The main routine waits until all of the threads have started and entered an infinite loop. It 
then tries to cancel each thread with a pthread_cancel call. By issuing a join on each 
thread, it waits until all threads have terminated. 
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Example 4-14: The Simple Cancellation Example—main (cancel.c) 

#include <stdlib.h> 

#include <stdio.h> 

#include <unistd.h> 

#include <sys/types.h> 

#include <pthread.h> 

#define NUM_THREADS 3 

int count = NUM_THREADS; 

pthread_mutex_t lock=PTHREAD_MUTEX_INITIALIZER; 

pthread_cond_t init_done=PTHREAD_COND_INITIALIZER; 

int id_arg[NUM_THREADS] = {;0,1,2}; 

extern int 

main(void) 

{; 

  int i; 

  void *statusp; 

  pthread_t threads[NUM_THREADS]; 

  /**** Create the threads ****/ 

  pthread_create(&(threads[0]), NULL, ask_for_it, (void *) 
&(id_arg[0])); 

  pthread_create(&(threads[1]), NULL, sitting_duck, (void *) 
&(id_arg[1])); 

  pthread_create(&(threads[2]), NULL, bullet_proof, (void *) 
&(id_arg[2])); 

  printf("main(): %d threads created\n",count); 

  /**** wait until all threads have initialized ****/ 

  pthread_mutex_lock(&lock); 

  while (count != 0) {; 

    pthread_cond_wait(&init_done, &lock); 

  } 

  pthread_mutex_unlock(&lock); 

  printf("main(): all threads have signaled that they're ready\n"); 

  /**** cancel each thread ****/ 

  for (i = 0; i < NUM_THREADS; i++) {; 

    pthread_cancel(threads[i]); 

  } 

  /**** wait until all threads have finished ****/ 



  for (i = 0; i < NUM_THREADS; i++) {; 

    pthread_join(threads[i], &statusp); 

    if (statusp == PTHREAD_CANCELED) {; 

       printf("main(): joined to thread %d, statusp=PTHREAD_CANCELED\
n", i); 

    } else {; 

       printf("main(): joined to thread %d \n", i); 

    } 

  } 

  printf("main(): all %d threads have finished. \n", NUM_THREADS); 

  return 0; 
} 

The bullet_proof thread: no effect 

When a thread, like bullet_proof, disables  cancellation, it is impervious to 
pthread_cancel calls from other threads, as shown in Example 4-15. 

Example 4-15: The Simple Cancellation Example—bullet_proof (cancel.c) 

void *bullet_proof(int *my_id) 

{; 

  int i=0, last_state; 

  char *messagep; 

  messagep = (char *)malloc(MESSAGE_MAX_LEN); 

  sprintf(messagep, "bullet_proof, thread #%d: ", *my_id); 

  printf("%s\tI'm alive, setting general cancelability OFF\n", 
messagep); 

  /* We turn off general cancelability here */ 

  pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &last_state); 

  pthread_mutex_lock(&lock); 

  {; 

  printf("\n%s signaling main that my init is done\n", messagep); 

  count -= 1; 

  /* Signal to program that loop is being entered */ 

  pthread_cond_signal(&init_done); 

  pthread_mutex_unlock(&lock); 

  } 

  /* Loop forever until picked off with a cancel */ 

  for(;;i++) {; 

    if (i%10000 == 0) 



      print_count(messagep, *my_id, i); 

    if (i%100000 == 0) 

      printf("\n%s This is the thread that never ends... #%d\n", 
messagep, i); 

  } 

  /* Never get this far */ 

  return(NULL); 
} 

The bullet_proof thread calls pthread_setcancelstate  to set its cancelability state to 
disabled (PTHREAD_CANCEL_DISABLE). After it enters its loop, it repeatedly taunts 
main until the program ends. Because the main thread has  issued a pthread_join call to 
wait on the bullet_proof  thread, we'll need to shoot the whole program with a  CTRL-C to 
get bullet_proof to stop. 

The ask_for_it thread: deferred cancellation 

The ask_for_it thread calls pthread_setcancelstate to set its cancelability state to enabled 
(PTHREAD_CANCEL_ENABLE) and pthread_setcanceltype to set its cancelability type 
to deferred (PTHREAD_CANCEL_DEFERRED). (It actually didn't need to explicitly do 
so, as deferred cancellation is the default for all threads.) After main has issued a 
pthread_cancel for it, the ask_for_it thread terminates when it enters the next cancellation 
point, as shown in Example 4-16. 

Example 4-16: The Simple Cancellation Example—ask_for_it (cancel.c) 

void *ask_for_it(int *my_id) 

{; 

  int i=0, last_state, last_type; 

  char *messagep; 

  messagep = (char *)malloc(MESSAGE_MAX_LEN); 

  sprintf(messagep, "ask_for_it, thread #%d: ", *my_id); 

  /* We can turn on general cancelability here and disable async 
cancellation. */ 

  printf("%s\tI'm alive, setting deferred cancellation ON\n", 
messagep); 

  pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &last_state); 

  pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, &last_type); 

  pthread_mutex_lock(&lock); 

  {; 

  printf("\n%s signaling main that my init is done\n", messagep); 

  count -= 1; 

  /* Signal to program that loop is being entered */ 

  pthread_cond_signal(&init_done); 



  pthread_mutex_unlock(&lock); 

  } 

  /* Loop forever until picked off with a cancel */ 

  for(;;i++) {; 

    if (i%1000 == 0) 

      print_count(messagep, *my_id, i); 

    if (i%10000 == 0) 

      printf("\n%s\tLook, I'll tell you when you can cancel me.%d\n", 
messagep, i); 

      pthread_testcancel(); 

  } 

  /* Never get this far */ 

  return(NULL); 
} 

We'll force the delivery of main's cancellation request by adding a pthread_testcancel call 
to its loop. After main calls pthread_cancel, ask_for_it will terminate when it encounters 
pthread_testcancel in the next iteration of the loop. 

The sitting_duck thread: asynchronous cancellation 

The sitting_duck thread calls pthread_setcancelstate to set its cancelability state to 
enabled (PTHREAD_CANCEL_ENABLE) and pthread_setcanceltype to set its 
cancelability type to asynchronous (PTHREAD_CANCEL_ASYNCHRONOUS).When 
main issues a pthread_cancel for it, the sitting_duck thread terminates immediately, 
regardless of what it is doing. 

If we leave our thread in this state, it can be canceled during library and system calls as 
well. However, unless these calls are documented as "asynchronous cancellation-safe," 
we should guard against this.(The Pthreads standard requires that only three routines be 
asynchronous cancellation-safe: pthread_cancel, pthread_setcanceltype, and 
pthread_setcancelstate.) If we don't, our thread could be canceled in the middle of such a 
call, leaving its call state in disarray and potentially messing up things for the other 
threads in the process. In Example 4-17, we'll protect the printf call against asynchronous 
cancellation by setting cancellation to deferred for the duration of the call. Note that the 
print_count routine called by the sitting_duck thread would also need to take this 
precaution before it makes library or system calls. 

Example 4-17: The Simple Cancellation Example—sitting_duck (cancel.c) 

void *sitting_duck(int *my_id) 

{; 

  int i=0, last_state, last_type, last_tmp; 

  char messagep; 

  messagep = (char *)malloc(MESSAGE_MAX_LEN); 

  sprintf(messagep, "sitting_duck, thread #%d: ", *my_id); 

  pthread_mutex_lock(&lock); 



  {; 

    printf("\n%s signaling main that my init is done\n", messagep); 

    count -= 1; 

    /* Signal to program that loop is being entered */ 

    pthread_cond_signal(&init_done); 

    pthread_mutex_unlock(&lock); 

  } 

  /* Now, we're safe to turn on async cancelability */ 

  printf("%s\tI'm alive, setting async cancellation ON\n", 
messagep); 

  pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &last_type); 

  pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &last_state); 

  /* Loop forever until picked off with a cancel */ 

  for(;;i++) {; 

    if (i%1000) == 0) 

      print_count(messagep, *my_id, i); 

    if (i%10000 == 0) {; 

      pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, &last_tmp); 

      printf("\n%s\tHum, nobody here but us chickens. %d\n", 
messagep, i); 

      pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &last_tmp); 

      } 

  } 

  /* Never get this far */ 

  return(NULL); 
} 

When the sitting_duck thread has asynchronous cancellation enabled, it is canceled 
when main requests its cancellation—whether it's blocked by the scheduler or in the 
middle of its print_count loop. 

Cleanup Stacks 

Pthreads associates a cleanup stack with each thread. The stack allows a thread to do 
some final processing before it terminates. Although we're discussing cleanup stacks as a 
way to facilitate a thread's cancellation, you can also use cleanup stacks in threads that 
call pthread_exit to terminate themselves. 

A cleanup stack contains pointers to routines to be executed just before the thread 
terminates. By default the stack is empty; you use pthread_cleanup_push to add routines 
to the stack, and pthread_cleanup_pop to remove them. When the library processes a 
thread's termination, the thread executes routines from the cleanup stack in last-in first-
out order. 

We'll adjust Example 4-17 to show how cleanup stacks work. We'll keep the main routine 
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the same but have it start all the threads it creates in the sitting_duck routine. We'll 
change sitting_duck so that it uses the cleanup stack of the thread in which it is 
executing. Finally, we'll create a new routine, last_breath, so that our threads have 
something they can push on the stack. The sitting_duck routine calls 
pthread_cleanup_push to put the last_breath routine on top of the thread's cleanup stack. 
At its end, it calls pthread_cleanup_pop to remove the routine from the stack, as shown in 
Example 4-18. 

Example 4-18: Cleanup Stacks—last_breath and sitting_duck (cancel.c) 

/* 

* Cleanup routine: last_breath 

*/ 

void last_breath(char *messagep) 

{ 

  printf("\n\n%s last_breath cleanup routine: freeing 0x%x\n\n", 
messagep, 

          messagep); 

  free(messagep); 
} 

/* 

* sitting_duck routine 

*/ 

void *sitting_duck(int *my_id) 

{ 

  int i=0, last_state, last_type, last_tmp; 

  char *messagep; 

  messagep = (char *)malloc(MESSAGE_MAX_LEN); 

  sprintf(messagep, "sitting_duck, thread #%d: ", *my_id); 

  /* Push last_breath routine onto stack */ 

  pthread_cleanup_push((void *)last_breath, (void *)messagep); 

  pthread_mutex_lock(&lock); 

  { 

  printf("\n%s signaling main that my init is done\n", messagep); 

  count -= 1; 

  /* Signal program that loop is being entered */ 

  pthread_cond_signal(&init_done); 

  pthread_mutex_unlock(&lock); 

  } 

printf("%s\tI'm alive, setting general cancelability ON, async 
cancellation 

  ON\n", messagep); 



  /* Now we're safe to turn on async cancelability */ 

  pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &last_state); 

  pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &last_type); 

/* Loop forever until picked off with a cancel */ 

  for(;;i++) {; 

    if (i%1000) == 0) 

      print_count(messagep, *my_id, i); 

    if (i%10000 == 0) {; 

      pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, &last_tmp); 

      printf("\n%s\tHum, nobody here but us chickens. %d\n", 
messagep, i); 

      pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &last_tmp); 

    } 

  } 

  /* Never get this far */ 

  return(NULL); 

  /* This pop is required by the standard, every push must 

     have a pop in the same lexical block. */ 

  pthread_cleanup_pop(0); 
} 

Other cleanup routines might perform additional tasks, such as resetting shared 
resources to some consistent state, freeing resources the thread still has allocated, and 
releasing the locks the thread still holds. We can design our own cleanup routines or 
simply use standard library calls like pthread_mutex_unlock or free if they would suffice. 

There are a few more things about the pthread_cleanup_pop function you should know. 
First, pthread_cleanup_pop takes a single argument—an integer that can have either of 
two values: 

 

• If the value of this argument is 1, the thread that called pthread_cleanup_pop executes 
the cleanup routine whose pointer is being removed from the cleanup stack. 
Afterwards, the thread resumes at the line following its pthread_cleanup_pop call. This 
allows a thread to execute a cleanup routine whether or not it is actually being 
terminated. 

 • If the value of this argument is 0, as it is in Example 4-18, the pointer to the routine is 
popped off the cleanup stack, but the routine itself does not execute. 

Second, the Pthreads standard requires that there be one pthread_cleanup_pop for each 
pthread_cleanup_push within a given lexical scope of code. (Lexical scope refers to the 
code within a basic block of a C program—that set of instructions bounded by the curly 
braces { and }.) Why is this required? After all, the pthread_cleanup_pop function call we 
planted in sitting_duck occurs after an infinite loop and is never called. The reason is that 
this requirement makes it easier for Pthreads library vendors to implement cleanup 
routines. The pthread_cleanup_push and pthread_cleanup_pop function calls are easily 
and commonly implemented as macros that define the start and end of a block. Picture 
the pthread_cleanup_push routine as a macro that ends with an open curly brace ( { ) 
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and the pthread_cleanup_pop routine as a macro that begins with a close curly brace 
( } ). It's not hard to see why a C compiler would complain if we omitted the 
pthread_cleanup_pop call. 

Cancellation in the ATM Server

The worker threads in our ATM server are likely candidates for cancellation. There are a 
couple of reasons why we might want to terminate a worker that is processing an account 
request:

 • To allow a customer to abort a transaction that is in progress

 • To allow the system to abort a transaction for security reasons or when it is shutting 
down

Remember that our worker threads do hold locks and do manipulate shared data—
accounts in the bank's database. Dealing with the possibility of cancellation in our worker 
threads will have some interesting challenges.

In the remainder of this discussion, we'll focus on those changes to the server required to 
make its worker threads cancelable, without worrying about how the cancellation 
requests are generated. As a general model for a thread performing any type of request, 
we'll look at how a worker thread processes a deposit request.

Aborting a deposit 

The basic steps a worker thread performs in processing a deposit request are shown in 
the following pseudocode: 

1  process_request 

2            switch based on transaction type to deposit() 

3            deposit() 

4                          parse request arguments 

5                          check arguments 

6                          lock account mutex 

7                          retrieve account from database 

8                          check password 

9                          modify account to add deposit amount 

10                         store modified account with database 

11                         unlock account mutex 

12          send response to client 

13          free request buffer 

14 return and implicit termination 

Up to Step 5, the thread would have little difficulty accommodating a cancellation request 
and terminating. After Step 5, it performs some tasks that make us consider ways in 
which it must respond to cancellation: 

 
• At Step 6, the thread obtains a lock on an account. At this moment, it must ensure 

somehow that, if it is the victim of cancellation, it can release the lock so that other 
threads can use the account after its demise. We can handle this from a cleanup 
routine that we'll push onto the cleanup stack. 

 • At Step 10, the thread commits a change to the account but has yet to send an 
acknowledgment to the client. Let's assume that, after we commit a change to an 
account, we want to make every effort to send a "transaction completed" response to 
the client. We'll give the thread a chance to do this by having it turn off cancellation 
before it writes anew balance. From that point to its termination at the end of 



process_request, it cannot be canceled. 

 

• At Step 13, the thread frees the request buffer. The buffer was originally allocated by 
the boss thread, which passed it to the worker as an argument to the process_request 
routine. Because the boss does not save its pointer to this buffer, the worker is the 
only thread that knows where in the heap the buffer resides. If the worker doesn't free 
the buffer, nothing will. This is another chore we'll assign to the cleanup routine. 

We'll rewrite our process_request and deposit routines to illustrate these changes in 
Example 4-19.We'll tackle process_request first. Note that, by default, threads starting in 
process_request will have deferred cancellation enabled. 

Example 4-19: Changes to process_request for Cancellation (atm_svr_cancel.c) 

void process_request(workorder_t *workorderp) 

    {; 

      char resp_buf[COMM_BUF_SIZE]; 

      int  trans_id; 

      /**** Deferred cancellation is enabled by default ****/ 

      pthread_cleanup_push((void *)free, (void *)workorderp); 

      sscanf(workorderp->req_buf, "%d", &trans_id); 

      pthread_testcancel(); 

      switch(trans_id) {; 

      case CREATE_ACCT_TRANS: 

          create_account(resp_buf); 

          break; 

      case DEPOSIT_TRANS: 

          deposit(workorderp->req_buf, resp_buf); 

          break; 

      case WITHDRAW_TRANS: 

          withdraw(workorderp->req_buf, resp_buf); 

          break; 

      case BALANCE_TRANS: 

          balance(workorderp->req_buf, resp_buf); 

          break; 

      default: 

          handle_bad_trans_id(workorderp->req_buf, resp_buf); 

          break; 

      } 

      /* Cancellation may be disabled by the time we get here, but 
this 



         won't hurt either way. */ 

      pthread_testcancel(); 

      server_comm_send_response(workorderp->conn, resp_buf); 

      pthread_cleanup_pop(1); 

    } 

This version of process_request starts by calling pthread_cleanup_push to place a 
pointer to the free system routine at the top of the thread's cleanup stack. It passes a 
single parameter to free—the address of its request buffer. We've placed a matching call 
to pthread_cleanup_pop at the end of process_request. We pass pthread_cleanup_pop 
an argument of1 so that free will run and deallocate the buffer regardless of whether or 
not the thread is actually canceled. If the thread is canceled, the buffer will be freed 
before it terminates; if not, the buffer will be freed at the pthread_cleanup_pop call. 

We'll now look at the changes to deposit in Example 4-20. 

Example 4-20: A Cancelable ATM Deposit Routine (atm_svr_cancel.c) 

void deposit(char *req_buf, char *resp_buf) 

{; 

  int rtn; 

  int temp, id, password, amount, last_state; 

  account_t *accountp; 

  /* Parse input string */ 

  sscanf(req_buf, "%d %d %d %d ", &temp, &id, &password, &amount); 

  . 

  . 

  . 

  pthread_testcancel(); 

  pthread_cleanup_push((void *)pthread_mutex_unlock, (void 
*)&account_mutex[id]); 

  pthread_mutex_lock(&account_mutex[id]); 

  /* Retrieve account from database */ 

  rtn = retrieve_account( id, &accountp); 

  . 

  . 

  . 

  pthread_testcancel(); 

  pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &last_state); 

  /* Store back to database */ 

  if ((rtn = store_account(accountp)) < 0) {; 

  . 



  . 

  . 

  pthread_cleanup_pop(1); 
} 

This version of the deposit routine pushes the address of the pthread_mutex_unlock 
function on to the thread's cleanup stack before calling pthread_mutex_lock to obtain the 
mutex. As we did in the process_request routine, we've placed a matching call to 
pthread_cleanup_pop at the end of deposit. We pass pthread_cleanup_pop an argument 
of 1 so that pthread_mutex_unlock will be run at the pthread_cleanup_pop call, if the 
thread is not previously terminated and the mutex unlocked, as the result of a 
cancellation request. 

Because deferred cancellation is enabled for the thread, we can be sure that it can be 
cancelled only at a cancellation point. However, if there were a cancellation point 
between the calls to pthread_cleanup_push and pthread_mutex_lock we could get into 
trouble. If our thread were cancelled at that time, the cleanup would try to unlock a mutex 
that hasn't yet been locked! The consequences of such extravagance are undefined by 
the Pthreads standard, so we most surely want to avoid them. Our code is safe because 
there's no such cancellation point between the calls. For the same reason, the order in 
which we make the calls is immaterial. 

Let's see what this means for our process_request routine. Remember that the request 
buffer was allocated by the boss thread and passed to the worker thread in the 
pthread_create call. Even though the new thread executing process_request immediately 
pushes the address of free on to its cleanup stack, its push inarguably happens 
sometime after the boss performed the initial malloc. Is this a case of too little too late? 

Not necessarily. In our example of cancellation, the boss thread implicitly hands off 
responsibility for the request buffer to the worker thread that's executing process_request. 
The boss thread knows for certain that process_request is the first routine any newly 
created worker thread will run. By default, all threads are created with deferred 
cancellation enabled, and this is the cancelability type of the thread at the time it pushes 
the address of free onto the stack. If it doesn't encounter a cancellation point before we 
push free on the cleanup stack, there's no exposure. However, because some system 
and library calls contain cancellation points, a thread is best off when it expects to be 
canceled at any time. If any of your code relies on a particular thread not having any 
cancellation points, be sure to include a comment to that effect. 

Just before the deposit routine writes the new balance to the account database, it 
disables cancellation by calling pthread_setcancelstate. Subsequently, the thread can 
complete the deposit routine without fear of cancellation. In fact, when the thread exits 
the deposit and returns to process_request, cancellation is still disabled. 

We've made a lot of changes to our process_request and deposit routines to allow other 
threads to cancel a worker thread in the middle of a deposit request. Each change adds 
overhead to the real work of our ATM server. These safeguards against unexpected 
cancellation are charged against the performance of a thread each time it executes 
process_request or deposit, not just when it's destined to be canceled. Consequently, we 
should carefully consider whether making our threads cancelable is worth the extra 
performance cost. If the threads in question run for only a short period of time before 
exiting, the complexity is hardly worthwhile. However, if the threads run for a long period 
of time and consume many system resources, the performance gains of a cancellation 
policy may certainly outweigh its inevitable overhead. 

Following this line of reasoning, the Pthreads standard defines most blocking system calls, 
plus many others that can take a long time to execute, as cancellation points. Some 
implementations may include other library and system calls. See your platform's 
documentation for information on exactly which calls it defines as cancellation points. 



Scheduling Pthreads 

The operating system continuously selects a single thread to run from a systemwide 
collection of all threads that are not waiting for the completion of an I/O request or are not 
blocked by some other activity. Many threaded programs have no reason to interfere with 
the default behavior of the system's scheduler. Nevertheless, the Pthreads standard 
defines a thread-scheduling interface that allows programs with real-time tasks to get 
involved in the process. 

Using the Pthreads scheduling feature, you can designate how threads share the 
available processing power. You may decide that all threads should have equal access to 
all available CPUs, or you can give some threads preferential treatment. In some 
applications, it's beneficial to give those threads that perform important tasks an 
advantage over those that perform background work. For instance, in a process-control 
application, a thread that responds to input for special devices could be given priority over 
a thread that simply maintains the log. Used in conjunction with POSIX real-time 
extensions, such as memory locking and real-time clocks, the Pthreads scheduling 
feature lets you create real-time applications in which the threads with important tasks 

can be guaranteed to complete their tasks in a predictable, finite amount of time.* 

 
* See the book POSIX.4: Programming for the Real World by Bill O. Gallmeister, from 

O'Reilly & Associates, for in-depth discussion of the POSIX real-time extensions.

Note that, even though the Pthreads standard specifies a scheduling interface, it allows 
vendors to support or not support its programming interface at their option. If your system 
supports the scheduling programming interface, the compile-time constant 

_POSIX_THREAD_PRIORITY_SCHEDULING will be TRUE.*

 

* If your implementation supports the POSIX real-time extensions, you can use the 
sched_yield call to force some broad form of scheduling. A sched_yield call places the 
calling thread at the end of its scheduling priority queue and lets another thread of the 
same priority take its place.  

Scheduling Priority and Policy 

The eligibility of any given thread for special scheduling treatment is determined by the 
settings of two thread-specific attributes: 

 • Scheduling priority 

A thread's scheduling priority, in relation to that of other threads, determines which 
thread gets preferential access to the available CPUs at any given time. 

 • Scheduling policy 

A thread's scheduling policy is a way of expressing how threads of the same priority 
run and share the available CPUs. 

We'll be using these terms throughout the discussions that follow. Once we've set the 
stage with some background information about scheduling scope, we'll consider the 
scheduling priority and policy thread attributes in much greater detail. 

Scheduling Scope and Allocation Domains 

The concept of scheduling scope refers to the inclusiveness of the scheduling activity in 
which a thread participates. In other words, scope determines how many threads—and 
which threads—a given thread must compete against when it's time for the scheduler to 
select one of them to run on a free CPU. 

Because some operating system kernels know little about threads, the scope of thread 

scheduling depends upon the abilities of an implementation.* A given implementation 



may allow you to schedule threads either in process scope or in system scope. When 
scheduling occurs in process scope, threads are scheduled against only other threads in 
the same program. When scheduling occurs in system scope, threads are scheduled 
again stall other active threads systemwide. Implementations may also provide a thread 
attribute that allows you to set the scheduling scope on a per-thread basis. Here, too, you 
can choose that a thread participate in scheduling in either process or system scope. 

 

* As we'll discuss in Chapter 6,   Practical Considerations  , some systems provide the 
abstraction of a thread within the container of the process without any help from the 
kernel. On these systems the lower-level operating system kernel schedules processes 
to run, not threads.

The discussion of scheduling scope is complicated when multiprocessing systems are 
involved. Many operating systems allow collections of CPUs to be treated as separate 
units for scheduling purposes. In Digital UNIX, for example, such a grouping is called a 
processor set and can be created by system calls or administrative commands. The 
Pthreads standard does recognize that such groupings may exist and refers to them as 
scheduling allocation domains. However, to avoid forcing all vendors to implement 
specific allocation domain sizes, the standard leaves all policies and interfaces relating to 
them undefined. As a result, there's a wide range of standard-compliant implementations 
out there. Some vendors, such as Digital, provide rich functionality, and others provide 
very little, even placing all CPUs in a single allocation domain. 

Figure 4-5: Scheduling with system scope and one allocation domain 

Figure 4-5 shows a system using only system scheduling scope and a single allocation 
domain. On one side of the scheduler we have processes containing one or more threads 
that need to be scheduled. On the other side the scheduler has the available CPU 
processing power of the system combined into the one allocation domain. The scheduler 
compares the priorities of all runnable threads of all processes systemwide when 
selecting a thread to run on an available CPU. It gives the thread with the highest priority 
first preference, regardless of which process it belongs to. 

Figure 4-6 shows a system with only process scope and a single allocation domain. 

Figure 4-6: Scheduling with process scope and one allocation domain 

The standard requires a scheduler that supports process scope to compare the 
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scheduling priority of a thread only to the priorities of other threads of the same process. 
How the scheduler makes the comparison is also undefined. As a result, the priorities set 
by the Pthreads library on a system that provides this type of scheduling may not 
necessarily have any systemwide meaning. 

For instance, consider such a scheduler on a multiprocessing system on which the 
threads of a given process (Process A) are competing for CPUs. Process A has three 
threads, one with very high priority and two with medium priority. The scheduler can 
place the high priority thread on one of the CPUs and thus meet the standard's 
requirements for process-scope scheduling. It need do no more—even if other CPUs in 
the allocation domain have lower priority threads from other processes running on them. 
The scheduler can leave Process A's remaining runnable medium priority threads waiting 
for its high priority thread to finish running. Thus, this type of scheduling can deny a 
multithreaded application the benefit of multiple CPUs within the allocation domain. 

An implementation that uses system-scope scheduling with a single allocation domain, 
such as the one we showed in Figure 4-5, behaves quite differently. If the threads of a 
process in system scope have high enough priorities, they will be scheduled on multiple 
CPUs at the same time. System-scope scheduling is thereby much more useful than 
process-scope scheduling for real-time or parallel processing applications when only a 
single allocation domain is available. 

Figure 4-7 shows a system with multiple allocation domains supporting both process and 
system scope. The threads of Process A all have process scheduling scope and 
exclusive access to an allocation domain. Process B's threads have system scope and 
their own allocation domain as well. The threads of all other processes have system 
scope and are assigned to the remaining allocation domain. 

Figure 4-7: Scheduling with process and system scope and multiple allocation 
domains 

Because the threads of Process A and Process B don't share an allocation domain with 
those of other processes, they will execute more predictably. Their threads will never wait 
for a higher priority thread of another process to finish or preempt another process's 
lower priority thread. Because Process B's threads use system scope, they will always be 
able to simultaneously access the multiple CPUs within its domain. However, because 
Process A's threads use process scope, they may not always be able to do so. It 
depends on the implementation on which they run. 

You should take into account one potential pitfall of using multiple scheduler allocation 
domains if your implementation allows you to define them. When none of the threads in 
Process A or B are running on the CPUs in their allocation domains, the CPUs are idle, 
regardless of the load on other CPUs in other domains. You may in fact obtain higher 
overall CPU utilization by limiting the number of allocation domains. Be certain that you 
understand the characteristics of your application and its threads before you set 
scheduling policies that affect its performance and behavior. 

If an implementation allows you to select the scheduling scope of a thread using a per-
thread attribute, you'll probably set up the thread's attribute object, as shown in Example 

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_37.html#890331
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/04FIG07_0.gif


4-21. 

Example 4-21: Setting Scheduling Scope in an Attribute Object (sched.c) 

pthread_attr_t custom_sched_attr; 

        . 

        . 

        . 

        pthread_attr_init(&custom_sched_attr); 

        pthread_attr_setscope(&custom_sched_attr, 
PTHREAD_SCOPE_SYSTEM); 

        pthread_create(&thread, &custom_sched_attr, ...); 

        . 

        . 

        . 

The pthread_attr_setscope function sets the scheduling-scope attribute in a thread 
attribute object to either system-scope scheduling (PTHREAD_SCOPE_SYSTEM), as in 
Example 4-21, or process-scope scheduling (PTHREAD_SCOPE_PROCESS). 
Conversely, you'd use pthread_attr_getscope to obtain the current scope setting of an 
attribute object. 

For the remainder of our discussion, we'll try to ignore scope. We can't avoid using terms 
that have different meanings depending upon what type of scheduling scope is active. As 
a cheat sheet for those occasions when these terms appear, refer to the following: 

 • When we say pool of threads, we mean:

In process scope: all other threads in the same process

In system scope: all threads of all processes in the same allocation domain

 • When we say scheduler, we mean: 

In process scope: the Pthreads library and/or the scheduler in the operating system's 
kernel

In system scope: the scheduler in the operating system's kernel

 • When we say processing slot, we mean: 

In process scope: the portion of CPU time allocated to the process as a whole within 
its allocation domain

In system scope: the portion of CPU time allocated to a specific thread within its 
allocation domain

Runnable and Blocked Threads 

In selecting a thread for a processing slot, the scheduler first considers whether it is 
runnable or blocked. A blocked thread must wait for some particular event, such as I/O 
completion, a mutex, or a signal on a condition variable, before it can continue its 
execution. By contrast, a runnable thread can resume execution as soon as it's given a 
processing slot. 

After it has weeded out the blocked threads, the scheduler must select one of the 
remaining runnable threads to which it will give the processing slot. If there are enough 
slots for all runnable threads (for instance, there are four CPUs and four threads), the 



scheduler doesn't need to apply its scheduling algorithm at all, and all runnable threads 
will get a chance to run simultaneously. 

Scheduling Priority 

The selection algorithm that the scheduler uses is affected by each runnable thread's 
scheduling priority and scheduling policy. As we mentioned before, these are per-thread 
attributes; we'll show you how to set them in a few pages. 

The scheduler begins by looking at an array of priority queues, as shown in Figure 4-8. 
There is a queue for each scheduling priority and, at any given priority level, the threads 
that are assigned that priority reside. When looking for a thread to run in a processing 
slot, the scheduler starts with the highest priority queue and works its way down to the 
lower priority queues until it finds the first thread. 

Figure 4-8: Priority queues 

In this illustration only three of the priority queues hold runnable threads. When running 
threads either involuntarily give up their processing slot(more on this later) or go from 
blocked to runnable, they are placed at the end of the queue for their priority. Over time, 
the population of the priority queues will grow and decline. 

Whenever a thread with a higher priority than the current running thread becomes 
runnable, it interrupts the running thread and replaces it in the processing slot. From the 
standpoint of the thread that's been replaced, this is known as an involuntary context 
switch. 

Scheduling Policy 

A thread's scheduling policy determines how long it runs when it moves from the head of 
its priority queue to a processing slot. The two main scheduling policies are 
SCHED_FIFO and SCHED-RR: 

 • SCHED_FIFO 

This policy (first-in first-out) lets a thread run until it either exits or blocks. As soon as it 
becomes unblocked, a blocked thread that has given up its processing slot is placed at 
the end of its priority queue. 

 • SCHED_RR 

This policy (round robin) allows a thread to run for only a fixed amount of time before it 
must yield its processing slot to another thread of the same priority. This fixed amount 
of time is usually referred to as a quantum. When a thread is interrupted, it is placed at 
the end of its priority queue. 

The Pthreads standard defines an additional policy, SCHED_OTHER, and leaves its 
behavior up to the implementors. On most systems, selecting SCHED_OTHER will give a 
thread a policy that uses some sort of time sharing with priority adjustment. By default, all 
threads start life with the SCHED_OTHER policy. After all, time sharing with priority 
adjustment is the typical UNIX scheduling algorithm for processes. It works like 
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SCHED_RR, giving threads a quantum of time in which to run. Unlike SCHED_FIFO and 
SCHED_RR, however, it causes the scheduler to occasionally adjust a thread's priority 
without any input from the programmer. This priority adjustment favors threads that don't 
use all their quantum before blocking, increasing their priority. The idea behind this policy 
is that it gives interactive I/O-bound threads preferential treatment over CPU-bound 
threads that consume all their quantum. 

The definitions of SCHED_FIFO, SCHED_RR, and SCHED_OTHER actually come from 
the POSIX real-time extensions (POSIX.1b). Any Pthreads implementation that uses the 
compile-time constant _POSIX_THREAD_PRIORITY_SCHEDULING will also recognize 
them. As we'll continue our discussion, we'll find other POSIX.1b features that are useful 
in manipulating priorities. 

Using Priorities and Policies 

Although you can set different scheduling priorities and policies for each thread in an 
application, and even dynamically change them in a running thread, most applications 
don't need this complexity. 

A real-time application designer would typically first make a broad division between those 
tasks that must be completed in a finite amount of time and those that are less time 
critical. Those threads with real-time tasks would be given a SCHED_FIFO policy and 
high priority. The remaining threads would be given a SCHED_RR policy and a lower 
priority. The scheduling priority of all of these threads would be set to be higher than 
those of any other threads on the system. Ideally the host would be capable of system-
scope scheduling. 

As shown in Figure 4-9, the real-time threads of the real-time application will always get 
access to the CPU when they are runnable, because they have higher priority than any 
other thread on the system. When a real-time thread gets the CPU it will complete its task 
without interruption (unless, of course, it blocks—but that would be a result of poor 
design). No other thread can preempt it; no quantum stands in its way. These threads 
behave like event (or interrupt) handlers; they wait for something to happen and then 
process it to completion within the shortest time possible. 

Figure 4-9: Using policies and priorities in an application 

Because of their high priority, the non-real-time threads in the application also get 
preferential treatment, but they must share the CPU with each other as their quantums 
expire. These threads usually perform the background processing for the application. 

An example of this kind of real-time application would be a program that runs chemical 
processing equipment. The threads that deploy hardware control algorithms—periodically 
reading sensors, computing new control values, and sending signals to actuators—would 
run with the SCHED_FIFO policy and a high priority. Other threads that performed the 
less critical tasks—updating accounting records for chemicals used and recording the 
hours for employees running the equipment—would run with the SCHED_RR policy and 
at a lower priority. 
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Setting Scheduling Policy and Priority 

You can set a thread's scheduling policy and priority in the thread attribute object you 
specify in the pthread_create call that creates the thread. Assume that we have a thread 
attribute object named custom_sched_attr. We've initialized it with a call to 
pthread_attr_init. We specify it in calls to pthread_attr_setschedpolicy to set the 
scheduling policy and pthread_attr_setschedparam to set the scheduling priority, as 
shown in Example 4-22. 

Example 4-22: Setting a Thread's Scheduling Attributes (sched.c) 

pthread_attr_t custom_sched_attr; 

int fifo_max_prio, fifo_min_prio; 

struct sched_param fifo_param; 

. 

. 

. 

  pthread_attr_init(&custom_sched_attr); 

  pthread_attr_setinheritsched(&custom_sched_attr, 
PTHREAD_EXPLICIT_SCHED); 

  pthread_attr_setschedpolicy(&custom_sched_attr, SCHED_FIFO); 

  fifo_max_prio = sched_get_priority_max(SCHED_FIFO); 

  fifo_min_prio = sched_get_priority_min(SCHED_FIFO); 

  fifo_mid_prio = (fifo_min_prio + fifo_max_prio)/2; 

  fifo_param.sched_priority = fifo_mid_prio; 

  pthread_attr_setschedparam(&custom_sched_attr, &fifo_param); 

  pthread_create(&(threads[i]), &custom_sched_attr, ....); 

The way in which pthread_attr_setschedparam is used demands a little more 
explanation. 

When you use pthread_attr_setschedpolicy to set a thread's policy to SCHED_FIFO or 
SCHED_RR, you can also call pthread_attr_setschedparam to set its parameters. The 
pthread_attr_setschedparam function takes two arguments: the first is a thread attribute 
object, the second is a curious thing defined in the POSIX.1b standard and known as a 
struct sched_param. It looks like this: 

struct sched_param {; 

          int sched_priority; 
} 

That's it. The struct sched_param has only a single required member and specifies a 
single attribute—a scheduling priority. (Some Pthreads implementations may store other 
information in this structure.) Let's see how we stick a priority into this thing. 

The POSIX.1b standard specifies that there must be at least 32 unique priority values 
apiece for the SCHED_RR and SCHED_FIFO priorities. (The standard does not require 
that there be defined priorities for SCHED_OTHER.) The absolute values and actual 
range of the priorities depend upon the implementation, but one thing's for certain—you 
can use sched_get_priority_max and sched_get_priority_min to get a handle on them. 



In our example, we call sched_get_priority_max and sched_get_priority_min to obtain the 
maximum and minimum priority values for the SCHED_FIFO policy. We add the two 
together and divide by two, coming up with a priority level that's happily in the middle of 
the SCHED_FIFO priority range. It's this priority value that we insert in the priority 
member of our struct sched_param. A call to pthread_attr_setschedparam and, voila!—
our thread has a nice middling priority with which to work. 

Before we leave our discussion of setting a thread's scheduling attributes statically when 
the thread is created, we'll make one final point. If you must retrieve the scheduling 
attribute settings from a thread attribute object, you can use the functions 
pthread_attr_getschedpolicy and pthread_attr_getschedparam. They work in the same 
way as the corresponding functions for other thread attributes. 

Now we'll look at a way to set the scheduling policy and priority of a selected thread while 
it's running. In Example 4-23, we set a target thread's policy to SCHED_FIFO and its 
priority to the priority level stored in the variable fifo_min_prio. 

Example 4-23: Setting Policy and Priority Dynamically (sched.c) 

fifo_sched_param.sched_priority = fifo_min_prio; 

pthread_setschedparam(threads[i], SCHED_FIFO, &fifo_min_prio); 

As you can see, the pthread_setschedparam call sets both policy and priority at the same 
time. Conversely, the pthread_getschedparam function returns the current policy and 
priority for a specified thread. Be careful when you use the pthread_setschedparam 
function to dynamically adjust another thread's priority. If you raise a thread's priority 
higher than your own and it is runnable, it will preempt you when you make the call. 

Inheritance 

If you decide to use scheduling, you don't need to individually set the scheduling 
attributes of each thread you create. Instead, you can specify that each thread should 
inherit its scheduling characteristics from the thread that created it. Like other per-thread 
scheduling attributes, the inheritance attribute is specified in the attribute object used at 
thread creation, as shown in Example 4-24. 

Example 4-24: Setting Scheduling Inheritance in an Attribute Object (sched.c) 

pthread_attr_t custom_sched_attr; 

        . 

        . 

        . 

        pthread_attr_init(&custom_sched_attr); 

        pthread_attr_setinheritsched(&custom_sched_attr, 
PTHREAD_INHERIT_SCHED) 

        . 

        . 

        . 

        pthread_create(&thread, &custom_sched_attr, ...); 

The pthread_attr_setinheritsched function takes a thread attribute object as its first 
argument and as its second argument either the PTHREAD_INHERIT_SCHED flag or the 
PTHREAD_EXPLICIT_SCHED flag. You can obtain the current inheritance attribute from 
an attribute object by calling pthread_attr_getinheritsched. 



Scheduling in the ATM Server 

We're now ready to assign different scheduling priorities to the worker threads in our ATM 
server, based on the type of transaction they are processing. To illustrate how our server 
might use scheduling attributes, we'll give highest priority to the threads that service 
deposit requests. After all, time is money and the sooner the bank has your money the 
sooner they can start making money with it. Specifically, we'll add code to our server so 
that deposit threads run at a high priority with a SCHED_FIFO scheduling policy and the 
other threads run at a lower priority using a SCHED_RR scheduling policy. 

We don't need to change worker thread code; only the boss thread concerns itself with 
setting scheduling attributes. We'll globally declare some additional thread attribute 
objects (pthread_attr_t) in our atm_server_init routine in Example 4-25 and prepare them 
to be used by the boss thread when it creates worker threads. 

Example 4-25: Creating Attribute Objects for Worker Threads (sched.c) 

/* global variables */ 

. 

. 

. 

pthread_attr_t custom_attr_fifo, custom_attr_rr; 

int fifo_max_prio, rr_min_prio; 

struct sched_param fifo_param, rr_param; 

atm_server_init() 

{; 

  . 

  . 

  pthread_attr_init(&custom_attr_fifo); 

  pthread_attr_setschedpolicy(&custom_attr_fifo, SCHED_FIFO); 

  fifo_param.sched_priority = sched_get_priority_max(SCHED_FIFO); 

  pthread_attr_setschedparam(&custom_attr_fifo, &fifo_param); 

  pthread_attr_init(&custom_attr_rr); 

  pthread_attr_setschedpolicy(&custom_attr_rr, SCHED_RR); 

  rr_param.sched_priority = sched_get_priority_min(SCHED_RR); 

  pthread_attr_setschedparam(&custom_attr_rr, &rr_param); 

  . 

  . 

  . 
} 

The boss thread will use the custom_attr_fifo attribute object when creating deposit 
threads. The atm_server_init routine sets this attribute object to use the SCHED_FIFO 
scheduling policy and the maximum priority defined for the policy. The boss thread will 
use the custom_attr_rr attribute object for all other worker threads. It is set with the 
SCHED_RR scheduling policy and the minimum priority defined for the policy. The boss 
thread uses these attribute objects in the server's main routine: 



Example 4-26: Creating threads with custom scheduling attributes (sched.c) 

extern int 

main(void) 

  . 

  . 

  . 

  atm_server_init(argc, argv); 

  for(;;) {; 

    /*** Wait for a request ***/ 

    workorderp = (workorder_t *)malloc(sizeof(workorder_t)); 

    server_comm_get_request(&workorderp->conn, workorderp->req_buf); 

    sscanf(workorderp->req_buf, "%d", &trans_id); 

    . 

    . 

    . 

    switch(trans_id) {; 

    case DEPOSIT_TRANS: 

         pthread_create(worker_threadp, &custom_attr_fifo, 
process_request, 

                       (void *)workorderp); 

         break; 

    default: 

         pthread_create(worker_threadp, &custom_attr_rr, 
process_request, 

                       (void *)workorderp); 

         break; 

    } 

    pthread_detach(*worker_threadp); 

  } 

  server_comm_shutdown(); 

  return 0; 
} 

In our server's main routine, the boss thread checks the request type before creating a 
thread to process it. If the request is a deposit, the boss specifies the custom_attr_fifo 
attribute object in the pthread_create call. Otherwise, it uses the custom_attr_rr attribute 
object. 



Mutex Scheduling Attributes 

We may take great pains to apply scheduling to the threads in our program, designating 
those threads that should be given preferential access to the CPU when they're ready to 
run. However, what if our high priority threads must contend for the same resources as 
our lower priority threads? It's likely that at times a high priority thread will stall waiting for 
a mutex lock held by a lower priority thread. This is the priority inversion phenomenon of 
which we spoke earlier. The mutex plainly doesn't recognize that some threads that ask 
for it are more important than others. 

Consider a real-time multithreaded application that controls the operation of a power 
plant. One controls fuel intake and must react quickly and predictably to changes in flow 
rate and line pressure; this thread has high priority. Another thread collects statistics on 
plant operations for monthly reports and collects information on the state of the plant 
once an hour; this thread is assigned a lower priority. An additional thread, of medium 
priority in the application, perhaps, faxes sandwich orders at lunch time. 

Both the fuel-control and statistic-gathering threads must control a mechanical arm to 
position a temperature sensor at various locations within the plant to take temperature 
readings. Each contends for a single mutex that synchronizes access to the arm. 

We'll start with a situation in which all threads are blocked and the mutex is unlocked. 
Suppose that the sequence of events listed in the left column of Table 4-2 occurs. The 
statistics-gathering thread runs first, grabs the mutex, and ends up by blocking the fuel-
control thread that is ready to run. 

Table 4-2: Priority Inversion in a Power Plant Application (1)

Event

Fuel Control 
Thread

Medium 
Priority 
Thread

Statistics 
Gathering 
Thread

Arm 
Mutex

Start

Blocked
Blocked Blocked Unlocked

The statistics-
gathering thread 
must take a 
temperature.

Blocked

Blocked Running Unlocked

The statistics-
gathering thread 
acquires the 
mutex.

Blocked

Blocked Running

Locked 
by 
statistics-
gathering 
thread

An event occurs, 
waking the fuel-
control thread. It 
preempts the 
statistics thread.

Running

Blocked Runnable

Locked 
by 
statistics-
gathering 
thread



The fuel-control 
thread tries to get 
the mutex and 
blocks. The 
statistics thread 
regains the CPU.

Blocked on mutex

Blocked Running

Locked 
by 
statistics-
gathering 
thread

The situation can actually get worse when, as shown in Table 4-3, the medium priority 
thread awakens. It has a higher priority than the statistics-gathering thread and does not 
need to wait for the mutex the medium thread currently holds. It's runnable and will 
preempt the statistics-gathering thread. Now the fuel-control thread must wait for the 
medium priority thread, too—and this thread doesn't even need to use the arm! 

Table 4-3: Priority Inversion in a Power Plant Application (2) 

Event

Fuel- Control 
Thread

Medium 
Priority 
Thread

Statistics- 
Gathering 
Thread

Arm 
Mutex 

An event occurs, 
waking the 
medium priority 
thread. It 
preempts the 
statistics-
gathering thread.

Blocked on mutex

Running Runnable

Locked 
by 
statistics-
gathering 
thread

If the sirens and flashing lights weren't so distracting, we'd redesign the application so 
that the fuel-control and statistics-gathering threads no longer use a common resource. 
But we need to introduce a new Pthreads feature, and besides, we have only so much 
time before we have to evacuate the plant. 

The Pthreads standard allows (but does not require) implementations to design mutexes 
that can give a priority boost to low priority threads that hold them. We can associate a 
mutex with either of two priority protocols that provide this feature: priority ceiling or 
priority inheritance. We'll start with a discussion of priority ceiling, the simpler of the two 
protocols. 

Priority Ceiling 

The priority ceiling protocol associates a scheduling priority with a mutex. Thus equipped, 
a mutex can assign its holder an effective priority equal to its own, if the mutex holder has 
a lower priority to begin with. 

Let's apply this feature to our power plant example and see what happens. We'll 
associate a high priority with the mutex that controls access to the arm and revisit the 
earlier sequence of events. Table 4-4 illustrates the results. 

Table 4-4: Priority Inversion in a Power Plant Application 

Event

Fuel- Control 

Medium 
Priority 

Statistics- 
Gathering 

Arm 
Mutex 



Thread
Thread Thread

(High 
Priority
)

Start

Blocked
Blocked Blocked Unlocked

The statistics- 
gathering thread 
must take a 
temperature.

Blocked

Blocked Running Unlocked

The statistics- 
gathering thread 
acquires the 
mutex. It gets an 
effective priority of 
high.

Blocked

Blocked Running

Locked 
by 
statistics-
gathering 
thread

An event occurs, 
waking the fuel-
control thread. It 
does not preempt 
the statistics- 
gathering thread, 
which is also at 
high priority.

Runnable

Blocked Running

Locked 
by 
statistics-
gathering 
thread

An event occurs, 
waking the 
medium priority 
thread. It does not 
preempt the 
statistics- 
gathering thread, 
which is also at 
high priority.

Runnable

Runnable Running

Locked 
by 
statistics-
gathering 
thread

At this point, the statistics-gathering thread will complete its operation at the highest 
priority and in the shortest period of time. Table 4-5 shows the sequence of events that 
occurs when it releases the mutex. 

Table 4-5: Priority Inversion in a Power Plant Application 

Event

Fuel- Control 
Thread

Medium 
Priority 
Thread

Statistics- 
Gathering 
Thread

Arm 
Mutex 
(High 
Priority
)



The statistics- 
gathering thread 
unlocks the mutex. 
It reverts to low 
priority and is 
preempted by the 
highest priority 
runnable thread. 
This is the fuel-
control thread

Running

Runnable Runnable Unlocked

The fuel-control 
thread tries to get 
the mutex and 
succeeds.

Running

Runnable Running
Locked 
by fuel 
thread

Now the fuel-control thread can do its work, having to wait only for the statistics-gathering 
thread—not for the medium priority thread as well. Although the fuel-control thread must 
wait, it waits for a shorter period of time and in a more predictable manner. 

If your platform supports the priority ceiling protocol, the compile-time constant 
_POSIX_THREAD_PRIO_PROTECT will be defined. Example 4-27 shows how to create 
a mutex that uses the priority ceiling protocol. 

Example 4-27: Setting a Priority Ceiling on a Mutex (mutex_ceiling.c) 

pthread_mutex_t m1; 

pthread_mutexattr_t mutexattr_prioceiling; 

int mutex_protocol, high_prio; 

. 

high_prio = sched_get_priority_max(SCHED_FIFO); 

. 

pthread_mutexattr_init(&mutexattr_prioceiling); 

pthread_mutexattr_getprotocol(&mutexattr_prioceiling, 
&mutex_protocol); 

pthread_mutexattr_setprotocol(&mutexattr_prioceiling, 
PTHREAD_PRIO_PROTECT); 

pthread_mutexattr_setprioceiling(&mutexattr_prioceiling, 
high_prio); 

pthread_mutex_init(&m1, &mutexattr_prioceiling); 

We first declare a mutex attribute object (pthread_mutex_attr_t) and initialize it by calling 
pthread_mutexattr_init. Our call to pthread_mutexattr_getprotocol returns the priority 
protocol that is associated with our mutex by default. The priority protocol attribute can 
have one of three values: 

 • PTHREAD_PRIO_NONE 

The mutex uses no priority protocol. 

 • PTHREAD_PRIO_PROTECT 



The mutex uses the priority ceiling protocol. 

 • PTHREAD_PRIO_INHERIT 

The mutex uses the priority inheritance protocol. 

If the pthread_mutexattr_getprotocol call does not show that the mutex is using the 
priority ceiling protocol, we call the pthread_mutexattr_setprotocol function to set this 
protocol in the mutex's attribute object. After we've done so, we call 
pthread_mutexattr_setprioceiling to set the fixed priority ceiling attribute in the mutex 
object. (Conversely, a call to pthread_mutexattr_getprioceiling would return the current 
value of this attribute.) The priority passed is an integer argument set up in the same 
manner as a thread's priority value. Finally, we initialize the mutex by specifying the 
mutex attribute object to pthread_mutex_init. 

Priority Inheritance 

The priority inheritance protocol lets a mutex elevate the priority of its holder to that of the 
waiting thread with the highest priority. If we applied the priority inheritance protocol to 
the arm mutex in our power plant example, the result would be that the statistics-
gathering thread wouldn't unconditionally receive a priority boost as soon as it won the 
mutex lock; it would be elevated to high priority only when the fuel-control thread starts to 
wait on the mutex. Because the priority inheritance protocol awards a priority boost to a 
mutex holder only when it's absolutely needed, it can be more efficient than the priority 
ceiling protocol. 

If your platform supports the priority inheritance feature, the compile-time constant 
_POSIX_THREAD_PRIO_INHERIT will be TRUE. Example 4-28 shows how to create a 
mutex with the priority inheritance attribute. The process is nearly identical to the one we 
used to set up the priority ceiling protocol for the mutex in Example 4-27. 

Example 4-28: Setting Priority Inheritance on a Mutex (mutex_priority.c) 

pthread_mutex_t m1; 

pthread_mutexattr_t mutexattr_prioinherit; 

int mutex_procotol; 

. 

. 

. 

pthread_mutexattr_init(&mutexattr_prioinherit); 

pthread_mutexattr_getprotocol(&mutexattr_prioinherit, 
&mutex_protocol); 

if (mutex_protocol != PTHREAD_PRIO_INHERIT) {; 

    pthread_mutexattr_setprotocol(&mutexattr_prioinherit, 
PTHREAD_PRIO_INHERIT); 

} 

pthread_mutex_init(&m1, &mutexattr_prioinherit); 

The ATM Example and Priority Inversion 

Let's return to our ATM server example. In its most recent version, we introduced a 
scheduling framework and started to assign different priorities to different threads. Having 
done so, we've introduced a risk that our threads may encounter priority inversion 
situations. A high priority thread could attempt to perform a deposit transaction on the 
same account for which a low priority thread is already processing a different transaction. 
When it does so, the high priority thread will very likely need to wait on the mutex that the 
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low priority thread currently holds. We can help out our high priority threads by assigning 
this mutex a scheduling attribute of some sort. 

Which protocol should we use—priority ceiling or priority inheritance? If we use the 
priority ceiling protocol, we would have to associate a very high priority ceiling with the 
mutexes that guard the accounts. Overall, this would have a rather negative effect on our 
server's behavior and the performance of deposit transactions in particular. Low priority 
threads would always be given a priority boost whenever they obtained a mutex, 
regardless of whether a deposit thread needs to lock the same mutex. Because each 
worker thread holds the mutex for an account for a significant length of time, the 
scheduler's priority queues would fill with runnable, high priority threads. A deposit thread 
would just be another high priority thread in the queue and would not get any special 
treatment. This is not what we want. 

For a program like our ATM server, it makes much more sense to use the priority 
inheritance protocol. If we assign the priority inheritance attribute to each of our account 
mutexes, each mutex would boost the priority of its owner only when a high priority 
thread is waiting. This would give our high priority deposit threads a better chance to 
access accounts. The scheduler continues to favor the deposit threads, and when a 
deposit thread is blocked by a low priority thread that is holding a required mutex, the 
mutex's priority inheritance policy ensures that the low priority thread gets a needed 
boost. As a result, the low priority thread can get its business done quickly, release the 
mutex, and get out of the way of our important deposit threads. The worst case would be 
when the deposit thread must wait for one in-progress operation on the account before it 
can start its transaction. 

To associate the priority inheritance protocol with our mutexes, we'll change our server's 
initialization routine as shown in Example 4-29. 

Example 4-29: Initializing Priority-Savvy Mutex in the ATM (mutex_priority.c) 

. 

. 

. 

pthread_mutex_attr_t mutexattr_prioinherit; 

. 

. 

. 

void atm_server_init(int argc, char **argv) 

{; 

      . 

      . 

      . 

      pthread_mutexattr_setprotocol(&mutexattr_prioinherit, 
PTHREAD_PRIO_INHERIT); 

        for (i = 0; i < MAX_NUM_ACCOUNTS; i++) 

                  pthread_mutex_init(&account_mutex[i], 
&mutexattr_prioinherit); 

      . 

      . 

      . 
} 



Chapter 5: Pthreads and UNIX 

Overview

Because operating systems are inherently designed to accommodate processes, not 
threads, system implementors must often bend tradition to introduce thread support. It's 
as if we were to discover one day that the sun did not orbit the earth, but that, in reality, 
the earth revolves around the sun. The process is no longer central to our operating 
system world.  Whereas it used to schedule processes, our system now schedules 
threads—no minor feat because, to do so, it must rototill its internal data structures and 
reinvent some of its most basic notions. What's more, whereas it used to deliver signals 
to processes, it now must deliver signals to threads. How it selects the thread to which it 
delivers a given signal is yet another added complexity.  

Further, the operating system has always allowed us to perform certain operations on 
processes that become riddles in the world of threads. If we now consider a process to 
be a sort of container for threads, and we recognize that all threads share their process's 
address space, what happens when one of these threads launches an operation that has 
processwide ramifications? Does a fork result in a copy of the entire process, including all 
existing threads? Does an exec wipe them out?  

Finally, it's a rare, and probably not very useful, program that does not make a single 
library call. In the world of threads, what happens when a batch of threads in the same 
process call the same library function concurrently? If this is the same library that existed 
in the pre-threaded implementation, there's a great chance that the library's static data 
will be overwritten at each successive call. Thus, operating system vendors must address 
the behavior of libraries and system calls on top  of everything else.  

If a multithreaded program is to work correctly, it must rely on some well-defined, 
consistent behavior from the operating system. A little knowledge about the areas in 
which Pthreads and the operating system cross is well advised. In this chapter, we'll 
examine some ways in which Pthreads implementors attempt to make an operating 
system "thread friendly." We'll discuss:  

 • Signals  

Every program must respond to signal delivery in some way. Often a program must 
provide a routine that handles signals of various kinds. The Pthreads standard defines 
a method for threads to participate in signal handling that is compatible with the 
traditional method in which processes handle signals.  

 • Threadsafe libraries  

Most system libraries maintain internal data for the currently executing process in 
internal data. To allow multiple threads from the same process to execute library 
routines simultaneously, library implementors must somehow protect this data from 
unsynchronized accesses by otherwise cooperative threads. Libraries that eliminate 
such race conditions are known as threadsafe libraries.  

 • Cancellation-safe library functions  

If a thread is canceled while in the middle of a library call that is modifying a library's 
internal data, it may exit, leaving the data in an inconsistent or corrupted state. A 
library function in which a thread can be canceled safely is known as a cancellation-
safe library routine.  

 • Blocking functions  

One of the greatest benefits of threads programming relies on the expectation that, if 
one thread blocks while calling a library function, others may continue. The Pthreads 
standard defines exactly which library functions can block and when.  



 • Process management  

Operating system support for threads complicates the standard operations that create 
and destroy processes (such as fork, exec, and exit). The Pthreads standard specifies 
the behavior of these operations in a multithreaded environment and requires 
backward compatibility for nonthreaded applications.  

 • Multiprocessor memory synchronization  

Although more of an issue for platform machine architectures than for the operating 
system, threads must be assured that their views of shared data (including the states of 
mutexes and condition variables) are identical. This guarantee, as enforced by the 
Pthreads standard, must hold true whether the threads are running on a uniprocessor or 
on a multiprocessor.  

Threads and Signals 

The odd thing about signals in UNIX is that, although they're everywhere, their arrival—by 
its very nature—is always a bit of surprise. (Well, that's a bit of an exaggeration. When 
we're told that the furniture delivery person will be at our house between 9 a.m. and noon 
on Tuesday, we're prepared for a knock on the door—maybe at 9:15, maybe at 11:45, 
maybe even at 1:00, perhaps never. When the knock comes, we're ready with well-
rehearsed instructions for the paths the delivery person must follow through our house to 
the place where the sofa will ultimately be placed. Some types of signals are like that; 
others are more like our smoke alarm before the furniture delivery person knocked it 
down.)  

Nevertheless, our program may be interrupted at any time by a signal, and that signal 
may have been sent from any of a number of places. The system may send us a signal to 
report a hardware condition (a divide-by-zero or some other fault) or a software error. We 
can use various facilities so that the system sends us a signal when a particular event 
occurs, such as the expiration of a timer or the completion of an I/O operation. Other 
processes can send us a signal (and we can send one back) as a sort of low-level IPC 
mechanism. Even human beings can send us a signal by hitting CTRL-Z at the keyboard 
to suspend our program.  

Most programs that accomplish serious work must have a built-in way of dealing with all 
of these signals flying around the system for all of these various purposes. This 
presented the Pthreads standard committee with three chief challenges:  

 
• A thread should be able to send and receive signals, yet, to allow this, a Pthreads 

implementation cannot subvert a single-threaded process's ability to process signals in 
the way it always has.  

 • When a signal is delivered to a multithreaded process, a Pthreads implementation 
must select one of the threads to perform the required action.  

 • What can a thread do, while in a signal handler, that won't interfere with its mainline 
execution?  

The committee met the first of these challenges by not changing the semantics of signal 
delivery to processes. In a Pthreads implementation, signals continue to be delivered to 
processes, not threads. The table that lists the process's reaction to specific signals (the 
sigaction) is shared by all threads. It dealt with the second by defining per-thread signal 
masks that you can manipulate to direct a signal to (or away from) particular threads.  

Unfortunately, the committee seriously limited the work that a signal handler can perform 
in a thread's context. In fact, it left the behavior of the Pthreads tools themselves (mutex 
variables, condition variables, keys, and the like) undefined when they're used in a 
handler. Thus hampered, the signal handler cannot use Pthreads calls to communicate or 
synchronize with other threads in the program.  

We'll see how you can work around this problem a little later. Right now, let's quickly 
review some basic signal-handling concepts and explore how signals work with threads.



Traditional Signal Processing

A special signal action structure (sigaction) allows a process to associate an action with 
each type of signal that may be delivered to it. A process may choose to:

 • Ignore the signal (SIG_IGN)

 • Use the default action (SIG_DFL)  

The default signal action depends on which signal is being received. Most signals 
terminate the process, but a few are ignored by default. SIGSTOP and SIGTSTP 
suspend the process, while SIGCONT resumes it.  

 • Catch the signal, and execute a user-specified handler routine  

When it's created, a process is given the default action for each signal. You can change 
the action for most signals by using the sigaction call. Some signals (such as SIGKILL 
and SIGSTOP), however, cannot be ignored or caught.  

The arrival of a signal interrupts a process at its current point of execution and transfers 
execution to a signal-handling routine. When the signal handler returns, the process 
resumes at its prior execution point.  

Sending signals and waiting for signals 

Signals can be generated in a number of ways—a process can do something that causes 
the system to deliver a signal to it, or some other process can send a signal to it by using 
the kill system call. (The kill system call is poorly named; you can use it to send a variety 
of signals, not just the termination signal, SIGKILL.) A process can also send a signal to 
itself, by using either the kill or raise system call.  

Normally the arrival of a signal interrupts process execution. However, some signals 
resume a process that was suspended by a call to wait, sigsuspend, sleep, or pause.  

Using a signal mask to block signals 

A process can block certain types of signal for an indefinite period of time. If a process is 
blocking a given type of signal and that type of signal happens to be sent to it, the signal 
is marked as pending. The process may unblock the signal type later, at which time the 
pending signal will be delivered.  

A process specifies the signals it wants to block in its signal mask. By default, no signals 
are blocked. The signals to be blocked are designated in a process's signal mask. The 
program can use sigaction and sigsuspend to set and reset the blocking status for each 
signal.  

Signal Processing in a Multithreaded World 

If multiple threads are executing within a process when a signal is delivered to it, the 
system must select a thread to process it. At the highest level, the selection of the thread 
is dictated by how the signal was generated, what action caused the signal, and what the 
effective target of the signal is. The three possibilities are shown in Table 5-1.  

Table 5-1: System Selection of a Thread to Handle a Signal 

How signal was 
generated

What generated the 
signal

Effective 
target of 
the 
signal

How the 
signal-
processing 
thread is 
selected 



Synchronously

The system, because of an 
exception

A 
specific 
thread

Always 
the 
offending 
thread

Synchronously

An internal thread using 
pthread_kill

A 
specific 
thread

Always 
the 
targeted 
thread

Asynchronously

An external process using 
kill The 

process 
as a 
whole

Per-
thread 
signal 
masks 
of all 
threads 
in the 
process 

Let's examine the information in this table a little more closely.  

Synchronously generated signals 

Certain signals are synchronously generated in the sense that they are sent to a process 
as the direct result of an operation within a particular thread. The system is sending the 
process a signal because one of its threads tried to divide by zero (SIGFPE), touch 
forbidden memory in the wrong way (SIGSEGV), use a broken pipe (SIGPIPE), or do 
something else that triggered an exception. These signals are closely bound to the 
activities of a given thread, and it will be that thread, in its own context, that will handle 
the signal on behalf of the process as a whole.  

The other type of synchronously generated signal results from one thread in a process 
calling pthread_kill to send a signal to another thread in the same process. The calling 
thread explicitly names the target thread by specifying its thread handle, as well as the 
signal to be delivered to it. You cannot use pthread_kill to send signals to threads in other 
processes.  

Note that you shouldn't use pthread_kill in place of cancellation or condition variables. 
Because the Pthreads standard doesn't define any new signals with a thread-specific 
semantic, the pthread_kill function is limited to sending POSIX.1 and POSIX.1b signals. 
Trying to terminate (or direct the behavior of) a single thread using a traditional signal is 
like trying to comb your hair with a rake. It'll be difficult and you won't exactly get what 
you want.  

Asynchronously generated signals 

Other signals are asynchronously generated in the sense that they cannot be easily 
pinned to a particular thread. The arrival of these signals is asynchronous to the activities 
of any and all threads within the process. They are typically job control signals—
SIGALRM, SIGHUP, SIGINT, and SIGKILL—or the user-defined signals—SIGUSR1 and 
SIGUSR2. They are sent to the process by a kill call and can be handled by almost any 
of its threads. (Because thread handles are unique only within a process, there's no way 
that a kill call—or a pthread_kill call, for that matter—can send a signal from one process 
to a thread in another process. As a result, all kill calls result in an asynchronously 
generated signal.)  



Per-thread signal masks 

Like a traditional process, a thread has a signal mask that indicates which asynchronous 
signals it's willing to handle (these are considered unblocked) and which ones it's not 
(these are considered blocked). By default, the first thread in a child process inherits its 
signal mask from the thread in its parent that called fork. Additional threads inherit the 
signal mask of the thread that issued the pthread_create that created them. Use the 
pthread_sigmask call to block and unblock signals in the mask.  

When an asynchronously generated signal arrives at a process, it is handled once by 
exactly one thread in the process. The system selects this thread by referring to the 
collection of per-thread signal masks of all the threads. If more than one thread has the 
signal unblocked, the system arbitrarily selects one of them. Although you can manipulate 
the masks to influence the selection process, you cannot explicitly assign a specific 
thread to handle a particular signal. Nevertheless, it's not hard to control the delivery of 
signals. Here are some guidelines:  

 • If any thread can handle the signal, rest easy. The signal is, by default, unblocked for 
all threads.  

 • If only certain threads can handle the signal, mask the signal in all but those threads. 
The system will choose one of them to process the signal.  

 • If only one thread can handle the signal, mask the signal in all other threads.  

Suppose you want your program to perform some special processing when data arrives 
or some other event occurs. If you associate a signal with this event, you can arrange it 
so that the signal is blocked in all but one thread. No matter what is happening in any 
thread in the program, it will be that thread that executes the handler when the signal 
arrives.  

If all threads have a certain signal blocked and one of these signals arrives, it becomes 
pending for the entire process. Sometime later any thread can unblock the signal and 
accept its delivery. Using this type of signal delivery policy, you can design a thread that 
polls for a signal by setting and clearing the appropriate bit in its signal mask until the 
signal is delivered.  

Note that a fatal signal will terminate the whole process, regardless of which thread it's 
delivered to. As a result, you don't need to do anything special to manage these signals 
or others that you allow to kill the process.  

Per-process signal actions 

Although each thread has its own signal mask, all threads in a process must share the 
process's own signal action (sigaction) structure. Consequently, if a process specifies 
that a given signal should be ignored, it will be ignored, regardless of to which thread in 
the process the system delivers it. Similarly, if a process's sigaction structure deems that 
a certain signal should be subjected to the default action (whatever that might be for the 
signal) or processed by a signal handler, the specified action will be carried out when the 
signal is delivered to any of the process's threads.  

Any thread can make a sigaction call to set the action for a signal. If a thread calls 
sigaction to set the SIG_IGN action for the SIGTERM signal, any other thread in the 
same process that does not block this signal is prepared to ignore a SIGTERM should 
one be delivered to it. If a thread assigns the ei-e-io signal handler to the SIGIO signal, 
any thread selected to handle SIGIO will call ei-e-io.  

Putting it all together 

Before investing a lot of complexity in your code by using these features, remember that, 
by default, your multithreaded program will have the same response to signals as a 
nonthreaded one. If you want to ignore signals, all you need to do is to use sigaction as 



usual to set the signals' action to SIG_IGN. A standard sigaction call will also serve you 
well if there are signals you want to handle and it doesn't matter which of your threads 
process them. Even if you do want a specific thread to handle a particular signal, you 
may not need to invent special code. For instance, if one thread in your program handles 
all I/O operations, you might have that thread handle any SIGIO signal that may arrive (or 
wait for the signal at times using sigwait).  

A word to the wise: after you've set up particular threads to handle particular signals, it's 
simplest to keep them that way. If you try to reassign signal-handling responsibilities in 
the middle of your program, you'll likely encounter all the synchronization difficulties that 
usually result from any change to a process state.  

Threads in Signal Handlers 

POSIX labels calls that can be made safely from a signal handler as asynchronous 
signal-safe functions. These functions have a special property known as reentrancy that 
allows a process to have multiple calls to these functions in progress at the same time. 
Because a signal handler doesn't inherently know what calls were in progress at the time 
it is placed in execution, it must restrict itself to calling only those functions that are 
advertised as asynchronous signal-safe. In fact, many, many base POSIX calls can be 
made from a handler:  

access 

alarm
cfgetispee
d

cfgetospee
d

cfsetispee
d

cfsetospee
d

chdir 

chmod
chow
n

close creat dup

dup2 

execle
execv
e

_exit fcntl fork

fstat 

getgroups
getpgr
p

getpi
d

getppi
d

getui
d

kill 

link
lseek

mkdi
r

mkfif
o

open

pathconf 

pause
pipe read

renam
e

rmdir

setgid 

setpgid
setsid setuid

sigactio
n

sigaddset

sigdelset 

sigemptyset
sigfillset

sigismembe
r

sigpendin
g

sigprocmask

sigsuspend 

sleep
stat sysconf

tcdrai
n

tcflo
w

tcflush 

tcgetattr

tcgetpgr
p

tcsendbrea
k

tcsetattr



tcsetgrp 

time
times umask

unam
e

unlink 

utime
wait

waitpi
d

write

If your system supports the POSIX real-time extensions, you can also make any of the 
following calls:  

aio_error 

aio_return
aio_sus
pend

clock_gettime 

fdatasync
fsync

getegid 

geteuid

sem
_pos
t

sigqueue 

timer_getoverrun

timer_gettime 

timer_settime

But where are the Pthreads calls? They're not in either of these lists! In fact, the Pthreads 
standard specifies that the behavior of all Pthreads functions is undefined when the 
function is called from a signal handler. If your handler needs to manipulate data that is 
shared with other threads—buffers, flags, or state variables—it's out of luck. The 

Pthreads mutex and condition variable synchronization calls are off limits.* 

 

* Even if the data you intend to manipulate is private to a thread and you don't think you 
need any Pthreads calls, you still need to be careful. Just as you would in a non-
threaded program, you must synchronize access to the data between the normal 
context of the thread and its handler context. This synchronization is accomplished by 
masking the arrival of the signal in the normal flow of the thread whenever it accesses 
the data it shares with the handler. 

Fine. We've explained very carefully how you can set up a particular thread in your 
program so that it gets placed in a signal handler, and now you learn that, once it's there, 
your thread can't make any Pthreads calls! Rest easy. If your thread must manipulate 
shared data or communicate with other threads while it's executing its signal handler, it 
has a number of options. If the POSIX real-time extensions are available to it, it can use 
the sem_post call to communicate with other threads of the same process using a 
semaphore. A better solution would be to forgo the idea of using the handler in the first 
place and, instead, call sigwait to wait synchronously for the arrival of the signal. The 
sigwait call either returns immediately to the calling thread because a signal is already 
pending to the process but blocked or suspends the thread until a signal becomes 
pending.  

To make our program take an action when a signal arrives we can use sigwait as 
follows:  



 • Mask the interesting signals in all threads so that their arrival is made pending. The 
sigwait call will detect these signals.  

 • Create a dedicated thread that waits specifically for interesting signals to arrive.  

 
• Insert a simple loop in the dedicated thread's code that calls sigwait, indicating the 

signals that it will handle. Add the action routine that executes when the sigwait call 
returns.  

A Simple Example

Let's look at a program that processes an input stream and provides a statistics report, 
upon request, to its users. Users ask the program for a report by sending the 
asynchronous signal SIGUSR1 to the process. When it catches this signal, the program 
should be able to generate and deliver the report without interrupting its computations on 
the data stream. To allow this to happen, we'll set up a separate thread that waits for the 
signal and responds accordingly.

In Example 5-1, we'll block the SIGUSR1 signal from delivery in all threads, including the 
one that will ultimately handle it.

Example 5-1: Blocking the Signal (stat_sigwait.c) 

pthread_t stats_thread;

pthread_mutex_t stats_lock = PTHREAD_MUTEX_INITIALIZER;

extern int

main(void)

{

.

.

.

sigset_t sigs_to_block;

.

.

.

/* Set main thread's signal mask to block SIGUSR1.

All other threads will inherit mask and have it blocked too

*/

sigemptyset(&sigs_to_block);

sigaddset(&sigs_to_block, SIGUSR1);

pthread_sigmask(SIG_BLOCK, &sigs_to_block, NULL);

.

.

.

pthread_create(&stats_thread, NULL, report_stats, NULL);

.

.

}

In Example 5-2, we'll create the statistics-reporting thread (report_stats) and have it wait 
for SIGUSR1. When it calls sigwait, it must have SIGUSR1 blocked; here it does because 
it inherited its signal mask from the main thread. While report_stats is processing one 
SIGUSR1 signal, any other SIGUSR1 signals sent to the process will be held pending, 



because all threads, including this one, have it blocked. The signal will be delivered the 
next time the report_stats thread reenters sigwait. 

Example 5-2: Waiting for and Handling the Signal (stat_sigwait.c) 

void * report_stats(void *p)

{

sigset_t sigs_to_catch;

int caught;

sigemptyset(&sigs_to_catch);

sigaddset(&sigs_to_catch, SIGUSR1);

for (;;) {

      sigwait(&sigs_to_catch, &caught);

      /* Proceed to lock mutex and display statistics */

      pthread_mutex_lock(&stats_lock);

      display_stats();

      pthread_mutex_unlock(&stats_lock);

      }
return NULL;

}

Now, if we chose to process this signal in a signal handler instead of trapping it in a 
sigwait call, we'd have a major problem. The display_stats routine references data 
modified by other threads in the program. The routine would need to lock this data with a 
mutex before printing it. However, it can't do this because it executes in a signal handler's 
context, and the Pthreads mutex-locking routines are not asynchronous signal-safe.

Some Signal Issues 

Some POSIX.1 functions return EINTR if they are interrupted by a signal. If a thread that 
has called one of these functions receives this return value, it may have to reissue the 
call. No Pthreads functions behave this way.  

In addition, certain real-time extensions to the signal interface (specified by POSIX.1b) 
have special adaptations that support threads. Most notably, the signotify structure can 
be set to indicate that a new thread should be created and run in a start routine when a 
timer event occurs.  

Handling Signals in the ATM Example 

We'll revise our ATM server to show how a more complex multithreaded program can 
deal with signals. Let's fix it so that a remote client can send the SIGUSR1 signal to the 
server to cause it to gracefully shut down. We added the shutdown capability at the end 
of our discussion of synchronization in Chapter 3,   Synchronizing Pthreads  . 

When the server process receives a shutdown request, it must allow existing workers to 
complete their current requests and prevent the boss from creating any more. To 
implement this we'll create an additional thread—a shutdown thread. We'll create the 
shutdown thread at server startup and have it call sigwait to wait for the signal to arrive. 
When this happens, the shutdown thread is released from the sigwait. It sets a global flag 
that indicates to the boss and active workers that a shutdown should occur.  

Before it creates the shutdown thread, the boss thread's server initialization routine must 
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make sure that the boss and all other threads have the SIGUSR1 signal blocked from the 
get-go. (If it did not, a SIGUSR1 signal might be delivered before the threads themselves 
could issue a pthread_sigmask call to block it.) We'll rely on the way a thread inherits its 
signal mask from the thread that creates it and arrange it so that the boss blocks the 
SIGUSR1 signal in its signal mask just before it creates the shutdown and worker 
threads. As a result, at each of the boss pthread_create calls, a thread is created with a 
signal mask that blocks SIGUSR1.  

The other change we'll make to the server initialization routine involves the creation of the 
shutdown thread itself and its start routine shutdown_thread, shown in Example 5-3.  

Example 5-3: Creating a Signal Handling Thread in the ATM (atm_svr_signals.c) 

int received_shutdown_req = FALSE; 

pthread_mutex_t shutdown_lock = PTHREAD_MUTEX_INITIALIZER; 

pthread_t shutdown_thread_id; 

void atm_server_init(...) 

{ 

sigset_t signals_to_block; 

.

.

.

/* set signal mask to mask out SIGUSR1 in this thread 

and all the threads we'll create */ 

sigemptyset(&signals_to_block); 

sigaddset(&signals_to_block, SIGUSR1); 

pthread_sigmask(SIG_BLOCK, &sigs_to_block, NULL); 

/* create thread to catch shutdown signal */ 

pthread_create(&shutdown_thread_id, 

      NULL, 

      shutdown_thread, 

      NULL); 
.

.

.

} 

The shutdown thread is pretty simple. It sets up a signal set to pass to sigwait to indicate 
it's interested in SIGUSR1. Then it calls sigwait. If the signal has already been received 
and is pending, the call returns immediately. Otherwise, it blocks until the signal is sent. 
When the sigwait call returns, the shutdown thread does the following:  

 • Sets a global flag to indicate to the boss thread that the time to shut down has arrived. 
This causes the boss to stop creating new worker threads.  

 • Checks the current count of worker threads and waits if necessary for it to reach zero.  

 • When all worker threads have completed, terminates the program by calling exit.  

Example 5-4 illustrates the actions of the shutdown thread. 



Example 5-4: Waiting for a Shutdown Signal in the ATM (atm_svr_signals.c) 

void shutdown_thread(void *arg) 

{ 

  sigset_t signals_to_catch; 

  int caught; 

  /* Wait for SIGUSR1 */ 

  sigemptyset(&signals_to_catch); 

  sigaddset(&signals_to_catch, SIGUSR1); 

  sigwait(&signals_to_catch, &caught); 

  /* got SIGUSR1—start shutdown */ 

  pthread_mutex_lock(&pthread_info.mutex); 

  pthread_info.received_shutdown_req = TRUE; 

  /* Wait for in-progress requests threads to finish */ 

  while (pthread_info.num_active > 0) { 

    pthread_cond_wait(&pthread_info.thread_exit_cv, 
&pthread_info.mutex); 

  } 

  pthread_mutex_unlock(&pthread_info.mutex); 

  exit(0); 

  return (NULL); 
} 

Threadsafe Library Functions and System Calls 

Up to this point we've spent a lot of effort to ensure that multiple threads can execute 
cleanly and efficiently in our own code. However, it's easy to forget that our applications 
spend a lot of time in system-supplied libraries (and third-party-supplied libraries), running 
code over which we have no control whatsoever. If the library fails to recognize potential 
race conditions when its data is shared among threads and neglects to enforce 
appropriate synchronization, our program will fail—just as if it ignored these issues itself!  

This problem isn't an issue just for threaded programs. Race conditions can also occur in 
traditional, single-threaded programs that use signal handlers or that call routines 
recursively. A single-threaded program of this kind may have the same routine in 
progress in various call frames on its process stack.  

Threadsafe and Reentrant Functions 

The degree to which a library function or routine allows itself to have multiple instances of 
itself in progress at the same time is known as its reentrancy. The behavior of a reentrant 
function doesn't vary whether one call or multiple calls to it are in progress. For multiple, 
simultaneous function calls to work properly, a function cannot write to static data. If it 
does, it creates a race condition with regard to the data, and its callers risk obtaining bad 
results.  

The Pthreads standard not only requires that almost all system-supplied library functions 
be reentrant but also requires them to be threadsafe. A threadsafe function has been 
designed to allow multiple, simultaneous calls specifically from threads. Whereas the 



normal mechanism for making a function reentrant is to remove all references to global 
data, a threadsafe function can employ thread synchronization primitives (such as 
mutexes and condition variables) to protect the global data.  

Example of Thread-Unsafe and Threadsafe Versions of the 
Same Function 

We'll show the behavior of a function that disregards the basic rules of thread safety in 
Example 5-5. Although the example is contrived and oversimplified, it does illustrate how 
certain functions were designed on many systems before Pthreads support was added. 
Although it may be obvious to you that using a fixed-length global buffer in a callable 
library is bad programming style, there are a couple of important lessons to be learned 
here:  

 • What may be bad programming style in a library called by different processes will be 
deadly to threads calling the library from the same process.  

 • It's a big, wonderful, and sometimes dangerous world out there! Know the types of 
libraries your threads hang around in!  

In Example 5-5, our thread-unsafe function is called reverse_string. It uses a static buffer 
(my_buffer) as a temporary workspace while it reverses the order of the characters in an 
input string.  

Example 5-5: A Thread-Unsafe String Reversing Routine (reverse_string.c) 

static char work_buffer[100]; 

void reverse_string(in_str) 

char *in_str; 

{ 

int size = 0, i = 0, j = 0; 

/* Find the end of the in_str */ 

while ( (in_str[size] != &lsquo;\0') && (size != 100)) { 

            size++; 

  } 

/* Copy from in_str into buffer, reversing it */ 

for (i = size-1; i > -1; i--) { 

            work_buffer[j++] = in_str[i]; 

  } 
work_buffer[j] = &lsquo;\0'; 

/* Copy back from buffer to in_str */ 

for (i = 0; i < size+1; i++) 

            in_str[i] = work_buffer[i]; 
} 

Here's how a race condition develops when two threads call reverse_string at the same 
time:  

 
1. Thread A calls the reverse_string function with the input string "the cat". The 

scheduler preempts the thread at the point at which the function has copied "tac e" 
into work_buffer.  

 2. Thread B now calls reverse_string with the input string "dog house". The function 



writes "esuoh god" into work_buffer and returns.  

 
3. When Thread A continues, reverse_string continues copying "the cat" into 

work_buffer. When it completes, it returns the string "esuohht" instead of the correct 
string "tac eht".  

The problem with reverse_string does not lie with the indexes it uses; the indexes are 
automatic data that is maintained by each individual thread. The problem is in the static 
array work_buffer.  

We can easily make reverse_string threadsafe by the few keystrokes it takes to move the 
my_buffer array from the static variable area to the automatic variable area in Example 5-
6.  

Example 5-6: A Threadsafe String Reversing Routine (reverse_string.c) 

void reverse_string(in_str) 

char *in_str; 

{ 

int size = 0, i = 0, j = 0; 

char my_buffer[100]; 

/* Find the end of the in_str */ 

while ( (in_str[size] != &lsquo;\0') && (size != 100)) { 

            size++; 

  } 

/* Copy from in_str into buffer, reversing it */ 

for (i = size-1; i > -1; i--) { 

            my_buffer[j++] = in_str[i]; 

  } 

  . 

  . 

  . 
} 

When calling this version of reverse_string, each thread gets its own copy of my_buffer 
on its own per-thread stack. The danger of corruption is removed because no other 
thread can access the buffer.  

Functions That Return Pointers to Static Data 

Notice how transparent our solution is to the race condition in reverse_string. Because 
we didn't add or change any parameters, its callers, Thread A and Thread B, don't need 
to change—unless they depended on the previously incorrect results! Unfortunately, for 
other thread-unsafe functions, there isn't such a simple and tidy solution. What if the 
function call's interface includes in its argument list a return pointer to static data? Its 
callers are bound to this interface (and, for many of them—the single-threaded callers—it 
works fine). Moreover, this type of interface is not uncommon. You often find it in 
functions that cache information (such as directory listings, host names, or times). It's 
often easier and quicker to return a pointer to the static results than to copy information 
into a caller-specified buffer.  

The only way to produce a threadsafe version of this type of function is to change its 
argument list. Regrettably, the threadsafe version will no longer be compatible with the 



previous version, thus causing some amount of inconvenience to its callers.  

Library Use of errno 

In Chapter 1,   Why Threads?  , we pointed out that Pthreads library functions do not use 
errno. However, traditional UNIX and POSIX.1 system calls (such as read and write) do 
use errno, and this could be a big problem for multithreaded programs that call these 
functions.  

When a program makes an unsuccessful call to one of these functions, the system sets 
the value of the global int variable errno to an error number. The programmer first tests 
the function's return value to see if an error has occurred and then reads errno to 
determine why. Typically, the libc function perror is used to decode the error and print an 
explanatory string to standard error.  

The following snippets of code show two threads making an unsuccessful system call at 
the same time.  

Thread 1                               Thread 2 

amt=read(...);                         rtn=ioctl(...); 

if (amt<0) {                           if (rtn<0) { 

fprintf(stderr, "error       fprintf(stderr, "error  

read( ) %d",   ioctl( ) %d",

       errno)                                errno); 
exit(-1);                              exit(-1); 

}                                      } 

Because there is only one errno global variable for the entire process, the failing read 

call and the failing ioctl call encounter a race condition when they write to it. 
Consequently, when Thread 1 reads and prints out the value of errno, it can't tell 

whether the error value is the result of its read call or Thread 2's ioctl call.  

The Pthreads standard recognizes this problem and dictates that each thread must 
perceive errno as having a thread-private value, independent of the errno values 
seen by other threads. To achieve this, Pthreads library implementations define the string 
"errno" as a macro. When expanded, this macro returns a thread-specific errno value. 
Thus, existing error-checking code doesn't need to change to work within a thread. In 
fact, our examples would work, too.  

The Pthreads Standard Specifies Which Functions Must Be 
Threadsafe 

One of the most time-consuming aspects of deploying Pthreads for many system vendors 
is the effort required to make their libraries and system calls threadsafe. The Pthreads 
standard dictates that almost all POSIX.1 calls must be threadsafe. (Note that the 
POSIX.1 calls include not only library functions but also system calls such as dup, 
chmod, getpid, and open, and C language bindings such as atoi, malloc, printf, and 
scanf.)  

The small number of exceptions allowed by the standard include:  

 • Calls whose argument lists include static data  

 • Calls for which performance is a concern  

 • Calls that involve file locking  

Additionally, a vendor may make certain of its non-POSIX calls threadsafe. Before using 
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any non-POSIX interface in a multithreaded application, ensure that it is threadsafe by 
checking your system's documentation.  

Alternative interfaces for functions that return static data 

The POSIX.1 readdir and localtime functions are good examples of the sort of function 
that returns to its caller a pointer to static data (either a structure or string). Each time you 
call one of these functions, it overwrites its static data area. In nonthreaded applications, 
this means you need to use the returned pointer to copy the data somewhere else; this 
may be annoying, but it does not prevent the call from returning correct results. However, 
when you call one of these routines from multiple threads at the same time, it will return 
corrupt results.  

We've already mentioned that this type of function can be made threadsafe only by some 
visible change to its call interface. The major drawback to this is that we'd break a lot of 
programs if we change the existing interface of a call like readdir or localtime.  

The solution the Pthreads standard adopts for functions like these is to leave the existing 
functions alone and create new, alternative versions of the functions that are threadsafe. 
In the new threadsafe functions (whose names end in _r for reentrant), the caller provides 
a pointer to a buffer to which the function copies its results. Each time a thread calls the 
threadsafe version of one of these functions, it maintains the data unique to its call in its 
own buffer.  

The Pthreads standard defines the following threadsafe versions of existing POSIX.1 
functions:  

asctime_r 

ctime_r

getgrgid_r 

getgrnam_r

getlogin_r 

getpwnam_r

getpwuid_r 

gmtime_r

localtime_r 

rand_r

readdir_r 

strtok_r

ttyname_r 

Additional routines for performance considerations

The getc, getchar, putc, and putchar functions are commonly used POSIX.1 functions 
that perform I/O to standard input and output. Because of the frequency with which 
certain applications call them, the Pthreads standard committee determined that making 
these functions threadsafe would result in serious performance hits for some single-
threaded applications (which don't need the extra thread-specific synchronization). As a 



result, it decreed that, while vendors should make the existing functions threadsafe, they 
should also offer new versions of the functions that provide better performance.

The new, thread-unsafe, better-performing versions of the getc, getchar, putc, and 
putchar functions are getc_unlocked, getchar_unlocked, putc_unlocked, and 
putchar_unlocked.

File-locking functions for threads

It's fairly common for a thread to read and write to a shared file. Although POSIX.1 
defines calls (such as flock) hat allow a thread to synchronize access to a file shared with 
another process, it did not define calls that allowed multiple threads within the same 
process to synchronize similar activity. A thread that calls flock effectively locks a file 
against access by threads from other processes but leaves it wide open to other threads 
in its own process.

To synchronize access to a file shared with threads from the same process as well as 
those of other processes, a thread could use a mutex in conjunction with its flock calls. 
However, the Pthreads standard defines functions, listed in Table 5-2, that give you this 
degree of synchronization with a lot less effort.

Table 5-2: New Routines for Thread-Specific File Locking

Function

Description

Flockfile

Locks a file on a per-thread basis

Ftrylockfile

Tries to lock a file on a per-thread 
basis (returns immediately)

Funlockfile

Unlocks a file on a per-thread 
basis

Where are the threadsafe functions?

The Pthreads standard specifies that the threadsafe versions of most POSIX.1 functions 
must be available on your platform, but where?

Here, too, you should consult your operating system's documentation. Some systems 
may support the new threadsafe versions of standard functions in one library while 

continuing to support the thread-unsafe versions in another.* These systems may keep 
the original functions in a standard library (named lib xxx. a) and the threadsafe functions 
in a new library, lib xxx_r.a. 

 

* There are a number of reasons the thread-unsafe libraries may still be available, 
including performance (the traditional functions may be faster than the threadsafe 
ones) and quality (the threadsafe functions may not have been tested as much as the 
traditional ones). 



Using Thread-Unsafe Functions in a Multithreaded 
Program 

Speaking of safety, if you are intent on walking on the sea wall during high tide, make 
sure you do so only when the wind has stopped and you're wearing your good sneakers
—and stay away from those rocks! Similarly, if you are determined that your 
multithreaded program needs the unique functionality of a system library or toolkit that is 
thread-unsafe, you can still use it in your multithreaded application. However, if you do, 
you must treat the entire function call as if it were a shared resource and use appropriate 
synchronization.  

The simplest synchronization scheme is to allow only one thread in your program to 
make calls using the thread-unsafe interface. A little more complex solution would be to 
associate a mutex or a condition variable with some or all of the interface calls. Any 
thread in your program must lock the appropriate mutex before calling the thread-unsafe 
function it protects.  

For example, assume that we failed to make reverse_string unsafe. In Example 5-7, we'll 
insert some code in a multithreaded program that calls it, surrounding the reverse_string 
call with calls to lock and unlock a reverse_string_mutex lock and defining a macro that 
will invoke this whole block of code. Now any thread in our program can use the 
safe_reverse_string macro to launch a thread-safe call to the thread-unsafe 
reverse_string function.  

Example 5-7: Using a Mutex with a Thread-Unsafe Interface (reverse_string.c) 

pthread_mutex_t reverse_string_mutex 

#define safe_reverse_string(x) \ 

pthread_mutex_lock(&reverse_string_mutex); \ 

reverse_string(x); \ 

pthread_mutex_unlock(&reverse_string_mutex); 

Cancellation-Safe Library Functions and System Calls 

Using thread cancellation can have a number of pitfalls, not the least of which is the 
accidental cancellation of a thread that holds a lock or that has just allocated some 
memory. We helped you safeguard your code against such disasters in Chapter 4, 
Managing Pthreads. Now we'll take some time to acquaint you with what Pthreads 
vendors do to ensure that their libraries continue to work as expected when confronted 
with cancellation in a multithreaded environment.  

When you call library functions from a program that uses thread cancellation, you must 
consider two important questions:  

 • Can the thread be safely canceled while it's executing in these functions?  

 • Do any of these functions act as cancellation points for a deferred cancellation?  

Asynchronous Cancellation-Safe Functions 

Remember that, when asynchronous cancellation is enabled for a thread, any 
pthread_cancel call aimed at it will terminate the thread immediately, no matter what it's 
doing. It's up to you to ensure that a routine running under the threat of thread 
cancellation doesn't hold locks or have resources allocated. When a routine is designed 
in this way, it's known as an asynchronous cancellation-safe function.  

As we've seen, system libraries were originally written without consideration of threads. 
Although the Pthreads standard requires vendors to make most POSIX.1 function calls 
threadsafe (and defines various workarounds for the others), it doesn't force them to 
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make POSIX.1 libraries (or ANSI C or vendor-specific libraries) asynchronous 
cancellation-safe. This means if a thread is canceled in the middle of a library call, it may 
terminate while library data is in an inconsistent state or while the library holds memory 
allocated on the thread's behalf. As a result, when using asynchronous cancellation in a 
multithreaded program, you should call only those library functions that are documented 
as being asynchronous cancellation-safe. Very few are.  

Nevertheless, if your program truly needs the functionality that these asynchronous 
cancellation-unsafe functions provide, you can dodge potential problems by resetting the 
thread's cancelability type to deferred for the duration of the function call. Defining a 
wrapper macro, as shown in Example 5-8, should do the trick.  

Example 5-8: An Asynchronous Cancellation Wrapper Macro (async_safe.c) 

#define async_cancel_safe_read(fd, buf, amt) \ 

   {\ 
int oldtype; \ 

pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, &oldtype); \ 

if (read(fd, buf, amt) < 0) \ 

perror("read"), exit(-1); \ 

pthread_setcanceltype(oldtype, NULL); \ 

pthread_testcancel(); \ 

   } 

A thread invokes the async_cancel_safe_read macro instead of calling read directly. The 
macro first enables deferred cancellation with a pthread_setcanceltype call, which sets 
things up so that while the thread is in the read call any cancellations delivered to it will 
be made pending. When the read call returns, the macro makes a pthread_testcancel 
call, forcing any pending cancellations to be delivered. If this is not the case, the macro 
proceeds to the next line, a pthread_setcanceltype call that sets the thread's cancelability 
type back to asynchronous.  

Cancellation Points in System and Library Calls 

Let's review what we know about cancellation points.  

When deferred cancellation is enabled for a thread, it can be terminated only at defined 
cancellation points. Thus far, we know of four Pthreads function calls that act as 
cancellation points: they are pthread_testcancel, pthread_cond_wait, 
pthread_cond_timedwait, and pthread_join. The pthread_testcancel function allows you 
to insert an explicit cancellation point in a thread. Because the other functions can cause 
a calling thread to block for a long time, they force a thread's termination if its cancellation 
is pending at the time of the call.  

It would be useful if other system and library calls that impose long waits on their callers 
could also act as cancellation points. In fact, the Pthreads standard lists over fifty 
POSIX.1 and ANSI C routines that vendors may define as cancellation points:  

closedir , ctermid, fclose, fcntl, fflush, fgetc , fgets, fopen, fprintf, fputc, fputs , fread, freopen, fscanf,  
fseek, ftell , fwrite, getc, getchar , getchar_unlocked, getc_unlocked , getcwd, getgrgid, getgrgid_r,  
getgrnam, getgrnam_r , getlogin, getlogin_r, getpwnam, getpwnam_r, getpwuid , getpwuid_r, gets,  
lseek, opendir, perror, printf, putc, putchar, putchar_unlocked, putc_unlocked , puts, readdir, remove,  
rename, rewind , rewinddir, scanf, tmpfile, tmpname, ttyname , ttyname_r, ungetc, unlink, 
    The following routines must be defined as cancellation points on all implementations:  
aio_suspend , close, creat, fcntl, fsync, mg_receive, mg_send , msync, nanosleep, open, pause, read, 
sem_wait , sigsuspend, sigtimedwait, sigwait, sigwaitinfo, sleep, system , tcdrain, wait, waitpid, write



Thread-Blocking Library Functions and System Calls 

The key reason for using threads lies in the convenience and efficiency of letting one 
thread block on an I/O operation or synchronization call while others continue performing 
the useful work of your program. With this in mind, we've assumed from the start of the 
book that each time a thread makes a system call that blocks, only the thread itself is 
stalled, not the entire process. We haven't been entirely up front with you. Our 
assumption's a bit presumptuous.  

In a nonthreaded program, system calls that perform file I/O (like open, read, and write) 
or synchronize processes (wait) block their callers until the requested operation 
completes. You can avoid some blocking on a file operation by passing the POSIX 
O_NONBLOCK flag or the BSD O_NDELAY flag to the file's open call, or the FIONBIO 
flag to an ioctl call to the file. When a process issues a subsequent read or write call on 
that file, it would receive notification of I/O completion through a SIGIO signal.  

Process blocking is fine when a process has a single execution state, but it subverts the 
whole purpose of threads. A system call that blocks a process would block all of our 
threads, and we'd lose all of the advantages of concurrency until the system call 
completes. If we used nonblocking calls as described previously, we'd need to add 
synchronization code to our threads to wait for the completion signal.  

Fortunately, the Pthreads standard requires that vendors implement many blocking 
POSIX.1 calls so that they suspend only the calling thread and not the entire process. (The 
nonblocking behavior of the I/O calls remains the same.) They include:  

fcntl,open,pause,read,sigsuspend,sleep,wait,waitpid,write
What if a blocking call supplied by your system is not listed here? If you must use the call, 
you have a few options:  

 • You may get lucky and discover your implementation has implemented the code as 
nonblocking. So much for portability!  

 
• Let your entire application stall while the call blocks. (Think of it as a rock-climbing 

expedition in which your more athletically adept friends stop to wait for you as you haul 
yourself up behind them.)  

 • Fork another process to do the call. (It works, but using threads was supposed to 
eliminate the need for you to do this.)  

 
• Use any available nonblocking alternative. Here, you avoid blocking the process, but 

you'll need to add explicit synchronization to your thread so it can retrieve the results of 
the call.



Chapter 5 - Pthreads and UNIX

Pthreads Programming

Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell

 Copyright © 1996 O'Reilly & Associates, 
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Threads and Process Management 

On a Pthreads-compliant system, calls that manipulate processes, like fork and exec, still 
behave in the way they always have for nonthreaded programs. Let's see what happens 
when we make these calls from a multithreaded process.  

Calling fork from a Thread 

A process creates another process by issuing a fork call. The newly created child process 
has a new process ID but starts with the same memory image and state as its parent. At 
its birth it's an exact clone of its parent, starting execution at the point of its parent's fork 
call in the same program. Often, the new process immediately calls exec to replace its 
parent's program with a new program. It then sets out on its own business.  

In a Pthreads-compliant implementation, the fork call always creates a new child process 
with a single thread, regardless of how many threads its parent may have had at the time 
of the call. Furthermore, the child's thread is a replica of the thread in the parent that 
called fork—including a process address space shared by all of its parent's threads and 
its parent thread's per-thread stack.  

Consider the headaches:  

 
• The new single-threaded child process could inherit held locks from threads in the 

parent that don't exist in the child. It may have no idea what these locks mean, let 
alone realize that it holds one of them. Confusion and deadlock are in the forecast.  

 • The child process could inherit heap areas that were allocated by threads in the parent 
that don't exist in the child. Here we see memory leaks, data loss, and bug reports.  

The Pthreads standard defines the pthread_atfork call to help you manage these 
problems. The pthread_atfork function allows a parent process to specify preparation and 
cleanup routines that parent and child processes run as part of the fork operation. Using 
these routines a parent or child process can manage the release and reacquisition of 
locks and resources before and after the fork.  

This is pretty complex stuff, so please bear with us.  



Fork-handling stacks 

To perform its magic, the pthread_atfork call pushes addresses of preparation and 
cleanup routines on any of three fork-handling stacks:  

 • Routines placed on the prepare stack are run in the parent before the fork.  

 • Routines placed on the parent stack are run in the parent after the fork.  

 • Routines placed on the child stack are run in the child after the fork.  

A single call to pthread_atfork places a routine on one or more of these stacks. With 
multiple calls you can place routines on any given stack in a first-in last-out order. 
Because the fork-handling stacks are a processwide resource, any thread—not just the 
one that will call fork—can push routines on them.  

In those carefree times when we throw caution to the winds and decide to fork from the 
middle of a multithread program, we typically use pthread_atfork to push mutex-locking 
calls on the prepare fork-handling stack and mutex-unlocking calls on the parent and 
child stacks. We might also place routines that release resources and reset variables on 
the child stack.  

Let's demonstrate what would happen if we did not use pthread_atfork's capabilities in 
one of those fork-crazy programs of ours. In Figure 5-1, we have two threads: a mutex 
(Lock L) and the data the mutex protects. Thread A acquires Lock L and starts to modify 
the data. Meanwhile, Thread B decides to fork. Now, the fork creates a child process 
that's a clone of its parent process, and this child shows a locked Lock L. The child 
process has a single thread, a replica of Thread B (the thread in the parent process that 
called fork). The assortment of clones and replicas that result from the fork has little effect 
on the threads in the parent process. However, things are not okay in the child. The 
locked Lock L is an utter mystery to the new Thread B in the child. If it tries to acquire 
Lock L, it will deadlock. (There's no Thread A in the child that will ever release Lock L in 
the child process's context.) If it tries to access the data without first obtaining Lock L, it 
may see the data in an inconsistent form. Life's never easy for our kids.  

Figure 5-1: Results of a fork when pthread_atfork is not used 

Now, let's use pthread_atfork to control Lock L's state at the time of the fork. The program 
we show in Figure 5-2 also has Threads A and B, Lock L, and scrupulously guarded data. 
However, we've added an initialization routine that pushes a routine that locks L on the 
prepare fork-handling stack, and a routine that unlocks L on the child and parent fork-
handling stacks. We've taken care to do this in a routine that executes before any thread 
actually uses the lock.  
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Figure 5-2: Results of a fork when pthread_atfork is used 

Sometime later, Thread A acquires the lock and starts to modify the data. When Thread 
B calls fork, the routine on the prepare stack runs in Thread B's context. This routine tries 
to obtain Lock L and will block; Lock L is still held by Thread A. Ultimately, the fork is 
delayed until Thread A releases Lock L. When this happens, the prepare routine 
succeeds, Thread B will become the owner of the lock, and the fork proceeds. As 
expected, a child process is created that's a replica of its parent. However, inthis case, 
the newly cloned Thread B in the child knows about the locked lock it finds in the child's 
context. At this point, the routine we placed on the child fork-handling stack runs and 
releases Lock L. The same routine runs from the parent fork-handling stack and releases 
the lock in the parent process. When the dust settles, the lock is unowned in both parent 
and child, and the data it protects is in a consistent state. Who could ask for more?  

Even given the capabilities of pthread_atfork, forking from a multithreaded program is no 
picnic. We kept our example simple. Imagine having to track every lock and every 
resource that may be held by every thread in your program and in every library call it 
makes! Before pursuing this course, you should consider a less complex alternative:  

 • If possible, fork before you've created any threads.  

Instead of forking, create a new thread. If you are forking to exec a binary image, can 
you convert the image to a callable shared library to which you could simply link?  

 • Consider the surrogate parent model.  

In the surrogate parent model, a program forks a child process at initialization time. 
The sole purpose of the child is to serve as a sort of "surrogate parent" for the original 
process should it ever need to fork another child. After initialization, the original parent 
can proceed to create its additional threads. When it wants to exec an image, it 
communicates this to its child (which has remained single-threaded). The child then 
performs the fork and exec on behalf of the original process.  
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Calling exec from a Thread 

An exec call changes the program image of a process. For instance, using an exec, a 
process running the shell program can switch to the vi editor program. After the exec the 
identity of the process remains the same (that is, it has the same process ID, user ID, 
etc.), but its virtual memory image is completely new and based on the program it has 
been asked to run.  

If a thread in a multithreaded process issues an exec, we'd expect that thread to start in 
the main routine of the new image. And this is essentially what happens. But what of the 
other threads? It wouldn't be of much use if the system loader picked some random 
routine entry points for them to start in. With this in mind, the Pthreads standard specifies 
that an exec call from any thread must terminate all threads in the process and start a 
single new thread at main in the new image.  

Process Exit and Threads 

Regardless of whether or not a process contains multiple threads, it can be terminated 
when:  

 • Any thread in it makes an exit system call.  

 • The thread running the main routine completes its execution.  

 • A fatal signal is delivered.  

When a process exits, all threads in it die immediately, and their resources are released. (If 
you call _exit directly, the system doesn't guarantee the cleanup.)  

Multiprocessor Memory Synchronization 

The Pthreads standard requires library implementors to synchronize memory writes (with 
respect to reads and other writes) for a subset of Pthreads and POSIX.1 functions. For 
example, if a thread calls pthread_mutex_lock, the function not only protects access to 
the shared data but also ensures that prior modifications to that data are committed to 
memory at the point of the call. The way in which this is done is implementation-specific, 
but typically involves some memory-barrier machine instruction that synchronizes cache 
and memory contents across the CPUs in a multiprocessing system. The end result is 
that any thread's view of memory is the same as that of any other thread in the same 
process, regardless of which CPUs the threads are running on.  

The functions that must synchronize memory operations include:  

pthread_cond_broadcast,pthread_mutex_unlock,pthread_cond_signal,sem_post,
pthread_cond_timedwait ,sem_trywait,pthread_cond_wait,sem_wait,pthread_create,

fork,pthread_join,wait ,pthread_mutex_trylock,waitpid,pthread_mutex_lock



Chapter 6: Practical Considerations

Overview

Writing a multithreaded program is a lot like being a bebop jazz musician in the late 
Forties. It's great to know what notes to play and the order in which to play them, but if 
the object is to play "Cherokee" as fast as possible, technique doesn't matter all that 
much. You need to fit as many notes in as short a space of time as possible and be done 
it with before the audience can catch its breath. It's performance, performance, 
performance!  

So it is with you, the writer of threaded applications. Portable library calls that provide 
task concurrency within a process are fine, but only if they deliver on the promised 
performance. So in this chapter, we move from the abstract to the practical, from the 
world of standards and reference pages to the world in which things often go wrong or 
don't go as well as we'd like. With this in mind, our discussions will focus on:  

Pthreads implementations

Pthreads implementations differ to the degree to which they're based in user space or 
kernel space. The way in which a thread library is designed on a given platform 
determines how your threads are scheduled, whether they can actually run in parallel, 
and, ultimately, how well they perform. Knowing a little bit about how your platform 
supports Pthreads can help you design your program to take advantage of the 
implementation's strong points  

Debugging 

Debugging a multithreaded program is something else. (We encourage you to write 
yours without bugs.) A multithreaded program can encounter errors, such as race 
conditions and deadlocks, that aren't found in a traditional program, and these types of 
errors are not easy to debug. Moreover, the command set of conventional debuggers 
allows you to direct only process execution; some may provide a similar command set 
to allow you to control the execution of threads. Armed with a suitable tool, how do we 
proceed to uncover and eradicate the bugs in our threads?  

Performance

We added threads to our program to obtain performance we couldn't achieve in a single-
threaded version. How do we measure this performance? How can we tune it?  



Understanding Pthreads Implementation 

Pthreads implementations fall into three basic categories:  

 • Based on pure user space.  

 • Based on pure kernel thread.  

 
• Implementations somewhere between the two. These hybrid implementations are 

referred to variously as two-level schedulers, lightweight processes (LWPs), or 
activations.  

All implementations in these categories conform to the Pthreads standard and provide 
concurrency (the basic goal of threads). However, your platform's choice of 
implementation has a radical effect on the scheduling and performance of the threads in 
your program. Just look for a moment at the extremes! Pure user-space thread 
implementations don't provide global scheduling scope and don't actually allow multiple 
threads from the same process to execute in parallel on different CPUs. At the other 
extreme, pure kernel-thread implementations don't scale well when a process has 10, 20, 
30, or more threads.  

Because Pthreads implementations are varied and complex and because 
implementations are evolving and improving at a swift rate, we can't do justice to them in 
the brief space we have in this book. The goal of this section is to introduce you to those 
differences in architectures that impact the way your program performs on various 
implementations.  

We'll set the stage for later discussions by reviewing some basic vocabulary.  

Two Worlds 

User mode commonly refers to the times when a process (or, by extension, a thread) is 
executing the instructions in its program or a library (to which the program is linked). The 
program or library knows about the various objects upon which it operates (such as code, 
data, and other abstractions) because they are defined in user space and not in the 
underlying operating system kernel.  

Kernel mode refers to a process's (or a thread's) operational mode when it's executing 
within the operating system's kernel—usually as a result of a system call or an exception. 
In kernel mode, a process runs the instructions of the core operating system to access 
resources and services on a program's behalf. While it's running in kernel mode, the 
process can access objects that are defined in kernel space and, thereby, known only to 
the kernel.  

Two Kinds of Threads 

The threads we've discussed in this book are user threads. They are programming 
abstractions that exist to be accessed by calls from within your program. In fact, the 
Pthreads standard doesn't require the operating system kernel to know anything at all 
about them. Whether a Pthread has any meaning inside the kernel or within kernel mode 
is up to the implementation.  

A kernel thread*can be something quite different. It's an abstraction for an operating 
system execution point within a process. To support the Pthreads standard, an 
implementor doesn't need to use kernel threads. As we'll see, the standard allows for 
great flexibility in the underlying implementation.  

 

* The various UNIX operating systems use different terms for kernel thread. Digital 
UNIX, which was derived from Mach 2.5, uses the term kernel thread; Sun's Solaris 
uses the term lightweight process (LWP); others use the term activation or two-level  
scheduler.



Some platforms have native, nonstandard user-space thread implementations that 
predate the Pthreads standard. (The proliferation of these nonstandard interfaces was 
actually the motivating force behind the effort to define the Pthreads standard.) These 
native thread interfaces often have very similar semantics to those of the Pthreads 
interfaces, but they don't fully comply with the syntax and functionality the standard 
requires. On these platforms, an additional layer—sometimes only an include file—exists 
to turn the native user-space threads into Pthreads that conform to the portable Pthread 
interface.  

Who's Providing the Thread? 

A Pthreads implementation supports user threads by a Pthreads-compliant library and, 
optionally, by changes to the operating system kernel. So, when we issue a 
pthread_create call on a given implementation, what is involved in creating the thread—
the Pthreads library alone, the kernel itself, or some combination of the two? We'll look at 
the various possibilities.  

User-space Pthreads implementations 

In pure user-space implementations, the kernel isn't involved at all in providing a user 
thread. As shown in Figure 6-1, the Pthreads library itself schedules threads, multiplexing 
all of a process's threads onto its single execution context. The kernel has no notion of 
threads; it continues to schedule processes as it usually does.  

This design is known as an all-to-one mapping. Out of all of a process's threads that are 
able to run at a given time, the Pthreads library selects just one to run in its process's 
context when that process is next scheduled by the kernel.  

Figure 6-1: User-space thread implementations 

A pure user-space implementation can be based quite simply on tools that UNIX 
programmers have traditionally used to manage multiple contexts within a single process: 
namely, setjmp, longjmp, and signals. The Pthreads library may define a user thread as a 
data structure that stores an execution point in the form of a jmp_buf structure saved by a 
setjmp call. When the current thread is rescheduled, it resumes the new thread that has 
been selected to run by performing a longjmp to the new thread's stored jmp_buf 
execution point.  

There are several advantages to a pure user-space implementation:  

 • Because it doesn't require changes to the operating system itself, it allows many UNIX 
vendors, and vendors of other operating systems, to quickly provide a Pthreads-
compliant library without having to invent kernel threads. For instance, Digital 
implemented its Pthreads library in this way on versions of OpenVMS prior to Version 
7.0. (Version 7.0 uses kernel threads.) Additionally, DCE includes a user-space 
implementation, thus encouraging its vendors to provide support for DCE threads by 
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relieving them of wholescale changes to their operating systems.  

 

• Because user-space implementation doesn't use expensive system calls to create 
threads and doesn't require the operating system to perform a context switch between 
threads, certain types of multithreaded applications can run faster than they would in a 
kernel-thread implementation. Among these applications are those that run exclusively 
on uniprocessing systems and those that don't have enough CPU-bound work to 
effectively use multiple CPUs.  

 
• Because user-space threads aren't known to the operating system, they can be 

created quickly and without impact to the kernel. This scales well: you can create more 
and more threads without overloading the system. Each thread is just another 
timeslice from the set of resources originally assigned to your process.  

There are also two considerable disadvantages:  

 

• The Pthreads library manages the scheduling of user threads using an all-to-one 
mapping of threads to a single process's execution context. As a result, threads within 
the same process compete against each other for CPU cycles. The operating system 
never sees an individual thread, only the process. If you raise the priority of a thread, 
it'll run more often and longer than other threads of lower priority in the same process. 
If it was your intention to give it a scheduling advantage over threads from other 
processes on the system, you'll be disappointed. To get the responsiveness you 
expect for a real-time thread from this type of implementation, you must either throw 
everybody else off the system or always run your entire process and all of its threads 
at a higher priority than everyone else. Either approach is likely to bring a system 
administrator to your office.  

 

• Because the Pthreads library's thread-scheduling ability is limited to threads within a 
process, it restricts your multithreaded program from taking advantage of multiple 
CPUs. Because the operating system is utterly unaware that many streams of 
processing are beneath a given process, it allocates available CPUs to processes, not 
threads. All threads in a process must share the CPU on which the process was 
scheduled (and do so in the timeslice given to the process). The threads can never run 
in parallel across the available CPUs, even if another CPU happens to be idle!  

Kernel thread-based Pthreads implementations 

In pure kernel thread-based implementations, the Pthreads library creates a kernel thread 
for each user thread. Because each kernel thread represents the execution context of a 
single user thread, this design is known as a one-to-one mapping. As we show in Figure 
6-2, when a CPU becomes available, the kernel chooses a kernel thread to run from 
among all the kernel threads available on the system, regardless of which processes they 
represent.  

Figure 6-2: Kernel thread-based implementations 

A pure kernel thread-based implementation depends upon the operating system to 
define, store, and reload the execution states of individual threads. The operating system 
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must now manage on a per-thread basis some of the information it's traditionally 
maintained for an individual process. For instance, each thread must have its own 
scheduling priority, its own set of saved registers, and its own CPU assignment. Other 
types of information, such as the file table, remain associated with the process.  

A good example of a pure kernel thread-based implementation is the pre-Version 4.0 
Digital UNIX, which was known as DEC OSF/1 at the time. Digital UNIX, based in part on 
the Mach operating system developed at Carnegie-Mellon University (CMU), adopted 
Mach's kernel thread design. Mach threads operate at a much lower level than Pthreads 
and provide minimal functionality. Prior to Version 4.0, the Digital UNIX Pthreads library 
requested a new Mach kernel thread from the system for each pthread_create call. 
Because the Mach kernel thread design provides few synchronization primitives, it's the 
role of the Pthreads library to implement such features as mutexes and thread joins atop 
the Mach kernel thread functionality.  

The advantages of a pure kernel thread-based implementation set to right the 
disadvantages of the pure user-space implementation:  

 

• The Pthreads library schedules user threads on a one-to-one basis to kernel threads. 
As a result, threads compete against all other threads on the system for CPU cycles, 
not just against other threads in the same process. The kernel is aware of threads. If 
you raise the priority of a thread, it'll run more often and longer than other threads of 
lower priority throughout the system.  

 

• Because the kernel schedules threads globally across the entire system, multiple 
threads in your program can run on different CPUs simultaneously, as long as their 
relative priorities are higher than those of other threads on the system. Unlike a pure 
user-space implementation, a pure kernel thread-based implementation doesn't limit 
your program to a single executing thread.  

The disadvantages of a kernel thread-based implementation are as follows:  

 

• Although less expensive than creating a new process, the creation of a new kernel 
thread does require some kernel overhead—the processing of a system call and the 
maintenance of kernel data structures. If your application will never run on a 
multiprocessor, or if its threads are not CPU bound, this overhead is unnecessary. A 
user-space implementation would probably provide better performance.  

 
• Because some cost is associated with creating and maintaining kernel threads, 

applications that use a lot of threads ("a lot" meaning 10 or more on some systems, 
hundreds on others) can significantly load a system and degrade its overall 
performance, thus affecting all running applications.  

Two-level scheduler Pthreads implementations: the best of both 
worlds 

In a two-level scheduler implementation, the Pthreads library and the operating system 
kernel cooperate to schedule user threads. Like a pure kernel thread-based 
implementation, a two-level scheduler implementation maps user threads to kernel 
threads, but instead of mapping each user thread to a kernel thread, it may map many 
user threads to any of a pool of kernel threads (see Figure 6-3). This is known as a 
some-to-one-mapping. A user thread may not have a unique relationship to a specific 
kernel thread; rather, it may be mapped to different kernel threads at different times.  



Figure 6-3: Two-level scheduler implementations 

Both the Pthreads library and the kernel maintain data structures that represent threads 
(user threads and kernel threads, respectively). The Pthreads library assigns user 

threads to run in a process's available kernel threads;* the kernel schedules kernel 
threads from the collection of all processes' runnable kernel threads. The two levels of 
scheduling allow better customized fits of actual execution contexts (kernel threads) to 
user-specified concurrency (user threads).  

 
* The Solaris Pthreads library maps user threads to LWPs. Digital UNIX Version 4.0 and 

OpenVMS Version 7.0 map user threads to kernel threads.

For example, if a program's user threads frequently sleep on timers, events, or I/O 
completion, it makes little sense to dedicate a kernel thread to each of them. The kernel 
threads will see little CPU activity. It's much more efficient to allow the Pthreads library in 
a two-level scheduler implementation to accommodate some of its user threads' spare 
and sporadic execution behavior by allotting them a single kernel thread altogether. For 
this type of program, the two-level scheduler effectively provides the benefits of a pure 
user-space implementation—less kernel overhead and better performance.  

At the other extreme, another program's user threads might be completely CPU-bound 
and runnable. Here, the two-level scheduler might assign a kernel thread to each user 
thread up to the number of CPUs on the system, acting like a pure kernel thread-based 
implementation. Whenever a CPU becomes available, the kernel may thereby select any 

of these user threads for scheduling.*

 

* The policies by which two-level scheduler implementations apportion their kernel 
threads to deserving user-space threads vary considerably. Some sophisticated 
implementations, such as Digital UNIX, may actually detect a change in a thread's 
execution behavior (for instance, as it becomes more or less CPU-bound) and adjust 
their kernel-thread assignments accordingly. Discussing the full range of 
implementation possibilities is beyond the scope of this book. However, if you are 
interested in reading more about two-level scheduler designs, we encourage you to 
look at the following publications: 

 
UNIX Internals: The New Frontiers by Uresh Vahala, Prentice Hall, 1996. Discusses 
recent technological developments in UNIX operating systems, including Solaris, SVR4, 
Digital UNIX, and Mach. 

 

"Scheduler Activations: Effective Kernel Support for the User-Level Management of 
Parallelism" by Anderson, Bershad, Lazowaska, and Levy, Department of Computer 
Science and Engineering, University of Washington, Seattle. Describes activations in 
their research operating system. This technology bears some resemblance to the 
Digital UNIX Version 4.0 two-level scheduler implementation. 

 "SunOS Multi-Threaded Architecture," USENIX Winter Conference Proceedings, 
Dallas, Texas, 1991. Describes Solaris's lightweight process implementation. 

Of course, most multithreaded programs are at neither extreme. In fact, a single program 
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may encounter periods of high I/O activity and intense CPU use over time as it executes. 
Its resource demands may change based on the input assigned to it on a given run. It 
may be subject to different constraints, such as processor speed and I/O responsiveness, 
depending upon the platform on which it's run. The ability to tailor its kernel thread 
allocation policies to an individual program is the greatest advantage of a two-level 
scheduler implementation. It can adapt automatically (or respond to customizations) to be 
more responsive to different programs, or maintain an optimal execution environment as 
a program's execution behavior changes.  

Unlike a pure user-space implementation, a two-level scheduler implementation doesn't 
bind all user threads in a process to a single kernel execution context. Instead, it allows 
multiple threads in a process to run in parallel on multiple CPUs. Unlike a pure kernel 
thread-based implementation, a two-level scheduler implementation doesn't create a 
kernel thread for every user thread. By not doing so, it avoids needless overhead if a 
kernel thread is not used enough to justify its creation. All in all, when you design tasks 
for a multithreaded program that will run under a two-level scheduler, you can be less 
finicky about segregating CPU-bound from I/O-bound work. The two-level scheduler will 
adopt user-to-kernel thread mappings that are suitable to the program's actual execution 
behavior.  

Perhaps the only disadvantage of a two-level scheduler is in its level of internal 
complexity and the effort a system developer must muster to implement one. That, 
fortunately, is not a problem for you, the application developer. Nevertheless, you may 
share in some of this complexity when you attempt to debug a multithreaded program on 
a two-level scheduler implementation and discover that it's difficult to keep track of how 
your user threads relate to the kernel threads that get placed into execution.  

What a great way to get into our next topic!  

Debugging 

Well, you probably have an independent streak and, against our earlier advice, will write 
some multithreaded programs with bugs. Debugging multithreaded programs will provide 
you with some interesting new challenges. First of all, you'll investigate types of 
programming errors that result from thread synchronization problems, namely deadlocks 
and race conditions. Second, once you've seen a problem (for instance, some data 
corruption or a hang), you'll discover you may have a hard time duplicating it. Because 
the alignment of events among threads that run concurrently is largely left up to chance, 
errors, once found, may be unrepeatable. Finally, because threads are a new technology, 
many vendors have yet to upgrade their debuggers to operate well on threaded 
programs.  

All of this is to say, quite simply, that you'll need your wits about you when debugging a 
multithreaded application! Sound like fun? Read on!  

Deadlock 

When one or more threads are spinning or have stopped permanently, chances are that 
you've encountered a deadlock. You'll have a good idea that you've run into a deadlock, 
because your program...will...just..., er, stop.  

The most common reason for a deadlock—and the easiest to solve—is forgetting to 
unlock a mutex. Deadlocks can also result from problems in the order in which threads 
obtain locks. You may need to perform a bit of detective work to resolve these. The rule 
is that all threads in your program must always pursue locks in the same order. If, en 
route to obtaining Lock B, a lock must first obtain Lock A, then no thread should try to 
obtain Lock B without first obtaining Lock A.  

You may also encounter another form of deadlock. A thread may suspend itself to wait on 
a condition variable that is never signaled by any other thread, thus falling into some sort 
of deep, undisturbed sleep. If you see a deadlock of this sort, you'd do well to look for an 
inconsistency in the way in which your thread interprets the condition. For instance, does 
one thread sleep on count = = 0 and another thread signal the condition when count < 0 ? 



A condition is usually signaled when a variable reaches a certain value. If the variable 
can never reach that value, you can anticipate trouble. If you expect a flag to be set, 
double check to ensure that it actually is; if you expect a counter to reach zero, make 
sure that it actually does.  

Fortunately, the Pthreads library knows all about the mutexes and condition variables in 
use. If you are armed with a good thread-knowledgeable debugger, you can list which 
thread is waiting for which mutex or condition variable and make great strides toward 
pinpointing the culprits of the deadlock. Even without such a debugger, you can 
periodically tap into the Pthreads library's statistics by adding simple wrapper routines 
around the Pthreads calls in your program.  

Race Conditions

A friend once told us the story of the time she and her husband set out to purchase a new 
car. On her way home from work one Friday, she stopped at a Dodge dealer in New 
Hampshire, saw the ideal minivan, and arranged a trade-in. On his way home from work 
the same day, her husband stopped at a Dodge dealer in Massachusetts, found the 
perfect vehicle, and also arranged a trade-in. We were at first surprised that they took a 
multithreaded approach to buying an automobile (where we would have chosen a more 
traditional monolithic approach) but that evening began to think about their predicament—
proud owners of three Dodge Caravans. Then again, it might be just two Caravans—they 
did in fact trade one in. But they actually traded in the same minivan twice—to two 
different dealers in two different states. The pettiest of crimes (inadvertent fraud would 
surely qualify) becomes grossly magnified when state lines are crossed; maybe they 
would somehow wind up with no Caravans if the dealers claimed a breach of contract. At 
length, they did work things out (probably by using a pthread_join or something) and 
ended up with a single minivan—a brand new one!

In our imagination, the behavior of our threaded friends may have had several possible 
outcomes, some more inconvenient than others. At the end, they "got the right answer." 
We wonder if they would get the right answer each time they set out to buy a new car in 
this way.

This is a type of race condition. A race condition occurs when multiple threads share data 
and at least one of the threads accesses the data without going through a defined 
synchronization mechanism. (You'd think our friends would have used a mutex or, better, 
a telephone call, to synchronize their car hunting.) As a result, a thread that reads the 
data at the same time as the first thread may get a corrupted value—or not, depending 
upon the timing between the two threads.  

A race condition may be difficult to detect. It may lie around in your code like an accident 
waiting to happen. It may not surface consistently; it might occur once in every hundred 
(or thousand) executions. Even if does arise, you may miss it if you're not looking very 
closely at your program's output. If you're lucky, a race condition will make a bad memory 
reference, cause a fatal signal, and crash your program. At least then you can begin the 
process of isolating the problem and identifying its cause.  

Unlike deadlocks, race conditions involve resources (such as files, buffers, and counters) 
that aren't managed by the Pthreads library. Often, a race condition involves a resource 
that you didn't realize was shared among your threads. For example, perhaps two 
threads called a nonreentrant routine from a system library, or executed some 
initialization code that you intended to be run only once. A subtler problem arises if a 
thread passes a pointer to its stack data as a parameter in a pthread_create call. Even 
though a thread's automatic data is supposed to be private, nothing prevents another 
thread from accessing it if you pass it its address! In other cases, you may be aware that 
a particular resource is shared by multiple threads, but you didn't get its synchronization 
right. For example, a thread might reference shared data after it has yielded the mutex 
that protects the data.  

Event Ordering

Because problems like deadlocks and race conditions can be intermittent, rearing up only 



once every hundred or so program runs, debugging a multithreaded program requires 
keener detective skills and more patience than you'd bring to a more traditional 
debugging session.

The ordering of the events performed collectively by a program's threads at run time 
becomes supremely important in debugging a multithreaded program. Unsynchronized 
access to shared data often works if events on that data don't collide. For instance, if 
Thread A performs an unsynchronized access of a resource it shares with Thread B 
before Thread B accesses the resource, there's no chance for a race condition to 
develop. However, if Thread B happens to access the resource while Thread A is still 
busy with it, a race condition will result. Now, the race condition may not cause an error 
every time it occurs. Sometimes your threads may, almost accidentally, come out of the 
race condition with the right answers.

To make matters worse, various things in your program's run-time environment, unrelated 
to the program itself, can impact the ordering of the program's events. Introducing a 
debugger, for instance, can cause the events to occur in an order that's different from the 
sequence they'd follow when the program is run in a production environment. Similarly, 
you may discover bugs as you move your program from one platform to another. The 
new platform's scheduling policy, performance, and system load could be different 
enough so that some tasks complete faster than others, thus disrupting the usual 
ordering of events that had up to that point concealed the bug.

Less Is Better

Remember, the roots of your program's race conditions and deadlocks are in its threads' 
use of shared data. If your threads share little data, you'll have little opportunity to create 
bugs that cause either of these problems. Moreover, because there is less 
synchronization overhead, your threads will run faster. The reduction in a program's 
complexity, as well as potential improvements in its performance, may make it worth your 
while to look at ways of localizing data access to specific threads and minimizing the 
program's overall synchronization needs.

Trace Statements 

Regardless of the capabilities of your debugger, you can insert trace statements in your 
code to monitor your program's activities. A trace statement usually takes the form of a 
printf or a write to a log file.  

If your debugger does not have built-in thread support, trace statements may be your 
only means of monitoring what your threads are doing at the time of a deadlock.  

It's handy to define trace statements as macros that can be conditionally compiled based 
on the definition of a DEBUG symbol, as shown in Example 6-1.  

Example 6-1: Trace Statement (trace.c) 

#if DEBUG 

#define DPRINTF(x)    printf x 

#else 

#define DPRINTF(x) 

#end 

In our definition of DPRINTF, we allow a variable-sized argument list, as long as you 
surround the list with double parentheses:  

DPRINTF(("module com: start. %count, %size", count, size)); 

Where should you place trace statements? Trace statements are most useful when they 
are inserted at those places where deadlocks and race conditions usually occur. For the 
best payback, place them before and after each call to these functions: 



pthread_mutex_lock, pthread_mutex_unlock, pthread_cond_wait, and 
pthread_cond_signal. You can also use a trace statement at other points to track the 
ongoing status of your program: for instance, which modules have been executed and 
what the values of counters and key variables are.  

What sort of information should a trace statement print? You should include the name of 
the current routine at the very least, plus other information that is useful in that module's 
context. If the routine is called by only one thread, the routine name may suffice to 
identify the message. However, if the routine can be called by multiple threads, you must 
also include some sort of thread identification, particularly if you're logging to the monitor 
or a common log file. You may not be able to do this as neatly as you'd like. The Pthreads 
library doesn't provide thread IDs, only thread handles. You could, however, pull 
something together that works fairly well. You could print out the thread handle address, 
which does uniquely identify each thread, and cope with a bit of awkward reading in the 
trace output. Better yet, you could assign a meaningful string to each thread handle 
address, storing them in keys or in a global array of pointers to char.  

There is one last problem to solve here. You may remember that the thread handle is 
returned in an output argument to the caller of pthread_create. This means that the 
created thread doesn't know the address in which its creator stored its handle. You'll 
need to provide some way for a thread to obtain this address so that it can include it in its 
trace messages. One approach might be to have each creating thread store the handles 
of the threads it creates in a global table. A thread that needs to find out the address of its 
own thread handle calls pthread_self to obtain a copy of its handle. It then indexes 
through this table to determine its unique handle address.  

Beware of synchronization issues when using trace statements, particularly if they write 
information to a common log file. If threads don't synchronize their writes, trace 
messages in the log file may be garbled or out of order. Moreover, if they do synchronize 
their writes by locking a mutex on the file, their execution will become linked at each 
trace, possibly masking race conditions that could occur during normal program 
execution. Furthermore, if you deploy the application with logging enabled, its 
performance will be abysmal!  

Debugger Support for Threads 

Not surprisingly, the Pthreads standard does not address debugging support for threads. 
Consequently, any thread-debugging capability you find in a debugger will be vendor-
specific. Nevertheless, a good system will extend its standard system debugger to help 
thread programmers.  

In some cases a system's debugger will not work, or become hopelessly confused, when 
it's used with a multithreaded program. Some of the issues for a debugger are formidable. 
When we set a breakpoint somewhere in a program, does it cause just the thread that 
hits it to stop, or all threads of the process? It should probably stop all threads. When we 
step through code, which thread runs?  

As an example, the ladebug debugger on Digital UNIX has features to support the 
debugging of multithreaded programs. The ladebug debugger has built-in features for 
identifying individual threads within a process and printing out their state. For instance, 
the where command allows you to specify which threads' call stacks you want to 
examine. The thread command allows you to set a particular thread as being a "current" 
thread, to which subsequent commands will apply. If we were to use ladebug to debug 
our ATM server, the session might look like this:  

% ladebug atm_svr 

Welcome to the Ladebug Debugger Version 4.0-19 

------------------ 

object file name: atm_svr 

Reading symbolic information ...done 

(ladebug) stop in main[#1: stop in int main(int, char**) ] 

(ladebug) run 



Here, we didn't specify that any particular thread take the breakpoint. Consequently, 
when we run the program, the entire process is stopped when any thread reaches main:  

[1] stopped at [main:127 0x1200022bc] 

    127   atm_server_init(argc, argv); 
(ladebug) show thread 

Thread State      Substate        Policy     Priority Name 

------ ---------- --------------- ---------- -------- ------------- 

>      1 running                    throughput 11       default thread 

      -1 blocked    kernel          fifo       32       manager thread 

      -2 ready                      idle        0       null thread for VP 0x0 

(ladebug) where 

>0  0x1200022bc in main(argc=1, argv=0x11ffff308) atm_svr.c:127 

(ladebug) p $curthread 

1 

The show thread command tells us that three threads are running. Surprise! The 
Pthreads library is itself a threaded program and creates its own daemon threads. 
(Digital's implementation uses negative numbers to identify threads that are put there by 
the system.) Thread 1 is the only thread that is created by our application. This makes 
sense because we've only just gotten into main! The where command confirms that we're 
in the first line of main.  

Next, we ask the debugger to stop in process_request. This breakpoint will apply to all 
threads—including those we're about to create. And so we continue:  

(ladebug) stop in process_request 

[#2: stop in void* process_request(void*) ] 

(ladebug) c 

After a client issues a request, the server program hits the new breakpoint: 

[2] stopped at [process_request:210 0x120002518] 

    210   workorder_t *workorderp = (workorder_t *)input_orderp; 

(ladebug) show thread 

Thread State      Substate        Policy     Priority Name 

------ ---------- --------------- ---------- -------- ------------ 

    1 blocked    kernel          throughput  11      default thread 

   -1 blocked    kernel          fifo        32      manager thread 

   -2 ready                      idle         0      null thread for VP 0x0 
>   2 running                    throughput  11      <anonymous> 

(ladebug) where 

>0  0x120002518 in process_request(input_orderp=0x140011000) atm_svr.c:210 

#1  0x3ff80823e94 in thdBase(0x0, 0x0, 0x0, 0x1, 0x45586732, 0x3) 

DebugInformationStrippedFromFile101:??? 

Now, we can see the new thread our server just created to process the incoming request. 
The > in the output of show thread tells us that this is our current thread. When we 

subsequently issue the where command, this thread's start function, process_request, 
appears on the stack above the thread "base."  

You don't need to change the current thread in ladebug just to look at a thread's stack, 



but, just for illustration purposes, that's what we'll do here:  

(ladebug) thread 1 

Thread State      Substate        Policy     Priority Name 

------ ---------- --------------- ---------- ------- ------------- 

     1 blocked    kernel          throughput 11      default thread 

(ladebug) p $curthread 

1 

(ladebug) where 

>0  0x3ff82050f28 in /usr/shlib/libc.so 

#1  0x120003a38 in server_comm_get_request(conn=0x140011100, 

                               req_buf=0x140011104="") atm_com_svr.c:187 
#2  0x120002308 in main(argc=1, argv=0x11ffff308) atm_svr.c:135 

We use the thread command to change the current thread, and then we show its stack 
with the where command. The main thread is hanging out in a Standard C library (libc) 
routine (select, to be exact) in server_comm_get_request.  

As long as we don't send it another request, Thread 1 isn't going to do much. Let's step 
through some of the processing of the request in Thread 2. Here we'll step to the 
beginning of the open_account procedure:  

(ladebug) thread 2 

Thread State      Substate        Policy     Priority Name 

------ ---------- --------------- ---------- -------- ------------- 

     2 running                    throughput 11       <anonymous> 

(ladebug) s 

stopped at [process_request:216 0x12000251c] 

    216   sscanf(workorderp->req_buf, "%d", &trans_id); 

(ladebug) s 

stopped at [process_request:220 0x12000253c] 

    220   switch(trans_id) { 

(ladebug) s 

stopped at [process_request:223 0x1200025dc] 

    223   open_account(resp_buf); 

(ladebug) s 

stopped at [open_account:327 0x120002a20] 

    327 void open_account(char *resp_buf) 

(ladebug) c 

. 

. 

. 

Process has exited with status 0 

(ladebug) quit 

% 

Digital UNIX has integrated many Pthreads features into its ladebug debugger. The 
ladebug debugger allows you to access even more detailed information by using the 
pthread command. The pthread command allows you to issue a subclass of thread-



display commands that can show you the detailed states of mutexes, condition variables, 
and threads, plus various other types of information that can help you debug a threaded 
application. For example, you'd use the pthread command to see threads' cancellation 
states and types, which threads have which signals blocked, or what the last exception a 
thread handled was.  

The pthread help command shows us a full listing of available commands.  

Example: Debugging the ATM Server 

Let's pretend we made some mistakes when writing our ATM server, and we've 
encountered deadlocks during some of our test runs. In this section, we'll illustrate how 
we'd investigate the problem using a thread-smart debugger. We'll use the Digital UNIX 
ladebug debugger just because it has good thread support. Reading this section will help 
you learn how to troubleshoot a deadlock or a race condition, even if you don't have this 
debugger.  

Debugging a deadlock caused by a missing unlock 

A deadlock would occur if a worker thread's service routine failed to unlock the mutex 
after it modified an account, as shown in Example 6-2. 

Example 6-2: A Broken Deposit Routine (atm_svr_broken.c) 

void deposit(char *req_buf, char *resp_buf) 

{ 

  int rtn; 

  int temp, id, password, amount; 

  account_t *accountp; 

  /* Parse input string */ 

  sscanf(req_buf, "%d %d %d %d ", &temp, &id, &password, &amount); 

  /* Check inputs */ 

  if ((id < 0) || (id >= MAX_NUM_ACCOUNTS)) { 

    sprintf(resp_buf, "%d %s", TRANS_FAILURE, ERR_MSG_BAD_ACCOUNT); 

    return; 

  } 

  pthread_mutex_lock(&global_data_mutex); 

  /* Retrieve account from database */ 

  if ((rtn = retrieve_account( id, &accountp)) < 0) { 

    sprintf(resp_buf, "%d %s", TRANS_FAILURE, atm_err_tbl[-rtn]); 

  } 

    . 

    . 

    . 

    /* Finish processing deposit */ 

    /* pthread_mutex_unlock(&global_data_mutex); */ 



} 

Consider the following series of transactions on our account database:  

 1. Read balance in account 3.  

 2. Deposit $100 in account 3.  

 3. Read balance in account 4.  

 4. Deposit $25 in account 3.  

Although the mutex unlock is missing, we can run the first three transactions without a 
problem. Because the read service routine's locking behavior is correct, its read of 
account 3 does not prevent the subsequent deposit to the same account. Remember too 
that each account has its own lock, so the read to account 4 does not reveal a problem. 
It's only when we again access account 3 that we stumble.  

The worker thread that handles our fourth transaction suspends in its 
pthread_mutex_lock call, waiting forever for the thread that performed the second 
transaction to unlock account 3. Because of the flaw in the deposit routine, this will never 
happen. Over time, the server will launch its maximum number of worker threads. Each 
will eventually be drawn into the black hole of account 3 (and any other account to which 
a previous thread has made a deposit).  

We could easily identify the problem by inspecting our sources, but let's use the strange 
behavior we've noticed in our server as a good reason to summon the debugger.  

% ladebug atm_svr_broken 

Welcome to the Ladebug Debugger Version 4.0-19 

------------------ 

object file name: atm_svr_broken 

Reading symbolic information ...done 

(ladebug) 

First, we'll need to choose a useful breakpoint. This is often the most difficult part of 
troubleshooting. When in doubt, you should place breakpoints at the beginning and end 
of the thread start routine, if your program contains one. In the ATM server, this would be 
the process_request routine:  

(ladebug) stop at process_request 

[#1: stop in void* process_request(void*) ] 

(ladebug) stop at "atm_svr_broken.c":257 

[#2: stop at "atm_svr_broken.c":257  ] 

(ladebug) run 

We'll get our debugging session moving by issuing some client requests. Our first 
request, a deposit, would cause the debugger to stop the program at the breakpoint we 
placed at the beginning of process_request: Here, we'll take a look at the locked mutexes 
using the show mutex command:  

[1] stopped at [process_request:213 0x120002518] 

    213   workorder_t *workorderp = (workorder_t *)input_orderp; 

(ladebug) where 

>0  0x120002518 in process_request(input_orderp=0x140011100) 
atm_svr_broken.c:213 



#1  0x3ff80823e94 in thdBase(0x0, 0x0, 0x0, 0x1, 0x45586732, 0x3)
DebugInformationStrippedFromFile101:??? 

(ladebug) show mutex with state == locked 

(ladebug) 

The show mutex command shows that no mutex locks are being held by any thread at 
this point. Let's continue the program so that we reach the breakpoint at the end of 
process_request:  

(ladebug) c 

[2] stopped at [process_request:257 0x120002678] 

    257   return(NULL); 

(ladebug) show mutex with state == locked 

Mutex 49 (normal) "mutex at 0x140001760" is locked 

(ladebug) 

Now we've hit the end of our process_request routine. This time, show mutex is telling us 
there's a mutex still locked. At this point, the error is evident. There are no other 
transactions in progress, so we know our thread has failed to unlock the mutex.  

If we disable the breakpoints and continue (or even if we step through the program), we 
find that subsequent commands to the same account hang. While one is hung, we can 
get the debugger's attention with CTRL-C, and see what's happening (see Example 6-3).  

Example 6-3: Watching Threads Hang in the ladebug Debugger 

(ladebug) c 

Thread received signal INT 

stopped at [msg_receive_trap: ??? 0x3ff8100ea44] 

(ladebug) show thread 

Thread State      Substate        Policy     Priority Name 

------ ---------- --------------- ---------- ------- ------------- 

     1 blocked    kernel          throughput 11      default thread 
>   -1 blocked    kernel          fifo       32      manager thread 

    -2 running                    idle        0      null thread for VP 0x0 

     4 blocked    mutex wait      throughput 11       <anonymous> 

(ladebug) where thread 1 

Stack trace for thread 1 

#0  0x3ff82050f28 in /usr/shlib/libc.so 

#1  0x120003a08 in server_comm_get_request(conn=0x140011000, 

                          req_buf=0x140011004="") atm_com_svr.c:187 
#2  0x120002308 in main(argc=1, argv=0x140008030) atm_svr_broken.c:138 

(ladebug) where thread 4 

Stack trace for thread 4 

#0  0x3ff8082bbf4 in /usr/shlib/libpthread.so 

#1  0x3ff80829700 in hstTransferContext(0x1, 0x140005a78, 0x3ffc0439dc0, 0x4, 

0x3ffc0438a00, 0x140011180) DebugInformationStrippedFromFile109:??? 

#2  0x3ff80813edc in dspDispatch(0x140009a10, 0x1400081a8, 0x140008030, 0x0, 

0x140001760, 

                          0x100000000) DebugInformationStrippedFromFile89:??? 
#3  0x3ff80817758 in pthread_mutex_block(0x1, 0x3ffc0433400, 0x3ffc0439dc0, 0x0, 



0x140001760, 0x0) DebugInformationStrippedFromFile95:??? 

#4  0x3ff8082b9f0 in __pthread_mutex_lock(0x3ffc0433400, 0x3ffc0439dc0, 0x0, 

0x140001760, 0x0, 0x120002bd4) DebugInformationStrippedFromFile111:??? 

#5  0x120002bd0 in deposit(req_buf=0x140011184="2 25 25 200", 

resp_buf=0x140035a18="") atm_svr_broken.c:418 

#6  0x1200025cc in process_request(input_orderp=0x140011180) atm_svr_broken.c:230 

#7  0x3ff80823e94 in thdBase(0x0, 0x0, 0x0, 0x1, 0x45586732, 0x3) 

DebugInformationStrippedFromFile101:??? 

(ladebug) quit 

% 

We see that there are two active application threads, one of which is the main thread. 
The where command tells us that the main thread (Thread 1) is in its normal hangout, 
waiting on select in server_comm_get_request. The where on Thread 4 shows us that it 
is our process_request thread (stack entry #6) and that it's waiting in the depths of 
pthread_mutex_lock (stack entry #4). It will stay there forever, because the thread that 
should have unlocked the mutex terminated sometime ago!  

Debugging a race condition caused by a missing lock 

In the debugging session in Example 6-3, we looked at the results of a forgotten 
pthread_mutex_unlock call. In Example 6-2, a unlock was forgotten and caused a 
deadlock. Our efforts to debug the missing unlock were fairly straightforward. We placed 
breakpoints at the beginning and end of the thread-starting routine and examined the 
state of the mutexes at each. What if we had forgotten a pthread_mutex_lock call in one 
of our threads? What would be the symptoms of this problem, and how would we 
proceed to debug it?  

Our ATM server starts getting into trouble as its clients issue more and more requests for 
the same account. The more worker threads that are accessing this account at the same 
time, the more likely our server is to encounter a race condition on the account's data. 
More likely than not, we would discover such race conditions by running the server under 
a suitable test suite that simulates a heavy client load. It would be unfortunate if we had 
to wait for a race condition to surface from the disastrous effects our server might have 
on our customers' real-world data. Our tests would know what results we expect from all 
our threads combined and be able to compare the final state of account data against their 
expectations.  

As we proceed to debug a race condition, our first step will be to identify the data that is 
being corrupted. Once we've found the victim, we'll ask questions that are very much like 
those you'd ask during a good game of Clue: "Which threads knew the victim?" "When 
was their last contact with the victim?" and "Do they have an alibi?" Those threads that 
approached the account holding a mutex lock (and released the lock when leaving) have 
an alibi that's air tight.  

Assume that our test suite detected an account corruption problem in the ATM server. In 
the server, threads access accounts by calling the retrieve_account routine and release 
them by calling store_account. Before it calls retrieve_account, a thread should be 
holding the account's mutex; it should release it after it calls store_account.  

In the case of the ATM server, it's easier to find the missing pthread_mutex_lock call by 
closely inspecting our code than by using the debugger. The retrieve_account routine is 
called from only three places: deposit, withdraw, and balance. These three routines 
themselves are called from only one place: process_request. Checking these four 
routines for correctly paired lock and unlock calls would quickly reveal the source of the 
error.  

When confronted with a race condition in a more complex application, you may find it 
easier to start with the debugger and then move on to code inspection. You might use the 
debugger to set a watchpoint on a piece of shared data or to set breakpoints at those 
program statements that change the data. While the program is stopped at a breakpoint, 
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you can identify the active thread and determine whether or not it holds the lock required 
for the account it's accessing.  

Performance 

If well-designed and well-written, a multithreaded program can outperform a similar 
nonthreaded application. However, if you make bad design decisions (trying to force 
concurrency on a large set of strictly ordered tasks is a very basic bad design decision) or 
poorly execute a good design, you may wind up with a program that fares worse than 
what you started with. At the very end of Chapter 1,   Why Threads?  , we discussed which 
types of applications are good candidates for threading. Here, we'll look at those 
decisions you must make once you've selected the application and begun your design 
work.  

The Costs of Sharing Too Much—Locking 

There's an unspoken tradition in our neighborhood that's beyond belief, but we'll tell you 
about it anyway. Without exception, the parents raise their children so that they're mindful 
of the virtues of sharing, which will surely be a benefit to them as they grow older and 
socialize. On any given Saturday night, herds of kids wheel about the streets on bicycles, 
skateboards, roller blades, scooters, and the like. When a boy tires of his bike, he 
exchanges it for a girl's skateboard; when a girl tires of her roller blades, she trades them 
for a boy's scooter; and so it goes. What the tradition seems to be is that any kid will 
share his or her wheels with any other kid, as long as the borrower's Dad hauls the stupid 
thing from the middle of the street back to its owner at the end of the evening. Anyone 
who has seen the neighborhood Dads out on the streets at 10 p.m. on a weekend night 
will learn this piece of wisdom: sharing is nice, but it's often inefficient—and inelegant.  

Concurrency may give a multithreaded program its greatest performance advantage over 
other styles of programming. However, the more its threads share, the more its 
performance is pulled back to that of the rank and file. Shared data (and the associated 
locks) is both the greatest asset and the biggest curse in multithreaded programming. 
That threads in the same process have equal access to a common set of resources, 
including the process's address space, allows them to communicate with each other 
much faster than independent processes can. When they need to share a particular 
resource, they don't have to copy it from one process's memory to another, nor do they 
need to use System V shared memory functions. Normal memory accesses work fine. 
Unfortunately, as we've seen, sharing isn't entirely free. It's as if multithreading allows you 
to go a bit faster than traditional speed limits, but data sharing is the speed trap in the 
bushes. We must apply a lock to brake a bit while we pass through, but once we're 

through we can cruise once again.* Although we took a performance hit, we'll still reach 
our destination sooner than we would've otherwise.  

 
* None of the authors (nor anyone else affiliated with the publication of this book) 

actually drives this way. The appearance of this metaphor in this book is not meant to 
favor any particular driving style over another. 

Locks reveal the dependencies among the threads in our program: at each lock point, 
either threads share data, or one thread must wait for another to finish some task. The 
impact of each lock on our program's performance is twofold:  

 
• There's the time it takes for a thread to obtain an unowned lock. This has little impact 

on our program's concurrency, so it's usually acceptable. The few calls required to lock 
and unlock a lock are minimal overhead.  

 
• There's the time a thread spends while waiting for a lock that's already held by another 

thread. Because it keeps the thread from accomplishing its task, this delay may cause 
a significant loss of concurrency. The loss can become magnified if other threads 
depend on the results of the blocked thread.  

Applications are suitable for threading only if access to shared data is a small part of 
them. If you find that your threads regularly block on locks and spend a lot of time waiting 
for shared data to become free, something's wrong with your program's design.  
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As a rule, you should ensure that, when your threads do hold locks, they hold them for 
the shortest possible time. This allows other threads to obtain the locks more quickly, 
avoiding the long waits that are the major hits to a program's concurrency. Examine each 
block of code framed by pthread_mutex_lock and pthread_mutex_unlock calls for 
instructions that don't require the special synchronization and could well be performed 
elsewhere.  

In the following series of examples, we'll show you some common errors in using locks 
and suggest ways that you can avoid similar problems in your code. In Example 6-4, let's 
look at some code with poor locking placement.  

Example 6-4: Code with Poor Locking Placement (badlocks.c) 

pthread_mutex_t count_lock = PTHREAD_MUTEX_INITIALIZER; 

int count = 0; 

void r1(char *fname, int x, char **bufp) 

{ 

   double temp; 

   int fd; 

   . 

   . 

   . 

   pthread_mutex_lock(&count_lock); 

   temp = sqrt(x); 

   fd = open(fname, O_CREAT | O_RDWR, 0666); 

   count++; 

   *bufp = (char *)malloc(256); 

   pthread_mutex_unlock(&count_lock); 

   . 

   . 

   . 
} 

If count is the only piece of shared data used by this code, we can make the code 
considerably more efficient by rearranging the pthread_mutex_lock and 
pthread_mutex_unlock calls as shown in Example 6-5.  

Example 6-5: Code with Poor Locking Placement, Improved (goodlocks.c) 

pthread_mutex_t count_lock = PTHREAD_MUTEX_INITIALIZER; 

int count = 0; 

void r1(char *fname, int x, char **bufp)) 

{ 

   double temp; 

   int fd; 

   . 



   . 

   . 

   temp = sqrt(x); 

   fd = open(fname, O_CREAT | O_RDWR, 0666); 

   pthread_mutex_lock(&count_lock); 

   count++; 

   pthread_mutex_unlock(&count_lock); 

   *bufp = (char *)malloc(256); 

   . 

   . 

   . 
} 

Finding poor locking policies is not often this simple. In Example 6-6, we'll look at the 
more complex situation in which the code references the shared data (count) from within 
a loop.  

Example 6-6: Code with Poor Locking Placement in a Loop (badlocks.c) 

pthread_mutex_t count_lock = PTHREAD_MUTEX_INITIALIZER; 

int count = 0; 

void r2(char *fname, int x, char **bufp) 

{ 

   double temp; 

   int i, reads; 

   int start = 0, end = LOCAL_COUNT_MAX; 

   int fd; 

   pthread_mutex_lock(&count_lock); 

   for (i = start; i < end; i++) { 

       fd = open(fname, O_CREAT | O_RDWR, 0666); 

       x = x + count; 

       temp = sqrt(x); 

       if (temp == THRESHOLD) 

          count++; 

       . 

       . 

       . 

       /* Lengthy I/O operations */ 

       . 

       . 



       . 

   } 

   pthread_mutex_unlock(&count_lock); 
} 

When examining this code, we must first decide whether or not we should move the lock 
calls from outside the loop to the inside. If the loop spends most of its processing time 
performing operations on shared data, or if its total processing time is quite short, it's 
probably most efficient to keep the lock calls outside. This would leave the whole loop in 
the critical section. On the other hand, we'd move the lock calls inside if the loop has a 
lengthy processing time and doesn't reference shared data. We need to be mindful that 
the lock calls themselves take time. We don't really want to pay the cost of the lock calls 
each time we go through the loop unless, in doing so, we significantly reduce the time we 
spend blocking other threads. We'll assume that the code in Example 6-7 pays off in that 
way.  

Example 6-7: Code with Poor Lock Placement in a Loop Improved (goodlocks.c) 

pthread_mutex_t count_lock = PTHREAD_MUTEX_INITIALIZER; 

int count = 0; 

void r2(char *fname, int x, char **bufp) 

{ 

   double temp; 

   int i, reads; 

   int start = 0, end = LOCAL_COUNT_MAX; 

   int fd; 

   for (i = start; i < end; i++) { 

       fd = open(fname, O_CREAT | O_RDWR, 0666); 

       pthread_mutex_lock(&count_lock); 

       x = x + count; 

       temp = sqrt(x); 

       if (temp == THRESHOLD) 

          count++; 

       pthread_mutex_unlock(&count_lock); 

       . 

       . 

       . 

       /* Lengthy I/O operations */ 

       . 

       . 

       . 

   } 
} 



Once you've arranged it so that threads hold locks for the shortest time possible, you 
should then focus on reducing the amount of data protected by any one lock (that is, 
reducing the lock's granularity). The smaller the unit of data a lock protects, the less likely 
it is that two threads will need to access it at the same time. For instance, if your program 
currently locks an entire database, consider locking individual records instead; if it 
currently locks records, try locking fields.  

For example, suppose we've set up locks like this:  

pthread_mutex_t data_lock; 

struct record { 

         int code; 

         int field1; 

         . 

         . 

         . 
} data[DATA_SIZE]; 

Here, a single mutex, data_lock, protects the whole array. In the following code, we'll 
rearrange our record's structure so that each record contains its own lock. Now our 
threads can lock each record individually.  

struct record { 

          pthread_mutex_t data_lock; 

          int code; 

          int field1; 

          . 

          . 

          . 
} data[DATA_SIZE]; 

Be careful when following this course. As you tune your locks to finer and finer 
granularity, you must know when to stop. Eventually, you pass the point at which it's 
useful to break down the data a lock protects. In fact, at some point, your efforts may 
result in your threads performing more locking operations—and unnecessary ones at 
that. Performance tests and profiling can help you determine the granularity at which you 
should impose locking on your program's data. Good tests can clearly identify how often 
data is being accessed and what percentage of its execution time a program spends 
waiting for locks on the data.  

Now that you've reduced the size of the code a thread executes while holding a lock, and 
reduced the size of the data each lock protects, you should consider whether some locks 
might in fact synchronize more efficiently if they were condition variables. Here's the rule 
of thumb: use locks to synchronize access to shared data, use condition variables to 
synchronize threads against events—those places in your program where one thread 
needs to wait for another to do something before proceeding.  

It's easy to get mixed up. The beginning threads programmer will often rough out a bit of 
code like that in Example 6-8.  

Example 6-8: Using a Mutex to Poll State (polling.c) 

pthread_mutex_t db_lock = PTHREAD_MUTEX_INITIALIZER; 

int db_initialized; 



. 

. 

. 

pthread_mutex_lock(&db_lock); 

while (!db_initialized) 

         pthread_mutex_unlock(&db_lock); 

         sleep(1); 

         pthread_mutex_lock(&db_lock); 
} 

pthread_mutex_unlock(&db_lock); 

. 

. 

. 

However, when we think a little harder about what we want this code to do, we realize 
that our threads are polling on the value of the db_initialized flag to determine when the 
database-initialization event has occurred. When this event occurs, our threads can 
proceed. When looked at in this light, it becomes clear that we should be using a 
condition variable instead of the mutex, as in Example 6-9.  

Example 6-9: Replacing a Mutex with a Condition Variable (polling.c) 

pthread_mutex_t db_lock = PTHREAD_MUTEX_INITIALIZER; 

pthread_cond_t db_init_cv = PTHREAD_COND_INITIALIZER; 

int db_initialized; 

pthread_mutex_lock(&db_lock); 

while (!db_initialized) { 

         . 

         . 

         . 

         pthread_cond_wait(&db_init_cv, &db_lock); 
} 

. 

. 

. 

pthread_mutex_unlock(&db_lock); 

Using the condition variable, we can spare our threads the cycles it would take for them 
to continually lock a flag and check for the event. Instead, we'll wake them only when the 
database has actually been initialized.  

After trying these methods to reduce lock contention, you might want to take a last look at 
the tasks you've delegated to the program's threads. Some tasks you've assigned to 
different threads may be linked so tightly that they can't be separated without introducing 
some strained and perhaps impossible locking requirements. If this is so, you might be 
able to increase the program's overall performance by joining the tasks and having them 
performed by a single thread.  



Thread Overhead

Although the cost of creating and synchronizing multiple threads is less than that of 
spawning and coordinating multiple processes, using threads does involve overhead 
nonetheless.

When a thread is created, the Pthreads library (and perhaps the system) must perform 
database searches and allocate new data structures, synchronizing the creation of this 
thread with other pthread_create calls that may be in progress at the same time. It must 
place the newly created thread into the system's scheduling queues. In a kernel thread-
based implementation, this requires a system call. The result is that the operating system 
allocates resources for the thread that are similar to those it allocates for a process.  

You can minimize this overhead by avoiding the simplistic one-thread-per-task model. For 
instance, our initial version of the ATM server example was rather wasteful in that it 
created a thread for each client request and then let the thread exit when it completed the 
request. The version of the server we developed at the end of Chapter 3,   Synchronizing   
Pthreads, was more efficient. When it started, it created a pool of worker threads and let 
them block on a condition variable. When a new request arrived for processing, the boss 
would signal on the condition variable, waking the workers. As they complete requests, 
workers would return to sleep on the condition variable.  

Reusing existing threads is an excellent way to avoid the overhead of thread creation. 
You may need to experiment a little to determine how many threads can run efficiently at 
the same time. At length, you should create the maximum number of threads at 
initialization time so that a thread's creation expense is not billed against the request the 
thread is meant to process.  

Thread context switches 

Once they've been created, threads must share often limited CPU resources. Even on a 
multiprocessing platform, the number of threads in your program may easily exceed the 
number of available CPUs. Regardless of whether you're using a user space or kernel 
thread-based implementation, scheduling a new thread requires a context switch 
between threads. The running thread is interrupted and its registers and other private 
resources are saved. A new thread is selected from the scheduler's priority queues, and 
its registers and private context are brought in from swap space.  

Some context switches are voluntary. If a thread is waiting for an I/O call to complete or a 
lock to be freed, it's just as if the thread has asked the operating system to remove it from 
execution and give another thread a chance to run. Others are involuntary. Maybe the 
thread has exceeded its quantum, and to be fair, it must yield the CPU. Maybe a higher 
priority thread has become runnable and is being given the CPU. In a perfect world (the 
same one in which threads never wait for other threads to unlock a mutex), no thread 
would be suspended involuntarily. Be that as it may, we'll look toward reducing the 
number of involuntary context switches as a good way to avoid the overhead of 
unnecessary context switches and improve our program's performance.  

The most common cause of involuntary context switches among threads is the normal 
expiration of time quanta. If your platform's scheduler uses a round-robin scheduling 
policy, one good place to start reducing the number of context switches is by increasing 
the quantum value. Be careful, though. Because time quanta are meant to more fairly 
distribute CPU cycles among runnable threads, you may need to cope with some side 
effects on certain types of operations. For instance, if a user clicks on a box to request a 
quick operation, he or she may need to wait longer than before because a thread 
performing a slow operation has yet to use up its quantum.  

Some Pthreads implementations allow you to control their scheduling policy, allowing you 
to ensure a quicker response time for high priority threads that are performing important 
tasks. There's a trade-off here, too, of course. The overall application might run slightly 
slower than under the default policy, because the favorable treatment enforced for high 
priority threads is causing more involuntary context switches.  

Finally, too many context switches may simply mean that your program has too many 
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threads. Try running the program with fewer threads, and see if the program speeds up. 
Eventually, you should determine when the system reaches its saturation point and limit 
the number of concurrent threads accordingly.  

Synchronization Overhead 

Each synchronization object (be it a mutex, condition variable, once block, or key) 
requires that the Pthreads library create and maintain some data structures and execute 
some code (possibly even a system call). Consequently, creating large numbers of such 
objects has its own cost. The cost can be magnified by the way in which you deploy the 
synchronization objects. For instance, if you create a lock for each record in a database, 
you increase the disk space required to store the database as well as the memory 
required to hold it while a thread is running. Nevertheless, the overhead could be 
worthwhile if the database must support different client requests simultaneously, and 
establishing fine-grained lock points at the record level allows it to do so efficiently.  

How Do Your Threads Spend Their Time? 

Profiling a program is a good first step toward identifying its performance bottlenecks. To 
track the time a program's threads spend using the CPU or waiting for locks and I/O 
completion, we can use any profiling tool that supports threads. (On Digital UNIX, the 
standard profiling tools, prof or pixie, can provide per-thread profiling data.)  

By examining the profiling data, you'll get an idea of your threads' behavior. You should 
look for answers to the following questions:  

 • Do the threads spend most of their time blocked, waiting for other threads to release 
locks?

This is a sign that the tasks the threads perform aren't really independent of each other 
or that locking is applied too coarsely to the shared data.  

 • Are they runnable for most of their time but not actually running because other threads 
are monopolizing the available CPUs?  

In this case, the number of CPU-intensive threads is outstripping the number of CPUs 
in the system. (This can also happen to multiprocess applications.) Use the W and 
xload utilities to obtain the system's load factor: that is, the average number of 
processes and threads waiting to access the CPU. Use vmstat and iostat to determine 
the percentage of time the CPU is running in user space, is running kernel-mode code, 
or is idle. If the load factor is constantly high, or the amount of idle time is negligible, 
then you have too many processes or threads for your CPU.  

 • Are they spending most of their time waiting on the completion of I/O requests?  

In this case, most of your I/O may be directed at a single disk and that disk is 
becoming quickly saturated. Thereafter, requests sent to it will wind up queued in the 
driver or at the disk. To avoid this bottleneck, you must spread the data across other 
available disks. Use the iostat tool to list the I/O transaction rates to the devices on 
your system. If you cannot utilize additional disks, you may need to reorganize your 
application so that it requires fewer disk writes.  

Performance in the ATM Server Example

Let's return to our ATM server and look at its performance. We'll create a specialized 
client program that can send the server a stream of requests and measure its response 
time. The test client measures the total time the server takes to complete a large set 
number of account transactions.

As shown in Figure 6-4, the ATM test parent program can start multiple test client 
processes to issue requests to the server across multiple connections. It can also specify 
how often a test client process accesses a specially designated "hot-spot" account. 



Finally, we can adjust the ATM server itself so that the work it performs to satisfy a 
client's request is more or less I/O intensive or CPU intensive.  

Figure 6-4: The ATM performance test setup 

To find out exactly how useful threads are, we created two additional versions of the ATM 
server—a serial server (one that doesn't use threads at all) and a multiprocess server.  

We didn't optimize any of these programs in any sense and have often added code 
specifically to increase the amount of I/O or CPU work performed by the server. Our tests 
are meant to highlight common high-level aspects of multithreaded program performance 
and are not intended to be specific benchmarking results for the platform on which we ran 
them. Results will vary across different platforms.  

We recorded the results we'll present in this section on a single-CPU Alpha-processor-
based DEC 3000 M300 workstation with 32 megabytes of memory, running Version 3.2C 
of the Digital UNIX operating system. The programs we used were Pthreads Draft 4 
versions of our ATM server programs.  

Performance depends on input workload: increasing clients and 
contention 

The ATM is a classic server—it receives multiple concurrent requests. It performs I/O 
both to obtain the requests and to process them. As we'll show in the following test runs, 
the multithreaded version of the server generally outperforms the other versions. But 
even so, the tests show that the results depend heavily on the type of input the server 
receives and the characteristics of the work the server performs to service the requests. 
The input can vary, based on the number of clients that are simultaneously active and 
how often clients request access to the same account at the same time. The server's 
response to a client's request can involve different amounts of I/O and more or less CPU-
intensive tasks.  

First, let's see whether our multithreaded server or our serial server fares better as the 
number of clients increases. During this test run, we'll increase the number of active clients 
from 1 to 15, while keeping the net amount of work the server <?troff .hw 
performs>performs constant. All the clients access their own accounts and never access 
the hot-spot account. We'll run the test on our uniprocessor under the following conditions:  

Figure 6-5 shows the results (in terms of the ratio of the execution time of the multithreaded 
server over that of the serial server).  
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Figure 6-5: Multithreaded server with increasing clients 

When we increase the number of clients, the results show:  

 • When there's just one client, the serial server outperforms the multithreaded server.  

 • When there's more than one client, each requesting transactions on different accounts, 
the multithreaded server bests the serial server.  

When there's only one client, the server has only one request to process at any given 
time. After it issues a request, each client waits for a response before making another. In 
this situation, the actions taken by the multithreaded server to create a new thread and 
synchronize access to data are pure overhead. Because this overhead is not offset by 
any gain from concurrency, the multithreaded server's performance when only one client 
is active is, at best, close to that of the serial server. We could eliminate some overhead if 
we used a thread pool, effectively moving thread creation from the server's transaction-
processing path to its initialization routine.  

When there are multiple clients, the worker threads that are processing client requests 
can work concurrently. While one thread waits for the completion of an I/O operation to a 
database account, other threads can continue their tasks and issue I/O requests to other 
accounts. In this test run, we made sure that no two threads would access the same 
account. As a result, our threads suffer the overhead of locking, but they never block on a 
lock that's held by another thread.  

Now let's see what happens to our servers when we ask the clients to modify the same 
account. During this test run, we'll gradually increase the percentage of the total requests 
that each client makes to the hot-spot account. Here, too, we'll keep the net amount of work 
the server performs constant. We'll run the test on our uniprocessor under the following 
conditions:  

Figure 6-6 shows the results.  

Figure 6-6: Multithreaded server with increasing contention 

When we increase the amount of contention, the results show that, when multiple clients 
are accessing a single hot-spot account, the serial server outperforms the multithreaded 
server.  
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As the number of requests from different clients to the hot-spot account increases, the 
performance of our multithreaded server declines. When all requests from all clients are 
directed at the same account, the server loses all concurrency; each worker thread must 
wait to obtain the lock, on the account and it's almost always held by another thread. 
When there's this amount of contention among threads, it's clear that we're asking the 
threads to perform tasks that are not independent. They're related by the shared data of 
the single account.  

The results of this test run demonstrate that multithreaded programs perform best when 
contention is the exception and not the rule. Consequently, when you're trying to 
determine whether or not an application would benefit from threads, look for tasks that 
can be performed independently, without interference from other tasks. Moreover, after 
you've designed the threads, minimize the amount of data they must share.  

Performance depends on a good locking strategy 

Now we'll look at how different locking strategies affect the performance of our 
multithreaded ATM server. We'll test three different locking designs:  

 • No locks at all (We'll disregard the inevitable race-conditions.)  

 • One lock for the entire database  

 • One lock for each account in the database  

As in our last test run, we'll gradually increase the percentage of the total requests that 
each client makes to the hot-spot account. However, in this test run, we'll track the extent 
to which a locking strategy impacts the server's performance. We'll compare the two 
versions of the server that use locks (one using a single lock on the whole database and 
one using a lock for each account) against an ideal version that uses no locks. We'll run the 
test on our uniprocessor under the following conditions:  

Figure 6-7 shows the results. 

Figure 6-7: Multithreaded server locking designs 

The results show that, when a lock is assigned to each account in the database, 
performance is better than when a single lock protects the entire database.  

When a single lock is used for the database, performance is uniformly bad, regardless of 
the amount of contention. Because all worker threads must obtain the one and only lock 
whenever they access any account in the database, they cannot concurrently access 
accounts. It matters little whether they're accessing different accounts or the same hot-
spot account.  

When we use one lock per account, we see better performance because multiple threads 
can now independently access different accounts. When we reach the extreme of 
targeting all client requests to the hot-spot account, the single-lock and multilock versions 
perform about the same. Here, the hot-spot account lock is acting like the single global 
lock because it's the only one being used.  
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The results of this test demonstrate that careful distribution of a larger number of locks 
can have less performance impact than the use of a single lock for which all threads 
contend. In another sense, the fewer locks threads can fight over the better.  

Performance depends on the type of work threads do 

Now we'll look at the types of work threads perform.  

When we add threads to an application it's to concurrently perform a set of computational 
tasks. Each task has a certain average time to complete and a certain mix of I/O and 
CPU-intensive activity. In our ATM server, the task that is being performed by worker 
threads is a deposit to an account in a bank's database.  

We've adapted our server so that we can supply startup arguments that increase either 
its I/O activity or CPU-intensive activity. We increase I/O activity by forcing threads to 
write changed accounts to disk multiple times; we increase CPU-intensive activity by 
causing them to spin in a simple counting loop. Using these arguments, we'll adjust the 
combination of CPU and I/O work a thread must perform to complete a deposit 
transaction.  

In our test run, we'll move from a completely I/O-intensive workload to a completely CPU-
intensive workload and record the results. We'll run the test on our uniprocessor under the 
following conditions:  

Figure 6-8 shows the results.  

Figure 6-8: Multithreaded server with varying I/O and CPU workloads 

The results demonstrate:  

 • In a uniprocessor configuration, the serial server outperforms the multithreaded server 
on a pure CPU-intensive workload.  

 • On a mixed workload, the multithreaded server outperforms the serial server.  

As the server's work becomes completely CPU intensive, threads no longer provide a 
performance benefit. The single CPU becomes a bottleneck for the many threads waiting 
to perform CPU-bound tasks. Think of the CPU as a resource with a single lock for which 
all threads contend.  

Key performance issues between using threads and using processes 

We'll now use our ATM server test program to highlight the ways in which performance 
differs between multithreaded and multiprocess versions of the same servers. Threads 
and processes are alike in many respects, although using processes results in more 
overhead than using threads. Processes are more expensive to create, and once 
created, they use more resources than threads to intercommunicate.  

If we replaced the multithreaded server in the previous tests with a multiprocess one, the 
basic curve of the test results would remain essentially the same. However, the point at 
which the performance of the multiprocess server would exceed that of the serial server 
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would be further out than the point we charted for the multithreaded server. In fact, to 
justify using a multiprocess server, we'd need more clients, more contention at shared 
data, or less CPU-intensive work than we'd need to justify writing a multithreaded server.  

First, let's see how our multithreaded server and multiprocess server compare as the 
number of clients increases. As in the earlier test run, we'll increase the number of active 
clients from 1 to 15, while keeping constant the net amount of work each server performs. 
All the clients access their own accounts and never access the hot-spot account. We'll run 
the test on our uniprocessor under the following conditions:  

Figure 6-9 shows the results.  

Figure 6-9: Multithreaded vs. multiprocess server performance with increasing 
clients 

The results demonstrate that the multithreaded server outperforms the multiprocess 
server, regardless of the number of clients.  

The difference between the multithreaded and multiprocess servers is in the relative 
costs of creating threads vs. creating processes. Although both threads and processes 
must obtain locks to access shared data, they don't have to wait on locks because this 
test run eliminates contention for the data.  

Now let's introduce the contention, and see how our servers fare. As in the earlier test run, 
we'll ask the clients to modify the same account and gradually increase the percentage of 
the total requests that each client makes to this account. Here too we'll keep constant the 
net amount of work the server performs. We'll run the test on our uniprocessor under the 
following conditions:  

Figure 6-10 shows the results.  

Figure 6-10: Multithreaded vs. multiprocess server performance with increasing 
contention 

The results show that the synchronization mechanisms used by the multithreaded server 
are more efficient than those used by the multiprocess server.  
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Where the multithreaded server uses mutex locks to control access to shared data, the 
multiprocess server uses System V semaphores. When there is little contention among 
threads for account data, the multithreaded server operates more efficiently because the 
Pthreads mutex-locking calls operate within user space. On the other hand, the 
multiprocess server's semaphore-locking calls are system calls and involve the operating 
system's kernel. As client contention for the hot-spot account increases, the multiprocess 
server starts catching up to the multithreaded server. It no longer matters that the 
Pthreads synchronization primitives are lighter in weight than the multiprocess ones. 
Because worker threads and child processes alike are blocked waiting for account 
access, neither server is able to provide any concurrency.  

One last difference between multithreaded and multiprocess servers that would be worth 
examining is the ways in which they share data. Whereas threads exchange data by simply 
placing it in global variables in their process's address space, processes must use pipes or 
special shared memory segments controlled by the operating system. Because we did not 
design the threads in our ATM server to share data, we have no good way of testing the 
performance of the servers' data communication mechanisms.  

Conclusion 

Back at the beginning of Chapter 1, we claimed that multiple threads were more efficient 
than multiple processes at performing the same amount of work. Now that we've reached 
the end of the book, we've shown this to be true—by our examples throughout and, 
objectively, by the performance measurements we've just discussed.  

Efficient is an odd word to use. It hints of speed, and let's face it, speed is what we want 
from our programs. (Our programs give correct results, let's leave it at that!) However, 
speedy performance is only part of the story. We want to make it clear that threads not 
only streamline the many tasks in our programs, but they also allow us to make optimal 
use of our platform's processing cycles.  

Why should we spend CPU time running the operating system when we don't have to? 
When we choose threads over processes to multitask our programs, the CPUs spend less 
time in system scheduling code, managing the grand tectonic plate shifts that process 
context switches often seem to be (the many swap I/O requests, the allocation of memory 
for child processes, the copies of parent data to a child's address space). We avoid the 
system calls that establish and manage shared memory regions. Although we cannot 
forego the expense of synchronizing access to our shared data, this is a liability for both 
thread and process multitasking models. (Judicious use of shared data and well-placed 
synchronization calls are key to any well-designed multitasking program.) All in all, 
multithreading benefits not just our program, but anyone else who is sharing the CPUs with 
us.  
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Appendix A: Pthreads and DCE
The Distributed Computing Environment (DCE), developed by the Open Software 
Foundation (OSF), consists of a toolkit and library that simplify the creation of secure, 
portable, and distributed applications for heterogeneous environments. Although DCE 
contains a great number of programming tools and server programs (and even supplies 
its own file system), we'll focus on its programming library and run-time environment in 
this appendix.  

DCE-based applications consist of client programs and server programs that use remote 
procedure calls (RPCs) to communicate with each other. Their client-server structure 
makes DCE applications natural candidates for threading. In fact, thread support is tightly 
integrated into the DCE libraries and services. We'll use this appendix to give you an idea 
of the role threads can play in a DCE-based application.  

DCE currently provides and uses the Draft 4 Pthreads interface. Check out Appendix B 
for a summary of the differences between the final Pthreads standard (which this book 
describes) and Draft 4.  

The Structure of a DCE Server 

A DCE server performs the same type of work as other servers. It waits for client 
requests on a communication channel and processes requests as they arrive. In fact, a 
DCE server looks just like any of the boss-worker style servers that we've presented 
elsewhere in this book, but it can take advantage of DCE library routines that:  

 • Automate the task of generating the more mundane server components.  

 • Transparently perform any data conversions that are required when servers or clients 
running on different platforms intercommunicate.  

 
• Integrate RPC services with other important DCE services, such as the security 

service and the name service (which locates resources for your program on remote 
systems).  

To allow a DCE server to process multiple requests concurrently, its engine uses POSIX 
threads.  

Let's look back at the ATM server program we've been using as an example. Figure A-1. 
illustrates the components of our original version of the server; Figure A-2 shows how the 
server would look in a DCE implementation.  

Figure A-1: Original ATM server components 

We can map each component in the original ATM server to a similar component in the 
DCE version of the server, as shown in Table A-1. We'll compare each component of the 
original server with its corresponding component in the DCE version in the following 
sections of this appendix.  
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Figure A-2: The ATM as a DCE server 

What Does the DCE Programmer Have to Do? 

One of the most difficult aspects of using threads under DCE-especially for the novice-is 
that DCE hides much of what is going on. If you're new to using threads, this may be 
somewhat confusing. It may appear that several critical steps are missing. For instance, 
in a DCE server you never need to call a pthread_create routine, specify thread 
attributes, or detach threads. The rpc_server_listen routine does all of this for you.  

This must delight you experienced threads programmers (who appreciate the value of a 
free lunch). What do you need to do to complete a multithreaded application that you've 
designed under DCE?  

Primarily, your job is to ensure that worker thread accesses to shared data are 
appropriately synchronized. To do so, you'd add the necessary calls to the functions 
pthread_mutex_lock, pthread_mutex_unlock, pthread_cond_wait,       and 
pthread_cond_signal in the server management routines (and any submodules or 
libraries they call).  

Although we've discussed only basic server tasks in this appendix, DCE applications do 
use threads for other purposes. For instance, you might explicitly call pthread_create to 
add threads to a DCE server for such tasks as:  

 • Renewing security credentials  

 • Handling signals  

 • Background processing  
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Appendix B: Pthreads Draft 4 vs. the Final 
Standard

So you've read the book that describes the final Pthreads standard and now discover that 
you must support or port a multithreaded program that's based on the interfaces defined 
by Draft 4. Help!  

The Pthreads interfaces and library implementations adopted by many vendors at Draft 4 
can be significantly different from those the same vendors supply now in compliance with 
the final standard. We'll help you sort out the differences in this appendix. 

To help you track down the changes that particularly affect your program, we've 
organized this appendix into sections corresponding to the major activities of a 
multithreaded program. In each section, we've classified differences as relating to either 
features or syntax. (Of course, if a Draft 4 feature was removed in the final standard, you 
may need to make a syntax change in your program to remove an undefined call or 
constant.)  

Detaching a Thread 

Feature: Draft 4 doesn't allow you to create a thread in a detached state; the final 
standard allows you to do so by using an attribute object. (See the section on thread 
attributes later in this appendix.)  

Syntax: In an implementation that conforms to the final standard, you specify the argument 
to the pthread_detach function as a pthread_t; in a Draft 4 implementation, you specify the 
same argument as a pointer to a pthread_t (* pthread_t).  

Mutex Variables 

Feature: In the final draft, mutexes have both defined and optional attributes (the priority-
scheduling attributes and the process-shared attribute we discussed in Chapter 3, 
Synchronizing Pthreads). Draft 4 defines no mutex attributes. As a result, the mutex 
attribute calls listed below and the compile-time constants 
PTHREAD_PROCESS_SHARED and PTHREAD_PROCESS_PRIVATE have no 
meaning in a Draft 4 implementation.  

 • pthread_mutexattr_getshared  

 • pthread_mutexattr_setshared  

 • pthread_mutexattr_setprotocol  

 • pthread_mutexattr_getprotocol  

 • pthread_mutexattr_setprioceiling  

 • pthread_mutexattr_getprioceiling  

Feature: Because Draft 4 doesn't allow you to statically initialize mutexes (with 
PTHREAD_MUTEX_INITIALIZER), you may need to use the pthread_once function in a 
Draft 4 implementation to avoid library initialization problems.  

Syntax: When dynamically initializing a mutex in a Draft 4 implementation, you use the 
pthread_mutexattr_default constant to request default attributes. In an implementation that 
conforms to the final standard, you specify NULL.  
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Condition Variables 

Feature: In the final draft, condition variables have both defined and optional attributes 
(the process-shared attribute we discussed in Chapter 4,   Managing Pthreads  ). Draft 4 
defines no condition variable attributes. As a result, the condition variable attribute calls 
(which are pthread_condattr_getshared and pthread_condattr_setshared) and the 
compile-time constants (which are PTHREAD_PROCESS_SHARED and 
PTHREAD_PROCESS_PRIVATE) have no meaning in a Draft 4 implementation.  

Feature: Because Draft 4 doesn't allow you to statically initialize condition variables 
(using the PTHREAD_COND_INITIALIZER constant), you may need to use the 
pthread_once function in a Draft 4 implementation to avoid library initialization problems.  

Syntax: When dynamically initializing a condition variable in a Draft 4 implementation, you 
use the pthread_condattr_default constant to request default attributes. In an 
implementation that conforms to the final standard, you specify NULL.  

Thread Attributes 

Feature: In the final draft, threads have stack-address and detached-state attributes (as 
discussed in Chapter 4). Draft 4 doesn't define these thread attributes. As a result, the 
thread attribute calls (pthread_attr_setstackaddr, pthread_attr_getstackaddr, 
pthread_attr_setdetachstate, and pthread_attr_getdetachstate) have no meaning in a 
Draft 4 implementation.  

Feature: Draft 4 does not define a way for you to set the scheduling scope of a thread. 
(See the section on scheduling later in this appendix.)  

Syntax: To destroy a thread attribute object in a Draft 4 implementation, you call 
pthread_attr_delete; in an implementation that conforms to the final standard, you call 
pthread_attr_destroy.  

Syntax: The Pthreads library calls you use to change thread-scheduling attributes have 
different names in Draft 4 and the final standard. (See the section on scheduling later in 
this appendix.)  

The pthread_once Function 

Syntax: Whereas Draft 4 defines the constant pthread_once_init (in lowercase letters) to 
represent the initialized value of a once block, the final standard defines the constant 
PTHREAD_ONCE_INIT (in uppercase letters).  

Keys 

Feature: Draft 4 has no equivalent to the pthread_key_delete function that's defined in 
the final standard.  

Syntax: To initialize a key in a Draft 4 implementation, you call pthread_keycreate; in an 
implementation that conforms to the final standard, you call pthread_key_create. 

Cancellation 

Syntax: To set the cancellation state of a thread on an implementation that conforms to 
the final standard, you call pthread_setcancelstate with either the 
PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE constant. In a Draft 4 
implementation, you call pthread_setcancel with either the CANCEL_ON or 
CANCEL_OFF constant (to enable or disable cancellation, respectively).  
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Syntax: To set the cancellation type of a thread on an implementation that conforms to the 
final standard, you call the pthread_setcanceltype function with either the 
PTHREAD_CANCEL_ASYNCHRONOUS or PTHREAD_CANCEL_DEFERRED constant. 
In a Draft 4 implementation, you call pthread_setasynccancel with either the CANCEL_ON 
or CANCEL_OFF constant (to asynchronous cancellation or deferred cancellation, 
respectively).  

Scheduling 

Feature: Draft 4 does not define a way for you to set the scheduling scope of a thread. As 
a result, the scheduling scope calls (pthread_attr_setscope and pthread_attr_getscope) 
have no meaning in a Draft 4 implementation.  

Feature: Draft 4 defines a number of symbolic constants (for example, PRI_FIFO_MAX) 
to represent the maximum and minimum scheduling priorities of threads. These 
constants have been removed from the final standard. As a result you must call 
POSIX.1b functions such as sched_get_priority_max to obtain scheduling priority limits.  

Feature: In a Draft 4 implementation, a thread calls the pthread_yield function to 
surrender the CPU to another runnable thread. In an implementation that conforms to the 
final standard, a thread calls the thread-specific POSIX.1b function sched_yield.  

Syntax: In a Draft 4 implementation, you use the pthread_setscheduler and 
pthread_setprio functions together to dynamically set a thread's scheduling 
characteristics; in an implementation that conforms to the final standard, you use just one
—pthread_setschedparam.  

Syntax: In a Draft 4 implementation, you use the pthread_attr_setprio and 
pthread_attr_getprio functions to set and get a thread's scheduling-priority attribute; in an 
implementation that conforms to the final standard, you use pthread_attr_setschedparam 
and pthread_attr_getschedparam.  

Syntax: In a Draft 4 implementation, you use the pthread_attr_setsched and 
pthread_attr_getsched calls to set and get a thread's scheduling policy; in an 
implementation that conforms to the final standard, you use the 
pthread_attr_setschedpolicy and pthread_attr_getschedpolicy calls.  

Signals 

Feature: Whereas the final standard requires vendors to provide the pthread_kill function, 
Draft 4 left it optional. If a given Draft 4 implementation supports it, the compile-time 
constant _POSIX_THREADS_PER_THREAD_SIGNALS_1 is true.  

Syntax: To manipulate per-thread signal masks in a Draft 4 implementation, you call the 
POSIX.1 sigprocmask function. (Draft 4 defined a thread-specific version of this call.) In an 
implementation that complies with the final standard, you call pthread_sigmask. Note that 
the final standard leaves the behavior of sigprocmask in a multithreaded program 
undefined.  

Threadsafe System Interfaces 

Feature: In Draft 4, threadsafe system interfaces are optional; if the interfaces are 
supported on a given implementation, the compile-time constant 
_POSIX_REENTRANT_FUNCTIONS is TRUE. On an implementation that supports the 
final standard, this constant, when defined, must always be TRUE.  

Feature: The Draft 4 version uses the term reentrant more often than it does threadsafe.  



Feature: Draft 4 and the final standard vary in their lists of those library functions and 
system calls that don't need to be made threadsafe and those calls that require new, 
alternative reentrant versions.  

Feature: Draft 4 does not define the ftrylockfile call.  

Syntax: In Draft 4, the names of the faster versions of the threadsafe character-cell I/O 
calls have the form unlocked_<xxx>; in the final standard, the names have the form 
<xxx>_unlocked.  

Error Reporting 

Feature: In Draft 4, Pthreads library functions use the errno global to indicate the reason 
(that is, the error number) for an unsuccessful function call. The final standard specifies 
that Pthreads library functions should not use errno . Instead, most Pthreads library 
functions provide the error number as the return value of an unsuccessful call.  

System Interfaces and Cancellation-Safety 

Feature: Draft 4 requires implementations to make some ANSI C routines, but no 
POSIX.1 routines, cancellation-safe; the final standard doesn't require that any ANSI C or 
POSIX.1 routines be cancellation-safe.  

Feature: Draft 4 doesn't require any system or library call to act as a cancellation point; the 
final standard requires many calls to be cancellation points.  

Process-Blocking Calls 

Feature: Draft 4 lists creat, close, and tcdrain as calls that must block only the calling 
thread, not the entire process. The final standard doesn't specify the behavior of these 
calls.  

Process Management 

Feature: Draft 4 doesn't define the pthread_atfork call.  

Feature: Draft 4 leaves as undefined the behavior of a multithreaded process when one of 
its threads calls exec.  



Appendix C: Pthreads Quick Reference
In this appendix, we'll provide a brief listing of the C language bindings of the Pthreads 
library routines:  

pthread_atfork ( )

int pthread_atfork ( 

void (*prepare)(void), 

void (*parent)(void), 

void (*child)(void)); 

Declares procedures to be called before and after a fork call. The prepare fork handler 
runs in the parent process before the fork. After the fork, the parent handler runs in the 
parent process, and the child handler runs in the child process.  

pthread_attr_destroy( ) 

int pthread_attr_destroy ( 

pthread_attr_t *attr); 

Destroys a thread attribute object.  

pthread_attr_getdetachstate( )

int pthread_attr_getdetachstate ( 

const pthread_attr_t *attr, 

int *detachstate); 

Obtains the setting of the detached state of a thread.  

pthread_attr_getinheritsched( )

int pthread_attr_getinheritsched ( 

const pthread_attr_t *attr, 

int *inheritsched); 

Obtains the setting of the scheduling inheritance of a thread.  

pthread_attr_getschedparam( )

int pthread_attr_getschedparam ( 

const pthread_attr_t *attr, 

struct sched_param *param); 

Obtains the parameters (for instance, the scheduling priority) associated with the 
scheduling policy attribute of a thread.  

pthread_attr_getschedpolicy( )

int pthread_attr_getschedpolicy ( 

const pthread_attr_t *attr, 

int *policy); 

Obtains the setting of the scheduling policy of a thread.  



pthread_attr_getscope( )

int pthread_attr_getscope ( 

const pthread_attr_t *attr, 

int *scope); 

Obtains the setting of the scheduling scope of a thread.  

pthread_attr_getstackaddr( )

int pthread_attr_getstackaddr ( 

const pthread_attr_t *attr, 

void **stackaddr); 

Obtains the stack address of a thread.  

pthread_attr_getstacksize( )

int pthread_attr_getstacksize ( 

const pthread_attr_t *attr, 

size_t *stacksize); 

Obtains the stack size of a thread. 

pthread_attr_init( )

int pthread_attr_init ( 

pthread_attr_t *attr); 

Initializes a thread attribute object. A thread specifies a thread attribute object in its 
calls to pthread_create to set the characteristics of newly created threads.  

pthread_attr_setdetachstate( )

int pthread_attr_setdetachstate ( 

pthread_attr_t *attr, 

int detachstate); 

Adjusts the detached state of a thread. A thread's detached state can be joinable 
(PTHREAD_CREATE_JOINABLE) or it can be detached 
(PTHREAD_CREATE_DETACHED). 

pthread_attr_setinheritsched( )

int pthread_attr_setinheritsched ( 

pthread_attr_t *attr, 

int inherit); 

Adjusts the scheduling inheritance of a thread. A thread can inherit the scheduling 
policy and the parameters of its creator thread (PTHREAD_INHERIT_SCHED) or 
obtain them from the thread attribute object specified in the pthread_create call 
(PTHREAD_EXPLICIT_SCHED).  

pthread_attr_setschedparam( )

int pthread_attr_setschedparam ( 



pthread_attr_t *attr, 

const struct sched_param *param); 

Adjusts the parameters (for instance, the scheduling priority) associated with the 
scheduling policy of a thread. The scheduling priority parameter (as specified in the 
struct sched_param) depends upon the selected scheduling policy (SCHED_FIFO, 
SCHED_RR, or SCHED_OTHER). Use sched_get_priority_max and 
sched_get_priority_min to obtain the maximum and minimum priority settings for a 
given policy.  

pthread_attr_setschedpolicy( )

int pthread_attr_setschedpolicy ( 

pthread_attr_t *attr, 

int policy); 

Adjusts the scheduling policy of a thread. Pthreads defines the SCHED_FIFO, 
SCHED_RR, and SCHED_OTHER policies.  

pthread_attr_setscope( )

int pthread_attr_setscope ( 

pthread_attr_t *attr, 

int scope); 

Adjusts the scheduling scope of a thread. A thread can use system-scope scheduling 
(PTHREAD_SCOPE_SYSTEM), in which case the operating system compares the 
priorities of all runnable threads of all processes systemwide in order to select a thread 
to run on an available CPU. Alternatively, it can use process-scope scheduling 
(PTHREAD_SCOPE_PROCESS), in which case only the highest priority runnable 
thread in a process competes against the highest priority threads of other processes in 
the system's scheduling activity.  

pthread_attr_setstackaddr( )

int pthread_attr_setstackaddr ( 

pthread_attr_t *attr, 

void *stackaddr); 

Adjusts the stack address of a thread.  

pthread_attr_setstacksize( )

int pthread_attr_setstacksize ( 

pthread_attr_t *attr, 

size_t stacksize); 

Adjusts the stack size of a thread. The stack size must be greater than or equal to 
PTHREAD_STACK_MIN.  

pthread_cancel( )

int pthread_cancel ( 

pthread_t thread); 

Cancels the specified thread.  



pthread_cleanup_pop( )

void pthread_cleanup_pop ( 

int execute); 

Removes the routine from the top of a thread's cleanup stack, and if execute is 
nonzero, runs it.  

pthread_cleanup_push( )

void pthread_cleanup_push ( 

void (*routine)(void *), 

void *arg); 

Places a routine on the the top of a thread's cleanup stack, and  when the routine is 
called, ensures that the specified argument is passed to it.  

pthread_condattr_destroy( )

int pthread_condattr_destroy ( 

pthread_condattr_t *attr); 

Destroys a condition variable attribute object.  

pthread_condattr_getpshared( )

int pthread_condattr_getpshared ( 

pthread_condattr_t *attr, 

int *pshared); 

Obtains the process-shared setting of a condition variable attribute object.  

pthread_condattr_init( )

int pthread_condattr_init ( 

pthread_condattr_t *attr); 

Initializes a condition variable attribute object. A thread specifies a condition variable 
attribute object in its calls to pthread_cond_init to set the characteristics of new 
condition variables.  

pthread_condattr_setpshared( )

int pthread_condattr_setpshared ( 

pthread_condattr_t *attr, 

int pshared); 

Sets the process-shared attribute in a condition variable attribute object to either 
PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE.  

pthread_cond_broadcast( )

int pthread_cond_broadcast ( 

pthread_cond_t *cond); 

Unblocks all threads that are waiting on a condition variable.  



pthread_cond_destroy( )

int pthread_cond_destroy ( 

pthread_cond_t *cond); 

Destroys a condition variable.  

pthread_cond_init( )

int pthread_cond_init ( 

pthread_cond_t *cond, 

const pthread_condattr_t *attr); 

Initializes a condition variable with the attributes specified in the specified condition 
variable attribute object. If attr is NULL, the default attributes are used.  

pthread_cond_signal( )

int pthread_cond_signal( 

pthread_cond_t *cond); 

Unblocks at least one thread waiting on a condition variable. The scheduling priority 
determines which thread is awakened.  

pthread_cond_timedwait( )

int pthread_cond_timedwait ( 

pthread_cond_t *cond, 

pthread_mutex_t *mutex, 

const struct timespec *abstime); 

Atomically unlocks the specified mutex, and places the calling thread into a wait state. 
When the specified condition variable is signaled or broadcast, or the system time is 
greater than or equal to abstime, this function reacquires the mutex and resumes its 
caller.  

pthread_cond_wait( )

int pthread_cond_wait ( 

pthread_cond_t *cond, 

pthread_mutex_t *mutex); 

Atomically unlocks the specified mutex, and places the calling thread into a wait state. 
When the specified condition variable is signaled or broadcasted, this function 
reacquires the mutex and resumes its caller.  

pthread_create( )

int pthread_create ( 

pthread_t *thread, 

const pthread_attr_t *attr, 

void *(*start_routine)(void *), 

void *arg); 

Creates a thread with the attributes specified in attr. If attr is NULL, the default 
attributes are used. The thread argument receives a thread handle for the new thread. 
The new thread starts execution in start_routine and is passed the single specified 



argument.  

pthread_detach( )

int pthread_detach ( 

pthread_t thread); 

Marks a thread's internal data structures for deletion. When a detached thread 
terminates, the system reclaims the storage used for its thread object.  

pthread_equal( )

int pthread_equal ( 

pthread_t t1, 

pthread_t t2); 

Compares one thread handle to another thread handle.  

pthread_exit( )

void pthread_exit ( 

void *value); 

Terminates the calling thread, returning the specified value to any thread that may 
have previously issued a pthread_join on the thread.  

pthread_getschedparam( )

int pthread_getschedparam ( 

pthread_t thread, 

int *policy, 

struct sched_param *param); 

Obtains both the scheduling policy and scheduling parameters of an existing thread. 
(This function differs from the pthread_attr_getschedpolicy function and the 
pthread_attr_getschedparam function in that the latter functions return the policy and 
parameters that will be used whenever a new thread is created.)  

pthread_getspecific( )

void *pthread_getspecific ( 

pthread_key_t key); 

Obtains the thread-specific data value associated with the specified key in the calling 
thread.  

pthread_join( )

int pthread_join ( 

pthread_t thread, 

void **value_ptr); 

Causes the calling thread to wait for the specified thread's termination. The value_ptr 
parameter receives the return value of the terminating thread.  

pthread_key_create( )



int pthread_key_create ( 

pthread_key_t *key, 

void (*destructor)(void *)); 

Generates a unique thread-specific key that's visible to all threads in a process. 
Although different threads can use the same key, the value any thread associates with 
the key (by calling pthread_specific) are specific to that thread alone and persist for 
the life of that thread. When a thread terminates, its thread-specific data value is 
destroyed (but the key persists until pthread_key_destroy is called). If a destructor 
routine was specified for the key in the pthread_key_create call, it's then called in the 
thread's context with the thread-specific data value associated with the key as an 
argument.  

pthread_key_delete( )

int pthread_key_delete ( 

pthread_key_t key); 

Deletes a thread-specific key.  

pthread_kill( )

int pthread_kill ( 

pthread_t thread, 

int sig); 

Delivers a signal to the specified thread.  

pthread_mutexattr_destroy( )

int pthread_mutexattr_destroy ( 

pthread_mutexattr_t *attr); 

Destroys a mutex attribute object.  

pthread_mutexattr_getprioceiling( )

int pthread_mutexattr_getprioceiling ( 

pthread_mutexattr_t *attr, 

int *prioceiling); 

Obtains the priority ceiling of a mutex attribute object.  

pthread_mutexattr_getprotocol( )

int pthread_mutexattr_getprotocol( 

pthread_mutexattr_t *attr, 

int *protocol); 

Obtains the protocol of a mutex attribute object.  

pthread_mutexattr_getpshared( )

int pthread_mutexattr_getpshared( 

pthread_mutexattr_t *attr, 

int *pshared); 



Obtains the process-shared setting of a mutex attribute object.  

pthread_mutexattr_init( )

int pthread_mutexattr_init ( 

pthread_mutexattr_t *attr); 

Initializes a mutex attribute object. A thread specifies a mutex attribute object in its 
calls to pthread_mutex_init to set the characteristics of new mutexes.  

pthread_mutexattr_setprioceiling( )

int pthread_mutexattr_setprioceiling ( 

pthread_mutexattr_t *attr, 

int prioceiling); 

Sets the priority ceiling attribute of a mutex attribute object.  

pthread_mutexattr_setprotocol( )

int pthread_mutexattr_setprotocol( 

pthread_mutexattr_t *attr, 

int protocol); 

Sets the protocol attribute of a mutex attribute object. There are three valid settings: 
PTHREAD_PRIO_INHERIT, PTHREAD_PRIO_PROTECT, or 
PTHREAD_PRIO_NONE.  

pthread_mutexattr_setpshared( )

int pthread_mutexattr_setpshared( 

pthread_mutexattr_t *attr, 

int pshared); 

Sets the process-shared attribute of a mutex attribute object to 
PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE.  

pthread_mutex_destroy( )

int pthread_mutex_destroy ( 

pthread_mutex_t *mutex); 

Destroys a mutex.  

pthread_mutex_init( )

int pthread_mutex_init ( 

pthread_mutex_t *mutex, 

const pthread_mutexattr_t *attr); 

Initializes a mutex with the attributes specified in the specified mutex attribute object. If 
attr is NULL, the default attributes are used.  

pthread_mutex_lock( )

int pthread_mutex_lock ( 

pthread_mutex_t *mutex); 



Locks an unlocked mutex. If the mutex is already locked, the calling thread blocks until 
the thread that currently holds the mutex releases it.  

pthread_mutex_trylock( )

int pthread_mutex_trylock ( 

pthread_mutex_t *mutex); 

Tries to lock a mutex. If the mutex is already locked, the calling thread returns without 
waiting for the mutex to be freed.  

pthread_mutex_unlock( )

int pthread_mutex_unlock ( 

pthread_mutex_t *mutex); 

Unlocks a mutex. The scheduling priority determines which blocked thread is resumed. 
The resumed thread may or may not succeed in its next attempt to lock the mutex, 
depending upon whether another thread has locked the mutex in the interval between 
the thread's being resumed and its issuing the pthread_mutex_lock call.  

pthread_once( )

int pthread_once ( 

pthread_once_t *once_block, 

void (*init_routine) (void); 

Ensures that init_routine will run just once regardless of how many threads in a 
process call it. All threads issue calls to the routine by making identical pthread_once 
calls (with the same once_block and init_routine). The thread that first makes the 
pthread_once call succeeds in running the routine; subsequent pthread_once calls 
from other threads do not run the routine.  

pthread_self( )

pthread_t pthread_self ( 

void); 

Obtains the thread handle of the calling thread.  

pthread_setcancelstate( )

int pthread_setcancelstate ( 

int state, 

int *oldstate); 

Sets a thread's cancelability state. You can enable a thread's cancellation by 
specifying the PTHREAD_CANCEL_ENABLE state, or disable it by specifying 
PTHREAD_CANCEL_DISABLE.  

pthread_setcanceltype( )

int pthread_setcanceltype ( 

int type, 

int *oldtype); 

Sets a thread's cancelability type. To allow a thread to receive cancellation orders only 



at defined cancellation points, you can specify the PTHREAD_CANCEL_DEFERRED 
type; this is the default. To allow a thread to be canceled at any point during its 
execution, you can specify PTHREAD_CANCEL_ASYNCHRONOUS.  

pthread_setschedparam( )

int pthread_setschedparam ( 

pthread_t thread, 

int policy, 

const struct sched_param *param); 

Adjusts the scheduling policy and scheduling parameters of an existing thread. (This 
function differs from the functions pthread_attr_setschedpolicy and 
pthread_attr_setschedparam in that they set the policy and parameters that will be 
used whenever a new thread is created.)  

pthread_setspecific( )

int pthread_setspecific ( 

pthread_key_t key, 

void *value); 

Sets the thread-specific data value associated with the specified key in the calling 
thread.  

pthread_sigmask( )

int pthread_sigmask ( 

int how, 

const sigset_t *set, 

sigset_t *oset); 

Examines or changes the calling thread's signal mask.

pthread_testcancel( )

void pthread_testcancel ( 

void); 

Requests that any pending cancellation request be delivered to the calling thread.

Pthreads Programming
Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farre


	Chapter 5 - Pthreads and UNIX

