

Pthreads Programming

By Bradford Nichols, Dick Buttlar, and Jackie Farrell

Copyright © 1996 O'Reilly & Associates, Inc., All rights reserved.
Printed in the United States of America

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472

Editor: Andy Oram

Production Editor: Nancy Crumpton

 Printing
History:

September 1996: First Edition
February 1998: Minor corrections

Nutshell Handbook and the Nutshell Handbook Logo are registered trademarks and The
Java Series is a trademark of O'Reilly & Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and O'Reilly &
Associates, Inc. was aware of a trademark claim, the designations have been printed in
caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the use
of the information contained herein.

ISBN: 1-5692-115-1

 Pthreads Programming Contents
 Preface Contents
Organization
Example Programs

FTP
Typographical Conventions
Acknowledgments

Chapter 1 - - Why Threads
Overview
What Are Pthreads?
Potential Parallelism
Specifying Potential Parallelism in a Concurrent Programming Environment

UNIX Concurrent Programming: Multiple Processes
Pthreads Concurrent Programming: Multiple Threads

Parallel vs. Concurrent Programming
Synchronization

Sharing Process Resources
Communication
Scheduling

Who Am I? Who Are You?
Terminating Thread Execution

Exit Status and Return Values
Pthreads Library Calls and Errors

Why Use Threads Over Processes?
A Structured Programming Environment
Choosing Which Applications to Thread

Chapter 2 - - Designing Threaded Programs
Overview
Suitable Tasks for Threading
Models

Boss/Worker Model
Peer Model
Pipeline Model

Buffering Data Between Threads
Some Common Problems
Performance
Example: An ATM Server

The Serial ATM Server
The Multithreaded ATM Server

Example: A Matrix Multiplication Program
The Serial Matrix-Multiply Program
The Multithreaded Matrix-Multiply Program

Chapter 3 - - Synchronizing Pthreads
Overview
Selecting the Right Synchronization Tool
Mutex Variables

Using Mutexes
Error Detection and Return Values
Using pthread_mutex_trylock
When Other Tools Are Better
Some Shortcomings of Mutexes
Contention for a Mutex

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_1.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_1.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_27.html#427815
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_27.html#426392
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_27.html#415118
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_27.html#413272
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_27.html#412137
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_27.html#410016
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_27.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_26.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_25.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_25.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_24.html#348499
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_24.html#333372
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_24.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_23.html#296560
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_23.html#280816
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_23.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_22.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_21.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_20.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_19.html#232098
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_19.html#218799
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_19.html#202311
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_19.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_18.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_17.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_17.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_16.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_15.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_14.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_13.html#168994
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_13.html#163924
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_13.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_12.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_11.html#149303
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_11.html#148521
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_11.html#137018
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_11.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_10.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_9.html#101391
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_9.html#82110
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_9.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_8.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_7.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_6.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_6.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_5.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_4.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_3.html#19804
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_3.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_2.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_2.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_2.html

Example: Using Mutexes in a Linked List
Complex Data Structures and Lock Granularity
Requirements and Goals for Synchronization
Access Patterns and Granularity
Locking Hierarchies
Sharing a Mutex Among Processes

Condition Variables
Using a Mutex with a Condition Variable
When Many Threads Are Waiting
Checking the Condition on Wake Up: Spurious Wake Ups
Condition Variable Attributes
Condition Variables and UNIX Signals
Condition Variables and Cancellation

Reader/Writer Locks
Synchronization in the ATM Server

Synchronizing Access to Account Data
Limiting the Number of Worker Threads
Synchronizing a Server Shutdown

Thread Pools
An ATM Server Example That Uses a Thread Pool

Chapter 4 - - Managing Pthreads
Overview
Setting Thread Attributes

Setting a Thread’s Stack Size
Setting a Thread’s Detached State
Setting Multiple Attributes
Destroying a Thread Attribute Object

The pthread_once Mechanism
Example: The ATM Server’s Communication Module

Keys: Using Thread-Specific Data
Initializing a Key: pthread_key_create
Associating Data with a Key
Retrieving Data from a Key
Destructors

Cancellation
The Complication with Cancellation
Cancelability Types and States
Cancellation Points: More on Deferred Cancellation
A Simple Cancellation Example
Cleanup Stacks
Cancellation in the ATM Server

Scheduling Pthreads
Scheduling Priority and Policy
Scheduling Scope and Allocation Domains
Runnable and Blocked Threads
Scheduling Priority
Scheduling Policy
Using Priorities and Policies
Setting Scheduling Policy and Priority
Inheritance
Scheduling in the ATM Server

Mutex Scheduling Attributes

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_38.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_37.html#937893
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_37.html#936307
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_37.html#921675
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_37.html#919950
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_37.html#918285
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_37.html#907016
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_37.html#906393
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_37.html#888683
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_37.html#887708
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_37.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_36.html#854257
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_36.html#837665
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_36.html#803429
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_36.html#791542
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_36.html#789037
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_36.html#787836
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_36.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_35.html#776686
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_35.html#773429
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_35.html#759812
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_35.html#757306
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_35.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_34.html#711459
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_34.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_33.html#710052
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_33.html#708570
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_33.html#706582
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_33.html#690794
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_33.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_32.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_32.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_31.html#611158
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_31.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_30.html#593313
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_30.html#576114
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_30.html#558252
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_30.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_29.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_28.html#511768
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_28.html#511274
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_28.html#510425
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_28.html#509463
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_28.html#508690
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_28.html#498348
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_28.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_27.html#475571
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_27.html#463328
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_27.html#462179
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_27.html#446698
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_27.html#445192
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_27.html#428910

Priority Ceiling
Priority Inheritance
The ATM Example and Priority Inversion

Chapter 5 - - Pthreads and UNIX
Overview
Threads and Signals

Traditional Signal Processing
Signal Processing in a Multithreaded World
Threads in Signal Handlers
A Simple Example
Some Signal Issues
Handling Signals in the ATM Example

Threadsafe Library Functions and System Calls
Threadsafe and Reentrant Functions
Example of Thread-Unsafe and Threadsafe Versions of the Same Function
Functions That Return Pointers to Static Data
Library Use of errno
The Pthreads Standard Specifies Which Functions Must Be Threadsafe
Using Thread-Unsafe Functions in a Multithreaded Program

Cancellation-Safe Library Functions and System Calls
Asynchronous Cancellation-Safe Functions
Cancellation Points in System and Library Calls

Thread-Blocking Library Functions and System Calls
Threads and Process Management

Calling fork from a Thread
Calling exec from a Thread
Process Exit and Threads

Multiprocessor Memory Synchronization
Chapter 6 - - Practical Considerations

Overview
Understanding Pthreads Implementation

Two Worlds
Two Kinds of Threads
Who’s Providing the Thread?

Debugging
Deadlock
Race Conditions
Event Ordering
Less Is Better
Trace Statements
Debugger Support for Threads
Example: Debugging the ATM Server

Performance
The Costs of Sharing Too Much—Locking
Thread Overhead
Synchronization Overhead
How Do Your Threads Spend Their Time?
Performance in the ATM Server Example

Conclusion
Appendix A - - Pthreads and DCE

The Structure of a DCE Server
What Does the DCE Programmer Have to Do?

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_52.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_51.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_51.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_50.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_49.html#1361568
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_49.html#1348954
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_49.html#1348371
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_49.html#1345336
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_49.html#1297539
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_49.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_48.html#1264244
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_48.html#1233697
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_48.html#1230587
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_48.html#1230103
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_48.html#1228936
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_48.html#1215450
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_48.html#1214027
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_48.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_47.html#1181783
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_47.html#1180472
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_47.html#1179773
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_47.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_46.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_46.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_45.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_44.html#1163461
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_44.html#1152490
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_44.html#1137916
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_44.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_43.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_42.html#1120252
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_42.html#1117910
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_42.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_41.html#1115402
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_41.html#1099276
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_41.html#1087315
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_41.html#1086411
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_41.html#1070896
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_41.html#1070120
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_41.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_40.html#1053501
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_40.html#1052959
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_40.html#1039355
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_40.html#1033032
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_40.html#1016081
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_40.html#1003362
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_40.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_39.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_39.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_38.html#983560
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_38.html#973276
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_38.html#966764

Example: The ATM as a DCE Server
Appendix B - - Pthreads Draft 4 vs. the Final Standard

Detaching a Thread
Mutex Variables
Condition Variables
Thread Attributes
The pthread_once Function
Keys
Cancellation
Scheduling
Signals
Threadsafe System Interfaces
Error Reporting
System Interfaces and Cancellation-Safety
Process-Blocking Calls
Process Management

Appendix C - - Pthreads Quick Reference

Preface
It's been quite a while since the people from whom we get our project assignments
accepted the excuse "Gimme a break! I can only do one thing at a time!" It used to be
such a good excuse, too, when things moved just a bit slower and a good day was
measured in written lines of code. In fact, today we often do many things at a time. We
finish off breakfast on the way into work; we scan the Internet for sports scores and stock
prices while our application is building; we'd even read the morning paper in the shower if
the right technology were in place!

Being busy with multiple things is nothing new, though. (We'll just give it a new computer-
age name, like multitasking, because computers are happiest when we avoid describing
them in anthropomorphic terms.) It's the way of the natural world—we wouldn't be able to
write this book if all the body parts needed to keep our fingers moving and our brains
engaged didn't work together at the same time. It's the way of the mechanical world—we
wouldn't have been able to get to this lovely prefabricated office building to do our work if
the various, clanking parts of our automobiles didn't work together (most of the time). It's
the way of the social and business world—three authoring tasks went into the making of
this book, and the number of tasks, all happening at once, grew exponentially as it went
into its review cycles and entered production.

Computer hardware and operating systems have been capable of multitasking for years.
CPUs using a RISC (reduced instruction set computing) microprocessor break down the
processing of individual machine instructions into a number of separate tasks. By
pipelining each instruction through each task, a RISC machine can have many
instructions in progress at the same time. The end result is the heralded speed and
throughput of RISC processors. Time-sharing operating systems have been allowing
users nearly simultaneous access to the processor for longer than we can remember.
Their ability to schedule different tasks (typically called processes) really pays off when
separate tasks can actually execute simultaneously on separate CPUs in a
multiprocessor system.

Although real user applications can be adapted to take advantage of a computer's ability
to do more than one thing at once, a lot of operating system code must execute to make
it possible. With the advent of threads we've reached an ideal state—the ability to
perform multiple tasks simultaneously with as little operating system overhead as
possible.

Although threaded programming styles have been around for some time now, it's only
recently that they've been adopted by the mainstream of UNIX programmers (not to

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_68.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_67.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_66.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_65.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_64.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_63.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_62.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_61.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_60.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_59.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_58.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_57.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_56.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_55.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_54.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_54.html
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_53.html

mention those erstwhile laborers in the vineyards of Windows NT and other operating
systems). Software sages swear at the lunchroom table that transaction processing
monitors and real-time embedded systems have been using thread-like abstractions for
more than twenty years. In the mid-to-late eighties, the general operating system
community embarked on several research efforts focused on threaded programming
designs, as typified by the work of Tom Doeppner at Brown University and the Mach OS
developers at Carnegie-Mellon. With the dawn of the nineties, threads became
established in the various UNIX operating systems, such as USL's System V Release 4,
Sun Solaris, and the Open Software Foundation's OSF/1. The clash of platform-specific
threads programming libraries advanced the need of some portable, platform-
independent threads interface. The IEEE has just this year met this need with the
acceptance of the IEEE Standard for Information Technology Portable Operating System
Interface (POSIX) Part 1: System Application Programming Interface (API) Amendment
2: Threads Extension [C Language]—the Pthreads standard, for short.

This book is about Pthreads—a lightweight, easy-to-use, and portable mechanism for
speeding up applications.

Organization

We'll start off Chapter 1, Why Threads? , by introducing you to multithreading as a way of
performing the many tasks of a program with greater efficiency and speed than would be
possible in a serial or multiprocess design. We'll then examine the pitfalls of serial and
multiprocess programming, and discuss the concept of potential parallelism, the
cornerstone of any decision to write a multitasking program. We'll introduce you to your
first Pthreads call—pthread_create—and look at those structures by which a thread is
uniquely identified. We'll briefly examine the ways in which multiple threads in the same
process exchange data, and we'll highlight some synchronization issues.

We'll continue our discussion of planning and structuring a multithreaded program in
Chapter 2, Designing Threaded Programs . Here, we'll look at the types of applications
that can benefit most from multithreading. We'll present the three classic methods for
distributing work among threads—the boss/worker model, the peer model, and the
pipeline model. We'll also compare two strategies for creating threads—creation on
demand versus thread pools. After a brief discussion of thread data-buffering techniques,
we'll introduce the ATM server application example that we'll use as the proving ground
for thread concepts we'll examine throughout the rest of the book.

In Chapter 3, Synchronizing Pthreads , we'll look at the tools that the Pthreads library
provides to help you ensure that threads access shared data in an orderly manner. This
chapter includes lengthy discussions of mutex variables and condition variables, the two
primary Pthreads synchronization tools. It also describes reader/writer locks, a more
complex synchronization tool built from mutexes and condition variables. By the end of
the chapter, we will have added synchronization to our ATM server example and
presented most of what you'll need to know to write a working multithreaded program.

We'll look at the special characteristics of threads and the more advanced features of the
Pthreads library in Chapter 4, Managing Pthreads . We'll cover some large topics, such as
keys (a very handy way for threads to maintain private copies of shared data) and
cancellation (a practical method for allowing your threads to be terminated
asynchronously without disturbing the state of your program's data and locks). We'll cover
some smaller topics, such as thread attributes, including the one that governs the
persistence of a thread's internal state. (When you get to this chapter, we promise that
you'll know what this means, and you may even value it!) A running theme of this chapter
are the various tools that, when combined, allow you to control thread scheduling policies
and priorities. You'll find these discussions especially important if your program includes
one or more real-time threads.

In Chapter 5, Pthreads and UNIX , we'll describe how multithreaded programs interact
with features of the UNIX operating system that many serial programs take for granted.
First, we'll examine the special challenges UNIX signals pose to multithreaded programs;
we'll look at the types of signals threads must worry about and how you can direct certain
signals to specific threads. We'll then focus on the requirements the Pthreads library

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=986815.html#986815
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=986815.html#986815
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=366376.html#366376
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=366376.html#366376
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=197741.html#197741
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=197741.html#197741
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=36527.html#36527
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=36527.html#36527

imposes on system calls and libraries to allow them to work correctly when multiple
threads from the same process are using them at the same time. Finally, we'll show you
what the UNIX fork and exec calls do to threads. (It isn't always pretty.)

After we've dealt with the fundamentals of Pthreads programming in the earlier chapters,
we turn to the more basic issues you'll face in deploying a multithreaded application in
Chapter 6, Practical Considerations . The theme of this chapter is speed. We'll look at
those performance concerns over which you have little control—those that are inherent in
a given platform's Pthreads implementation. Here, we'll profile the three major ways
implementors design a Pthreads-compliant platform, listing the advantages and
drawbacks of each. We'll move on to a discussion of debugging threads, where we'll
illustrate a number of debugging strategies using a thread-capable debugger. Finally,
we'll look at various alternatives for improving our program's performance. We'll run some
tests on various versions of our ATM server to test their performance as contention and
workload increase.

We've also included three brief appendixes:

 • Appendix A, Pthreads and DCE , shows how a multithreaded program might be written
using the Open Software Foundation's Distributed Computing Environment (DCE).

 • Appendix B, Pthreads Draft 4 vs. the Final Standard , lists the differences between
Draft 4 of the Pthreads standard and Draft 10, its final version.

 • Appendix C, Pthreads Quick Reference , is meant to help you find the syntax of any
Pthreads library call quickly, without the need for another book.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1464692.html#1464692
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1464692.html#1464692
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1445545.html#1445545
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1445545.html#1445545
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1398768.html#1398768
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1398768.html#1398768
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1166319.html#1166319
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1166319.html#1166319

Example Programs

You can obtain the source code for the examples presented in this bookfromO'Reilly &
Associates through their Internet server.

The example programs in this book are available electronically by FTP.

FTP

To use FTP, you need a machine with direct access to the Internet. A sample session is
shown, with what you should type in boldface.

%ftp ftp.uu.net

Connected to ftp.uu.net.

220 FTP server (Version 6.21 Tue Mar 10 22:09:55 EST 1992) ready.

Name (ftp.uu.net:yourname): anonymous

331 Guest login ok, send domain style e-mail address as password.

Password: yourname@ora.com (use your user name and host here)
230 Guest login ok, access restrictions apply.

ftp> cd /published/oreilly/nutshell/pthreads

250 CWD command successful.

ftp> binary (Very important! You must specify binary transfer for
compressed files.)

200 Type set to I.

ftp> get examples.tar.gz

200 PORT command successful.

150 Opening BINARY mode data connection for examples.tar.gz.
226 Transfer complete.

ftp> quit

221 Goodbye.

%

The file is a compressed tar archive; extract the files from the archive by typing:

% gzcat examples.tar.gz | tar xvf -

System V systems require the following tar command instead:

% gzcat examples.tar.gz | tar xof -

If gzcat is not available on your system, use separate gunzip and tar or shar
commands.

% gunzip examples.tar.gz

% tar xvf examples.tar

Typographical Conventions

The following font conventions are used in this book:

 • Italic is used for function names, filenames, program names, commands, and
variables. It's also used to identify new terms and concepts when they are introduced.

 • Constant Width is used for code examples and for the system output portion of
interactive examples.

 • Constant Bold is used in interactive examples to show commands or other text that
would be typed literally by the user.

 • Constant Italic identifies programmer-supplied variables in the C language
function bindings that appear in Appendix C, Pthreads Quick Reference .

Acknowledgments

First of all, we'd like to thank Andy Oram, our editor at O'Reilly & Associates. He stuck
with us through the long haul, and the book benefits from his attentive reviews, technical
expertise, and sheer professionalism on this book beyond measure. We're also indebted
to our technical reviewers: Jeff Denham, Bill Gallmeister, and Dean Brock. Jeff, Greg
Nichols, and Bernard Farrell read and commented on early drafts of the book. Thank you
all!

Brad: "The inspiration for this book came from a threads programming seminar I
developed back in 1991 for the Institute for Software Advancement (ISA). I'd like to
express my appreciation to Rich Mitchell of ISA and Nick Uginow of DEC for setting me
on this track, as well as the good folks at DECwest in Seattle and DEC software
engineering in Nashua, New Hampshire, who attended my seminars and helped the
course evolve. I'd like to acknowledge the support and encouragement of my former
colleagues at DEC: Andy Kegal, Fred Glover, Ed Cande, and Steve Strange. On the
personal side, I'd like to acknowledge my grandmother, Natalie Bunker, for the desire to
write a book, my wife Susan for supporting me through the long project, and my friend
Paul Silva for modeling the determination needed to complete it."

Dick: "I'd like to thank Kathleen Johnson, Thomas Doeppner, Stan Amway, Cheryl
Wiecek, Steve Fiorelli, and Dave Long. Each can lay a claim to some flavor and vintage
of threads information I filed away somewhere in my head just in case someone asked.
Special thanks to Ruth Goldenberg (the most technical and generous of writers), Mike
Etzel, and Howard Littlefield. I want to especially thank Connie, my wife, for her love,
patience, and permission to skip this year's spring cleanup. (Another book for the snow-
shovelling season, Brad and Jackie?) Finally, love to my kids: Jenn (who wants a giraffe
on the cover), Maggie (a doggie), and Tom (a lobster...on a pirate's shoulder...with one
leg....).

Jackie: "I'd like to thank Bernard, who is not only a superb technical resource but an
absolutely wonderful, supportive husband. I'd also like to thank Mark Sanders and
Jonathan Swartz for my first introductions to threads concepts. Thanks also to the whole
DECthreads team, and Peter Portante in particular, for helping refine my understanding of
the practical matters of programming with Pthreads."

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1464692.html#1464692
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1464692.html#1464692

Chapter 1: Why Threads?

Overview

When describing how computers work to someone new to PCs, it's often easiest to haul
out the old notion that a program is a very large collection of instructions that are
performed from beginning to end. Our notion of a program can include certain
eccentricities, like loops and jumps, that make a program more resemble a game of
Chutes and Ladders than a piano roll. If programming instructions were squares on a
game board, we can see that our program has places where we stall, squares that we
cross again and again, and spots we don't cross at all. But we have one way into our
program, regardless of its spins and hops, and one way out.

Not too many years ago, single instructions were how we delivered work to computers.
Since then, computers have become more and more powerful and grown more efficient
at performing the work that makes running our programs possible. Today's computers
can do many things at once (or very effectively make us believe so). When we package
our work according to the traditional, serial notion of a program, we're asking the
computer to execute it close to the humble performance of a computer of yesterday. If all
of our programs run like this, we're very likely not using our computer to its fullest
capabilities.

One of those capabilities is a computing system's ability to perform multitasking. Today,
it's frequently useful to look at our program (our very big task) as a collection of subtasks.
For instance, if our program is a marine navigation system, we could launch separate
tasks to perform each sounding and maintain other tasks that calculate relative depth,
correlate coordinates with depth measurements, and display charts on a screen. If we
can get the computer to execute some of these subtasks at the same time, with no
change in our program's results, our overall task will continue to get as much processing
as it needs, but it will complete in a shorter period of time. On some systems, the
execution of subtasks will be interleaved on a single processor; on others, they can run in
parallel. Either way, we'll see a performance boost.

Up until now, when we divided our program into multiple tasks, we had only one way of
delivering them to the processor—processes. Specifically, we started designing programs
in which parent processes forked child processes to perform subtasks. In this model,
each subtask must exist within its own process. Now, we've been given an alternative
that's even more efficient and provides even better performance for our overall program—
threads. In the threads model, multiple subtasks exist as individual streams of control
within the same process.

The threads model takes a process and divides it into two parts:

• One contains resources used across the whole program (the processwide

information),such as program instructions and global data. This part is still referred to
as the process.

 • The other contains information related to the execution state, such as a program
counter and a stack. This part is referred to as a thread.

To compare and contrast multitasking between cooperating processes and multitasking
using threads, let's first look at how the simple C program in Example 1-1 can be
represented as a process (Figure 1-1), a process with a single thread (Figure 1-2), and,
finally, as a process with multiple threads (Figure 1-3).

Example 1-1: A Simple C Program (simple.c)

#include <stdio.h>

void do_one_thing(int *);

void do_another_thing(int *);

void do_wrap_up(int, int);

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_6.html#66312
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_6.html#65548
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_6.html#54129

int r1 = 0, r2 = 0;

extern int

main(void)

{

 do_one_thing(&r1);

 do_another_thing(&r2);

 do_wrap_up(r1, r2);

 return 0;
}

void do_one_thing(int *pnum_times)

{

 int i, j, x;

 for (i = 0; i < 4; i++) {

 printf("doing one thing\n");

 for (j = 0; j < 10000; j++) x = x + i;

 (*pnum_times)++;

 }
}

void do_another_thing(int *pnum_times)

{

 int i, j, x;

 for (i = 0; i < 4; i++) {

 printf("doing another \n");

 for (j = 0; j < 10000; j++) x = x + i;

 (*pnum_times)++;

 }
}

void do_wrap_up(int one_times, int another_times)

{

int total;

total = one_times + another_times;

printf("wrap up: one thing %d, another %d, total %d\n",

one_times, another_times, total);

}

Figure 1-1 shows the layout of this program in the virtual memory of a process, indicating
how memory is assigned and which resources the process consumes. Several regions of
memory exist:

 • A read-only area for program instructions (or "text" in UNIX parlance)

 • A read-write area for global data (such as the variables r1 and r2 in our program)

Figure 1-1: The simple program as a process

 • A heap area for memory that is dynamically allocated through malloc system calls

• A stack on which the automatic variables of the current procedure are kept (along with
function arguments and other information needed to link it to the procedure that called
it), just below similar information for the procedure that called it, just below similar
information for the procedure that called it, and so on and so on. Each of these
procedure-specific areas is known as a stack frame, and one exists for each
procedure in the program that remains active. In the stack area of this illustration you
can see the stack frames of our procedures do_one_thing and main.

To complete our inventory of system resources needed to sustain this process, notice:

 • Machine registers, including a program counter (PC) to the currently executing
instruction and a pointer (SP) to the current stack frame

• Process-specific include tables, maintained by the operating system, to track system-

supplied resources such as open files (each requiring a file descriptor), communication
end points (sockets), locks, and signals

Figure 1-2 shows the same C program as a process with a single thread. Here, the
machine registers (program counter, stack pointer, and the rest) have become part of the
thread, leaving the rest as the process. As far as the outside observer of the program is
concerned, nothing much has changed. As a process with a single thread, this program
executes in exactly the same way as it does when modeled as a nonthreaded process. It
is only when we design our program to take advantage of multiple threads in the same
process that the thread model really takes off.

Figure 1-2: The simple program as a process with a thread

Figure 1-3 shows our program as it might execute if it were designed to operate in two
threads in a single process. Here, each thread has its own copy of the machine registers.
(It's certainly very handy for a thread to keep track of the instruction it is currently

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/01FIG01_0.gif
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/01FIG02_0.gif

executing and where in the stack area it should be pushing and popping its procedure-
context information.) This allows Thread 1 and Thread 2 to execute at different locations
(or exactly the same location) in the program's text. Thread 1, the thread in which the
program was started, is executing do_one_thing, while Thread 2 is executing
do_another_thing. Each thread can refer to global variables in the same data area.
(do_one_thing uses r1 as a counter; do_another_thing uses r2.) Both threads can refer to
the same file descriptors and other resources the system maintains for the process.

Figure 1-3: The simple program as a process with multiple threads

What Are Pthreads?

How do you design a program so that it executes in multiple threads within a process?
Well, for starters, you need a thread creation routine and a way of letting the new thread
know where in the program it should begin executing. But at this point, we've passed
beyond the ability to generalize.

Up to this point, we've discussed the basics of threads and thread creation at a level
common to all thread models. As we move on to discuss specifics (as we will in the
remainder of this book), we encounter differences among the popular thread packages.
For instance, Pthreads specifies a thread's starting point as a procedure name; other
thread packages differ in their specification of even this most elementary of concepts.
Differences such as this motivated IEEE to create the Pthreads standard.

Pthreads is a standardized model for dividing a program into subtasks whose execution
can be interleaved or run in parallel. The "P" in Pthreads comes from POSIX (Portable
Operating System Interface), the family of IEEE operating system interface standards in
which Pthreads is defined (POSIX Section 1003.1c to be exact). There have been and
still are a number of other threads models—Mach Threads and NT Threads, for example.
Programmers experience Pthreads as a defined set of C language programming types
and calls with a set of implied semantics. Vendors usually supply Pthreads
implementations in the form of a header file, which you include in your program, and a
library, to which you link your program.

Pthreads is a standardized model for dividing a program into subtasks whose execution
can be interleaved or run in parallel. The "P"in Pthreads comes from POSIX (Portable
Operating System Interface), the family of IEEE operating system interface standards in
which Pthreads is defined (POSIX Section 1003.1c to be exact). There have been and still
are a number of other threads models—Mach Threads and NT Threads, for example.
Programmers experience Pthreads as a defined set of C language programming types and
calls with a set of implied semantics. Vendors usually supply Pthreads implementations in
the form of a header file, which you include in your program, and a library, to which you link
your program.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/01FIG03_0.gif

Potential Parallelism

If we return to the simple program in our examples, we see that it has three tasks to
complete. The three tasks are represented by the routines do_one_thing,
do_another_thing, and do_wrap_up. The do_one_thing and do_another_thing tasks are
simply loops that print out slightly different messages and then perform some token
calculations to while away the time. The do_wrap_up task adds together the return values
from the other two tasks and prints the result. Many real programs can be split, in a
similar way, into individual tasks representing different CPU-based and I/O-based
activities. For instance, a program that retrieves blocks of data from a file on disk and
then performs computations based on their contents is an eminent candidate for
multitasking.

When we run the program, it executes each routine serially, always completely finishing
the first before starting the second, and completely finishing the second before starting
the third. If we take a closer look at the program, we see that the order in which the first
two routines execute doesn't affect the third, as long as the third runs after both of them
have completed. This property of a program—that statements can be executed in any
order without changing the result—is called potential parallelism.

To illustrate parallelism, Figure 1-4 shows some possible sequences in which the
program's routines could be executed. The first sequence is that of the original program;
the second is similar but with the first two routines exchanged. The third shows
interleaved execution of the first routines; the last, their simultaneous execution. All
sequences produce exactly the same result.

Figure 1-4: Possible sequences of the routines in the simple program

An obvious reason for exploiting potential parallelism is to make our program run faster
on a multiprocessor. However, there are additional reasons for investigating a program's
potential parallelism:

Overlapping I/O

If one or more tasks represent a long I/O operation that may block while waiting for an
I/O system call to complete, there may be performance advantages in allowing CPU-
intensive tasks to continue independently. For example, a word processor could
service print requests in one thread and process a user's editing commands in
another.

Asynchronous events

If one or more tasks is subject to the indeterminate occurrence of events of unknown
duration and unknown frequency, such as network communications, it may be more
efficient to allow other tasks to proceed while the task subject to asynchronous events
is in some unknown state of completion. For example, a network-based server could
process in-progress requests in one group of threads while another thread waits for
the asynchronous arrival of new requests from clients through network connections.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/01FIG04_0.gif

Real-time scheduling

If one task is more important than another, but both should make progress whenever
possible, you may wish to run them with independent scheduling priorities and
policies. For example, a stock information service application could use high priority
threads to receive and update displays of online stock prices and low priority threads
to display static data, manage background printing, and perform other less important
chores.

Threads are a means to identify and utilize potential parallelism in a program. You can use
them in your program design both to enhance its performance and to efficiently structure
programs that do more than one thing at a time. For instance, handling signals, handling
input from a communication interface, and managing I/O are all tasks that can be done—
and done very well—by multiple threads executing simultaneously.

Specifying Potential Parallelism in a Concurrent
Programming Environment

Now that we know the orderings that we desire or would allow in our program, how do we
express potential parallelism at the programming level? Those programming
environments that allow us to express potential parallelism are known as concurrent
programming environments. A concurrent programming environment lets us designate
tasks that can run in parallel. It also lets us specify how we would like to handle the
communication and synchronization issues that result when concurrent tasks attempt to
talk to each other and share data.

Because most concurrent programming tools and languages have been the result of
academic research or have been tailored to a particular vendor's products, they are often
inflexible and hard to use. Pthreads, on the other hand, is designed to work across
multiple vendors' platforms and is built on top of the familiar UNIX C programming
interface. Pthreads gives you a simple and portable way of expressing multithreading in
your programs.

UNIX Concurrent Programming: Multiple Processes

Before looking at threads further, let's examine the concurrent programming interface that
UNIX already supports: allowing user programs to create multiple processes and
providing services the processes can use to communicate with each other.

Example 1-2 recasts our earlier single-process program as a program in which multiple
processes execute its procedures concurrently. The main routine starts ina single
process (which we will refer to as the parent process). The parent process then creates a
child process to execute the do_one_thing routine and another to execute the
do_another_thing routine. The parent waits for both children to finish (as parents of the
human kind often do), calls the do_wrap_up routine, and exits.

Example 1-2: A Simple C Program with Concurrent Processes

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/wait.h>

void do_one_thing(int *);

void do_another_thing(int *);

void do_wrap_up(int, int);

int shared_mem_id;

int *shared_mem_ptr;

int *r1p;

int *r2p;

extern int

main(void)

{

 pid_t child1_pid, child2_pid;

 int status;

 /* initialize shared memory segment */

 shared_mem_id = shmget(IPC_PRIVATE, 2*sizeof(int), 0660);

 shared_mem_ptr = (int *)shmat(shared_mem_id, (void *)0, 0);

 r1p = shared_mem_ptr;

 r2p = (shared_mem_ptr + 1);

 *r1p = 0;

 *r2p = 0;

 if ((child1_pid = fork()) == 0) {

 /* first child */

 do_one_thing(r1p);

 exit(0);

 }

 /* parent */

 if ((child2_pid = fork()) == 0) {

 /* second child */

 do_another_thing(r2p);

 exit(0);

 }

 /* parent */

 waitpid(child1_pid, &status, 0);

 waitpid(child2_pid, &status, 0);

 do_wrap_up(*r1p, *r2p);

 return 0;

}

Creating a new process: fork

The UNIX system call that creates a new process is fork. The fork call creates a child

process that is identical toits parent process at the time the parent called fork with the
following differences:

 • The child has its own process identifier, or PID.

 • The fork call provides different return values to the parent and the child processes.

Figure 1-5 shows a process as it forks. Here, both parent and child are executing at the
point in the program just following the fork call. Interestingly, the child begins executing
as if it were returning from the fork call issued by its parent. It can do so because it starts
out as a nearly identical copy of its parent. The initial values of all of its variables and the
state of its system resources (such as file descriptors) are the same as those of its
parent.

Figure 1-5: A program before and after a fork

If the fork call returns to both the parent and child, why don't the parent and child execute
the same instructions following the fork? UNIX programmers specify different code paths
for parent and child by examining the return value of the fork call. The fork call always
returns a value of 0 to the child and the child's PID to the parent. Because of this
semantic we almost always see fork used as shown in Example 1-3.

Example 1-3: A fork Call (simple_processes.c)

if ((pid = fork()) < 0) {

 /* Fork system call failed */

 .

 .

 .

 perror("fork"), exit(1);
}else if (pid == 0) {

 /* Child only, pid is 0 */

 .

 .

 .

 return 0;
}else {

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/01FIG05_0.gif

 /* Parent only , pid is child's process ID */

 .

 .

 .
}

After the program forks into two different processes, the parent and child execute
independently unless you add explicit synchronization. Each process executes its own
instructions serially, although the way in which the statements of each may be interwoven
by concurrency is utterly unpredictable. In fact, one process could completely finish
before the other even starts (or resumes, in the case in which the parent is the last to the
finish line). To see what we mean, let's look at the output from some test runs of our
program in Example 1-2.

simple_processes

doing another

doing one thing

doing another

doing one thing

doing another

doing one thing

doing one thing

doing another

wrap up: one thing 4, another 4, total 8

simple_processes

doing another

doing another

doing one thing

doing another

doing one thing

doing one thing

doing another

doing one thing

wrap up: one thing 4, another 4, total 8

#

This program is a good example of parallelism and it works—as do the many real UNIX
programs that use multiple processes. When looking for concurrency, then, why choose
multiple threads over multiple processes? The overwhelming reason lies in the single
largest benefit of multithreaded programming: threads require less program and system
overhead to run than processes do. The operating system performs less work on behalf
of a multithreaded program than it does for a multiprocess program. This translates into a
performance gain for the multithreaded program.

Pthreads Concurrent Programming: Multiple Threads

Now that we've seen how UNIX programmers traditionally add concurrency to a program,
let's look at a way of doing so that employs threads. Example 1-4 shows how our single-
process program would look if multiple threads execute its procedures concurrently. The
program starts in a single thread, which, for reasons of clarity, we'll refer to as the main
thread. For the most part, the operating system does not recognize any thread as being a

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_9.html#82846

parent or master thread—from its viewpoint, all threads in a process are equal.

Using Pthreads function calls, the creator thread spawns a thread to execute the
do_one_thing routine and another to execute the do_another_thing routine. It waits for
both threads to finish, calls the do_wrap_up routine, and exits. In the same way that the
processes behave in our multiprocess version of the program, each thread executes
independently unless you add explicit synchronization.

Example 1-4: A Simple C Program with Concurrent Threads (simple_threads.c)

#include <stdio.h>

#include <pthread.h>

void do_one_thing(int *);

void do_another_thing(int *);

void do_wrap_up(int, int);

int r1 = 0, r2 = 0;

extern int

main(void)

{

 pthread_t thread1, thread2;

 pthread_create(&thread1,

 NULL,

 (void *) do_one_thing,

 (void *) &r1);

 pthread_create(&thread2,

 NULL,

 (void *) do_another_thing,

 (void *) &r2);

 pthread_join(thread1, NULL);

 pthread_join(thread2, NULL);

 do_wrap_up(r1, r2);

 return 0;
}

Creating a new thread: pthread_create

Whereas you create a new process by using the UNIX fork system call, you create a new
thread by calling the pthread_create Pthreads function. You provide the following
arguments:

• A pointer to a buffer to which pthread_create returns a value that identifies the newly

created thread. This value, or handle, is of type pthread_t.* You can use it in all
subsequent calls to refer to this specific thread.

 * The pthread_t type may look a little strange to you if you're used to the data types

returned by C language system calls on many UNIX systems. Because many of
these types (like int) reveal quite a bit about the underlying architecture of a given
platform (such as whether its addresses are 16, 32, or 64 bits long), POSIX prefers
to create new data types that conceal these fundamental differences. By
convention, the names of these data types end in _t.

• A pointer to a structure known as a thread attribute object. A thread attribute object

specifies various characteristics for the new thread. In the example program, we pass
a value of NULL for this argument, indicating that we accept the default characteristics
for the new thread.

 • A pointer to the routine at which the new thread will start executing.

 • A pointer to a parameter to be passed to the routine at which the new thread starts.

Like most Pthreads functions, pthread_create returns a value that indicates whether it
has succeeded or failed. A zero value represents success, and a nonzero value indicates
and identifies an error.

The formal prototype of a start routine is (void*)routine(void*arg). In our code example,
we are adding threads to an existing program (a not atypical scenario) and using the
(void *) cast to quit the compiler. In later examples, we redeclare the routine to the correct
prototype where possible.

Threads are peers

In the multiprocess version of our example (Example 1-2), we could refer to the caller of
fork as the parent process and the process it creates as the child process. We could do
so because UNIX process management recognizes a special relationship between the
two. It is this relationship that, for instance, allows a parent to issue a wait system call to
implicitly wait for one of its children.

The Pthreads concurrent programming environment maintains no such special
relationship between threads. We may call the thread that creates another thread the
creator thread and the thread it creates the spawned thread, but that's just semantics.
Creator threads and spawned threads have exactly the same properties in the eyes of
the Pthreads. The only thread that has slightly different properties than any other is the
first thread in the process, which is known as the main thread. In this simple program,
none of the differences have any significance.

Once the two pthread_create calls in our example program return, three threads exist
concurrently. Which will run first? Will one run to completion before the others, or will their
execution be interleaved? It depends on the default scheduling policies of the underlying
Pthreads implementation. It could be predictable, but then again, it may not be. The
output on our system looks like this:

simple_threads

doing another

doing one thing

doing another

doing one thing

doing another

doing one thing

doing another

doing one thing

wrap up: one thing 4, another 4, total 8

simple_threads

doing another

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_9.html#82846

doing one thing

doing another

doing one thing

doing one thing

doing another

doing one thing

doing another

wrap up: one thing 4, another 4, total 8

#

Parallel vs. Concurrent Programming

Let's make a distinction between concurrent and parallel programming for the remainder
of the book. We'll use concurrent programming in a general sense to refer to
environments in which the tasks we define can occur in any order. One task can occur
before or after another, and some or all tasks can be performed at the same time. We'll
use parallel programming to specifically refer to the simultaneous execution of concurrent
tasks on different processors. Thus, all parallel programming is concurrent, but not all
concurrent programming is parallel.

The Pthreads standard specifies concurrency; it allows parallelism to be at the option of
system implementors. As a programmer, all you can do is define those tasks, or threads,
that can occur concurrently. Whether the threads actually run in parallel is a function of
the operating system and hardware on which they run. Because Pthreads was designed
in this way, a Pthreads program can run without modification on uniprocessor as well as
multiprocessor systems.

Okay, so portability is great, but what of performance? All of our Pthreads programs will be
running with specific Pthreads libraries, operating systems, and hardware. To squeeze the
best performance out of a multithreaded application, you must understand the specifics of
the environment in which it will be running—especially those details that are beyond the
letter of the standard. We'll spend some time in the later sections of this book identifying
and describing the implementation-specific issues of Pthreads.

Synchronization

Even in our simple program, in Examples 1-1 through 1-4, some parts can be executed in
any order and some cannot. The first two routines, do_one_thing and do_another_thing,
can run concurrently because they update separate variables and therefore do not
conflict. But the third routine, do_wrap_up, must read those variables, and therefore must
ensure that the other routines have finished using them before it can read them. We must
force an order upon the events in our program, or synchronize them, to guarantee that
the last routine executes only after the first two have completed.

In threads programming, we use synchronization to make sure that one event in one
thread happens before another event in another thread. A simple analogy would involve
two people working together to jump start a car, one attaching the cables under the hood
and one in the car getting ready to turn the key. The two must use some signal between
them so that the person connecting the cables completes the task before the other turns
the key. This is real life synchronization.

In general, cooperation between concurrent procedures leads to the sharing of data, files,
and communication channels. This sharing, in turn, leads to a need for synchronization.
For instance, consider a program that contains three routines. Two routines write to
variables and the third reads them. For the final routine to read the right values, you must
add some synchronization. It's telling that, of all the function calls supplied in a Pthreads
library, only one—pthread_create—is used to enable concurrency. Almost all of the other

function calls are there to replace the synchronization that was inherent in the program
when it executed serially—and slowly!

In the multiprocess version of our program, Example 1-2, we used the UNIX waitpid
system call to prevent the parent process from executing the do_wrap_up routine before
the other two processes completed the do_one_thing and do_another_thing routines and
exited. The waitpid call provides synchronization by suspending its caller until a child
process exits. (Notice that we use the waitpid call only in the code path of the parent.) In
the Pthreads version of our program (Example 1-4), we use the pthread_join call to
synchronize the threads' execution. The pthread_join call provides synchronization for
threads similar to that which waitpid provides for processes, suspending its caller until
another thread exits. Unlike waitpid, which is specifically intended for parent and child
processes, you can use pthread_join between any two threads in a program.

Both the multiprocess and multithreaded versions of our program use coarse methods to
synchronize. One process or thread just stalled until the others caught up and finished. In
later sections of this book we'll go into great detail on the finer methods of Pthreads
synchronization, namely mutex variables and condition variables. The finer methods
allow you to synchronize thread activity on a thread's access to one or more variables,
rather than blocking the execution of an entire routine and thread in which it executes.
Using the finer synchronization techniques, threads can spend less time waiting on each
other and more time accomplishing the tasks for which they were designed.

As a quick introduction to mutex variables, let's make a slight modification to the Pthreads
version of our simple program. In Example 1-5, we'll add a new variable, r3. Because all
routines will read from and write to this variable, we'll need some synchronization to
control access to it. For this, we'll define a mutex variable (of type pthread_mutex_t) and
initialize it. (Just as a thread can have a thread attribute object, a mutex can have a
mutex attribute object that indicates its special characteristics. Here, too, we'll pass a
value of NULL for this argument, indicating that we accept the default characteristics for
the new mutex.)

Example 1-5: A Simple C Program with Concurrent Threads and a Mutex
(simple_mutex.c)

#include <stdio.h>

#include <pthread.h>

void do_one_thing(int *);

void do_another_thing(int *);

void do_wrap_up(int, int);

int r1 = 0, r2 = 0, r3 = 0;

pthread_mutex_t r3_mutex=PTHREAD_MUTEX_INITIALIZER;

extern int

main(int argc, char **argv)

{

 pthread_t thread1, thread2;

 r3 = atoi(argv[1]);

 pthread_create(&thread1,

 NULL,

 (void *) do_one_thing,

 (void *) &r1);

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=102226.html#102226
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=82846.html#82846

 pthread_create(&thread2,

 NULL,

 (void *) do_another_thing,

 (void *) &r2);

 pthread_join(thread1, NULL);

 pthread_join(thread2, NULL);

 do_wrap_up(r1, r2);

 return 0;
}

We'll also make changes to the routines that will read from and write to r3. We'll
synchronize their access to r3 by using the mutex we created in the main thread. When
we're finished, the code for do_another_thing and do_wrap_up will resemble the code in
do_one_thing in Example 1-6.

Example 1-6: Concurrent Threads and a Mutex: do_one_thing Routine

void do_one_thing(int *pnum_times)

{

 int i, j, x;

 pthread_mutex_lock(&r3_mutex);

 if (r3 > 0) {

 x = r3;

 r3--;

 }else {

 x = 1;

 }

 pthread_mutex_unlock(&r3_mutex);

 for (i = 0; i < 4; i++) {

 printf("doing one thing\n");

 for (j = 0; j < 10000; j++) x = x + i;

 (*pnum_times)++;

 }
}

The mutex variable acts like a lock protecting access to a shared resource—in this case
the variable r3 in memory. Whichever thread obtains the lock on the mutex in a call to
pthread_mutex_lock has the right to access the shared resource it protects. It
relinquishes this right when it releases the lock with the pthread_mutex_unlock call. The
mutex gets its name from the term mutual exclusion—all threads have a mutual
relationship with regard to the mutex variable; whichever thread holds the lock excludes
all others from access.

You'll notice in Example 1-6 that you must make special Pthreads calls to manipulate

mutexes. You can't just invent mutexes in your C code by testing and setting some sort of
synchronization flag. If your code tests the mutex and then sets it, you leave a tiny (but
potentially fatal) length of time during which another thread could also test and set the
same mutex. Pthreads implementors avoid this window of vulnerability by taking
advantage of operating system services or special machine instructions.

Sharing Process Resources

From a programming standpoint, the major difference between the multiprocess and
multithreaded concurrency models is that, by default, all threads share the resources of
the process in which they exist. Independent processes share nothing. Threads share
such process resources as global variables and file descriptors. If one thread changes
the value of any such resource, the change will be evident to any other thread in the
process, if anyone cares to look. The sharing of process resources among threads is one
of the multithreaded programming model's major performance advantages, as well as
one of its most difficult programming aspects. Having all of this context available to all
threads in the same memory facilitates communication between threads. However, at the
same time, it makes it easy to introduce errors of the sort in which one thread affects the
value of a variable used by another thread in ways the other thread did not expect.

In Example 1-6, because the do_one_thing and do_another_thing routines simply place
their results into global variables, the main thread can also access them should it need to.
Because shared data calls for synchronization, the program uses the pthread_join call to
enforce the order in which different threads write to and read from these global variables.
The way this works is pretty simple. The two spawned threads know that, as long as they
are running, the main thread has not passed its pthread_join call and, so, won't look at
their output values. The main thread knows that, once it has passed the second
pthread_join call, no other threads are active. The values of the output parameters are
set to their final value and can be used.

The processes in the multiprocess version of our program also use shared memory, but
the program must do something special so that they can use it. We used the System V
shared memory interface. Before it creates any child processes, the parent initializes a
region of shared memory from the system using the shmget and shmat calls. After the
fork call, all the processes of the parent and its children have common access to this
memory, using it in the same way as the multithreaded version uses global variables, and
all the parent and children processes can see whatever changes any of them may make
to it.

Communication

When two concurrent procedures communicate, one writing data and one reading data,
they must adopt some type of synchronization so that the reader knows when the writer
has completed and the writer knows that the reader is ready for more data. Some
programming environments provide explicit communication mechanisms such as
message passing. The Pthreads concurrent programming environment provides a more
implicit (some would call it primitive) mechanism. Threads share all global variables. This
affords threads programmers plenty of opportunities for synchronization.

Multiple processes can use any of the many other UNIX Interprocess Communication
(IPC) mechanisms: sockets, shared memory, and messages, to name a few. The
multiprocess version of our program uses shared memory, but the other methods are
equally valid. Even the waitpid call in our program could be used to exchange
information, if the program checked its return value. However, in the multiprocess world,
all types of IPC involve a call into the operating system—to initialize shared memory or a
message structure, for instance. This makes communication between processes more
expensive than communication between threads.

Scheduling

We can also order the events in our program by imposing some type of scheduling policy

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_11.html#134860

on them. Unless our program is running on a system with an infinite number of CPUs, it's
a safe bet that, sooner or later, there will be more concurrent tasks ready to run in our
program than there are CPUs available to run them. The operating system uses its
scheduler to select from the pool of ready and runnable tasks those that it will run. In a
sense, the scheduler synchronizes the tasks' access to a shared resource: the system's
CPUs.

Neither the multithreaded version of our program nor the multiprocess version imposes any
specific scheduling requirements on its tasks. POSIX defines some scheduling calls as an
optional part of its Pthreads package, allowing you to select scheduling policies and
priorities for threads.

Who Am I? Who Are You?

When you create a thread, pthread_create returns a thread handle of type pthread_t. You
can save this handle and use it to determine a thread's identity using the pthread_self
and pthread_equal function calls. The pthread_self call returns the thread handle of the

calling thread and pthread_equal compares two thread handles.* You might use the two
calls to identify a thread when it enters a routine, as shown in Example 1-7.

* The Pthreads standard leaves the exact definition of the pthread_t type up to system
implementors. Because a system implementor might define a thread handle to be a
structure, you should always use pthread_equal to compare threads. A direct
comparison (such as io_thread == thread) may not work.

Example 1-7: Code that Examines the Identity of the Calling Thread (ident.c)

.

.

.

pthread_t io_thread;

.

.

extern int

main(void)

{

 .

 .

 .

 pthread_create(&io_thread,

 );

 .

 .

 .
}

void routine_x(void)

{

pthread_t thread;

 .

 .

 .

 thread = pthread_self();

 if (pthread_equal(io_thread, thread)) {

 .

 .

 .

 }

 .

 .

 .
}

Terminating Thread Execution

A process terminates when it comes to the end of main. At that time the operating system
reclaims the process's resources and stores its exit status. Similarly, a thread exits when
it comes to the end of the routine in which it was started. (By the way, all threads expire
when the process in which they run exits.) When a thread terminates, the Pthreads library
reclaims any process or system resources the thread was using and stores its exit status.
A thread can also explicitly exit with a call to pthread_exit. You can terminate another
thread by calling pthread_cancel. In any of these cases, the Pthreads library runs any
routines in its cleanup stack and any destructors in keys in which it has store values.
We'll describe these features in Chapter 4, Managing Pthreads .

Exit Status and Return Values

The Pthreads library may or may not save the exit status of a thread when the thread
exits, depending upon whether the thread is joinable or detached. A joinable thread, the
default state of a thread at its creation, does have its exit status saved; a detached thread
does not. Detaching a thread gives the library a break and lets it immediately reclaim the
resources associated with the thread. Because the library will not have an exit status for
a detached thread, you cannot use a pthread_join to join it. We'll show you how to
dynamically set the state of a thread to detached in Chapter 2, Designing Threaded
Programs, when we introduce the pthread_detach call. In Chapter 4, we'll show you how
to create a thread in the detached state by specifying attribute objects.

What is the exit status of a thread? You can associate an exit status with a thread in
either of two ways:

 • If the thread terminates explicitly with a call to pthread_exit, the argument to the call
becomes its exit status.

 • If the thread does not call pthread_exit, the return value of the routine in which it
started becomes its exit status.

As defined by the Pthreads standard, the thread-start routine (specified in the
pthread_create call) returns a (void *) type. However, you'll often find that your thread-
start routines must return something other than an address—e.g., a binary TRUE/FALSE
indicator. They can do this quite easily as long as you remember to cast the return value
as a (void *) type and avoid using a value that conflicts with PTHREAD_CANCELED, the
only status value that the Pthreads library itself may return. (Pthreads implementations
cannot define PTHREAD_CANCELED as a valid address or as NULL, so you're always
safest when returning an address.) Of course, if the thread running the thread-start

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=197663.html#197663
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=197663.html#197663
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=197663.html#197663
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161

routine cannot be canceled (peek ahead to Chapter 4 to learn a bit about cancellation),
you can ignore this restriction.

In Example 1-8, we've defined three possible exit status values and elected to have
routine_x return pointers to integer constants with these values. We use pthread_exit and
return interchangeably.

Example 1-8: Specifying a Thread's Exit Status (exit_status_alternative.c)

#include <stdio.h>

#include <pthread.h>

pthread_t thread;

static int arg;

static const int internal_error = -12;

static const int normal_error = -10;

static const int success = 1;

void * routine_x(void *arg_in)

{

 int *arg = (int *)arg_in;

 .

 .

 .

 if (/* something that shouldn't have happened */) {

 pthread_exit((void *) &real_bad_error);

 }else if (/* normal failure */) {

 return ((void *) &normal_error);

 }else {

 return ((void *) &success);

 }
}

extern int

main(int argc, char **argv)

{

 pthread_t thread;

 void *statusp;

 .

 .

 .

 pthread_create(&thread, NULL, routine_x, &arg);

 pthread_join(thread, &statusp);

 if (*statusp == PTHREAD_CANCELED) {

 printf("Thread was canceled.\n");

 }else {

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161

 printf("Thread completed and exit status is %ld.\n", *(int
*)statusp);

 }
return 0;

}

A final note on pthread_join is in order. Its purpose is to allow a single thread to wait on
another's termination. The result of having multiple threads concurrently call pthread_join
is undefined in the Pthreads standard.

Pthreads Library Calls and Errors

Most Pthreads library calls return zero on success and an error number otherwise.*

Errors numbers are defined in the errno.h header file. The Pthreads standard doesn't
require library calls to set errno, the global variable traditionally used by UNIX and
POSIX.1 calls to deliver an error to their callers.

* The two Pthreads library calls that don't return an error code upon failure are

pthread_getspecific and pthread_self. A pthread_getspecific call returns NULL if it's
unsuccessful. A pthread_self call always succeeds.</footnote>

You can use code similar to that in Example 1-9 to perform error checking on a Pthreads
call.

Example 1-9: Full Error-Checking for a Pthreads Library Call

#include <errno.h>

#include <stdio.h>

.

.

.

if (rtn = pthread_create(...)) {

 /* error has occurred */

 fprintf(stderr,"Error: pthread_create, ");

 if (rtn == EAGAIN)

 fprintf(stderr,"Insufficent resources\n");

 else if (rtn == EINVAL)

 fprintf(stderr, "Invalid arguments\n");

 exit(1);
}

/* no error */

.

.

.

If your platform supports a routine to convert error numbers to a readable string such as
the XPG4 call, strerror, your code could be simplified as in Example 1-10.

Example 1-10: Full Error-Checking for a Pthreads Library Call, Simplified

#include <string.h>

#include <stdio.h>

.

.

.

if (rtn = pthread_create(...))

 fprintf(stderr, "Error: pthread_create, %s\n", strerror(rtn)),
exit(1);

/* no error */

.

.

.

In both examples, we made the rather typical decision to terminate the entire program
rather than the individual thread that encountered the error (that is, we called exit rather
than pthread_exit). What you do depends upon what your program is doing and what
type of error it encounters.

As you may have noticed, we normally don't test the return values of the Pthreads library
calls we make in the code examples in this book. We felt that doing so would get in the way
of the threads programming practices the examples are meant to illustrate. If we were
writing this code for a commercial product, we would diligently perform all required error
checking.

Why Use Threads Over Processes?

If both the process model and threads model can provide concurrent program execution,
why use threads over processes?

Creating a new process can be expensive. It takes time. (A call into the operating system
is needed, and if the process creation triggers process rescheduling activity, the
operating system's context-switching mechanism will become involved.) It takes memory.
(The entire process must be replicated.) Add to this the cost of interprocess
communication and synchronization of shared data, which also may involve calls into the
operating system kernel, and threads provide an attractive alternative.

Threads can be created without replicating an entire process. Furthermore, some, if not
all, of the work of creating a thread is done in user space rather than kernel space. When
processes synchronize, they usually have to issue system calls, a relatively expensive
operation that involves trapping into the kernel. But threads can synchronize by simply
monitoring a variable—in other words, staying within the user address space of the
program.

We'll spell out the advantages of threads over the multiprocess model of multitasking in our
performance measurements in Chapter 6, Practical Considerations . In the meantime, we'll
show you how to build a multithreaded program.

A Structured Programming Environment

Revisiting the techniques used to obtain concurrency that we discussed earlier—potential
parallelism, overlapping I/O, asynchronous events, and real-time scheduling—we find
that UNIX offers many disjointed mechanisms to accomplish them between processes.
They include the select system call, signals, nonblocking I/O, and the setjmp/longjmp

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1166241.html#1166241
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1166241.html#1166241

system call pair, plus many calls for real time (such as aio_read and aio_write) and
parallel processing. Pthreads offers a clean, consistent way to address all of these
motivations. If you're a disciplined programmer, designing and coding a multithreaded
program should be easier than designing and coding a multiprocess program.

Now, we know that the example program we've been looking at in this chapter is far too
simple to convince anyone that a particular programming style is more structured or
elegant than another. Subsequent examples will venture into more complex territory and, in
doing so, illustrate Pthreads mechanisms for a more practical set of coding problems. We
hope that they may make the case for Pthreads.

Choosing Which Applications to Thread

The major benefit of multithreaded programs over nonthreaded ones is in their ability to
concurrently execute tasks. However, in providing concurrency, multithreaded programs
introduce a certain amount of overhead. If you introduce threads in an application that
can't use concurrency, you'll add overhead without any performance benefit.

So what makes concurrency possible? First, of course, your application must consist of
some independent tasks—tasks that do not depend on the completion of other tasks to
proceed. Secondly, you must be confident that concurrent execution of these tasks would
be faster than their serial execution.

On a uniprocessing system, the concurrent execution of independent tasks will be faster
than their serial execution if at least one of these tasks issues a lot of I/O requests and
must wait for the device to complete each request. On a multiprocessor, even CPU-
bound tasks can benefit from concurrency because they can truly proceed in parallel.

If you are writing an application for a uniprocessor, look at overlapping I/O and
asynchronous events as the motivation for threading an application. If your program is
hung up in doing a lot of disk, file, or network accesses when it could be doing other
useful things, threads offer a means of doing them while the thread that handles the I/O is

waiting.* If your program must deal with many asynchronous events, such as the receipt
of an out-of-band message, threads give you an efficient way to structure its event
handling where the only alternatives for a single-threaded process would be to either
abruptly change context or put off handling the event to a more convenient time. The
server portion of a client/server program often meets both of these criteria for
concurrency: it must handle asynchronous requests and wait while retrieving and storing
data in secondary storage.

* A side benefit is that your code is ready to take advantage of multiprocessing systems
in the future. Multiprocessing UNIX hosts are not restricted to exotic scientific number
crunching anymore as two- to four-CPU server and desktop platforms have become
commonplace.

If your application has been designed to use multiple processes, it's likely that it would
benefit from threading. A common design model for a UNIX server daemon is to accept
requests and fork a child image of itself to process the request. If the benefits of
concurrency outweighed the overhead of using separate processes in the application,
threading is bound to improve its performance because threads involve less overhead.

The remaining class of applications that can benefit from threads are those that execute
on multiprocessing systems. Purely CPU-bound applications can achieve a performance
boost with threads. A matrix-multiply program (or similar analytical program) with
independent computational tasks but no excessive I/O requirements would not benefit
from threads on a uniprocessing system. However, on a multiprocessor, this same
application could speed up dramatically as the threads performed their computations in
parallel.

As we'll see in Chapter 6, there are commonly three different types of Pthreads
implementations. To take full advantage of a multiprocessing system, you'll need an
implementation that's sophisticated enough to allow multiple threads in a single process to
access multiple CPUs.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1166241.html#1166241

Chapter 2: Designing Threaded Programs

Overview

So far you've seen only a couple of Pthreads calls, but you know enough about the
programming model to start considering real design issues. In this chapter we'll examine
a number of broad questions. How much work is worth the overhead of creating a
thread? How can I subdivide my program into threads? What relationship do the threads
have to the functions in my program?

To give us a sample application worth threading, we'll introduce an application that will take
us through most of the book: a server for automatic teller machines (ATMs). We'll try out
our design ideas on this server.

Suitable Tasks for Threading

To find the places in your program where you can use threads, you essentially must look
for the properties we identified in Chapter 1, Why Threads? : potential parallelism,
overlapping I/O, asynchronous events, and real-time scheduling. Whenever a task has
one or more of these properties, consider running it in a thread. You can identify a task
that is suitable for threading by applying to it the following criteria:

 • It is independent of other tasks.

Does the task use separate resources from other tasks? Does its execution depend on
the results of other tasks? Do other tasks depend on its results? We want to maximize
concurrency and minimize the need for synchronization. The more tasks depend on
each other and share resources, the more the threads executing them will end up
blocked waiting on each other.

 • It can become blocked in potentially long waits.

Can the task spend a long time in a suspended state? A program can typically perform
millions of integer operations in the time it would take to perform a single I/O operation.
If you dedicate a thread to the I/O task, the rest of the program could accomplish a lot
more work in less time.

 • It can use a lot of CPU cycles.

Does the task perform long computations, such as matrix crunching, hashing, or
encryption? Time-consuming calculations that are independent of activities elsewhere
in the program are good candidates for threading. In a multiprocessing environment,
you might let a thread executing on one CPU process a long computation while other
threads on other CPUs handle input.

 • It must respond to asynchronous events.

Must the task handle events that occur at random intervals, such as network
communications or interrupts from hardware and the operating system? Use threads
to encapsulate and synchronize the servicing of these events, apart from the rest of
your application.

 • Its work has greater or lesser importance than other work in the application.

Must the task perform its work in a given amount of time? Must it run at specific times
or specific time intervals? Is its work more time critical than that of other tasks?
Scheduling considerations are often a good reason for threading a program. For
instance, a window manager application would assign a high priority thread to user
input and a much lower priority thread to memory garbage collection.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=36527.html#36527
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=36527.html#36527

Server programs—such as those written for database managers, file servers, or print
servers—are ideal applications for threading. They must be continuously responsive to
asynchronous events—requests for services coming over communications channels from
a number of client programs. Processing these requests typically requires I/O to
secondary storage.

Computational and signal-processing applications that will run on multiprocessing
systems are another good candidate for threading. They contain many CPU-intensive
tasks that can be spread out over a number of available CPUs.

Finally, real-time developers are attracted to threads as a model for servers and
multiprocessing applications. Multithreaded applications are more efficient than
multiprocess applications. The threads model also allows the developers to set specific
scheduling policies for threads. What's more, threads eliminate some of the complexity that
comes with asynchronous programming. Threads wait for events whereas a serial program
would be interrupted and would jump from context to context.

Models

There are no set rules for threading a program. Every program is different, and when you
first try to thread a program, you'll likely discover that it's a matter of trial and error. You
may initially dedicate a thread to a particular task only to find that your assumptions about
its activity have changed or weren't true in the first place.

Over time a few common models for threaded programs have emerged. These models
define how a threaded application delegates its work to its threads and how the threads
intercommunicate. Because the Pthreads standard imposes little structure on how
programmers use threads, you would do well to start your multithreaded program design
with a close look at each model. Although none has been explicitly designed for a specific
type of application, you'll find that each model tends to be better suited than the others for
certain types. We discuss:

 • The boss/worker model

 • The peer model

 • The pipeline model

Boss/Worker Model

Figure 2-1: The boss/worker model.

Figure 2-1 depicts the boss/worker model. A single thread, the boss, accepts input for the
entire program. Based on that input, the boss passes off specific tasks to one or more
worker threads.

The boss creates each worker thread, assigns it tasks, and, if necessary, waits for it to
finish. In the pseudo code in Example 2-1, the boss dynamically creates a new worker
thread when it receives a new request. In the pthread_create call it uses to create each
worker thread, the boss specifies the task-related routine the thread will execute. After

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/02FIG01_0.gif

creating each worker, the boss returns to the top of its loop to process the next request. If
no requests are waiting, the boss loops until one arrives.

Once finished, each worker thread can be made responsible for any output resulting from
its task, or it can synchronize with the boss and let it handle its output.

Example 2-1: Boss/Worker Model Program (Pseudocode)

main()

/* The boss */

{

forever {

 get a request

 switch request

 case X : pthread_create(... taskX)

 case Y : pthread_create(... taskY)

 .

 .

 .
}

}

taskX() /* Workers processing requests of type X */

{

perform the task, synchronize as needed if accessing shared
resources

done

}

taskY() /* Workers processing requests of type Y */

{

perform the task, synchronize as needed if accessing shared
resources

done

}

.

.

.

If the boss creates its workers dynamically when requests arrive, as it does in our
pseudocode, there will be as many concurrent worker threads as there are concurrent
requests. Alternatively, the boss could save some run-time overhead by creating all
worker threads up front. In this variant of the boss/worker model, known as a thread pool
and shown in Example 2-2,the boss creates all worker threads at program initialization.
Each worker immediately suspends itself to wait for a wake-up call from the boss when a
request arrives for it to process. The boss advertises work by queuing requests on a list
from which workers retrieve them.

Example 2-2: Boss/Worker Model Program with a Thread Pool (Pseudocode)

main()

/* The boss */

{

for the number of workers

 pthread_create(... pool_base)

forever {

 get a request

 place request in work queue

 signal sleeping threads that work is available
}

}

pool_base() /* All workers */

{

forever {

 sleep until awoken by boss

 dequeue a work request

 switch

 case request X: taskX()

 case request Y: taskY()

 .

 .

 .
}

}

The boss/worker model works well with servers (database servers, file servers, window
managers, and the like). The complexities of dealing with asynchronously arriving
requests and communications are encapsulated in the boss. The specifics of handling
requests and processing data are delegated to the workers. In this model, it is important
that you minimize the frequency with which the boss and workers communicate. The
boss can't spend its time being blocked by its workers and allow new requests to pile up
at the inputs. Likewise, you can't create too many interdependencies among the workers.
If every request requires every worker to share the same data, all workers will suffer a
slowdown.

Peer Model

Unlike the boss/worker model, in which one thread is in charge of work assignments for
the other threads, in the peer model, illustrated in Figure 2-2, all threads work
concurrently on their tasks without a specific leader.

Figure 2-2: The peer model

In the peer model, also known as the workcrew model, one thread must create all the
other peer threads when the program starts. However, unlike the boss thread in the boss/
worker model, this thread subsequently acts as just another peer thread that processes
requests, or suspends itself waiting for the other peers to finish.

Whereas the boss/worker model employs a stream of input requests to the boss, the peer
model makes each thread responsible for its own input. A peer knows its own input
ahead of time, has its own private way of obtaining its input, or shares a single point of
input with other peers. The structure of such a program is shown in Example 2-3.

Example 2-3: Peer Model Program (Pseudocode)

main()

{

 pthread_create(... thread1 ... task1)

 pthread_create(... thread2 ... task2)

 .

 .

 .

 signal all workers to start

 wait for all workers to finish

 do any clean up
}

task1()

{

 wait for start

 perform task, synchronize as needed if accessing shared
resources

 done
}

task2()

{

 wait for start

 perform task, synchronize as needed if accessing shared
resources

 done

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/02FIG02_0.gif

}

The peer model is suitable for applications that have a fixed or well-defined set of inputs,
such as matrix multipliers, parallel database search engines, and prime number
generators. Well-defined input allows programs to adopt what could be construed as a
boss/worker model without the boss. Because there is no boss, peers themselves must
synchronize their access to any common sources of input. However, like workers in the
boss/worker model, peers can also slow down if they must frequently synchronize to
access shared resources.

Consider an application in which a single plane or space is divided among multiple
threads, perhaps so they can calculate the spread of a life form (such as in the SimLife
computer game) or changes in temperature as heat radiates across geographies from a
source. Each thread can calculate one delta of change. However, because the results of
each thread's calculations require the adjustment of the bounds of the next thread's
calculations, all threads must synchronize afterward to exchange and compare each
other's results. This is a classic example of a peer model application.

Pipeline Model

The pipeline model assumes:

 • A long stream of input

 • A series of suboperations (known as stages or filters) through which every unit of input
must be processed

 • Each processing stage can handle a different unit of input at a time

An automotive assembly line is a classic example of a pipeline. Each car goes through a
series of stages on its way to the exit gates. At any given time many cars are in some
stage of completion. A RISC (reduced instruction set computing) processor also fits the
pipeline model. The input to this pipeline is a stream of instructions. Each instruction must
pass through the stages of decoding, fetching operands, computation, and storing results.
That many instructions may be at various stages of processing at the same time
contributes to the exceptionally high performance of RISC processors.

In each of these examples, a pipeline improves throughput because it can accomplish the
many different stages of a process on different input units (be they cars or instructions)
concurrently. Instead of taking each car or instruction from start to finish before starting
the next, a pipeline allows as many cars or instructions to be worked on at the same time
as there are stages to process them. It still takes the same amount of time from start to
finish for a specific car (that red one, for instance) or instruction to be processed, but the
overall throughput of the assembly line or computer chip is greatly increased.

Figure 2-3 shows a thread pipeline.

Figure 2-3: A thread pipeline

As the pseudocode in Example 2-4 illustrates, a single thread receives input for the entire
program, always passing it to the thread that handles the first stage of processing.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/02FIG03_0.gif

Similarly a single thread at the end of the pipeline produces all final output for the
program. Each thread in between performs its own stage of processing on the input it
received from the thread that performed the previous stage, and passes its output to the
thread performing the next. Applications in which the pipeline might be useful are image
processing and text processing or any application that can be broken down into a series
of filter steps on a stream of input.

Example 2-4: Pipeline Model Program (pseudocode)

main()

{

 pthread_create(... stage1)

 pthread_create(... stage2)

 .

 .

 .

 wait for all pipeline threads to finish

 do any clean up
}

stage1()

{

forever {

 get next input for the program

 do stage 1 processing of the input

 pass result to next thread in pipeline

 }
}

stage2()

{

forever {

 get input from previous thread in pipeline

 do stage 2 processing of the input

 pass result to next thread in pipeline

 }
}

stageN()

{

forever {

 get input from previous thread in pipeline

 do stage N processing to the input

 pass result to program output

 }
}

We could add multiplexing or demultiplexing to this pipeline, allowing multiple threads to
work in parallel on a particular stage. We could also dynamically configure the pipeline at
run time, having it create and terminate stages (and the threads to service them) as
needed.

Note that the overall throughput of a pipeline is limited by the thread that processes its
slowest stage. Threads that follow it in the pipeline cannot perform their stages until it has
completed. When designing a multithreaded program according to the pipeline model, you
should aim at balancing the work to be performed across all stages; that is, all stages
should take about the same amount of time to complete.

Buffering Data Between Threads

The boss/worker, peer, and pipeline are models for complete multithreaded programs.
Within any of these models threads transfer data to each other using buffers. In the boss/
worker model, the boss must transfer requests to the workers. In the pipeline model, each
thread must pass input to the thread that performs the next stage of processing. Even in
the peer model, peers may often exchange data.

A thread assumes either of two roles as it exchanges data in a buffer with another thread.
The thread that passes the data to another is known as the producer; the one that
receives that data is known as the consumer: Figure 2-4 depicts this relationship.

Figure 2-4: Producer-consumer

The ideal producer/consumer relationship requires:

A buffer

The buffer can be any data structure accessible to both the producer and the
consumer. This is a simple matter for a multithreaded program, for a such a shared
buffer need only be in the process's global data region. The buffer can be just big
enough to hold one data item or it can be larger, depending upon the application.

A lock

Because the buffer is shared, the producer and consumer must synchronize their
access to it. With Pthreads, you would use a mutex variable as alock.

A suspend/resume mechanism

The consumer may suspend itself when the buffer contains no data for it to consume.
If so, the producer must be able to resume it when it places a new item in the buffer.
With Pthreads, you would arrange this mechanism using a condition variable.

State information

Some flag or variable should indicate how much data is in the buffer.

In the pseudocode in Example 2-5, the producer thread takes a lock on the shared buffer,
places a work item in it, releases the lock, and resumes the consumer thread. The
consumer thread is more complex. It first takes a lock on the shared buffer. If it finds the
buffer empty, it releases the lock (thus giving the producer a chance to populate it with
work) and hibernates. When the consumer thread awakens, it reacquires the lock, and
removes a work item from the buffer.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/02FIG04_0.gif

Example 2-5: Producer/Consumer Threads (Pseudocode)

producer()

{

 .

 .

 .
lock shared buffer

place results in buffer

unlock buffer

wake up any consumer threads

 .

 .

 .
}

consumer()

{

 .

 .

 .
lock shared buffer

while state is not full {

 release lock and sleep

 awake and reacquire lock

 }
remove contents

unlock buffer

 .

 .

 .
}

If the threads share a buffer that can hold more than one data item, the producer can
keep producing new items even if the consumer thread has not yet processed the
previous one. In this case the producer and consumer must agree upon a mechanism for
keeping track of how many items are currently in the buffer.

You can devise other permutations of the producer/consumer relationship based on the
number of producer and consumer threads that access the same buffer. For example, an
application that adopts the boss/worker model and uses a thread pool must
accommodate a single producer (the boss) and many consumers (the workers).

A more specialized producer/consumer relationship, often used in pipelines for signal
processing applications, uses a technique known as double buffering. Using double
buffering, threads act as both producer and consumer to each other. In the example of
double buffering shown in Figure 2-5,one set of buffers contains unprocessed data and
another set contains processed data. One thread—the I/O thread—obtains unprocessed
data from an I/O device and places it in a shared buffer.(In other words, it's the producer

of unprocessed data.) The I/O thread also obtains processed data from another shared
buffer and writes it to an I/O device. (That is, it's the consumer of processed data.) A
second thread—the calculating thread—obtains unprocessed data from the shared buffer
filled by the I/O thread, processes it, and places its results in another shared buffer. The
calculating thread is thus the consumer of unprocessed data and the producer of
processed data.

Figure 2-5: Double buffering

Some Common Problems

Regardless of the model you select, a few classes of bugs creep into nearly every
threaded application at some point during its development. Avoiding them takes a lot of
concentration. Finding them once they've crept in requires patience and persistence.
Most bugs result from oversights in the way the application manages its shared
resources. Either you forget to keep one thread out of a resource while another is
modifying it, or the way in which you attempt to synchronize access to the resource
causes your threads to hang. We'll walk through a debugging session for a multithreaded
program in Chapter 6, Practical Considerations . For the time being, we'll rest content with
pronouncing a few basic rules and noting the most common pitfalls.

The basic rule for managing shared resources is simple and twofold:

 • Obtain a lock before accessing the resource.

 • Release the lock when you are finished with the resource.

Unfortunately, there are many borderline areas of usage where it is difficult to clearly
apply this rule. In those applications in which locks and resources must be created
dynamically—while multiple threads are already running—you can get into trouble very
easily. The symptoms of sharing without proper synchronization are often subtle:
incorrect answers and corrupted data. It is often quite hard to track down the point in the
program where the error or corruption occurred. Further, the effort of debugging is often
exacerbated by difficulties you may have in reproducing the bug. It is much easier to run
a single-threaded program with the same inputs and get the same outputs. Programs that
take advantage of concurrency aren't like that. A multithreaded program with a
synchronization bug may run correctly hundreds of times for every time that it fails.

The other common bug in threaded programs results from assumptions about the
"liveliness" of its threads. When a thread attempts to obtain a lock, it assumes that any
thread currently holding that lock will eventually let it go. If that thread fails to release the
lock for whatever reason—it hangs or it simply forgets—other threads will grind to a halt as
they wait for it to release its lock. You can encounter the same problem if you make a
thread wait for some variable to reach an unreachable value or wait on a condition variable
that is never signaled.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1166241.html#1166241
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1166241.html#1166241
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/02FIG05_0.gif

Performance

When considering the performance of a threaded application, note that threads can
represent negligible to significant overhead, depending on how they are implemented and
how they are used. Before you add threads to a program, be sure that the benefits of
threading outweigh the costs. Some of the costs of threading include:

• The memory and CPU cycles required to manage each thread, including the structures

the operating system uses to manage them, plus the overhead for the Pthreads library
and any special code in the operating system that supports the library.

 • The CPU cycles spent for synchronization calls that enforce orderly access to shared
data. These calls cost in CPU cycles to execute the calls.

• The time during which the application is inactive while one thread is waiting on another

thread. This cost results from too many dependencies among threads and can be
allayed by improved program design.

Example: An ATM Server

Example 2-6 is a client/server program that implements an imaginary automated teller
machine (ATM) application. This server will give us an opportunity to exercise our
thinking about multithreaded program design and explore more realistic—and more
complicated—thread handling applications.

As shown in Figure 2-6, the example is made up of a client that provides a user interface*

and a server that processes requests from the client. On disk, the server stores a
database of bank accounts, each including an account ID, password, and balance.

* The client for an ATM application should be an actual machine, but, for the purposes of

this book, we'll just make it a command-line program that accepts typed-in requests.
(Unfortunately, this type of client isn't realistic enough to spit out ten dollar bills.)

Figure 2-6: The ATM and bank database server example

In a typical ATM operation, a customer chooses a withdrawal from a menu presented by
the client and enters the amount to be withdrawn. The client packages this information
into a request that it sends to the server. The server spawns a thread that checks the
user's password against the one in the database, decrements the amount of money in the
user's account, and sends back an indication of whether the operation succeeded. The
client and server process communicate using UNIX sockets. The client reports any
information returned from the server back to the user. Multiple clients can run
simultaneously.

We want the server to be capable of overlapping I/O, because the account data is stored

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_23.html#281330
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/02FIG06_0.gif

in secondary storage and its access will require a significant amount of time. The
environment is asynchronous because multiple clients may exist simultaneously, sending
requests of unpredictable type, order, and frequency.

In the following sections of this chapter, we'll discuss two different implementations of this

program: a serial version and a multithreaded version that uses Pthreads* The
multithreaded version of the program uses the boss/worker model inside the server. The
boss looks at the first field of each request, then spawns a thread or process to handle
that request. When the worker completes the request, it communicates the results
directly back to the client program.

* You can obtain the complete source code for all versions of the ATM example,
including that for the multiprocess version used in our performance testing in Chapter
6, from our ftp site. Throughout this chapter, we'll show only those interfaces and
routines pertinent to the current discussion.

For simplicity's sake, we've partitioned the client and server into modules. The interfaces
between these modules will remain unchanged throughout all versions of our example.
We'll change only the dispatch and service routine module from one version to another.
Table 2-1 shows the contents of the client and server modules.

Table 2-1: The ATM Example Program Modules

Module

Component
Description

Client program

User interface (main)

Prompts a
customer
for a
request,
parses the
response,
and
makes a
remote
procedure
call (RPC)
to access
the
server.

RPC
Includes a
procedure for
each possible
type of
request. Each
procedure
copies its
arguments into
a buffer and
passes the
buffer to the
communication
module for
transmission to
the server.
When a
response
arrives from

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1166241.html#1166241
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1166241.html#1166241

the server, the
procedure
checks its
return values.

Communication
Finds
and
passes
buffers
to and
from the
server
using
UNIX
sockets.

Server program

Communication

Receives
and
transmits
buffers to
clients
using
UNIX
sockets.

Dispatch (and service)
routines (main)

Obtains input
buffers from
clients by
means of the
communication
module,
identifies the
request type
and copies out
arguments,
and calls the
service routine
that handles
the requested
operation.
Together, the
dispatch and
service
routines make
up the server-
side
procedures of
the client's
RPC. When
request
processing is
complete, the
dispatch
routine
prepares and
transmits a
response
buffer to the
client.

Database routines
Reads
from and
writes to
the
account
database
file using
standard
file I/O.

The Serial ATM Server

If we didn't have threads, what would be the simplest implementation of the ATM server?
One that comes to mind is a program that runs in a loop, processing available requests
serially. If a request is available, the program processes it in a request-specific service
routine and sends a response to the client. The main routine for this version of the server
is shown in Example 2-6.

Example 2-6: Serial ATM Server: main Routine (atm_svr_serial.c)

 extern int

 main(argc, argv)

 int argc;

 char **argv;

 {

 char req_buf[COMM_BUF_SIZE], resp_buf[COMM_BUF_SIZE];

 int conn;

 int trans_id;

 int done=0;

 atm_server_init(argc, argv);

 /* loop forever */

 for(;;) {

 server_comm_get_request(&conn, req_buf);

 sscanf(req_buf, "%d", &trans_id);

 switch(trans_id) {

 case CREATE_ACCT_TRANS:

 create_account(resp_buf);

 break;

 case DEPOSIT_TRANS:

 deposit(req_buf, resp_buf);

 break;

 case WITHDRAW_TRANS:

 withdraw(req_buf, resp_buf);

 break;

 case BALANCE_TRANS:

 balance(req_buf, resp_buf);

 break;

 case SHUTDOWN:

 if (shutdown_req(req_buf, resp_buf)) done = 1;

 break;

 default:

 handle_bad_trans_id(req_buf, resp_buf);

 break;

 }

 server_comm_send_response(conn, resp_buf);

 if(done) break;

 }

 server_comm_shutdown();

 }
return 0;

The serial version of our ATM server can process only a single request at a time, no
matter how many clients are requesting service.

Handling asynchronous events: blocking with select

The server handles the asynchronous arrival of requests from clients by waiting. When
the server's main routine calls server_comm_get_request, the server's communication
layer uses a UNIX select call to determine which channels have data on them waiting to
be read. If none do, the select call (and consequently the server_comm_get_request call)
blocks until data arrives.

Handling file I/O: blocking with read/write

The server in Example 2-6 does nothing but block when performing file operations. When
it issues a read or write call to the file, the server waits until the operating system
completes the operation and the call returns.

The server could have used UNIX signals to access the file without blocking. If so, it
would need to establish a signal handler that processes the results of its I/O requests and
to register this handler with the operating system such that it takes control when the
completion of an I/O request is signaled. This would allow the server to make
asynchronous I/O calls that return immediately. When the request completes at a later
time, the server is interrupted and put into its signal handler to process the results.

The big drawback for using asynchronous I/O in a serial server is in the complicated state
management and synchronization problems that arise between the server and its signal
handler. The program must keep track of the state of all in-progress requests. It must

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_23.html#281330

create and maintain locks for various resources (such as account records) so that they
are not simultaneously accessed in program and signal contexts. Finally, the clean
division of the program into modules breaks down. The communication, server, and
database modules all get mixed together.

All in all, the experiment of using asynchronous I/O in a serial ATM server is a good
argument for designing such a server to use threads. It's much cleaner to let a single
thread wait for I/O to complete than it is to manage the complexity of signals and
synchronization.

The serial version of our ATM server works—in fact, it works quite well—when the input
stream of requests is light. However, the performance of the serial server degrades
rapidly as more and more clients request access to its data. Clients begin to see longer
and longer delays in the processing of their requests because all are blocked by server
access to the database. In Chapter 6, we'll run some tests on single-threaded and
multithreaded versions of the server that show the point at which it becomes inefficient to
use the serial version.

What can we do to improve the performance of our server underload? It can help a lot to
allow it to move on to another client request while its I/O to the database is proceeding.
The next versions of our server will do just that.

The Multithreaded ATM Server

Let's add threads to our example. We'll begin by identifying those tasks we want
individual threads to process. Having each request processed by a separate thread may
or may not be a good starting point.

Before we pursue our design, let's step back and look again at the general criteria for
selecting tasks for threads. In general we'd like to select tasks for our ATM server's
threads based on whether:

 • They are independent of each other.

If we assume that simultaneous accesses to the same account are rare, it makes
sense to have each request processed by a separate thread. Threads will not compete
for account data. No individual thread will rely on the work accomplished by another
thread to complete its work.

 • They can become blocked in potentially long waits.

This is true of all requests to our server, because any access to the account database
could involve disk access to a file.

 • They can use a lot of CPU cycles.

Our server contains no tasks that can be defined as compute intensive.

 • They must respond to asynchronous events.

This is true of the manner in which the communication layer of our server accepts
client requests.

 • They require scheduling.

In our first pass at a multithreaded version of our ATM server we won't use scheduling.
But we can imagine that certain operations could be given higher priority than others.
A thread handling a shutdown request might be given priority over other requests. If
we used the database to generate monthly account statements, we could give those
requests lower priority than direct customer requests to bank accounts.

We must also bear in mind some key constraints our ATM server places on our program
design:

 • We must maintain correctness.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1166241.html#1166241

For the multithreaded version of our ATM server to produce correct and consistent
results, we must ensure that two threads don't corrupt an account by writing
information to it simultaneously. Thus, we'll use locks to protect the account data.

 • We must maintain the liveliness of the threads.

We must avoid those types of programming bugs in which a worker thread obtains a
lock on account data and then exits without releasing the lock. Other worker threads
that subsequently attempt to obtain the lock on the same data will deadlock, waiting
forever.

 • We must minimize overhead.

Our threads can't spend all their time synchronizing with each other or they are not
worth their overhead. As a simplification, we'll start out in our example by allocating a
thread for each request. We can later enhance it by allowing threads to remain active,
waiting for new requests (that is, we could use a thread pool).

Model: boss/worker model

Because it's a classic server program, we'll use the boss/worker model for our ATM
server. A boss thread accepts input from remote clients through the communication
module. Worker threads handle each client account request.

Figure 2-7 shows the structure of our ATM example program using the boss/worker ATM
server. The boss thread is neatly encapsulated by the server's main routine. Each worker
thread runs one service routine: deposit, withdraw, and so on.

Figure 2-7: The boss/worker Pthreads ATM Server

The boss thread

We'll start building our multithreaded ATM server's boss thread from our serial server's
main routine. The boss thread simply manages the receipt of incoming requests using the
server_comm_get_request routine. After it obtained each request from the
communication module, the serial server's main routine unpacked it and called the
appropriate service routine. The boss thread's main routine will create a worker thread to
which it will pass the request. The worker thread begins by executing a generic request-
processing routine called process_request, as shown in Example 2-7.

Example 2-7: Multithreaded ATM Server: boss Thread (atm_svr.c)

 typedef struct workorder{

 int conn;

 char req_buf[COMM_BUF_SIZE];

 } workorder_t;

 extern int

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/02FIG07_0.gif

 main(argc, argv)

 int argc;

 char **argv;

 {

 workorder_t *workorderp;

 pthread_t *worker_threadp;

 int conn;

 int trans_id;

 atm_server_init(argc, argv);

 for(;;) {

 /*** Wait for a request ***/

 workorderp = (workorder_t *)malloc(sizeof(workorder_t));

 server_comm_get_request(&workorderp->conn, workorderp-
>req_buf);

 sscanf(workorderp->req_buf, "%d", &trans_id);

 if (trans_id == SHUTDOWN) {

 .

 .

 .

 break;

 }

 /*** Spawn a thread to process this request ***/

 worker_threadp=(pthread_t *)malloc(sizeof(pthread_t));

 pthread_create(worker_threadp, NULL, process_request, (void
*)workorderp);

 pthread_detach(*worker_threadp);

 free(worker_threadp);

 }

 server_comm_shutdown();

 return 0;

 }

Dynamically detaching a thread

In the code for our boss thread's main routine, we've introduced a new Pthreads call—
pthread_detach. The pthread_detach function notifies the Pthreads library that we don't
want to join our worker threads: that is, we will never request their exit status. If we don't
explicitly tell the Pthreads library that we don't care about a thread's exit status, it'll keep
the shadow of the thread alive indefinitely after the thread terminates (in the same way

that UNIX keeps the status of zombie processes around). Detaching our worker threads
frees the Pthreads library from storing this information, thus saving space and time. We
are still responsible for freeing any space we dynamically allocated to hold the pthread_t
itself.

Aside from using pthread_detach on an existing thread, you can create threads already in
the detached state. We'll discuss this method in Chapter 4, Managing Pthreads .

A worker thread

In our multithreaded ATM server, each worker thread begins its life in a new request-
parsing routine called process_request. This is a generic request-parsing routine that all
workers use regardless of which requests they actually process. Because different
service routines process different requests, the primary job of process_request is to
select the proper service routine. We accomplish this by means of a simple case
statement, shown in Example 2-8.

Example 2-8: Multithreaded ATM Server: Worker Thread process_request

 void process_request(workorder_t *workorderp)

 {

 char resp_buf[COMM_BUF_SIZE];

 int trans_id;

 sscanf(workorderp->req_buf, "%d", &trans_id);

 switch(trans_id) {

 case CREATE_ACCT_TRANS:

 create_account(resp_buf);

 break;

 case DEPOSIT_TRANS:

 deposit(workorderp->req_buf, resp_buf);

 break;

 case WITHDRAW_TRANS:

 withdraw(workorderp->req_buf, resp_buf);

 break;

 case BALANCE_TRANS:

 balance(workorderp->req_buf, resp_buf);

 break;

 default:

 handle_bad_trans_id(workorderp->req_buf, resp_buf);

 break;

 }

 server_comm_send_response(workorderp->conn,

 resp_buf);

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161

 free(workorderp);

 }

In our ATM example, the boss thread is always active. It creates worker threads, as
needed, to process requests. Each active worker could be processing a request on a
different account, or each worker could be performing a separate operation on the same
account. It shouldn't matter to our program. The boss thread limits the number of active
worker threads in the server.

At any given time in the ATM example, a request could be in one of three places:

 • Queued at the server's communication module, waiting to be picked up by the boss
thread

 • In the boss thread's hands, about to be passed off to a worker thread

 • In the hands of a worker thread, being processed

Synchronization: what's needed

So far, we haven't shown any synchronization between the threads in our multithreaded
ATM server. We'll go into the details in Chapter 3, Synchronizing Pthreads , and Chapter
4.

Right now we'll just list what synchronization we'll need:

 • Accounts

Now that we have multiple workers accessing the database through the service
routines (deposit, withdraw, and balance), we'll need to deal with the possibility that
two routines may try to manipulate the same account balance at the same time. To
prevent simultaneous access, we'll protect database accesses with a mutex variable.

 • Limiting the number of workers

To keep from overloading the CPUs, the boss must limit the number of worker threads
that can exist concurrently. It must maintain an ongoing count of worker threads and
decrement the count as threads exit. We'll do that and add a check for exiting worker
threads.

 • Server shutdown

The ATM client lets privileged users shut down the server. To make our server more
robust, we must ensure that the server has completed the requests that are already in
progress before it stops accepting new requests and shuts itself down. We'll do this by
adding code so that the boss can tell when threads are active.

Future enhancements

We'll add the synchronization we discussed to our multithreaded ATM server in Chapter
3. We'll also enhance our server throughout the remainder of this book. Among the
design refinements we'll consider are:

 • Thread pools

Our ATM server creates a worker thread each time it receives a request and pays the
cost of thread creation each time. What if we allowed our server to reuse worker
threads? When the server starts, it can create a predetermined number of workers in
an idle state. Each worker thread could take requests off a queue and return to an idle
state (instead of exiting) after completing each request. The reduction in overhead
would pay off in performance.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=366376.html#366376
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=366376.html#366376
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=366376.html#366376
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=366376.html#366376

 • Cancellation

In a couple of situations it would be useful if the boss thread could interrupt and
terminate a worker thread: to cancel an in-progress request that is no longer wanted or
to support a quick shutdown.

 • Scheduling

We could give some threads—possibly shutdown threads and deposit threads—priority
over other threads. When a CPU becomes available, we could give these threads first
crack at it.

Example: A Matrix Multiplication Program

In this section we'll look at a program very different from the ATM client/server example:
one that exemplifies how you can break down a program into tasks. Whereas we used
the boss/worker model to design our ATM server, we'll use the peer model for this one.

A large class of programs are computationally intensive and work on large sets of data:
image processing, statistical analysis, and finite element modeling, to name a few. In
some cases these programs may require I/O to databases or to multiple devices. Our
example uses a simple matrix-multiply program to look at the peer design model, which is
commonly used in these programs.

Matrix multiplication takes two two-dimensional input arrays of data and computes a third.
If you remember your matrix algebra, the multiplication goes like this:

A program that performs a matrix multiplication must compute the value of every element
in the result array. If the program is nonthreaded, the total time for the program is the
time it takes to compute an individual element multiplied by the number of elements.

For other programs in this class, the operation on each element of input may not be
specifically multiplication—perhaps encryption, translation, or comparison. Also, the input
data may not always be a well-formed array. However, all will have the characteristic of
repeating some basic operation over and over again on subsets of their data. We can
improve the performance of these programs using threads in two ways: by providing
overlapping I/O and by parallel processing.

If processing the input elements required I/O, threading would allow the program to
continue while one thread blocked waiting for I/O completion (see Figure 2-8). If the input
and output arrays of our matrix-multiply program were stored on disk (or even were the
input from individual remote sensors), threads could block individually on the I/O
operations they needed to complete while other threads continued.

Figure 2-8: Improving performance with overlapping I/O

When our matrix-multiply program is run on a multiprocessing system, as shown in
Figure 2-9, the threads assigned to different elements of the matrix could run in parallel
on different CPUs, thus decreasing the time it takes for the program to complete.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/02FIG08_0.gif
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/02FIG09_0.gif

Figure 2-9: Improving performance with parallel processing

Although our matrix-multiply program is a gross simplification of these kinds of programs,
it is still a useful example of the benefits of threading. Our program will have small fixed-
sized in-memory arrays; it has no I/O, so we won't be demonstrating overlapping I/O in
this case. Also, the computation time for an element is so short in comparison to the
setup time and overhead of a thread that, even if you ran it on a multiprocessing system,
you might not notice a performance improvement.

The Serial Matrix-Multiply Program

Before we develop a threaded version of this program, let's look at the serial version in
Example 2-9.

Example 2-9: Serial Matrix-Multiply Program (matrix_serial.c)

#include <stdio.h>

#define ARRAY_SIZE 10

typedef int matrix_t[ARRAY_SIZE][ARRAY_SIZE];

matrix_t MA,MB,MC;

/* Routine to multiply a row by a column and place element in the
result matrix. */

void mult(int size, /* size of the matrix */

 int row, /* row of result to compute */

 int column, /* column of result to compute */

 matrix_t MA, /* input matrix */

 matrix_t MB, /* input matrix */

 matrix_t MC) { /* result matrix */

 int position;

 MC[row][column] = 0;

 for(position = 0; position < size; position++) {

 MC[row][column] = MC[row][column] +

 (MA[row][position] * MB[position][column]) ;

 }
}

/* Main: allocates matrix, assigns values, computes the results */

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/02FIG10_0.gif

extern int

main(void) {

 int size = ARRAY_SIZE, row, column;

 /* Fill in matrix values */

 .

 .

 .

 /* Process matrix, by row, column */

 for(row = 0; row < size; row++) {

 for (column = 0; column < size; column++) {

 mult(size, row, column, MA, MB, MC);

 }

 }

 /* Print matrix */

 printf("MATRIX: The resulting matrix C is:\n");

 for(row = 0; row < size; row ++) {

 for (column = 0; column < size; column++) {

 printf("%5d ",MC[row][column]);

 }

 printf("\n");

 }

 return 0
}

The arrays are named MA, MB, and MC (MA x MB = MC). The mult routine computes the
result for an individual element in MC by multiplying the proper elements of MA by MB
and adds the products. In the main program, a loop calls this routine for each element of
MC.

The Multithreaded Matrix-Multiply Program

For the threaded version in Example 2-10, we'll use the peer model to organize the
program's threads. We'll create a peer thread for each individual element in the result
array MC and assign it to compute the result. A main thread will also exist—not so much
as a peer thread but as a setup and cleanup thread. It performs all of the setup tasks for
the program, creates the peer threads, and waits for them to complete. When they do, the

main thread prints the results and terminates the program.*

* This design might cause a problem on some systems when the number of threads that
must be created to handle a very large matrix swamp the system. A more
sophisticated solution would be to limit the number of created threads based on the
number of available CPUs.

Example 2-10: Multithreaded Matrix-Multiply Program main Routine

/* main: allocates matrix, assigns values, computes the results */

.

.

.

typedef struct {

int id;

int size;

int row;

int column;

matrix_t *MA,

matrix_t *MB,

matrix_t *MC;

} matrix_work_order_t;

.

.

extern int

main(void) {

 int size = ARRAY_SIZE, row, column;

 matrix_t MA,MB,MC;

 matrix_work_order_t *work_orderp;

 pthread_t peer[size*size];
.

 .

 .

 /* Process Matrix, by row, column */

 for(row = 0; row < size; row++) {

 for (column = 0; column < size; column++) {

 id = column + row*10;

 work_orderp =

 (work_order_t *)malloc(sizeof(matrix_work_order_t));

 work_orderp->id = id;

 work_orderp->size = size;

 work_orderp->row = row;

 work_orderp->column = column;

 work_orderp->MA = &MA;

 work_orderp->MB = &MB;

 work_orderp->MC = &MC;

 pthread_create(&(peer[id]), NULL, (void *)peer_mult,

 (void *)work_orderp);

 }

 }

 /* Wait for peers to exit */

 for (i = 0; i < (size * size); i++) {

 pthread_join(peer[i], NULL);

 }

 .

 .

 return 0;
}

In the serial version of our matrix-multiply program (Example 2-9), the main routine made
a procedure call to invoke the mult routine. In the multithreaded version (Example 2-10),
the main routine creates a peer thread to do the job. There is one complication, though—
the mult routine as used in the serial version has many arguments, but the
pthread_create function lets threads start only in routines that are passed a single
argument. We'll explain the solution in the next section.

Passing data to a new thread

This limitation of pthread_create is annoying, but there is a standard solution that we
employ in Example 2-11. We bundle everything the main routine wants to pass to its peer
threads into a single structure. We call this structure the matrix_work_order_t, and it
contains fields for all of the arguments passed to the serial program's mult routine. Our
main routine passes each peer thread a pointer to a matrix_work_order_t structure as the
last argument in the pthread_create call.

A common error is not passing the new thread a work order structure that is unique. You
may have noticed that our ATM and matrix-multiply programs allocate the data they
intend to pass to their threads by using a malloc call just prior to the pthread_create call.
If instead they used a static structure, or placed the malloc outside of the "for" loop, the
main would continuously overwrite the contents of the same structure, and all threads
would see values that were intended only for the most recently created thread.

Using the matrix_work_order_t structure lets the main routine bundle various pieces of
information into a single pthread_create argument, but the thread's start routine must
accept only a single argument. It would be nice to reuse our mult routine as a start
routine, but its multiple arguments make that impossible. This is common occurrence
when trying to use legacy code with threads. Here too we'll use a standard solution. We'll
define a new start routine for the peer threads. It'll be a simple wrapper over the
preexisting mult routine. The peer_mult routine takes the pointer to the
matrix_work_order_t structure that was passed in through pthread_createand uses the
information from the structure to call the mult routine.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_24.html#364052
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_24.html#333753

Example: 2-11: Multithreaded Matrix-Multiply Program peer_multi Routine

/*

* Routine to start off a peer thread

*/

void peer_mult(matrix_work_order_t *work_orderp)

{

mult(work_orderp->size,

 work_orderp->row,

 work_orderp->column,

 *(work_orderp->MA),

 *(work_orderp->MB),

 *(work_orderp->MC));

free(work_orderp);

}

Synchronization in the matrix-multiply program

Our multithreaded matrix-multiply example doesn't need much unusual synchronization:

 • The main thread must wait for the peers to complete. It uses pthread_join to do so.

 • No data synchronization is required because the peers never write to any shared
locations.

 • Threads only read the values in the input arrays; we don't have to worry about
synchronizing access because someone may change those values.

• The computation of each element in the result array is completely independent of the

results for any other element in the result array. We don't need to be concerned about
the order in which threads complete the computation of their elements.

Because thread programmers are rarely this lucky, we need to turn the page to Chapter 3.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=366376.html#366376

Chapter 3: Synchronizing Pthreads

Overview

Creating threads is the easy part. It's harder to get them to share data properly. We're
tempted to make the obvious analogy to children. To prevent damage to the Nintendo
(and the children), we'll only let the one who folds the laundry that evening play Donkey
Kong. Similarly, to make threads share data safely, we must ensure that threads that
would otherwise behave independently access shared data in an orderly and controlled
way. This concept is called synchronization.(The other concept is called good parenting.)

Sooner or later, you'll probably make a programming error and fail to synchronize
threads. It would be nice if you could get a feel for the symptoms of synchronization
failures so that you can react quickly and expertly to such a disaster. Unfortunately, as
we'll see, almost any type of quirky behavior might be regarded as a symptom of a
synchronization failure. Worse, you may see problems only every so often when you run
your program; at other times, if the threads in the program just happen to access data in
the right order in a particular run, the program may run fine. So you may notice incorrect
output at random times—perhaps in one run out of a hundred. In fact, this come-and-go
quality of errors may be the best indicator that your bug is in the way in which you've
handled thread synchronization.

Let's suppose we forgot to include synchronization in the ATM server we created in
Chapter 2, Designing Threaded Programs . When one of our imaginary bank's customers
deposits money in an account, she expects that, ultimately, her account balance will be
its original value plus the amount she deposited. She probably can't even conceive of
anything our bank could do to interfere with her transaction and cause her end balance to
be any different than she expects. In other words, she assumes that her deposit is a
single, indivisible transaction (if she were a software engineer, she'd know that the word
for that type of transaction is atomic)that occurs in isolation from other transactions. It's
anything but. Her deposit may consist of many, many separate tasks: disk reads, memory
reads, calculations, data modifications, memory writes, disk writes, and more. Worse,
without synchronization in our ATM server, we'll allow a similar transaction to preempt her
deposit at any step—before all of the steps required to make it a deposit have completed.

But it's likely she'll have no problems until, for instance, she tries to withdraw $50 from
her account at the same time her husband across town also tries to withdraw $50. This
type of problem is known as a race condition. A race condition is illustrated in Figure 3-1.

Figure 3-1: ATM race condition with two withdraw threads

In a race condition, two or more threads access the same resource at the same time. In
Figure 3-1, Thread 1 and Thread 2 simultaneously attempt a withdrawal from the same
bank account. Thread1 reads the current balance of the account—$125. However, before
it can proceed with the other steps that complete the withdrawal (the arithmetic, the
storing of the new result, and the dispensing of cash), it is preempted by Thread 2.
Thread 2 also reads the account balance—$125, but Thread 2 continues on to complete
the transaction. It subtracts $50 from$125, stores the new balance, $75, in the account
database, and hands the customer a $50 bill. Sometime thereafter, Thread 1 resumes,
subtracts $50from $125 (which is what it thinks is the account balance), stores the new
balance, $75, in the account database, and hands the other customer a$50 bill. Nothing
looks wrong to either thread, but in actuality, we've allowed one thread to clobber the
write of another. We've subtracted a total of $100 from $125 and have come up with $75.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=197663.html#197663
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=197663.html#197663
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/03FIG01_0.gif

A bank could lose a lot of money if this was allowed to happen.*

* Actually, the error just happened to be in the customer's favor because the operations

were both withdrawals. If the operations were deposits, the error would be in the
bank's favor.

The problem with our ATM server is that the three key steps in the withdraw transaction—
the reading of the balance, the calculation of the new balance, and the storing of the new
balance in the account database—should be atomic. Either all of the steps are performed
together without interruption, or none of them are.

Selecting the Right Synchronization Tool

You can choose from among many Pthreads functions to obtain some type of
synchronization:

pthread_join function

pthread_join allows one thread to suspend execution until another has terminated. We
discussed the pthread_join function in Chapter 1, Why Threads?

Mutex variable functions

A mutex variable acts as a mutually exclusive lock, allowing threads to control access
to data. The threads agree that only one thread at a time can hold the lock and access
the data it protects. We'll discuss mutex variables in this chapter.

Condition variable functions

A condition variable provides a way of naming an event in which threads have a
general interest. An event can be something as simple as a counter's reaching a
particular value or a flag being set or cleared; it may be something more complex,
involving a specific coincidence of multiple events. Threads are interested in these
events, because such events signify that some condition has been met that allows
them to proceed with some particular phase of their execution. The Pthreads library
provides ways for threads both to express their interest in a condition and to signal that
an awaited condition has been met. We'll discuss condition variables in this chapter.

pthread_once function

pthread_once is a specialized synchronization tool that ensures that initialization
routines get executed once and only once when called by multiple threads. We'll
discuss the pthread_once function in Chapter 4, Managing Pthreads .

These synchronization tools provide all that you need to write almost any program you
can imagine. We can safely say that you can create whatever complex synchronization
tools you may need from these basic building blocks. Some of the common
synchronization mechanisms are:

Reader/writer exclusion

Reader/writer locks allow multiple threads to read data concurrently but ensure that
any thread writing to the data has exclusive access.

Threadsafe data structures

You may find it useful to build synchronization primitives into a complex data structure
so that each time you access it you don't need to make a separate call to synchronize
concurrent access. For instance a queue library may include enqueue and dequeue
functions that transparently include synchronization calls.

Semaphores

If your platform supports POSIX real-time extensions (POSIX.1b), you can take

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=36527.html#36527
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=36527.html#36527

advantage of yet another common synchronization primitive for concurrent
environments—semaphores. A counting semaphore is like a mutex but is associated
with a counter. If your platform supports both the POSIX real-time extensions and
Pthreads, you can use semaphores on a per-thread basis in the same way you would

use a mutex*. We'll briefly discuss semaphores in Chapter 5, Pthreads and UNIX .

* A full discussion of semaphores is beyond the scope of this book. For a detailed
discussion of all of the POSIX real-time extensions, see the book
POSIX.4:Programming for the Real World by Bill O. Gallmeister from O'Reilly &
Associates.

Later in this chapter we'll provide examples of a thread safe linked list and a reader/writer
lock implementation. These will give you a idea of what it is like to implement higher-level
synchronization facilities on top of the standard Pthreads ones.

Mutex Variables

To protect a shared resource from a race condition, we use a type of synchronization
called mutual exclusion, or mutex for short. Using mutexes, we give threads turns at
having exclusive access to data. When one thread has exclusive access to data, other
threads cannot simultaneously be accessing the same data.

So far, we've focused almost entirely on providing exclusive access to data. However, we
could take a different perspective and provide exclusive access to the code paths or
routines that access data. We call that piece of code that must be executed atomically a
critical section.

How large does a critical section have to be to require protection through a mutex? Not
very large at all—even a single statement might need to be guarded by a mutex. To
answer this question for your program, it's important for you to understand something
about what your C language statements might look like at an instruction level. Where
your C language program might have a single assignment statement, the compiler might
substitute a number of machine instructions operating on one or more memory locations.
In a multithreaded environment, the original single statement is no longer atomic at the
hardware level. For example:

 • Double-precision floating-point multiplies and adds on many systems require multiple
loads and stores.

 • A platform may have alignment restrictions that cause an integer to be accessed by
multiple loads or stores when it straddles an alignment boundary.

Be conservative. Because a platform's machine architecture ultimately decides which
operations are performed atomically and which are not, you should always use mutexes
to ensure a thread's shared data operations are atomic with respect to other threads. For
the time being, you can assume that the Pthreads standard arranges things so that
Pthreads library operations (such as mutex locks and unlocks) work properly regardless
of the platform you are using and the number of CPUs in the system. We'll provide
enough background on this topic in Chapter 5, to make you confident that this is so.

Using mutex variables in Pthreads is quite simple. Here's what you do:

 1. Create and initialize a mutex for each resource you want to protect, like a record in a
database.

2. When a thread must access the resource, use pthread_mutex_lock to lock the
resource's mutex. The Pthreads library makes sure that only one thread at a time can
lock the mutex; all other calls to the pthread_mutex_lock function for the same mutex
must wait until the thread currently holding the mutex releases it.

 3. When the thread is finished with the resource, unlock the mutex by calling
pthread_mutex_unlock.

It's up to you to put lock and unlock calls in the right place. Unlike some higher-level

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=986815.html#986815
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=986815.html#986815
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=986815.html#986815

programming interfaces, the Pthreads library does not enforce locks. Pthreads locks are
merely advisory. If each thread locks the mutex when it's supposed to, the system works;
if each thread does what it feels like, the data goes unprotected. If your locking code is
correct, the thread that holds a lock on a mutex can assume that:

 • No other thread will write to the data. Data protected by the mutex will not change out
from under it.

This is important because a thread may take some action based on the current value
of the data. For instance, the ATM example allows a withdrawal whenever the bank
balance is greater than the amount to be withdrawn. You certainly wouldn't want a
thread to come in and decrease the balance while another thread is giving out the
money.

 • No other thread will read the data while it is in some sort of intermediate state. After
this thread releases the lock, other threads will see only the final data it has written.

This is important because a thread might need many steps to process the data. The
only way to make the data appear atomic to other threads is to prevent them from
seeing its intermediate states.

You can use a single mutex lock in our ATM server example to protect the account
database from corruption. We'll globally define the mutex and call it global_data_mutex.
Our server's main routine will statically initialize global_data_mutex before it creates any
worker threads:

pthread_mutex_t global_data_mutex = PTHREAD_MUTEX_INITIALIZER;

Once it's initialized, the mutex can be used by any worker thread accessing the database,
such as the threads that run the deposit routine in Example 3-1.

Example 3-1: Using a Single Mutex Lock for the ATM Database (atm_svr.c)

void deposit(char *req_buf, char *resp_buf)

{

 int rtn;

 int temp, id, password, amount;

 account_t *accountp;

 /* Parse input string */

 sscanf(req_buf, "%d %d %d %d ", &temp, &id, &password, &amount);

 /* Check inputs */

 if ((id < 0) || (id >= MAX_NUM_ACCOUNTS)) {

 sprintf(resp_buf, "%d %s", TRANS_FAILURE, ERR_MSG_BAD_ACCOUNT);

 return;

 }

 pthread_mutex_lock(&global_data_mutex);

 /* Retrieve account from database */

 if ((rtn = retrieve_account(id, &accountp)) != 0) {

 sprintf(resp_buf, "%d %s", TRANS_FAILURE, atm_err_tbl[-rtn]);

 .

 .

 .

 }

 pthread_mutex_unlock(&global_data_mutex);
}

Although we've shown only the deposit routine in Example 3-1, all the routines in our
server that access the database work in the same way. They lock the mutex before
retrieving the account balance, then release it after they've changed the account balance.
This may be the simplest solution for our ATM server, but it's not the best. We've limited
access to the entire database to a single thread at a time, thus slowing performance
considerably. Later in this chapter, as a performance enhancement, we'll add mutexes for
individual account records to our server.

Using Mutexes

Mutex variables are of type pthread_mutex_t. Before you can use a mutex in your
program, you must initialize it, either dynamically or statically. We previously showed an
example of static initialization.

You dynamically initialize a mutex by calling pthread_mutex_init as shown in Example 3-
2.

Example 3-2: Dynamically Initializing a Single Mutex Lock (atm_svr.c)

pthread_mutex_t *mutexp;

 .

 .

 .

 mutexp=(pthread_mutex_t *)malloc(sizeof(pthread_mutex_t));

 pthread_mutex_init(mutexp, NULL);

When Pthreads initializes a mutex, it defines an attribute object for the mutex
(pthread_mutex_attr_t) that you use to customize its behavior. To assign default
attributes to a mutex, pass a NULL attribute argument in the pthread_mutex_init call.
Unlike the pthread_attr_t object, which we introduced in our discussion of pthread_create
in Chapter 1, the pthread_mutex_attr_t object has no mandatory attributes. We'll discuss
its optional attributes—a process-shared attribute and two priority-inversion attributes
(priority ceiling and priority inheritance)—a bit later.

Because you want to protect data from being accessed by more than one thread at a
time, the main routine usually initializes all mutexes before it creates additional threads.
Sometimes this is impractical—for instance, in a system library (it has no main!).When
this is the case, use the pthread_once function, which we'll cover in Chapter 4.

Once you've initialized a mutex, you can lock it by calling pthread_mutex_lockor
pthread_mutex_trylock. The pthread_mutex_lock call blocks the calling thread until it's
granted the lock. If the mutex is unlocked at the time of the call, the lock's granted
immediately; otherwise, it's granted after it's released by the thread that's holding it. We'll
discuss pthread_mutex_trylock momentarily.

To release a lock, use pthread_mutex_unlock. If you should forget to call
pthread_mutex_unlock for a locked mutex, a deadlock may occur in which other threads
that are requesting the lock wait indefinitely for you to release it.

Error Detection and Return Values

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=36527.html#36527

The Pthreads standard allows implementations to define the exact level of error detection
and reporting for some library calls. Although this allows vendors to design efficient
library calls, it can pose a particular problem when you use mutex library calls.

In general, the Pthreads library reports all errors associated with resource availability and
system constraints on function operation. For example, if the library realizes that it cannot
initialize a mutex for a thread because the library itself hasn't enough space in its internal
tables, it returns a value of EAGAIN or ENOMEM to the caller of pthread_mutex_init.
However, the library does not have to detect improper uses of a mutex and report any
errors that might result. Such improper uses include:

 • Locking a mutex that you have not initialized

 • Locking a mutex that you already own

 • Unlocking a mutex that you don't own

Hopefully, the library you use does detect these misuses. If it does not in its default
mode, see if it has a debug mode that provides additional error detection.

Using pthread_mutex_trylock

The pthread_mutex_trylock function, like pthread_mutex_lock, locks a previously
initialized mutex. Unlike pthread_mutex_lock, though, it does not suspend its caller if
another thread already holds the mutex. Instead, it returns immediately, indicating that
the mutex is currently locked. The pthread_mutex_trylock function can be useful, but
using it is not as simple as it seems.

Be careful.

Philosophically, using pthread_mutex_trylock seems contrary to the basics of
multithreaded program design. We are callingpthread_mutex_trylock to prevent a thread
from blocking, but we've designed threads into our program so that some threads could
block while others continue. When we see a pthread_mutex_trylock call, we often wonder
why the program's designer didn't simply create another thread for whatever it is that the
thread might do while it would be waiting for the lock. This would make the program
easier to understand rather than having the one thread, essentially assigned to more than
one task, asynchronously bouncing between tasks based on the availability of locks.

Practically, using pthread_mutex_trylock represents a kind of polling for a resource—
repeatedly trying and backing off until the resource is obtained. This polling leads to some
overhead and, worse, potential resource starvation. If the lock is in high demand, the
thread that polls for it may never get it. It's like trying to get tickets for a concert by a really
hot band—Pink Floyd, for instance. The line forms well before the tickets go on sale and
lasts until they are all gone. If you don't keep your place in line, you may never get your
tickets. Similarly, a thread that is not patient enough to block and wait may never try the
lock and find it available—there is always at least one other thread blocked waiting for the
lock. Somewhat more acceptable is the specialized use of pthread_mutex_trylock by real-
time programmers to poll for state changes. This practice may be inefficient, but it does
allow real-time programs to respond quickly to a condition that warrants speed.

Another situation in which a pthread_mutex_trylock is often used is in detecting and
avoiding deadlock in locking hierarchies and priority inversion situations. Later in this
chapter, we'll discuss a more standard solution to locking hierarchy problems that
involves defining an order in which any given thread must pursue locks. In Chapter 4,
we'll discuss how you can avoid priority inversion problems by using attributes to assign
priorities to mutexes.

When Other Tools Are Better

Mutexes are best used for controlling direct access to data and resources. Although you
can use mutexes as building blocks for more complex synchronization mechanisms,
Pthreads often provides a more appropriate tool for doing so.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161

In particular, a common task in thread programming is event synchronization: each
thread in a program reaches a certain point and must wait for other threads to get there.
You might adopt this technique, for instance, when your threads are working on different
chunks of an array and must exchange results at regular points. Your best choice to
impose this type of synchronization is a condition variable. If condition variables were not
available, you'd likely use a counter to let threads know when they've all reached a barrier
in your program. Not only would each thread need to lock a mutex to decrement the
counter, but it would also have to repeatedly lock the mutex to check if the counter had
reached zero. If you find code that polls a counter to determine if all threads have
synchronized on an event, it's time to use a condition variable. We'll have more to say
about condition variables later in this chapter.

Some Shortcomings of Mutexes

Mutexes are the most restrictive type of access control. When a thread locks a mutex on
a resource—even if it's only interested in checking the resource's value—it prevents all
other threads from accessing the resource. This is effective synchronization for all
situations but may not be the most efficient type of lock for situations that allow less
restrictive access.

Sometimes you have many threads that read data but only an occasional thread that
writes it. There should be a type of lock that allows any number of readers but works like
a mutex whenever a writer enters the scene. That is, the writer should not be allowed
access whenever any readers are using the data. But when a writer is using it, neither
readers nor other writers are allowed in. Reader/writer locks provide this type of access
control. Although Pthreads does not specify them, we'll show you later on how to "roll
your own" using mutexes and condition variables.

In some circumstances, it would be useful if we could define a recursivelock: that is a lock
that can be relocked any number of times by its current holder. It would be nice if we
could specify this ability in a mutex attribute object. We can imagine the Pthreads library
associating an internal counter with a recursive mutex to count the number of times its
current holder has called pthread_mutex_lock. Each time the current holder calls
pthread_mutex_unlock, the library would decrement this counter. The lock would not be
released until the call that brings the count down to zero is issued.

A recursive mutex is useful for a thread that makes a number of nested calls to a routine
that locks and manipulates a resource. You lock the mutex recursively each time the
thread enters the routine and unlock it at all exit points. If the thread already holds the
lock, the calls merely increase and decrease the recursive count and don't deadlock the
thread. If you did not use a recursive mutex, you'd need to distinguish somehow between
the times when the thread already holds the lock when it calls the routine and those when
it needs to make a prior mutex lock call.

Contention for a Mutex

If more than one thread is waiting for a locked mutex, which thread is the first to be
granted the lock once it's released? The choice is made according to the scheduling
priorities of the individual threads.

The thread with the highest priority gets the lock. We'll discuss scheduling policies and
priorities in Chapter 4. For now, it's worth noting that they allow you to mark one thread
as more important than another.

Many threaded programs, however, don't assign different priorities to different threads.
Most of these programs are designed for real-time applications and allow the choice of
which thread gets a lock first to be made randomly.

The use of priorities in a multithreaded program can lead to a classic multiprocessing
problem: priority inversion. Priority inversion involves a low priority thread that holds a
lock that a higher priority thread wants. Because the higher priority thread cannot
continue until the lower priority thread releases the lock, each thread is actually treated

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161

as if it had the inverse of its intended priority.

The best way to avoid priority inversion is to minimize the degree to which threads of
different priorities share the same locks. This may not always be possible, though. In
Chapter 4, we'll show you how to eliminate the risk of priority inversion by using mutex
attributes.

Example: Using Mutexes in a Linked List

Linked lists are common structures in programming—and in programming books! But,
when multiple threads become involved, there's a new twist: how do multiple threads
access a list without screwing it up? In this version of the venerable linked-list example,
we'll have multiple threads accessing a list, searching for a node (that is, reading the list),
removing a node, and changing its contents (that is, writing to the list).Our include file for
this example is shown in Example 3-3.

Example 3-3: Include File for a Linked List Module (llist.h)

/* llist.h */

typedef struct llist_node {

 int index;

 void *datap;

 struct llist_node *nextp;
} llist_node_t;

typedef llist_node_t *llist_t;

int llist_init(llist_t *llistp);

int llist_insert_data(int index; void *datap, llist_t *llistp);

int llist_remove_data(int index; void **datapp, llist_t *llistp);

int llist_find_data(int index, void **datapp, llist_t *llistp);

int llist_change_data(int index, void *datap, llist_t *llistp);

int llist_show(llist_t *llistp);

We've set up calls in our llist.h file to initialize a linked list of type llist_t, insert nodes,
remove nodes, retrieve data from nodes, and set variables in nodes. In this simple
example, each node has an integer index that indicates its place in the list. A partial
implementation of the module including the initialization routine (llist_init) and the insert
routine (llist_insert_data) is shown in Example 3-4.

Example 3-4: Nonthreaded Linked List Code (llist.c)

/* llist.c */

#include "llist.h";

/* Right now, this routine simply ensures that we don't initialize
a list

 that has data on it. */

int llist_init(llist_t *llistp)

{

 if (*llistp == NULL)

 return 0;

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161

 else

 return -1;
}

int llist_insert_data(int index, void *datap, llist_t *llistp)

{

 llist_node_t *cur, *prev, *new;

 int found = FALSE;

 for (cur = prev = *llistp; cur != NULL; prev = cur, cur= cur-
>nextp) {

 if (cur->index == index) {

 free(cur->datap);

 cur->datap = datap;

 found = TRUE;

 break;

 } else if (cur->index > index) {

 break;

 }

 }

1 if (!found) {

2 new = (llist_node_t *)malloc(sizeof(llist_node_t));

3 new->index = index;

4 new->data = datap;

5 new->nextp = cur;

6 if (cur == list)

7 *llistp = new;

8 else

 prev->nextp = new;

 }

 return 0;
}

As we've written it so far, our linked list code would present many opportunities for race
conditions if we divided its tasks among multiple threads. If we allowed two or more
threads to concurrently execute these routines, unexpected results might arise.

Complex Data Structures and Lock Granularity

When a linked list is being accessed by more than one thread, we're not only concerned
about the data it contains, but also about the integrity of its structure. Consider a situation
in which two threads are inserting nodes in our list at the same time, with the result that
the execution of lines 1 through 8 in Example 3-4 are interleaved. Each thread has
passed the test at line 6 and thus thinks that it should insert its node on the top of the list.
When it executes line 7, each thread makes the head of the list point to the node it will be
inserting. Whichever thread is the last to do so will succeed in inserting its node on the

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_27.html#431327

list; the other thread's node will be lost forever, occupying inaccessible memory
somewhere on the heap. A similar mishap could result from the race condition in which a

thread reads a node that is being concurrently removed by another thread.*

* Our expectations on the structure and value of that data are sometimes called
invariants. When we have a linked list, we expect it to remain well formed as long as
our program is executing. It should always have a valid head and tail and correctly
linked nodes that don't disappear—no matter which thread in our program references
it.

Programmers often want to use a preexisting code library or module with a multithreaded
program only to discover that to do so might create race conditions among the threads.
We say that it contains non-threadsafe,or nonreentrant, code. In our linked list example,
we'll rewrite the previous module to make it thread safe. In other cases, we may not have
had the option of rewriting our code, perhaps because we were using a precompiled
library of code. If this were the situation, we'd add a mutex as a wrapper around our calls
to library functions. We'll discuss the issues that arise from using non-threadsafe code in
Chapter 5.

Requirements and Goals for Synchronization

When designing the synchronization for our data structures, we'll keep to two strict
requirements:

 • Eliminate all race conditions.

 • Do not introduce deadlock.

We'll try to meet these requirements with as little impact on the performance of our
program as possible.

The lock potentially blocks other threads that must access the resource it protects. You
can control this expense to some extent by economizing on the length of time a thread
spends in a critical section of code. (It's how long this code takes to complete that
determines how long other threads must wait on a mutex.) We'll revisit performance
issues in Chapter 6, Practical Considerations .

The simplest way to synchronize our program would be have a single mutex protect all
types of access to the entire list—insertion, deletion, reading data, and writing data. This
approach would eliminate all race conditions for these operations and prevent deadlock,
thus meeting our requirements. We'll need to first modify the llist_t data structure in our
header file, as follows:

typedef struct llist {

 llist_node_t *first;

 pthread_mutex_t mutex;

 } llist_t;

We'll then change our initialization and insert routines as shown in Example 3-5.

Example 3-5: Multithreaded Linked List Code (llist_threads.c, llist_threads.h)

int llist_init(llist_t *llistp)

{

 llistp->first = NULL;

 pthread_mutex_init(&(llistp->mutex), NULL);

 return 0;
}

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1166241.html#1166241
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1166241.html#1166241
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=986815.html#986815

int llist_insert_data(int index, void *datap, llist_t *llistp)

{

 llist_node_t *cur, *prev, *new;

 int found = FALSE;

 pthread_mutex_lock(&(llistp->mutex));

 for (cur = prev = llistp->first; cur != NULL; prev = cur, cur=
cur->nextp) {

 if (cur->index == index) {

 free(cur->datap);

 cur->datap = datap;

 found = TRUE;

 break;

 } else if (cur->index > index) {

 break;

 }

 }

 if (!found) {

 new = (llist_node_t *)malloc(sizeof(llist_node_t));

 new->index = index;

 new->data = datap;

 new->nextp = cur;

 if (cur == llistp->first)

 llistp->first = new;

 else prev->nextp = new;

 }

 pthread_mutex_unlock(&(llistp->mutex));

 return 0;
}

The llist_t structure now includes a mutex lock that protects the entire list. The llist_init
routine initializes the mutex in the pthread_mutex_init call that follows the malloc that
allocates the list. Each routine that accesses the list, like llist_insert_data in Example 3-5,
must first obtain this mutex (by calling pthread_mutex_lock).It releases the mutex (by
calling pthread_mutex_unlock)just before exiting.

By putting the synchronization inside our module, we've created a thread safe data type
without changing its interface.

Although this solution does meet our design requirements, it may not provide the best
possible performance. The mutex controls access to the entire list. That is, while the list
is being accessed by any thread, it is unavailable to all other threads. If concurrent
accesses to the list are uncommon, this may be fine; but what if this isn't true?

Access Patterns and Granularity

Your choices for optimizing performance in a multithreaded program are tied to how its
threads access the shared data on the list. If almost all accesses are reads and writes of
existing data nodes, as opposed to insertions and removes, your most efficient approach
might be to allow nodes to be individually locked. This would allow threads to read and
write different nodes simultaneously. However, if threads often insert and remove nodes
to and from the list, this solution would add another layer of complexity.

This basic design decision concerns lock granularity—that is, the level at which we apply
locks to our shared data (and, thus, the number of locks we use to protect the data). On
one hand, we could use coarse-grain locking and use a single mutex to control access to
all shared data. This is what we've been using up to this point. On the other hand, we
could use fine-grain locking and place a lock on every individually accessible piece of
data. Fine-grain locking may result in improved concurrency, but it requires the most
coding and overhead in synchronization calls.

In practice, locking systems adopt a lock granularity design that falls somewhere in
between these extremes. The programmer takes anticipated usage into account—for
instance, whether it's likely for more than one thread to request withdrawals on the same
account at the same time. It's an art to provide the most efficient implementation while
ensuring that the application works correctly.

Locking Hierarchies

If your shared data has some hierarchical structure—for instance, it's a tree with some
depth to it—you may want to allow threads to lock separate subtrees of the structure
simultaneously. This assumes a finer-grain lock design.

Figure 3-2 shows a tree with a root and three levels—L1, L2, and L3. We've assigned a
mutex to each level to control access to the sublevels below.

Figure 3-2: Locking in hierarchical data structures

This is all well and good, but beware! If we now allow threads to acquire these locks in
any order they please, the kind of deadlock known as a deadly embrace can occur. For
example, consider two threads that intend to lock the same section of the tree (see
Figure 3-3).The first thread tries to obtain the L1, L2, and L3 locks in succession, and the
second thread goes after L3, L2, and L1 in the reverse order at the same time. If their
execution overlapped, it's quite possible that each would stall waiting for a lock already
held by the other. (Here, the first thread blocks waiting for the L3 lock that the second
thread holds, and the second thread blocks waiting for the L2 lock that the first thread
holds.) Our threads are deadlocked waiting for each other.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/03FIG02_0.gif
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/03FIG03_0.gif

Figure 3-3: Deadly embrace in a locking hierarchy

To avoid a deadly embrace such as this, we must enforce a fixed locking hierarchy. To
access data at any given level, all threads in our program must obtain the lock at each
lower level in exactly the same order. If threads always took L1 before L2, and L2 before
L3, any thread obtainingL1 can assume that L2 is either unlocked or locked by another
thread. It can also assume that the other thread that currently owns L2 will not try to lock
L1. Presumably, the second thread will release L2 sometime, giving the first thread an
opportunity to proceed through the hierarchy. Thus, our threads avoid deadlock. Note that
this scheme allows a thread with a lock in the hierarchy to release locks of lower levels so
that other threads can pursue data off other branches of the subtree.

Some locking systems have built-in support for locking hierarchies—Pthreads isn't one of
them. In these systems, you can define each lock's place in the hierarchy to the locking
system. When you subsequently try to obtain a lock, the system checks if you own all
required prior locks. If not, it gives you an error.

In systems without this support, locking hierarchies must exist entirely in the
programmer's head or, perhaps, be written profusely into program comments.

Sharing a Mutex Among Processes

A mutex has a single attribute that determines whether or not it can be seen by threads in
other processes: process-shared. (A mutex object also has two attributes that assist in
scheduling threads. We'll discuss them in Chapter 4.) If your platform allows you to set
the process-shared attribute, the compile-time constant
_POSIX_THREAD_PROCESS_SHARED will be TRUE.

When you initialize a mutex dynamically (that is, by calling pthread_mutex_init),the
Pthreads library creates a mutex attribute object for it. A Pthreads mutex attribute object
is of type pthread_mutex_attr_t.You initialize and deinitialize it by calling
pthread_mutexattr_initand pthread_mutexattr_destroy, respectively. To set the process-
shared attribute, supply the PTHREAD_PROCESS_SHARED constant in a
pthread_mutexattr_setshared call. To revert to a process-private mutex, specify the
PTHREAD_PROCESS_PRIVATE constant. Processes that share a mutex must be able
to access it in shared memory (created through System V shared memory mechanisms
or through mmap calls). The mutex is initialized once by a thread in any of the processes
that plan to use it. Example 3-6 shows one way of initializing a process-shared mutex.

Example 3-6: A Process-Shared Mutex (process_shared_mutex.c)

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <string.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#include <sys/wait.h>

#ifndef _POSIX_THREAD_PROCESS_SHARED

#error "This platform does not support process shared mutex"

#endif

int shared_mem_id;

int *shared_mem_ptr;

pthread_mutex_t *mptr;

pthread_mutex_attr_t mutex_shared_attr;

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161

extern int

main(void)

{

 pid_t child_pid;

 int status;

 /* initialize shared memory segment */

 shared_mem_id = shmget(IPC_PRIVATE, 1*sizeof(pthread_mutex_t),
0660);

 shared_mem_ptr = (int *)shmat(shared_mem_id, (void *)0, 0);

 mptr = shared_mem_ptr;

 pthread_mutexattr_init(&mutex_shared_attr);

 pthread_mutexattr_setshared(&mutex_shared_attr,
PTHREAD_PROCESS_SHARED);

 pthread_mutex_init(mptr, &mutex_shared_attr);

 if ((child_pid = fork()) == 0) {

 /* child */

 /* create more threads */

 .

 .

 pthread_mutex_lock(mptr);

 .

 .

 } else {

 /* parent */

 /* create more threads */

 .

 .

 pthread_mutex_lock(mptr);

 .

 .
}

In Example 3-6, we allocate storage for the mutex from the shared memory segment. The
main thread in the parent process initializes it, using a mutex attribute object we've set to
the PTHREAD_PROCESS_SHARED constant in a call to the function
pthread_mutexattr_setshared.After it initializes the mutex, the parent process forks.
Subsequently, the main threads of both the parent and child processes can create more
threads, all of which can use the mutex to synchronize access to mutually shared data.
When using a process-shared mutex, consider the following:

• Once a process has multiple threads, forking has many pitfalls. (If youwish to steer this

course, see Chapter 5, before going any further.) In Example 3-6, we took care to
initialize the mutex before forking and to fork before we created multiple threads from
multiple processes.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=986815.html#986815

• For strict, process-to-process synchronization, use System V or POSIX.1bsemaphores.

For thread-to-thread synchronization across processes, youcan use POSIX.1b
semaphores as an alternative to process-shared mutexes.

Condition Variables

While a mutex lets threads synchronize by controlling their access to data, a condition
variable lets threads synchronize on the value of data. Cooperating threads wait until
data reaches a particular state or until a certain event occurs. Condition variables provide
a kind of notification system among threads. As mentioned earlier, if Pthreads didn't offer
condition variables, but only provided mutexes, threads would need to poll the variable to
determine when it reached a certain state.

Example 3-7 shows a simple use of a condition variable. We'll make the global variable
count a shared resource that two threads increment and create the mutex count_mutex
(in global scope) to protect it. We'll use the count_threshold_cv condition variable to
represent an event—the count variable's reaching a defined threshold value,
WATCH_COUNT.

The main routine creates two threads. Each of these threads runs the inc_count routine.
The inc_count routine locks count_mutex, increments count, reads count in a printf
statement, and tests for the threshold value. If count has reached its threshold value,
inc_count calls pthread_cond_signal to notify the thread that's waiting for this particular
event. Before exiting, inc_count releases the mutex. We'll create a third thread to run the
watch_count task. The watch_count routine waits for inc_count to signal our
count_threshold_cv condition variable.

Example 3-7: A Simple Condition Variable Example (cvsimple.c)

#include <stdio.h>

#include <pthread.h>

#define TCOUNT 10

#define WATCH_COUNT 12

int count = 0;

pthread_mutex_t count_mutex = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t count_threshold_cv = PTHREAD_COND_INITIALIZER;

int thread_ids[3] = {0,1,2};

extern int

main(void)

{

 int i;

 pthread_t threads[3];

 pthread_create(&threads[0],NULL,inc_count, &thread_ids[0]);

 pthread_create(&threads[1],NULL,inc_count, &thread_ids[1]);

 pthread_create(&threads[2],NULL,watch_count, &thread_ids[2]);

 for (i = 0; i < 3; i++) {

 pthread_join(threads[i], NULL);

 }

 return 0;

}

void watch_count(int *idp)

{

 pthread_mutex_lock(&count_mutex)

 while (count <= WATCH_COUNT) {

 pthread_cond_wait(&count_threshold_cv,

 &count_mutex);

 printf("watch_count(): Thread %d,Count is %d\n",

 *idp, count);

 }

 pthread_mutex_unlock(&count_mutex);
}

void inc_count(int *idp)

{

 for (i =0; i < TCOUNT; i++) {

 pthread_mutex_lock(&count_mutex);

 count++;

 printf("inc_count(): Thread %d, old count %d,\

 new count %d\n", *idp, count - 1, count);

 if (count == WATCH_COUNT)

 pthread_cond_signal(&count_threshold_cv);

 pthread_mutex_unlock(&count_mutex);

 }
}

A condition variable has a data type of pthread_cond_t. You can initialize it statically as
we do in Example 3-7, or you can initialize it dynamically by calling pthread_cond_init, as
follows:

pthread_cond_init(&count_threshold_cv, NULL);

After you initialize a condition variable, a thread can use it in one of two ways:

 • The thread can wait on the condition variable.

To wait on a condition variable, a thread calls pthread_cond_wait or
pthread_cond_timedwait. Both of these functions suspend the caller until another

thread signals* on the condition variable. In addition, the pthread_cond_timedwait call
lets you specify a timeout argument. If the condition is not signaled in the specified
time, the thread is released from its wait.

Note that we do not use the term signals in the sense used in discussions of
UNIX signaling mechanisms. See the section called "Condition Variables
and UNIX Signals" later in this chapter.

 • It can signal other threads waiting on the condition variable.

To release threads that are waiting on a condition variable, a thread calls

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_28.html#511419
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_28.html#511419
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_28.html#511419

pthread_cond_signal or pthread_cond_broadcast. The pthread_cond_signal function
wakes up only one of the potentially many threads waiting on the condition; the
pthread_cond_broadcast function awakens all of them.

In Example 3-7, the only thread waiting is the one running the watch_count task. The

threads that signal are running the inc_count task.* The thread running watch_count first
locks the count mutex before checking the count. This is important because, condition or
no condition, that counter is still a shared piece of data. We don't want it to change while
we're in the middle of checking it. If count is not the desired value, the thread calls
pthread_cond_wait to put itself into a wait on the count_threshold_cv condition variable.
The pthread_cond_wait function releases the count mutex while the thread is waiting so
other threads have the opportunity to modify count. When the condition occurs and it is
awakened, the thread running watch_count prints a message, unlocks the mutex, and
exits. The threads running inc_count check the value of the count after each increment. If
count reaches WATCH_COUNT, they use pthread_cond_signal to awaken the waiter.

* Although the pthread_cond_broadcast function wakes all threads waiting on the
condition, they all immediately compete for the associated mutex. Only one of them will
succeed in locking the mutex and be able to continue in the code after
thepthread_cond_wait call. See the discussion in the section called "When Many
Threads Are Waiting" coming up.

Using a Mutex with a Condition Variable

It is important to use condition variables and mutexes together properly.

A call to pthread_cond_wait requires that a locked mutex be passed in along with the
condition variable. The system releases the mutex on the caller's behalf when the wait for
the condition begins. In concert with the actions of the waiting thread, the thread that
issues the pthread_cond_signal or pthread_cond_broadcast call holds the mutex at the
time of the call but must release it after the call. Then, when the system wakes it up, a
waiting thread can regain control of the mutex. It too must release the mutex when it's
finished with it.

It all sounds complicated, but what if the mutex and the condition variable weren't linked?
If the condition were signaled without a mutex, the signaling thread might signal the
condition before the waiting thread begins waiting for it—in which case the waiting thread
would never wake up. If the system did not release the lock when the waiting thread
entered the wait, no other thread could get the mutex and change the value of count such
that the condition is met. The condition would never be signaled, and the program would
deadlock. If the waiting thread didn't release the mutex, no other thread could get the
mutex. Here, too, we'd wind up in a deadlock.

When Many Threads Are Waiting

If multiple threads are waiting on a condition variable, who gets awakened first when
another thread issues a pthread_cond_signal call? As with threads waiting in a lock call
to a mutex variable, the waiting threads are released according to their scheduling
priority. If all waiting threads are of the same priority, they are released in a first-in first-
out order for each pthread_cond_signal call that's issued.

The pthread_cond_broadcast function releases all threads at once from their waits on the
condition variable, but there is a hitch. The system can select only one to which to give
possession of the mutex. It does so by applying the same criterion it uses when selecting
the thread it wakes when a phread_cond_signal call signals a condition—scheduling
order. The chosen thread is given the mutex lock and continues in the code following its
pthread_cond_wait call. The other threads are moved to the queue of threads that are
waiting to acquire the mutex. Each will resume as each previous thread in the queue
acquires the mutex and then releases it.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_28.html#508837
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_28.html#508837
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_28.html#492233

Checking the Condition on Wake Up: Spurious Wake Ups

This brings us to another aspect of using condition variables. After it's just been
awakened, the waiting thread in our example reenters its while loop to check the value of
count one more time. Is that really necessary, or are we guilty of sloppy coding? After all,
count must have reached its threshold limit, mustn't it, if the thread is now awake and that
was the event on which it was sleeping?

Well, we check the event one more time primarily to ensure correctness: if multiple
threads were waiting on the same condition variable, another thread could have already
been awakened, perhaps decrementing the count, before our thread was able to run.
Second, we want to guard against a condition known as a spurious wake up. Perhaps a
signaling thread has, in error or due to an unexpected condition, awakened our waiting
thread when the expected condition has not in fact been met. In addition, the Pthreads
library allows an underlying threads library to issue spurious wake ups to a waiting thread
without violating the standard. We need to guard against this possibility as well.

Condition Variable Attributes

When you initialize a condition variable dynamically (that is, by calling the
pthread_cond_init function), the Pthreads library creates a condition variable attribute
object for it. A Pthreads condition variable attribute object is of data type
pthread_condattr_t.You initialize and deinitialize the condition variable attribute object by
calling pthread_condattr_init and pthread_condattr_destroy, respectively.

A condition variable attribute object has a single, optional attribute that determines
whether or not it can be seen by threads in other processes: process-shared. Using the
process-shared attribute for condition variables is similar to using it for mutexes and
involves many of the same issues. If you can set the process-shared attribute on your
platform, _POSIX_THREAD_PROCESS_SHARED, the compile-time constant, will be
TRUE. To set the process-shared attribute, supply either the
PTHREAD_PROCESS_SHARED or the PTHREAD_PROCESS_PRIVATE constant in a
call to pthread_condattr_setshared. To test the attribute's value, issue a call to
pthread_condattr_getshared.

If you want the default attributes for a condition variable, pass the function
pthread_condattr_init an attribute argument of NULL.

Condition Variables and UNIX Signals

The Pthreads standard does not define what should happen when a condition variable is
signaled from within a <acronym>UNIX</acronym> signal handler. We'll provide some
detail in Chapter 5, but, for now, let's make this clear: unlike UNIX signals, condition
variables are synchronous. You wait on a condition variable, and you start up again when
another thread signals you. The signal is not delivered by the system itself, and it is not
delivered asynchronously. If you want asynchronous signals, you can certainly use them.
In Chapter 5, we'll show how.

Condition Variables and Cancellation

There are also issues with cancellation and waiting on a condition variable. See the section
called "The Complication with Cancellation" in Chapter 4.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=787981.html#787981
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=986815.html#986815
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=986815.html#986815

Reader/Writer Locks

This next example can be a mind-bender if you're not used to synchronization. It takes
two synchronization primitives, the mutex and the condition variable, and creates a third
—the reader/writer lock.

Let's review the reasons for reader/writer locks and the rules by which they operate. If a
thread tries to get a read lock on a resource, it will succeed only if no other thread holds a
lock on the resource or if all threads that hold a lock are readers. If another thread holds
a write lock on the resource, the would-be reader must wait. Conversely, if a thread tries
to get a write lock on the resource, it must wait if any other thread holds a read or write
lock.

We'll start by defining a reader/writer variable of type pthread_rdwr_tand by creating the

functions that operate on it, as listed in Table 3-1*

* By convention, functions that extend the Pthreads standard should start with pthread

and end with np (for nonportable). We'll follow this convention in this section.

Table 3-1: Reader/Writer Lock Functions

Function

Description

pthread_rdwr_init_np

Initialize reader/writer lock

pthread_rdwr_rlock_np

Obtain read lock

pthread_rdwr_wlock_np

Obtain write lock

pthread_rdwr_runlock_np

Release read lock

pthread_rdwr_wunlock_np

Release write lock

How could threads use this type of lock? We'll modify our linked list program in Example
3-5 to provide Example 3-8.

Example 3-8: Using Reader/Writer Locks (llist_threads_rw.c)

typedef struct llist{

 llist_node_t *first;

 pthread_rdwr_t rwlock;

 } llist_t;

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=448446.html#448446
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=448446.html#448446

.

.

.

int llist_init(llist_t *llistp)

{

 llistp->first = NULL;

 pthread_rdwr_init_np(&(llistp->rwlock), NULL);

 return 0;
}

int llist_insert_data(int index; void *datap, llist_t *llistp)

{

 llist_node_t *cur, *prev, *new;

 int found = FALSE;

 pthread_rdwr_wlock_np(&(llistp->rwlock));

 for (cur = prev = llistp->first; cur != NULL; prev = cur, cur=
cur->nextp) {

 if (cur->index == index) {

 free(cur->datap);

 .

 .

 .

 pthread_rdwr_wunlock_np(&(llistp->rwlock));

 .

 .

 .
}

int llist_find_data(int index; void **datapp, llist_t *llistp)

{

 llist_node_t *cur, *prev, *new;

 int found = FALSE;

 pthread_rdwr_rlock_np(&(*llistp->rwlock));

 for (cur = prev = *llistp->first; cur != NULL;

 prev = cur, cur= cur->nextp) {

 if (cur->index == index) {

 free(cur->datap);

 .

 .

 .

 pthread_rdwr_runlock_np(&(*llistp->rwlock));

 .

 .

 .
}

In Example 3-8, our linked list is protected by a reader/writer lock instead of a mutex. The
llist_insert_data routine obtains a write lock before it modifies the list. The llist_find_data
routine needs only a read lock.

We show the include file in Example 3-9. We'll define a pthread_rdwr_t structure that
includes a count of readers, a count of writers, a mutex, and a condition variable. The
mutex protects the reader/writer counts in the structure. Threads will wait on the condition
variable for a currently held lock to become free. We've effectively hidden both mutex and
condition variable in the structure so their use will be transparent to end users of the
pthread_rdwr_t structure and our reader/writer functions.

Example 3-9: Include File for Reader/Writer Locks (rdwr.h)

#include <pthread.h>

typedef struct rdwr_var {

 int readers_reading;

 int writer_writing;

 pthread_mutex_t mutex;

 pthread_cond_t lock_free;
} pthread_rdwr_t;

typedef void *pthread_rdwrattr_t;

#define pthread_rdwrattr_default NULL;

int pthread_rdwr_init_np(pthread_rdwr_t *rdwrp,
pthread_rdwrattr_t *attrp);

int pthread_rdwr_rlock_np(pthread_rdwr_t *rdwrp);

int pthread_rdwr_wlock_np(pthread_rdwr_t *rdwrp);

int pthread_rdwr_runlock_np(pthread_rdwr_t *rdwrp);

int pthread_rdwr_wunlock_np(pthread_rdwr_t *rdwrp);

Because all thread objects come with attribute objects (threads, mutexes, and so on),
we've defined an attribute data type for our reader/writer locks and named it
pthread_rdwrattr_t. We have no use for it now, but it may come in handy someday. When
we pull it out of the closet, it'll act just like the other attribute objects—it'll be initialized in a
create call and come with a default value of pthread_rdwrattr_default.

The next few pages show how we've implemented the five reader/writer lock functions
the threads in Example 3-8 called.

The initialization function (pthread_rdwr_init_np), in Example 3-10, simply sets the
members of the rdwr variable (a pthread_rdwr_t structure) to the values they should have

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_29.html#524811

when the lock is not held. It initializes the mutex and condition variable to NULL. All other
function calls lock the rdwr variable's mutex before proceeding to ensure that no other
thread is reading or writing the variable's state at the same time.

Example 3-10: Initializing a Reader/Writer Lock (rdwr.c)

int pthread_rdwr_init_np(pthread_rdwr_t *rdwrp,
pthread_rdwrattr_t *attrp)

{

 rdwrp->readers_reading = 0;

 rdwrp->writer_writing = 0;

 pthread_mutex_init(&(rdwrp->mutex), NULL);

 pthread_cond_init(&(rdwrp->lock_free), NULL);

 return 0;
}

The get-read-lock function (pthread_rdwr_rlock_np)checks to see if another thread has a
write lock on the rdwrp variable. If so, it calls the pthread_cond_wait function to wait on
the lock_ free condition variable. When it is awakened and the rdwrp variable is no longer
write-locked, pthread_rdwr_rlock_np increments the number of readers, releases the
mutex, and returns. Note that the thread does not care about the actual value of the
readers_reading member. If it were zero and the function incremented it to 1, the read
lock is set and all subsequent writers must wait. If the readers_reading count were
already greater than 1, the new reader would simply be added to the number of threads
already reading. Example 3-11 illustrates how the function would look.

Example 3-11: Read Locking a Reader/Writer Lock (rdwr.c)

int pthread_rdwr_rlock_np(pthread_rdwr_t_np *rdwrp)

{

 pthread_mutex_lock(&(rdwrp->mutex));

 while(rdwrp->writer_writing) {

 pthread_cond_wait(&(rdwrp->lock_free), &(rdwrp->mutex));

 }

 rdwrp->readers_reading++;

 pthread_mutex_unlock(&(rdwrp->mutex));

 return 0;
}

The get-write-lock function (pthread_rdwr_wlock_np)call, shown in Example 3-12, is
similar to pthread_rdwr_rlock_np, except that it must check not only for another thread
that has a write lock on the rdwrp variable, but also for any threads that have read locks.
If either is TRUE, the pthread_rdwr_wlock_np function calls the pthread_cond_wait
function to wait on the lock_free condition variable. When it is awakened with no readers
or writers, pthread_rdwr_wlock_np sets the value of writer_writing to 1 and releases the
mutex. Its caller is now—and will be—the only writer until it calls
pthread_rdwr_wunlock_np to release the write lock.

Example 3-12: Write Locking a Reader/Writer Lock (rdwr.c)

int pthread_rdwr_wlock_np(pthread_rdwr_t_np *rdwrp)

{

 pthread_mutex_lock(&(rdwrp->mutex));

 while (rdwrp->writer_writing || rdwrp->readers_reading) {

 pthread_cond_wait(&(rdwrp->lock_free), &(rdwrp->mutex));

 }

 rdwrp->writer_writing++;

 pthread_mutex_unlock(&(rdwrp->mutex));

 return 0;
}

The unlock-read-lock function (pthread_rdwr_runlock_np)reduces the count of readers for
a lock, decrementing the value of the readers_reading member of the rdwrp variable. It
checks the readers_reading count and, if it is zero, calls pthread_cond_signal to tell any
threads waiting on the lock_free condition variable that the lock has been released and
can now be locked. Like all calls that unlock resources, pthread_rdwr_runlock_np
assumes that it's being used correctly—in this case, by a thread that has previously
called pthread_rdwr_rlock_np.

Example 3-13: Read Unlocking a Reader/Writer Lock (rdwr.c)

int pthread_rdwr_runlock_np(pthread_rdwr_t_np *rdwrp) {

 pthread_mutex_lock(&(rdwrp->mutex));

 if (rdwrp->readers_reading == 0) {

 pthread_mutex_unlock(&(rdwrp->mutex));

 return -1;

 } else {

 rdwrp->readers_reading--;

 if (rdwrp->readers_reading == 0)

 pthread_cond_signal(&(rdwrp->lock_free));

 pthread_mutex_unlock(&(rdwrp->mutex));

 return 0;

 }
}

The unlock-write-lock function (pthread_rdwr_wunlock_np) is similar to
pthread_rdwr_runlock_np. Because only one writer holds the lock at a time, running this
routine to release that lock should always result in a signal on the lock_freecondition as
shown in Example 3-14.

Example 3-14: Write Unlocking a Reader/Writer Lock (rdwr.c)

int pthread_rdwr_wunlock_np(pthread_rdwr_t_np *rdwrp) {

 pthread_mutex_lock(&(rdwrp->mutex));

 if (rdwrp->writer_writing == 0) {

 pthread_mutex_unlock(&(rdwrp->mutex));

 return -1;

 } else {

 rdwrp->writer_writing = 0;

 pthread_cond_broadcast(&(rdwrp->lock_free));

 pthread_mutex_unlock(&(rdwrp->mutex));

 return 0;

 }
}

This implementation doesn't address an important issue in using reader/writer locks. If the
lock is currently held by a reader and a writer is already waiting, any reader that comes
along next will get the lock before the waiting writer. As long as one or more readers are
waiting for the lock, regardless of when they made their requests or where in the waiting
lists they're queued relative to any potential writers, the lock will continue to be held for
reading. More robust implementations might suspend read lock requests that arrive after a
write request is waiting and resume them when there are no more writers. The decision of
how to handle incoming reads versus pending writes depends on the priorities of a given
system.

Synchronization in the ATM Server

To wrap up our discussion of mutex and condition variables, we'll return to our ATM
example. In our discussion of mutexes earlier in this chapter, we added a single mutex to
the example to protect the bank account database. As we noted at the time, this isn't the
best way to impose synchronization inasmuch as it allows only one thread to access the
database at a time.

In this section, we'll provide a more optimal solution to our ATM server's synchronization
problems. We'll focus on the following three areas:

 • Synchronizing access to the bank account database

 • Limiting the number of concurrent worker threads

 • Controlling the shutdown of the server

We'll continue to use mutex variables to synchronize access to account data. Imposing a
limit on the number of simultaneously active worker threads and controlling server
shutdown are event-driven tasks; we'll use both mutexes and condition variables when
implementing them.

We first encountered the ATM server example in Chapter 2. We designed it according to
the classic boss/worker model for a multithreaded program. In our server, the boss
creates a new thread for each request it receives (be it a deposit, withdrawal, or balance
inquiry), and the worker thread processes the request independently of the boss or any
other worker thread. We've done only half the job by creating threads and adding
concurrency to the server. Now we'll finish up by adding robust and efficient
synchronization mechanisms.

Synchronizing Access to Account Data

Our multithreaded ATM server must contend with many potential race conditions between
worker threads accessing account data. We expect its deposit and withdraw operations to
be atomic. Because of this, in Example 3-1 we added a single mutex to the server to
protect the integrity of the accounts database.

Although simple, this approach has major performance limitations. Because every worker
thread accesses the database and only one at a time can lock the mutex, only one thread
can be executing each time an account balance changes. When the server is heavily

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=397338.html#397338
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=197663.html#197663

loaded, the new result is that it behaves very like a single-threaded program. Because
different requests frequently access different accounts in the database, multiple requests
could often execute at the same time without interfering with each other. In this light, the
single-mutex approach is overly conservative.

A much more appropriate solution would be to use finer-grained locking on our data.
Thus, we'll associate a mutex with each database account.

The cleanest way to proceed with this decision would be to redesign the ATM server's
database module to include mutexes in the account structures themselves. For our
purposes, let's assume that the database module is legacy code and we can't—or don't
want to—modify it. Instead, we'll place the mutex in a separate structure outside the
database module.

In the code fragment in Example 3-15, we'll implement our locking scheme. We'll globally
define an array of mutex variables, called account_mutex, that has an element for each
account. Because accounts have IDs between zero and MAX_NUM_ACCOUNTS, we'll
use the account ID as an index into the mutex array. The server's main routine will
initialize the mutex array by calling atm_server_init.

Example 3-15: Initializing per-account locks for the ATM database (atm_svr.c)

pthread_mutex_t account_mutex[MAX_NUM_ACCOUNTS];

.

.

.

void atm_server_init(int argc, char **argv)

{

 .

 .

 .

 for (i = 0; i < MAX_NUM_ACCOUNTS; i++)

 pthread_mutex_init(&account_mutex[i], NULL);

 .

 .

 .
}

Now, with this set of mutexes, a worker thread need lock only the mutex for the specific
account it is accessing. It no longer needs to lock up the entire database; other threads
can concurrently lock other mutexes and access other accounts, as shown in Example 3-
16.

Example 3-16: Using Per-Account Locks for the ATM Database (atm_svr.c)

void deposit(char *req_buf, char *resp_buf)

{

 int rtn;

 int temp, id, password, amount;

 account_t *accountp;

 /* Parse input string */

 sscanf(req_buf, "%d %d %d %d ", &temp, &id, &password, &amount);

 /* Check inputs */

 if ((id < 0) || (id >= MAX_NUM_ACCOUNTS)) {

 sprintf(resp_buf, "%d %s", TRANS_FAILURE, ERR_MSG_BAD_ACCOUNT);

 return;

 }

 pthread_mutex_lock(&account_mutex[id]);

 /* Retrieve account from database */

 if ((rtn = retrieve_account(id, &accountp)) < 0) {

 sprintf(resp_buf, "%d %s", TRANS_FAILURE, atm_err_tbl[-rtn]);

 .

 .

 .

 /* Code to update and access account balance. */

 }

 pthread_mutex_unlock(&account_mutex[id]);

}

The thread that runs our create_open routine to create a new account poses a special
problem. Which mutex should it lock? The account doesn't exist yet, and the worker
thread has no account ID to use!

Let's look at how the database layer of our ATM server actually creates a new account.

The database contains a list of potential accounts, each with a flag indicating whether or
not it's in use. The new_account routine looks for the first account whose in-use flag is
clear, sets the flag, and plugs in the information about the new account.

Here is fertile ground for a classic race condition. If two threads execute new_account
concurrently, they could interleave their flag-reading and flag-setting. Both could return
with the same account ID for two different customer accounts—not a good idea. To
remove this hazard, we'll need an additional mutex.

The revision of the create_account routine in Example 3-17 shows the new mutex. Any
thread wishing to add an account must hold this mutex (which we've globally defined)
before proceeding.

Example 3-17: A Special Mutex for Opening New Accounts (atm_svr.c)

pthread_mutex_t create_account_mutex = PTHREAD_MUTEX_INITIALIZER;

.

.

.

void create_account(char *resp_buf)

{

 int id;

 int rtn;

 account_t *accountp;

 pthread_mutex_lock(&create_account_mutex);

 /* Get a new account */

 if ((rtn = new_account(&id, &accountp)) < 0) {

 sprintf(resp_buf, "%d %d %d %s", TRANS_FAILURE, -1, -1,
atm_err_tbl[-rtn]);

 .

 .

 .

 }

 pthread_mutex_unlock(&create_account_mutex);
}

Note that deleting an account will work the same way. There is symmetry in creating an
object and destroying an object: both require the same kind of protection.

Limiting the Number of Worker Threads

Our next synchronization task will be to limit the number of worker threads that can exist
at a single time. There are some good reasons for doing so. On some operating systems,
the kernel manages threads as separate contenders for the CPU, just as it manages
processes. These systems must limit the number of threads each user may run at a time.
Even if your system imposes no limit or an extremely high one, you reach a practical limit
at the point you find that you're getting diminishing returns by creating more and more

threads.* We'll examine this phenomenon further in our performance measurements in
Chapter 6.

* Thread pools don't have this problem. The number of worker threads is determined

and fixed at initialization. At this point, the worker threads are created, and they live for
the duration of the program.

To limit the number of worker threads, we'll need to keep a count of them. Both boss and
worker threads must access this counter. The boss thread increments it when it creates a
new worker, and each worker decrements it when it exits. We'll synchronize access to the
counter using a mutex.

In Example 3-18, we'll modify our ATM to add a worker_info structure. It'll include a
counter (num_active), a mutex (num_active_mutex), and a condition variable
(thread_exit_cv). The server's main routine will set the counter to zero and initialize the
mutex and the condition variable.

Example 3-18: Limiting the Number of Worker Threads—Boss (atm_svr.c)

#define MAX_NUM_THREADS 10

.

.

.

typedef struct {

 int num_active;

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1166241.html#1166241

 pthread_cond_t thread_exit_cv;

 pthread_mutex_t mutex;
}thread_info_t;

thread_info_t worker_info;

.

.

extern int

main(argc, argv)

int argc;

char **argv;

{

 workorder_t *workorderp;

 pthread_t *worker_threadp;

 int conn;

 int trans_id;

 atm_server_init(argc, argv);

 for(;;) {

 /*** Wait for a request ***/

 workorderp = (workorder_t *)malloc(sizeof(workorder_t));

 server_comm_get_request(&workorderp->conn, workorderp->req_buf);

 .

 .

 .

 /*** Have we exceeded our limit of active threads ? ***/

 pthread_mutex_lock(&worker_info.mutex);

 while (worker_info.num_active == MAX_NUM_THREADS) {

 pthread_cond_wait(&worker_info.thread_exit_cv,

 &worker_info.mutex);

 }

 worker_info.num_active++;

 pthread_mutex_unlock(&worker_info.mutex);

 /*** Spawn a thread to process this request ***/

 pthread_create(worker_threadp, ...

 .

 .

 .
}

 server_comm_shutdown();

 return 0;
}

Now, when the boss thread receives a request, it locks the worker_info mutex and
checks the count of active workers before creating a new worker thread. If the number of
active workers has not yet reached its limit, the boss increments the counter, unlocks the
mutex, and continues. If the limit has been reached, the boss waits on the thread_exit_cv
condition variable. When the condition is signaled the boss wakes up and rechecks the
counter. If the count of active workers is now below the limit, the boss increments the
counter, unlocks the mutex, and continues.

In Example 3-19, we'll adjust the process_request code our worker threads execute.

Example 3-19: Limiting the Number of Worker Threads—Workers (atm_svr.c)

void process_request(workorder_t *workorderp)

{

 char resp_buf[COMM_BUF_SIZE];

 int trans_id;

 sscanf(workorderp->req_buf, "%d", &trans_id);

 switch(trans_id) {

 case OPEN_ACCT_TRANS:

 open_account(resp_buf);

 break;

 .

 .

 .

 }

 server_comm_send_response(workorderp->conn, resp_buf);

 free(workorderp);

 pthread_mutex_lock(&worker_info.mutex);

 worker_info.num_active--;

 if (worker_info.num_active == (MAX_NUM_THREADS - 1))

 pthread_cond_signal(&worker_info.thread_exit_cv);

 pthread_mutex_unlock(&worker_info.mutex);
}

Each worker thread must decrement the active worker count when it exits. It does this in
the process_request routine. If it finds that it has decremented the counter to one less
than the limit, it calls pthread_cond_signal to signal thethread_exit_cv condition variable
to the waiting boss thread.

Synchronizing a Server Shutdown

In the current version of our ATM server, the boss thread runs our program's main
routine. When the boss thread finishes main, the system terminates the process and all

its threads, including those worker threads that are still processing active requests. We
can't allow this to happen, so our final synchronization task will be to handle server
shutdown more gracefully.

To make sure that all worker threads get to complete active tasks before the boss thread
exits main, we'll reuse the active worker counter and the thread_exit_cv condition
variable. When we used them to control the number of concurrent workers, the boss
thread requested a signal when the active worker count was one less than the active
worker limit. This time, the boss will request the signal when the active worker count
reaches zero. (Of course, at some time, the boss will stop creating new threads so that
this can eventually happen.) We'll modify the main routine in the boss thread, as shown in
Example 3-20.

Example 3-20: Processing a Shutdown in the Boss Thread (atm_svr.c)

extern int

main(argc, argv)

int argc;

char **argv;

{

 workorder_t *workorderp;

 pthread_t *worker_threadp;

 int conn;

 int trans_id;

 atm_server_init(argc, argv);

 for(;;) {

 /*** Wait for a request ***/

 workorderp = (workorder_t *)malloc(sizeof(workorder_t));

 server_comm_get_request(&workorderp->conn, workorderp->req_buf);

 /*** Is it a shutdown request? ***/

 sscanf(workorderp->req_buf, "%d", &trans_id);

 if (trans_id == SHUTDOWN)

 char resp_buf[COMM_BUF_SIZE];

 pthread_mutex_lock(&worker_info.mutex);

 /* Wait for in-progress requests threads to finish */

 while (worker_info.num_active > 0) {

 pthread_cond_wait(&worker_info.thread_exit_cv,
&worker_info.mutex);

 }

 pthread_mutex_unlock(&worker_info.mutex);

 /* process it here with main() thread */

 if (shutdown_req(workorderp->req_buf, resp_buf)) {

 server_comm_send_response(workorderp->conn, resp_buf);

 free(workorderp);

 break;

 }

 }

 /*** Have we exceeded our limit of active threads ? ***/

 pthread_mutex_lock(&worker_info.mutex);

 .

 .

 .

 }

 server_comm_shutdown();

 return 0;
}

When the boss thread receives a shutdown request, it locks the worker_info mutex and
checks the active worker counter. If the active worker counter is zero, the boss unlocks
the mutex, runs a cleanup function, and leaves the main loop, thus terminating the
program. If the counter is greater than zero, the boss must wait for the thread_exit_cv
condition variable to be signaled. When it's awakened, the boss rechecks the active
worker count. If the final worker has exited, the count is zero, and the boss proceeds to
shut down the program. If not, the boss must wait on the condition variable again.

We'll modify our process_request routine in Example 3-21 so that each worker thread
signals the thread_exit_cv condition variable before it exits, as well as when it
decrements the worker count to one below the limit.

Example 3-21: Processing a Shutdown in the Worker Thread (atm_svr.c)

process_request(...)

{

 .

 .

 .

 server_comm_send_response(workorderp->conn, resp_buf);

 free(workorderp);

 pthread_mutex_lock(&worker_info.mutex);

 worker_info.num_active--;

 pthread_cond_signal(&worker_info.thread_exit_cv);

 pthread_mutex_unlock(&worker_info.mutex);
}

This works fine but is a bit inefficient. Although the boss can proceed with program
shutdown only when the last worker has exited, each exiting worker thread will wake it up
(and it will go right back to sleep) until the last worker decrements the active worker counter
to 0. If ten worker threads are active when their boss receives the shutdown request, the
boss will wake up and reenter its wait nine times before it can finally do something useful!
We could fix this. Instead of using the thread_exit_cv condition variable for shutdown

handling, we could define a new condition variable to indicate when the active worker count
reaches zero. As it exits, each worker would call pthread_cond_signal on our new condition
variable if it notices that the count has become zero. If the boss thread is waiting on the
condition, it will wake up and shut down the program.

Thread Pools

We designed our ATM server according to the boss/worker model for multithreaded
programs. The boss creates worker threads on demand. When it receives a request, the
boss creates a new worker thread to service that request and that request alone. When
the worker completes this request, it exits. This might be ideal if we got a nickel for each
thread we created, but it can slow our server in a couple of different ways:

• We don't reuse idle threads to handle new requests. Rather, we create—and destroy

—a thread for each request we receive. Consequently, our server spends a lot of time
in the Pthreads library.

• We've added to each request's processing time (a request's latency, to use a term

from an engineering design spec) the time it takes to create a thread. No wonder our
ATM customers keep tapping the Enter button and scowling at the camera!

We'll address these performance snags by redesigning our server to use a thread pool, a
very common and very important design technique. Ina server that uses a thread pool,
the boss thread creates a fixed number of worker threads up front. Like their boss, these
worker threads survive for the duration of the program. When the boss receives a new
request, it places it on a queue. Workers remove requests from the queue and process
them. When a worker completes a request, it simply removes another one from the
queue.

Figure 3-4 shows the components of a thread pool.

Figure 3-4: Thread pool components

The focal point of a thread pool is the request queue. Each request describes a unit of
work. (This description might be the name of a routine; it might be just a flag.) Worker
threads continually monitor the queue for new work requests; the boss thread places new
requests on the queue.

A thread pool has some basic characteristics:

 • Number of worker threads. This limits the number of requests that can be in progress
at the same time.

 • Request queue size. This limits the number of requests that can be waiting for service.

• Behavior when all workers are occupied and the request queue is full. Some
requesters may want to block until their requests can be queued and only then resume
execution. Others may prefer immediate notification that the pool is full. (For instance,
network-based applications typically depend on a status value to avoid "dropping
requests on the floor" when the server is overloaded.)

An ATM Server Example That Uses a Thread Pool

We'll start on a version of our ATM server that uses a thread pool by adding some

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/03FIG04_0.gif

definitions to its header file, as shown in Example 3-22.

Example 3-22: Interface to a Thread Pool (tpool.h)

typedef struct tpool_work {

 void (*routine)();

 void *arg;

 struct tpool_work *next;
} tpool_work_t;

typedef struct tpool {

 /* pool characteristics */

 int num_threads;

 int max_queue_size;

 int do_not_block_when_full;

 /* pool state */

 pthread_t *threads;

 int cur_queue_size;

 tpool_work_t *queue_head;

 tpool_work_t *queue_tail;

 pthread_mutex_t queue_lock;

 pthread_cond_t queue_not_empty;

 pthread_cond_t queue_not_full;

 pthread_cond_t queue_empty;

 int queue_closed;

 int shutdown;
} *tpool_t;

tpool_init(tpool_t *tpoolp,

 int num_worker_threads,

 int max_queue_size,

 int do_not_block_when_full);

tpool_add_work(tpool_t tpool,

 void *routine,

 void *arg);

tpool_destroy(tpool_t tpoolp, int finish);

We've defined three routines that manipulate a thread pool and two new data types. The
routines are tpool_init, tpool_add_work,and tpool_destroy.

 • The tpool_work_t type represents a single request on the request queue. It includes a
pointer to the routine that should be executed by the worker that selects the request, a
pointer to this routine's single argument (if any), and a pointer to the next request on
the queue. When an external thread (such as the boss) calls tpool_add_work, a new

request is added to the tail of the queue. When a worker comes along looking for
something to do, it removes a request from the queue's head.

• The tpool_t type is a pointer to a structure that records the characteristics and state of
a single thread pool. It contains pointers to the head and tail of the request queue.
Because the queue is a shared data structure that may be accessed by all worker
threads (as well as any thread that exists outside of the pool and calls
tpool_add_work), we'll need to add some synchronization. We'll do so by incorporating
a mutex (queue_lock) and three condition variables (queue_not_empty,
queue_not_full,and queue_empty) in the tpool_t structure.

• When a worker looks at the queue and finds it empty, it sleeps on the
queue_not_empty condition variable. When a caller in tpool_add_work adds an item to
an empty queue, it wakes up a sleeping worker by signaling the queue_not_empty
condition. Depending on the do_not_block_when_full characteristic of the queue, a
thread calling tpool_add_work can wait on the queue_not_full condition variable. When
a worker makes room on the queue by removing a request, it signals the
queue_not_full condition variable, thus letting the thread in tpool_add_work continue.

• Finally, the tpool_t structure defines shutdown and queue_closed flags. Our
tpool_destroy routine uses these flags to shut down the thread pool. The
queue_closed flag is used in combination with the queue_empty condition variable to
support a delayed shutdown. The delayed shutdown allows the currently queued work
to complete.

Initializing a thread pool

The tpool_init routine, shown in Example 3-23, initializes a thread pool. The routine sets
the basic characteristics of the thread pool by copying into the tpoolt structure the values
of its three input parameters (num_worker_threads,max_queue_size, and
do_not_block_when_full). It also initializes the thread pool's state.

Example 3-23: The Thread Pool Initialization Routine (tpool.c)

void tpool_init(tpool_t *tpoolp,

 int num_worker_threads,

 int max_queue_size,

 int do_not_block_when_full)
{

 int i, rtn;

 tpool_t tpool;

 /* allocate a pool data structure */

 if ((tpool = (tpool_t)malloc(sizeof(struct tpool))) == NULL)

 perror("malloc"), exit(-1);

 /* initialize the fields */

 tpool->num_threads = num_worker_threads;

 tpool->max_queue_size = max_queue_size;

 tpool->do_not_block_when_full = do_not_block_when_full;

 if ((tpool->threads =

 (pthread_t *)malloc(sizeof(pthread_t)*num_worker_threads))

 == NULL)

 perror("malloc"), exit(-1);

 tpool->cur_queue_size = 0;

 tpool->queue_head = NULL;

 tpool->queue_tail = NULL;

 tpool->queue_closed = 0;

 tpool->shutdown = 0;

 if ((rtn = pthread_mutex_init(&(tpool->queue_lock), NULL)) != 0)

 fprintf(stderr,"pthread_mutex_init %s",strerror(rtn)), exit(-
1);

 if ((rtn = pthread_cond_init(&(tpool->queue_not_empty), NULL)) !
= 0)

 fprintf(stderr,"pthread_cond_init %s",strerror(rtn)), exit(-
1);

 if ((rtn = pthread_cond_init(&(tpool->queue_not_full), NULL)) !=
0)

 fprintf(stderr,"pthread_cond_init %s",strerror(rtn)), exit(-
1);

 if ((rtn = pthread_cond_init(&(tpool->queue_empty), NULL)) != 0)

 fprintf(stderr,"pthread_cond_init %s",strerror(rtn)), exit(-
1);

 /* create threads */

 for (i = 0; i != num_worker_threads; i++) {

 if ((rtn = pthread_create(&(tpool->threads[i]),

 NULL,

 tpool_thread,

 (void *)tpool)) != 0)

 fprintf(stderr,"pthread_create %d",rtn), exit(-1);

 }

 *tpoolp = tpool;
}

Checking for work

In Example 3-23, the tpool_init routine creates all worker threads, starting each one in the
tpool_thread routine. The tpool_thread routine, in Example 3-24, contains the logic each
worker uses to check the queue for work and take appropriate action depending upon
whether or not a request is available. It takes a single argument—a pointer to the tpool_t
structure for the pool to which the thread belongs.

Example 3-24: The Thread Pool Thread (tpool.c)

void tpool_thread(tpool_t tpool)

{

 tpool_work_t *my_workp;

 for (;;) {

 pthread_mutex_lock(&(tpool->queue_lock));

 while ((tpool->cur_queue_size == 0) && (!tpool->shutdown))
{

 pthread_cond_wait(&(tpool->queue_not_empty),

 &(tpool->queue_lock));

 }

 if (tpool->shutdown) {

 pthread_mutex_unlock(&(tpool->queue_lock));

 pthread_exit(NULL);

 }

 my_workp = tpool->queue_head;

 tpool->cur_queue_size--;

 if (tpool->cur_queue_size == 0)

 tpool->queue_head = tpool->queue_tail = NULL;

 else

 tpool->queue->head = my_workp->next;

 if ((!tpool->do_not_block_when_full) &&

 (tpool->cur_queue_size == (tpool->max_queue_size - 1)))

 pthread_cond_broadcast(&(tpool->queue_not_full));

 if (tpool->cur_queue_size == 0)

 pthread_cond_signal(&(tpool->queue_empty));

 pthread_mutex_unlock(&(tpool->queue_lock));

 (*(my_workp->routine))(my_workp->arg);

 free(my_workp);

 }
}

The body of the routine is a loop in which the worker checks the request queue. If it's
empty, the worker sleeps on the queue_not_empty condition variable. It can be
awakened by either a shutdown request from tpool_destroy or a work item placed on its
request queue. When awakened by a shutdown request, the worker exits. When
awakened by a work request, however, it rechecks the queue, removes the request from
the queue's head, and executes the routine specified in the request (using any
associated argument). If the worker finds that the queue was full before it removed the
node and knows that threads may be blocked waiting to add to the queue (because the
pool's do_not_block_when_full characteristic is not set), it signals the queue_not_full
condition. Likewise, if this thread empties the queue, it signals queue_empty to allow a
delayed shutdown to proceed.

Adding work

In Example 3-25, the tpool_add_work routine adds work requests to the queue.

Example 3-25: Adding Work to a Thread Pool (tpool.c)

int tpool_add_work(tpool_t tpool, void *routine, void *arg)

{

 tpool_work_t *workp;

 pthread_mutex_lock(&tpool->queue_lock);

 if ((tpool->cur_queue_size == tpool->max_queue_size) &&

 tpool->do_not_block_when_full) {

 pthread_mutex_unlock(&tpool->queue_lock);

 return -1;

 }

 while ((tpool->cur_queue_size == tpool->max_queue_size) &&

 (!(tpool->shutdown || tpool->queue_closed))) {

 pthread_cond_wait(&tpool->queue_not_full, &tpool-
>queue_lock);

 }

 if (tpool->shutdown || tpool->queue_closed) {

 pthread_mutex_unlock(&tpool->queue_lock);

 return -1;

 }

 /* allocate work structure */

 workp = (tpool_work_t *)malloc(sizeof(tpool_work_t));

 workp->routine = routine;

 workp->arg = arg;

 workp->next = NULL;

 if (tpool->cur_queue_size == 0) {

 tpool->queue_tail = tpool->queue_head = workp;

 pthread_cond_broadcast(&tpool->queue_not_empty);

 } else {

 (tpool->queue_tail)->next = workp;

 tpool->queue_tail = workp;

 }

 tpool->cur_queue_size++;

 pthread_mutex_unlock(&tpool->queue_lock);

 return 1;
}

The tpool_add_work routine checks the do_not_block_when_full flag and examines the
current size of the request queue. If the queue is full, the routine either returns an error to
its caller or suspends itself on the queue_not_full condition, depending on the value of

the pool's do_not_block_when_full flag. In the latter case, the tpool_add_work routine
resumes when the condition is signaled; it queues the request and returns to its caller.

Deleting a thread pool

The final routine in our thread pool interface, tpool_destroy (Example 3-26),deallocates a
thread pool. It sets the shutdownflag in the tpool _t structure to indicate to workers (and
threads calling tpool_add_work) that the pool is being deactivated. Worker threads exit
when they find this flag set; the tpool_add_work routine returns a -1 to its caller, as shown
in Example 3-26.

Example 3-26: Deleting a Thread Pool (tpool.c)

int tpool_destroy(tpool_t tpool,

 int finish)
{

 int i,rtn;

 tpool_work_t *cur_nodep;

 if ((rtn = pthread_mutex_lock(&(tpool->queue_lock))) != 0)

 fprintf(stderr,"pthread_mutex_lock %d",rtn), exit(-1);

 /* Is a shutdown already in progress? */

 if (tpool->queue_closed || tpool->shutdown) {

 if ((rtn = pthread_mutex_unlock(&(tpool->queue_lock))) != 0)

 fprintf(stderr,"pthread_mutex_unlock %d",rtn), exit(-1);

 return 0;

 }

 tpool->queue_closed = 1;

 /* If the finish flag is set, wait for workers to drain queue */

 if (finish == 1) {

 while (tpool->cur_queue_size != 0) {

 if ((rtn = pthread_cond_wait(&(tpool->queue_empty),

 &(tpool->queue_lock))) != 0)

 fprintf(stderr,"pthread_cond_wait %d",rtn), exit(-1);

 }

 }

 tpool->shutdown = 1;

 if ((rtn = pthread_mutex_unlock(&(tpool->queue_lock))) != 0)

 fprintf(stderr,"pthread_mutex_unlock %d",rtn), exit(-1);

 /* Wake up any workers so they recheck shutdown flag */

 if ((rtn = pthread_cond_broadcast(&(tpool->queue_not_empty))) !=
0)

 fprintf(stderr,"pthread_cond_broadcast %d",rtn), exit(-1);

 if ((rtn = pthread_cond_broadcast(&(tpool->queue_not_full))) !=
0)

 fprintf(stderr,"pthread_cond_broadcast %d",rtn), exit(-1);

 /* Wait for workers to exit */

 for(i=0; i < tpool->num_threads; i++) {

 if ((rtn = pthread_join(tpool->threads[i],NULL)) != 0)

 fprintf(stderr,"pthread_join %d",rtn), exit(-1);

 }

 /* Now free pool structures */

 free(tpool->threads);

 while(tpool->queue_head != NULL) {

 cur_nodep = tpool->queue_head->next;

 tpool->queue_head = tpool->queue_head->next;

 free(cur_nodep);

 }

 free(tpool);

 return 0;
}

The tpool_destroy routine ensures that all threads are awake to see the shutdown flag by
signaling both the queue_not_empty and queue_not_full conditions. Even still, some
threads may be busy completing their current requests; it may still be some time before
they learn that a shutdown has begun. To avoid interfering with in-progress requests,
tpool_destroy waits for all worker threads to exit by calling pthread_join for each thread.
When all workers have departed, tpool_destroy frees the pool's data structures.

The current edition of our tpool_destroy routine is not without its surprises. When it sets
the shutdown flag, only those requests that are currently in progress are completed. Any
requests that are still in the request queue are lost when the thread pool is deallocated.
Instead, it could disallow additions to the queue and wait for the queue to empty before
deactivating the thread pool. It could also speed performance by canceling workers rather
than waiting for them to check the shutdown flag.

We'll leave the particulars of these enhancements to your imagination. In the meantime,
we must move on to our next chapter, Managing Pthreads, in which we'll focus a bit more
on some of the Pthreads features we've already introduced (such as attribute objects and
keys) and add cancellation and scheduling capabilities to our multithreaded ATM server.

Adapting the atm_server_init and main routines

In Example 3-27, we'll make some quick changes to our atm_server_init so that it:

 • Uses a new global thread pool structure (tpool_t) instead of our thread information
structure (thread_info_t).

 • Initializes the thread pool by supplying the maximum number of threads to tpool_init.

Example 3-27: Using the Thread Pool from the atm_server_init Routine
(atm_svr_tpool.c)

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161

#define ATM_MAX_THREADS 10

#define ATM_MAX_QUEUE 10

tpool_t atm_thread_pool;

void atm_server_init(int argc, char **argv)

{

 /* Process input arguments */

 .

 .

 .

 tpool_init(&atm_thread_pool, ATM_MAX_THREADS, ATM_MAX_QUEUE, 0);

 /* Initialize database and communications */

 .

 .

 .
}

Now, we simply need to change the main routine of our ATM server so that it:

 • Calls tpool_add_work for each new request instead of calling pthread_create directly
to create a new thread.

 • Calls tpool_destroy to synchronize shutdown of the threads and to release resources.
There's no need for the thread exit notification we used in the previous examples.

Example 3-28 implements these changes.

Example 3-28: Using the Thread Pool from the main Routine (atm_svr_tpool.c)

extern int

main(int argc, char **argv)

{

 workorder_t *workorderp;

 int trans_id;

 void *status;

 atm_server_init(argc, argv);

 for(;;) {

 /*** Wait for a request ***/

 server_comm_get_request(&workorderp->conn, workorderp->req_buf);

 /*** Is it a shutdown request? ***/

 sscanf(workorderp->req_buf, "%d", &trans_id);

 if (trans_id == SHUTDOWN) {

 char resp_buf[COMM_BUF_SIZE];

 tpool_destroy(atm_thread_pool, 1);

 /* process it here with main() thread */

 if (shutdown_req(workorderp->req_buf, resp_buf)) {

 server_comm_send_response(workorderp->conn, resp_buf);

 free(workorderp);

 break;

 }

 }

 /*** Use a thread to process this request ***/

 }

 server_comm_shutdown();

 return 0;
}

Chapter 4: Managing Pthreads

Overview

In previous chapters, we explored the advantages of multithreaded programs, examined
various program design models, and experimented with simple and more complex
synchronization mechanisms. Our ATM program is now a full-fledged, well-synchronized
multithreaded server, designed after the boss/worker model and optimized to use a
thread pool. On our way, we introduced many other Pthreads features in passing. It's now
time to examine these features a little more closely and see how we can use them to
enhance our ATM server.

Our agenda includes:

Thread attributes

A thread attribute allows you to create a thread in the detached state. On some
systems you can also specify attributes that control a thread's stack configuration and
its scheduling behavior.

The pthread_once mechanism

By using the pthread_once mechanism, you can ensure that an action is performed
once—and only once— regardless of how many times the threads in your program
attempt to perform it. This function is useful, for instance, when more than one thread
shares a file or a procedure and you don't know which thread will execute first.

Keys

Threads use keys to maintain private copies of a shared data item. A single, globally
defined key points to a different memory location, depending upon which thread is
executing, thus allowing the thread to access its own copy of the data. Use a key, for
example, when your threads make deeply nested procedure calls and you can't easily
pass thread-specific information in procedure arguments.

Cancellation

Cancellation allows you to specify the conditions under which a thread allows itself to
be terminated. You can also define a stack on which the terminating thread performs
last-second cleanup before exiting. Use cancellation, for example, when threads are
searching in parallel for an item in a database. The thread that started the search can
terminate the other threads when one of the threads locates the item.

Scheduling

You use the Pthreads scheduling features to set up a policy that determines which
thread the system first selects to run when CPU cycles become available, and how
long each thread can run once it is given the CPU. Scheduling is often necessary in
real-time applications in which some threads have more important work than others.
For example, a thread that controls equipment on a factory floor could be given priority
over other threads doing background processing. The Pthreads standard defines
scheduling as an optional feature.

Mutex scheduling attributes

By using mutex attributes, you can avoid the phenomenon known as priority inversion.
Priority inversion occurs when multiple threads of various scheduling priorities all
compete for a common mutex. A higher priority thread may find that a lower priority
thread holds a mutex it needs and may stop dead in its tracks until the mutex is
released.

To some extent you might consider these features to be just bells and whistles. Each has a
specialized purpose that may or may not apply to your program. Nevertheless, the

situations in which they are useful are common enough that it's good that they' re available
to us in the portable Pthreads interface. We'll now look at some specific ways in which they
can be used.

Setting Thread Attributes

Threads have certain properties, called attributes, that you can request through the
Pthreads library. The Pthreads standard defines attributes that determine the following
thread characteristics:

 • Whether the thread is detached or joinable. All Pthreads implementations provide this
attribute.

 • Size of the thread's private stack. An implementation provides this attribute if the
_POSIX_THREAD_ATTR_STACKSIZE compile-time constant is defined.

 • Location of the thread's stack. An implementation provides this attribute if the
_POSIX_THREAD_ATTR_STACKADDR compile-time constant is defined.

• A thread's scheduling policy (and other attributes that determine how it may be

scheduled). An implementation provides these attributes if the
_POSIX_THREAD_ATTR_PRIORITY_SCHEDULING compile-time constant is
defined.

Vendors often define custom attributes as a way of including extensions to the standard
in their implementations.

As we've mentioned before, a thread is created with a set of default attributes. Because
the threads we've been using in our examples thus far are threads of the gray flannel
variety, we've accepted the defaults by passing NULL as an attribute parameter to the
pthread_create call. To set a thread's attributes to something other than the default, we'd
perform the following steps:

 1. Define an attribute object of type pthread_attr_t.

 2. Call pthread_attr_init to declare and initialize the attribute object.

 3. Make calls to specific Pthreads functions to set individual attributes in the object.

 4. Specify the fully initialized attribute object to the pthread_create call that creates the
thread.

We'll walk through some specific examples of setting a thread's stack size, stack location,
and detached state in the next few sections. We'll investigate the thread-scheduling
attributes later in this chapter.

Setting a Thread's Stack Size

A thread uses its private stack to store local variables for each routine it has called (but
not yet exited) up to its current point of execution.(It also leaves various pieces of
procedure context information on the stack, like bread crumbs, so that it can find its way
back to the previously executing routine when it exits the current one.) For instance,
consider a worker thread in our ATM server. It calls process_request, does some
processing, and pushes some of process_request's local variables on the stack. It then
calls deposit, pushing some information that allows it to return to the next instruction in
process_request when it exits deposit. Now, it pushes deposit's local variables on its
stack. Suppose it then calls retrieve_account, and then some number-crunching routine,
and then, and then....We'd certainly like our thread to have ample stack space for all
routines in its current call chain.

Two factors can affect whether a thread will have enough room on its stack:

 • The size of the local variables to each routine

 • The number of routines that may be in its call chain at any one time

If our worker thread begins to call routines that locally declare kilobyte-sized buffers, we
might have a problem. If it makes nested procedure calls to some pretty hefty libraries
(like a Kerberos security library or an X graphics library), we'd better start stretching its
stack.

Even nonthreaded processes run out of stack space from time to time. However, an
individual thread's stack is much smaller than that devoted to an entire process. The
space for the stacks of all threads in a process is carved out of the memory previously
allocated for the stack of the process as a whole. As shown in Figure 4-1, a process stack
normally starts in high memory and works its way down in memory without anything in its
way until it reaches 0. For a process with individual threads, one thread's stack is
bounded by the start of the next thread's stack, even if the next thread isn't using all of its
stack space.

Figure 4-1: Process and thread stacks

To set a thread's stack size, we call pthread_attr_init to declare and initialize a custom
thread attribute object (pthread_attr_t) in Example 4-1.

Example 4-1: Declaring a Custom Attribute (mattr.c)

#define MIN_REQ_SSIZE 81920

size_t default_stack_size;

pthread_attr_t stack_size_custom_attr;

 .

 .

 .

 pthread_attr_init(&stack_size_custom_attr);

 .

 .

 .

Now that we've created and initialized our attribute object, we can set and check the
value of any attribute in it, using the appropriate Pthreads function. In Example 4-2, we'll
read and adjust the thread's stack size by calling pthread_attr_getstacksize and
pthread_attr_setstacksize. The minimum stack size on the platform is always stored in
PTHREAD_STACK_MIN and can be used to determine at run time if the default stack will
be big enough.

Example 4-2: Checking and Setting Stack Size (mattr.c)

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/04FIG01_0.gif

#ifdef _POSIX_THREAD_ATTR_STACKSIZE

pthread_attr_getstacksize(&stack_size_custom_attr,

 &default_stack_size);

if (default_stack_size < MIN_REQ_SSIZE) {;

 .

 .

 .

 pthread_attr_setstacksize(&stack_size_custom_attr,

 (size_t)MIN_REQ_SSIZE);
}

#endif

In Example 4-3, we'll create a thread that has the desired attribute (a MIN_REQ_SSIZE
stack) by specifying the attribute object in a pthread_create call.

Example 4-3: Using an Attribute Object in pthread_create (mattr.c)

pthread_create(&threads[num_threads],

 &stack_size_custom_attr,

 (void *) mult_worker,

 (void *) p);

Take special notice that fiddling with a thread's stack is inherently nonportable. Stack size
and location are platform-dependent; the bytes and bounds of your threads' stacks on
Platform A may not quite match those of the stacks on Platform B.

Setting a Thread's Detached State

Detaching from a thread informs the Pthreads library that no other thread will use the
pthread_join mechanism to synchronize with the thread's exiting. Because the library
doesn't preserve the exit status of a detached thread, it can operate more efficiently and
make the library resources that were associated with a thread available for reuse more
quickly. If no other thread cares when a particular thread in your program exits, consider
detaching that thread.

Back in Chapter 2, Designing Threaded Programs , we discussed how to use the
pthread_detach function to dynamically place a joinable thread into a detached state. In
Example 4-4, we'll show you how to do it with an attribute object at thread creation.

Example 4-4: Setting the Detached State in an Attribute Object (mattr.c)

pthread_attr_t detached_attr;

.

.

.

 pthread_attr_setdetachedstate(&detached_attr,
PTHREAD_CREATE_DETACHED);

 .

 .

 .

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=197663.html#197663
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=197663.html#197663

 pthread_create(&thread, &detached_attr, ...);

 .

 .

 .

The pthread_attr_setdetachedstate function sets the detached state in an attribute object
to either the PTHREAD_CREATE_DETACHED constant (detached)or the
PTHREAD_CREATE_ JOINABLE constant (joinable). The
pthread_attr_getdetachedstate function returns the current detached setting of a thread
attribute object.

Setting Multiple Attributes

You can set multiple individual attributes within a single attribute object. In the next
example, Example 4-5, we'll use calls to the pthread_attr_setstacksize function and the
pthread_attr_setdetachedstate function to set a thread's stack size and detached state in
the same object.

Example 4-5: Setting Multiple Attributes in an Attribute Object (mattr.c)

pthread_attr_t custom_attr;

 .

 pthread_attr_init(&custom_attr);

 .

 pthread_attr_setstacksize(&custom_attr, MIN_REQ_SSIZE);

 pthread_attr_setdetachedstate(&custom_attr,
PTHREAD_CREATE_DETACHED);

 .

 .

 pthread_create(&thread, &custom_attr, ...);

 .

 .

 .

Destroying a Thread Attribute Object

Throughout this section, we've declared and initialized thread attribute objects using the
pthread_attr_init call. When we're finished using a thread attribute object, we can call
pthread_attr_destroy to destroy it. Note that existing threads that were created using this
object are not affected when the object is destroyed.

The pthread_once Mechanism

When you create many threads that cooperate to accomplish a single task, you must
sometimes perform a single operation up front so that all of these threads can proceed.
For instance, you may need to open a file or initialize a mutex. Up to now, we've had our
boss thread handle these chores, but that's not always feasible.

The pthread_once mechanism is the tool of choice for these situations. It, like mutexes
and condition variables, is a synchronization tool, but its specialty is handling
synchronization among threads at initialization time. If the pthread_once function didn't
exist, we'd have to initialize all data, mutexes, and condition variables before we could
create any thread that uses them. After our program has started and spawned its first
thread, it would be very difficult for it to create new resources that require protection
should some asynchronous event require that it do so.

If we're writing a library that can be called by a multithreaded application, this becomes
more than just an annoyance. Perhaps we don't want (or can't have) a single function for
our users to call that allows our library to initialize itself prior to its general use. Neither
can we ask each of our library functions to first call an initialization routine. Remember,
our library's multithreaded. How do we know whether or not another thread might be
trying to initialize the same objects simultaneously?

Example: The ATM Server's Communication Module

Let's walk through an example that will help us illustrate the point. We'll use the
communication module from our ATM server—that part of the server that receives
requests from clients and unpacks them. The interface to the communication module is
as shown in Example 4-6.

Example 4-6: Interface to the ATM Server Communication Module (atm_com_svr.c)

void server_comm_get_request(int *, char *);

void server_comm_send_response(int, char *);

void server_comm_close_conn(int);

void server_comm_shutdown(void);

Let's pretend that this is legacy code that we've been asked to incorporate into a
multithreaded program. We'll also pretend that it contains an initialization routine and that
we don't want to completely rewrite it to eliminate the routine.

The server_comm_get_request routine shown in Example 4-7 is typical of the interfaces
in this module.

Example 4-7: Original server_comm_get_request Routine (atm_com_svr.c)

void server_comm_get_request(int *conn, char *req_buf)

{;

 int i, nr, not_done = 1;

 fd_set read_selects;

 if (!srv_comm_inited) {;

 server_comm_init();

 srv_comm_inited = TRUE;

 }

 /* loop, processing new connection requests until a client

 buffer is read in on an existing connection. */

 while (not_done) {;

 .

 .

 .
}

If the server_comm_inited flag is FALSE, theserver_comm_get_request routine calls an
initialization routine (server_comm_init) and sets the flag to TRUE. If we allow multiple
threads to call server_comm_init concurrently, we introduce a race condition on the
srv_comm_inited flag and on all of server_comm_init's global variables and initializations.
Consider: threads A and B enter the routine at the same time. Thread A checks the value
of srv_comm_inited and finds FALSE. Thread B checks the value and also finds it
FALSE. Then they both go forward and call srv_comm_init.

We'll consider two viable solutions:

 • Adding a mutex to protect the srv_comm_inited flag and server_comm_init routine.
Using PTHREAD_MUTEX_INITIALIZER, we'll statically initialize this mutex.

 • Designating that the entire routine needs special synchronization handling by calling
the pthread_once function.

Using a statically initialized mutex

If we choose to protect the srv_comm_inited flag and server_comm_init routine by a
statically initialized mutex, our code would look like that in Example 4-8.

Example 4-8: The ATM with Static Initialization (atm_com_svr_init.c)

pthread_mutex_t init_mutex = PTHREAD_MUTEX_INITIALIZER;

void server_comm_get_request(int *conn, char *req_buf)

{;

 int i, nr, not_done = 1;

 fd_set read_selects;

 pthread_mutex_lock(&init_mutex)

 if (!srv_comm_inited) {;

 server_comm_init();

 srv_comm_inited = TRUE;

 }

 pthread_mutex_unlock(&init_mutex);

 /* loop, processing new connection requests until a client

 buffer is read in on an existing connection. */

 while (not_done) {;

 .

 .

 .
}

Using a statically defined mutex to protect the initialization flag and routine works in this
simple case but has its drawbacks as a module grows more complex:

• When the initialization routine introduces dynamically allocated mutexes, it must

initialize them dynamically. This is not an insurmountable problem; as long as at least
one mutex is statically defined, it can control the initialization of all the other mutexes.

• The mutex protecting the initialization flag routine will continue to act as a
synchronization point long after it is needed. Each time any thread enters the library, it
will lock and unlock the mutex to read the flag and learn the old news: initialization is
complete. (Using the pthread_oncefunction may also involve this type of overhead.
However, because the purpose of the pthread_once call is known to the library, a
clever library could optimize its use after initialization is complete.)

• You cannot define custom attributes for a statically initialized mutex. You can work

around this problem, too; as long as at least one mutex is statically defined, it can
control the initialization of all other mutexes that have custom attributes.

Using the pthread_once mechanism

If we use the server_comm_init routine only through the pthread_once mechanism, we
can make the following synchronization guarantees:

 • No matter how many times it is invoked by one or more threads, the routine will be
executed only once by its first caller.

 • No caller will exit from the <emphasis>pthread_once</emphasis> mechanism until the
routine's first caller has returned.

To use the pthread_once mechanism, you must declare a variable known as a once
block (pthread_once_t),and you must statically initialize it to the value
PTHREAD_ONCE_INIT. The Pthreads library uses a once block to maintain the state of
pthread_once synchronization for a particular routine. Note that we are statically
initializing the once block to the PTHREAD_ONCE_INIT value. If the Pthreads standard
allowed us to dynamically initialize it (that is, if the library defined a pthread_once_init
call), we'd run into a race condition if multiple threads tried to initialize a given routine's
once block at the same time.

In our ATM server, we'll call the once block srv_comm_inited_once and declare and
initialize it globally:

pthread_once_t srv_comm_inited_once = PTHREAD_ONCE_INIT;

Now that we've declared a once block, the server_comm_get_request routine no longer
has to test a flag to determine whether to proceed with initialization. Instead, as shown in
Example 4-9, it calls pthread_once, specifying the once block and the routine we've
associated with it—server_comm_init.

Example 4-9: Using a Once Block in the ATM (atm_com_svr_once.c)

void server_comm_get_request(int *conn, char *req_buf)

{;

 int i, nr, not_done = 1;

 fd_set read_selects;

 pthread_once(&srv_comm_inited_once, server_comm_init);

 /* loop, processing new connection requests until a client

 buffer is read in on an existing connection. */

 while (not_done) {;

 .

 .

 .
}

We'll change the other interface routines in our ATM server's communication module in
the same manner. Any number of threads can call into the module. Each interface call will
initially involve a call to pthread_once, but only the first thread will actually enter
server_comm_init and execute our module's initialization routine.

You can declare multiple once blocks in a program, associating each with a different
routine. Be careful, though. Once you associate a routine with the pthread_once
mechanism, you must always call it through a pthread_once call, using the same once
block. You cannot call the routine directly elsewhere in your program without subverting
the synchronization the pthread_once mechanism is meant to provide

Notice that the pthread_once interface does not allow you to pass arguments to the routine
that is protected by the once block. If you're trying to fit a predefined routine with arguments
into the pthread_once mechanism, you'll have to fiddle a bit with global variables, wrapper
routines, or environment variables to get it to work properly.

Keys: Using Thread-Specific Data

As a thread calls and returns from one routine or another, the local data on its stack
comes and goes. To maintain long-lived data associated with a thread, we normally have
two options:

 • Pass the data as an argument to each call the thread makes.

 • Store the data in a global variable associated with the thread.

These are perfectly good ways of preserving some types of data for the lifetime of a
thread. However, in some instances, neither solution would work. Consider what might
happen if you're rewriting a library of related routines to support multithreading. Most
likely you don't have the option of redefining the library's call arguments. Because you
don't necessarily know at compile time how many threads will be making library calls, it's
very difficult to define an adequate number of global variables with the right amount of
storage. Fortunately, the Pthreads standard provides a clever way of maintaining thread-
specific data in such cases.

Pthreads bases its implementation of thread-specific data on the concept of a key—a
kind of pointer that associates data with a specific thread. Although all threads refer to the
same key, each thread associates the key with different data. This magic is accomplished
by the threads library, which stores the pointer to data on a per-thread basis and keeps
track of which item of data is associated with each thread.

Suppose you were writing a communication module that allowed you to open a
connection to another host name and read and write across it. A single-threaded version
might look like Example 4-10.

Example 4-10: A Communications Module (specific.c)

static int cur_conn;

int open_connection(char *host)

{;

 .

 .

 .

 cur_conn =

 .

 .

 .
}

int send_data(char *data)

{;

 .

 .

 .

 write(cur_conn,...)

 .

 .

 .
}

int receive_data(char **data)

{;

 .

 .

 .

 read(cur_conn,...)

 .

 .

 .
}

We've made the static variable cur_conn internal to this module. It stores the connection
identifier between calls to send and receive data. When we add multiple threads to this
module, we'll probably want them to communicate concurrently with the same or different
hosts. As written, though, this module would have a rather surprising side effect for the
thread that first opens a connection and starts to use it. Each subsequent
open_connection call will reset the stored connection (cur_conn) in all threads!

If we couldn't use thread-specific data with keys, we'd still have a few ways of fixing this
problem:

 • Add the connection identifier as an output argument to the open_connection call and
as an input argument to the receive_data and send_data calls.

Although this would certainly work, it's a rather awkward solution for a couple of

reasons. First, it forces each routine that currently uses the module to change as well.
Any routine that makes calls to the module must store the connection identifier it
receives from the open_connection call so it can use it in subsequent receive_data
and send_data calls. Second, the connection variable is just an arbitrary value with
meaning only within the module. As such, it should naturally be hidden within the
module. If we did not force its use as a parameter to our module's interfaces, the caller
would otherwise never reference it. It shouldn't even need to know about it.

 • Add an array (cur_conn) that contains entries for multiple connections.

This alone would not work, because the current version of our module has no way of
returning to the caller of open_connection the index of the array entry at which it stored
the connection identifier. We could proceed to add an argument to
open_connection,receive_data, and send_data to pass back and forth an index into
the cur_connarray, but that leads to the same disadvantages as our first solution.
Furthermore, we don't know how much space to allocate for the array because the
number of threads making connections can vary during the run of the program.

Now we can see more clearly the advantages of using thread-specific data. This way, our
module can use a key to point to the connection identifier. We need no new arguments in
the calls to the module. Each time a thread calls one of the routines in our module, our
code uses the key to obtain its own particular connection identifier value.

Certain applications also use thread-specific data with keys to associate special
properties with a thread in one routine and then retrieve them in another. Some examples
include:

• A resource management module (such as a memory manager or a file manager) could

use a key to point to a record of the resources that have been allocated for a given
thread. When the thread makes a call to allocate more resources, the module uses the
key to retrieve the thread's record and process its request.

 • A performance statistics module for threads could use a key to point to a location
where it saves the starting time for a calling thread.

 • A debugging module that maintains mutex statistics could use a key to point to a per-
thread count of mutex locks and unlocks.

• A thread-specific exception-handling module, when servicing a try call (which starts
execution of the normal code path), could use a key to point to a location to which to
jump in case the thread encounters an exception. The occurrence of an exception
triggers a catch call to the module. The module checks the key to determine where to
unwind the thread's execution.

• A random number generation module could use a key to point to a location where it

maintains a unique seed value and number stream for each thread that calls it to
obtain random numbers.

These examples share some common characteristics:

 • They are libraries with internal state.

 • They don't require their callers to provide context in interface arguments. They don't
burden the caller with maintaining this type of context in the global environment.

 • In a nonthreaded environment, the data to which the key refers would normally be
stored as static data.

Note that thread-specific data is not a distinct data section like global, heap, and stack. It
offers no special system protection or performance guarantees; it's as private or shared
as other data in the same data section. There are no special advantages to using thread-
specific data if you aren't writing a library and if you know exactly how many threads will
be in your program at a given time. If this is the case, just allocate a global array with an
element for each known thread and store each thread's data in a separate element.

Initializing a Key: pthread_key_create

Let's rewrite our ATM server's communication module so that it uses a key to point to the
connection information for each thread. When a thread calls the open_connection
routine,the routine will store the thread-specific connection identifier using a key. We'll
initialize the key, as shown in Example 4-11.

Example 4-11: A Communication Module Using Keys (specific.c)

#include <pthread.h>

static pthread_key_t conn_key;

int init_comm(void)

{

 .

 .

 .

 pthread_key_create(&conn_key, (void *)free_conn);

 .

 .

 .
}

void free_conn(int *connp)

{;

 free(connp);
}

We've defined conn_key, the key we're using to point to the thread-specific connection
identifier, as a static variable within the module. We initialize it by calling
pthread_key_create in the init_comm routine. The pthread_key_create call takes two
arguments: the key and a destructor routine. The library uses the destructor routine to
clean up the data stored in the key when a thread stores a new value in the key or exits.
We'll discuss destructor routines some more in a moment.

When you're done with a key, call pthread_key_delete to allow the library to recover
resources associated with the key itself.

Although the pthread_key_create function initializes a key that threads can use, it neither
allocates memory for the data to be associated with the key, nor associates the data to
the key. Next we'll show you how to handle the actual data.

Associating Data with a Key

The chief trick to using keys is that you must never assign a value directly to a key, nor
can you use a key itself in an expression. You must always use pthread_setspecific and
pthread_getspecific to refer to any data item that is being managed by a key. In Example
4-12, our communication module's open_connection routine calls pthread_setspecific to
associate the conn_key key with a thread-specific pointer to an integer.

Example 4-12: Storing Data in a Key (specific.c)

int open_connection(char *host)

{

 int *connp;

 .

 .

 .

 connp = (int *)malloc(sizeof(int));

 *connp = ...

 pthread_setspecific(conn_key, (void *)connp);

 .

 .

 .
}

When a thread calls the open_connection routine, the routine calls malloc to allocate
storage for an integer on the heap and sets the pointer connp to point at it. The routine
then uses connp to set up a connection and store the connection identifier. Once the
connection is complete, the pthread_setspecific call stores connp in a thread-specific
location associated with conn_key.

The pthread_setspecific routine takes, as an argument, a pointer to the data to be
associated with the key—not the data itself. Figure 4-2 shows what the conn_key key
would look like after the first thread used it to store its thread-specific value.

Figure 4-2: A key after a value is set

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/04FIG02_0.gif
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/04FIG03_0.gif

Figure 4-3: A second value stored in the key

The open_connection routine, executing in Thread1's context, pushes the connp variable
onto the thread's stack. After the call to malloc, connp points to storage for an integer in
the heap section of the process. The detailed communication code then uses the connp
pointer to set the value of the connection identifier to 15. Once the connection is set up,
the pthread_setspecific call stores the pointer to the allocated heap storage for this thread
with the conn_key key. When Thread 1 returns from its open_connection procedure call,
its stack frame for the procedure call is deal located, including its connp pointer. The only
place in which a pointer to Thread1's connection identifier remains is within the key.

When another thread calls open_connection, as shown in Figure 4-3, the process is
repeated.

Now Thread 2 has a stack frame for its open_connection procedure call. After the call to
malloc, connp points to storage for an integer in a different area of the process's heap
section. The detailed communications code comes up with a different connection
identifier for Thread 2, but the pthread_setspecific call stores a pointer to this value, 22, in
the very same key as it stored a pointer to Thread 1's connection identifier. When Thread
2 returns from its open_connection procedure call, its stack frame for the procedure call
is deallocated, including its connp pointer. The only place in which a pointer to Thread2's
connection identifier remains is within the key.

Retrieving Data from a Key

The send_data and receive_data routines call pthread_getspecific to retrieve the
connection identifier for the calling thread. Each routine uses a pointer, saved_connp, to
point to the connection identifier, as shown in Example 4-13.

Example 4-13: Retrieving Data from a Key (specific.c)

int send_data(char *data)

{;

 int *saved_connp;

 .

 .

 .

 pthread_getspecific(conn_key, (void **)&saved_connp);

 write(*saved_connp,...);

 .

 .

 .
}

int receive_data(char **data)

{;

 int *saved_connp;

 .

 .

 .

 saved_connp = pthread_getspecific(conn_key);

 read(*saved_connp,...)

 .

 .

 .
}

When Thread 1 calls the send_data or receive_data routine, as shown in Figure 4-4,the
routine calls pthread_getspecific to return to saved_connp the thread-specific connection
identifier associated with the conn_key key. It now has access to its connection identifier
(15) and can write or read across the connection. When the second thread calls
send_data or receive_data, it likewise retrieves its connection identifier (22) using the
key.

Figure 4-4: Retrieving a stored value from a key

The pthread_getspecific function returns NULL if no value has been associated with a
key. If a thread received a NULL return value from its call to receive_dataor send_data,
it's likely that it neglected to make a prior call to open_connection.

Destructors

We've shown that keys often store pointers to thread-specific data that's been allocated
on the heap. Memory leaks can occur when threads exit and leave their thread-specific
data that was associated with keys. For this reason we must specify a destructor routine,
or destructor for short, when we create a key. When a thread exits, the library invokes the
destructor on the thread's behalf, passing to it the pointer to the thread-specific data
currently associated with the key. In this manner, the destructor acts as a convenient plug
for potential memory leaks, deallocating memory that would otherwise be forgotten and
go to waste.

The destructor can be any routine you choose. In our init_comm routine shown in Example
4-11, we used a routine named free_conn. For the simple integer being stored, free_conn
could have simply consisted of a free system call. If we were using more complex data,
such as a linked list, the destructor would be a more complex routine that walked down the
list, freeing each node. An even more complex example would be a data structure that
includes handles on system resources, such as sockets and files, that the destructor would
need to close.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_35.html#757769
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_35.html#757769
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/04FIG04_0.gif

Cancellation

Cancellation allows one thread to terminate another. One reason you may want to cancel
a thread is to save system resources (such as CPU time) when your program determines
that the thread's activity is no longer necessary. In an odd sense, you can consider
cancellation to be a very rough synchronization mechanism: after you've canceled a
thread, you know exactly where it is in its execution! A simple example of a thread you
might want to cancel would be a thread performing a read-only data search. If one thread
returns the results you are looking for, all other threads running the same routine could
be canceled.

Okay, so you've decided that you'd like to cancel a thread. Now you must reckon whether
the thread you've targeted can be canceled at all. The ability of a thread to go away or
not go away when asked by another thread is known as its cancelability state. Let's
assume that you can indeed cancel this thread. Now you must consider when it might go
away—maybe immediately, maybe a bit later. The degree to which a thread persists after
it has been asked to go away is known as its cancelability type. Finally, some threads are
able to perform some special cleanup processing as part of being terminated (either
through cancellation or through a pthread_exit call). These threads have an associated
cleanup stack.

We'll get into cancelability states, cancel ability types, and cleanup stacks a little bit later
(probably not late enough for those of you who winced at the use of the term
cancelability).Right now, remember that threads don't have a parent/child relationship as
processes do. So, any thread can cancel any other thread, as long as the canceling
thread has the thread handle of its victim. Because you want your application to be solidly
structured, you'll cancel threads only from the thread that initially created them.

The Complication with Cancellation

Cancellation is not as convenient as you might think at first. Most tasks that make
multithreading worthwhile involve taking thread-shared data through some intermediate
states before bringing it to some final state. Any thread accessing this data must take and
release locks, as appropriate, to maintain proper synchronization. If a thread is to be
terminated in the middle of such a prolonged operation, you must first release its locks to
prevent deadlock. Often, you must also reset the data to some correct or consistent state.
A good example of this would be fixing forward or backward pointers that a thread may
have left hanging in a linked list.

For this reason, you must use cancellation very carefully. The simplest approach is to
restrict the use of cancellation to threads that execute only in simple routines that do not
hold locks or ever put shared data in an inconsistent state. Another option is to restrict
cancellation to certain points at which a thread is known to have neither locks nor
resources. Lastly, you could create a cleanup stack for the thread that is to be canceled;
it can then use the cleanup stack to release locks and reset the state of shared data.

These options are all well and good when you are in charge of all the code your threads
might execute. What if your threads call library routines that you don't control? You may
have no idea of the detailed operation of these interfaces. One solution to this problem is
to create cancellation-safe library routines, a topic we'll defer to the next chapter along
with other issues of integration into a UNIX environment.

Cancelability Types and States

Because canceling a thread that holds locks and manipulates shared data can be a tricky
procedure, the Pthreads standard provides a mechanism by which you can set a given
thread's cancel ability (that is, its ability to allow itself to be canceled). In short, a thread
can set its cancel ability state and cancel ability type to any of the combinations listed in
Table 4-1, thereby ensuring that it can safely obtain locks or modify shared data when it
needs to.

A thread can switch back and forth any number of times across the various permitted

combinations of cancel ability state and type. When a thread holds no locks and has no
resources allocated, asynchronous cancellation is a valid option. When a thread must
hold and release locks, it might temporarily disable cancellation altogether.

Note that the Pthreads standard gives you no attribute that would allow you to set a
thread's cancel ability state or type when you create it. A thread can set its own cancel
ability only at run time, dynamically, by calling into the Pthreads library.

Table 4-1: Cancelability of a Thread

Cancelability State

Cancelability Type
Description

PTHREAD_ CANCEL_
DISABLE

Ignored

Disabled.
The
thread can
never be
canceled.
Calls to
pthread_c
ancel
have no
effect. The
thread can
safely
acquire
locks and
resources.

PTHREAD_ CANCEL_
ENABLE

PTHREAD_ CANCEL_
ASYNCHRONOUS

Asynchronous
cancellation.
Cancellation
takes effect

immediately.*

PTHREAD_ CANCEL_
ENABLE

PTHREAD_ CANCEL_
DEFERRED

Deferred
cancellation
(the
default).
Cancellation
takes effect
only if and
when the
thread
enters a
cancellation
point. The
thread can
hold and
release
locks but
must keep
data in
some
consistent
state. If a
pending
cancellation

exists at a
cancellation
point, the
thread can
terminate
without
leaving
problems
behind for
the
remaining
threads.

* The Pthreads standard states that cancellation will take place "at any time" We trust

that most implementations interpret this phrase to mean "as soon as possible" The
thread must avoid taking out locks and performing sensitive operations on shared data.

Cancellation Points: More on Deferred Cancellation

When a thread has enabled cancellation (that is, it has set its cancel ability state to
PTHREAD_CANCEL_ENABLE) and is using deferred cancellation (that is, it has set its
cancel ability type to PTHREAD_CANCEL_DEFERRED), time can elapse between the
time it's asked to cancel itself and the time it's actually terminated.

These pending cancellations are delivered to a thread at defined locations in its code
path. These locations are known as cancellation points, and they come in two flavors:

• Automatic cancellation points (pthread_cond_wait,pthread_cond_timedwait, and
pthread_join). The Pthreads library defines these function calls as cancellation points
because they can block the calling thread. Rather than maintain the overhead of a
blocked routine that's destined to be canceled, the Pthreads library considers these
calls to be a license to kill the thread. Note that, if the thread for which the cancellation
is pending does not call any of these functions, it may never actually be terminated.
This is one of the reasons you may need to consider using a programmer-defined
cancellation point.

• Programmer-defined cancellation points (pthread_testcancel).To force a pending
cancellation to be delivered at a particular point ina thread's code path, insert a call to
pthread_testcancel. The pthread_testcancel function causes any pending cancellation
to be delivered to the thread at the program location where it occurs. If no cancellation
is pending on the thread, nothing happens. Thus, you can freely insert this call at
those places in a thread's code path where it's safe for the thread to terminate. It's also
prudent to call pthread_testcancel before a thread starts a time-consuming operation.
If a cancellation is pending on the thread, it's better to terminate it as soon as possible,
rather than have it continue and consume system resources needlessly.

The Pthreads standard also defines cancellation points at certain standard system and
library calls. We'll address this topic in Chapter 5, Pthreads and UNIX .

A Simple Cancellation Example

Example 4-14 illustrates the basic mechanics of cancellation. The main routine creates
three threads: bullet_proof, ask_for_it, and sitting_duck. Each thread selects a different
cancellation policy: the bullet_proof routine disables cancellation, the ask_for_it routine
selects deferred cancellation, and the sitting_duck routine enables asynchronous
cancellation.

The main routine waits until all of the threads have started and entered an infinite loop. It
then tries to cancel each thread with a pthread_cancel call. By issuing a join on each
thread, it waits until all threads have terminated.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=986815.html#986815
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=986815.html#986815

Example 4-14: The Simple Cancellation Example—main (cancel.c)

#include <stdlib.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <pthread.h>

#define NUM_THREADS 3

int count = NUM_THREADS;

pthread_mutex_t lock=PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t init_done=PTHREAD_COND_INITIALIZER;

int id_arg[NUM_THREADS] = {;0,1,2};

extern int

main(void)

{;

 int i;

 void *statusp;

 pthread_t threads[NUM_THREADS];

 /**** Create the threads ****/

 pthread_create(&(threads[0]), NULL, ask_for_it, (void *)
&(id_arg[0]));

 pthread_create(&(threads[1]), NULL, sitting_duck, (void *)
&(id_arg[1]));

 pthread_create(&(threads[2]), NULL, bullet_proof, (void *)
&(id_arg[2]));

 printf("main(): %d threads created\n",count);

 /**** wait until all threads have initialized ****/

 pthread_mutex_lock(&lock);

 while (count != 0) {;

 pthread_cond_wait(&init_done, &lock);

 }

 pthread_mutex_unlock(&lock);

 printf("main(): all threads have signaled that they're ready\n");

 /**** cancel each thread ****/

 for (i = 0; i < NUM_THREADS; i++) {;

 pthread_cancel(threads[i]);

 }

 /**** wait until all threads have finished ****/

 for (i = 0; i < NUM_THREADS; i++) {;

 pthread_join(threads[i], &statusp);

 if (statusp == PTHREAD_CANCELED) {;

 printf("main(): joined to thread %d, statusp=PTHREAD_CANCELED\
n", i);

 } else {;

 printf("main(): joined to thread %d \n", i);

 }

 }

 printf("main(): all %d threads have finished. \n", NUM_THREADS);

 return 0;
}

The bullet_proof thread: no effect

When a thread, like bullet_proof, disables cancellation, it is impervious to
pthread_cancel calls from other threads, as shown in Example 4-15.

Example 4-15: The Simple Cancellation Example—bullet_proof (cancel.c)

void *bullet_proof(int *my_id)

{;

 int i=0, last_state;

 char *messagep;

 messagep = (char *)malloc(MESSAGE_MAX_LEN);

 sprintf(messagep, "bullet_proof, thread #%d: ", *my_id);

 printf("%s\tI'm alive, setting general cancelability OFF\n",
messagep);

 /* We turn off general cancelability here */

 pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &last_state);

 pthread_mutex_lock(&lock);

 {;

 printf("\n%s signaling main that my init is done\n", messagep);

 count -= 1;

 /* Signal to program that loop is being entered */

 pthread_cond_signal(&init_done);

 pthread_mutex_unlock(&lock);

 }

 /* Loop forever until picked off with a cancel */

 for(;;i++) {;

 if (i%10000 == 0)

 print_count(messagep, *my_id, i);

 if (i%100000 == 0)

 printf("\n%s This is the thread that never ends... #%d\n",
messagep, i);

 }

 /* Never get this far */

 return(NULL);
}

The bullet_proof thread calls pthread_setcancelstate to set its cancelability state to
disabled (PTHREAD_CANCEL_DISABLE). After it enters its loop, it repeatedly taunts
main until the program ends. Because the main thread has issued a pthread_join call to
wait on the bullet_proof thread, we'll need to shoot the whole program with a CTRL-C to
get bullet_proof to stop.

The ask_for_it thread: deferred cancellation

The ask_for_it thread calls pthread_setcancelstate to set its cancelability state to enabled
(PTHREAD_CANCEL_ENABLE) and pthread_setcanceltype to set its cancelability type
to deferred (PTHREAD_CANCEL_DEFERRED). (It actually didn't need to explicitly do
so, as deferred cancellation is the default for all threads.) After main has issued a
pthread_cancel for it, the ask_for_it thread terminates when it enters the next cancellation
point, as shown in Example 4-16.

Example 4-16: The Simple Cancellation Example—ask_for_it (cancel.c)

void *ask_for_it(int *my_id)

{;

 int i=0, last_state, last_type;

 char *messagep;

 messagep = (char *)malloc(MESSAGE_MAX_LEN);

 sprintf(messagep, "ask_for_it, thread #%d: ", *my_id);

 /* We can turn on general cancelability here and disable async
cancellation. */

 printf("%s\tI'm alive, setting deferred cancellation ON\n",
messagep);

 pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &last_state);

 pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, &last_type);

 pthread_mutex_lock(&lock);

 {;

 printf("\n%s signaling main that my init is done\n", messagep);

 count -= 1;

 /* Signal to program that loop is being entered */

 pthread_cond_signal(&init_done);

 pthread_mutex_unlock(&lock);

 }

 /* Loop forever until picked off with a cancel */

 for(;;i++) {;

 if (i%1000 == 0)

 print_count(messagep, *my_id, i);

 if (i%10000 == 0)

 printf("\n%s\tLook, I'll tell you when you can cancel me.%d\n",
messagep, i);

 pthread_testcancel();

 }

 /* Never get this far */

 return(NULL);
}

We'll force the delivery of main's cancellation request by adding a pthread_testcancel call
to its loop. After main calls pthread_cancel, ask_for_it will terminate when it encounters
pthread_testcancel in the next iteration of the loop.

The sitting_duck thread: asynchronous cancellation

The sitting_duck thread calls pthread_setcancelstate to set its cancelability state to
enabled (PTHREAD_CANCEL_ENABLE) and pthread_setcanceltype to set its
cancelability type to asynchronous (PTHREAD_CANCEL_ASYNCHRONOUS).When
main issues a pthread_cancel for it, the sitting_duck thread terminates immediately,
regardless of what it is doing.

If we leave our thread in this state, it can be canceled during library and system calls as
well. However, unless these calls are documented as "asynchronous cancellation-safe,"
we should guard against this.(The Pthreads standard requires that only three routines be
asynchronous cancellation-safe: pthread_cancel, pthread_setcanceltype, and
pthread_setcancelstate.) If we don't, our thread could be canceled in the middle of such a
call, leaving its call state in disarray and potentially messing up things for the other
threads in the process. In Example 4-17, we'll protect the printf call against asynchronous
cancellation by setting cancellation to deferred for the duration of the call. Note that the
print_count routine called by the sitting_duck thread would also need to take this
precaution before it makes library or system calls.

Example 4-17: The Simple Cancellation Example—sitting_duck (cancel.c)

void *sitting_duck(int *my_id)

{;

 int i=0, last_state, last_type, last_tmp;

 char messagep;

 messagep = (char *)malloc(MESSAGE_MAX_LEN);

 sprintf(messagep, "sitting_duck, thread #%d: ", *my_id);

 pthread_mutex_lock(&lock);

 {;

 printf("\n%s signaling main that my init is done\n", messagep);

 count -= 1;

 /* Signal to program that loop is being entered */

 pthread_cond_signal(&init_done);

 pthread_mutex_unlock(&lock);

 }

 /* Now, we're safe to turn on async cancelability */

 printf("%s\tI'm alive, setting async cancellation ON\n",
messagep);

 pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &last_type);

 pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &last_state);

 /* Loop forever until picked off with a cancel */

 for(;;i++) {;

 if (i%1000) == 0)

 print_count(messagep, *my_id, i);

 if (i%10000 == 0) {;

 pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, &last_tmp);

 printf("\n%s\tHum, nobody here but us chickens. %d\n",
messagep, i);

 pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &last_tmp);

 }

 }

 /* Never get this far */

 return(NULL);
}

When the sitting_duck thread has asynchronous cancellation enabled, it is canceled
when main requests its cancellation—whether it's blocked by the scheduler or in the
middle of its print_count loop.

Cleanup Stacks

Pthreads associates a cleanup stack with each thread. The stack allows a thread to do
some final processing before it terminates. Although we're discussing cleanup stacks as a
way to facilitate a thread's cancellation, you can also use cleanup stacks in threads that
call pthread_exit to terminate themselves.

A cleanup stack contains pointers to routines to be executed just before the thread
terminates. By default the stack is empty; you use pthread_cleanup_push to add routines
to the stack, and pthread_cleanup_pop to remove them. When the library processes a
thread's termination, the thread executes routines from the cleanup stack in last-in first-
out order.

We'll adjust Example 4-17 to show how cleanup stacks work. We'll keep the main routine

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_36.html#825634

the same but have it start all the threads it creates in the sitting_duck routine. We'll
change sitting_duck so that it uses the cleanup stack of the thread in which it is
executing. Finally, we'll create a new routine, last_breath, so that our threads have
something they can push on the stack. The sitting_duck routine calls
pthread_cleanup_push to put the last_breath routine on top of the thread's cleanup stack.
At its end, it calls pthread_cleanup_pop to remove the routine from the stack, as shown in
Example 4-18.

Example 4-18: Cleanup Stacks—last_breath and sitting_duck (cancel.c)

/*

* Cleanup routine: last_breath

*/

void last_breath(char *messagep)

{

 printf("\n\n%s last_breath cleanup routine: freeing 0x%x\n\n",
messagep,

 messagep);

 free(messagep);
}

/*

* sitting_duck routine

*/

void *sitting_duck(int *my_id)

{

 int i=0, last_state, last_type, last_tmp;

 char *messagep;

 messagep = (char *)malloc(MESSAGE_MAX_LEN);

 sprintf(messagep, "sitting_duck, thread #%d: ", *my_id);

 /* Push last_breath routine onto stack */

 pthread_cleanup_push((void *)last_breath, (void *)messagep);

 pthread_mutex_lock(&lock);

 {

 printf("\n%s signaling main that my init is done\n", messagep);

 count -= 1;

 /* Signal program that loop is being entered */

 pthread_cond_signal(&init_done);

 pthread_mutex_unlock(&lock);

 }

printf("%s\tI'm alive, setting general cancelability ON, async
cancellation

 ON\n", messagep);

 /* Now we're safe to turn on async cancelability */

 pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &last_state);

 pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &last_type);

/* Loop forever until picked off with a cancel */

 for(;;i++) {;

 if (i%1000) == 0)

 print_count(messagep, *my_id, i);

 if (i%10000 == 0) {;

 pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, &last_tmp);

 printf("\n%s\tHum, nobody here but us chickens. %d\n",
messagep, i);

 pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &last_tmp);

 }

 }

 /* Never get this far */

 return(NULL);

 /* This pop is required by the standard, every push must

 have a pop in the same lexical block. */

 pthread_cleanup_pop(0);
}

Other cleanup routines might perform additional tasks, such as resetting shared
resources to some consistent state, freeing resources the thread still has allocated, and
releasing the locks the thread still holds. We can design our own cleanup routines or
simply use standard library calls like pthread_mutex_unlock or free if they would suffice.

There are a few more things about the pthread_cleanup_pop function you should know.
First, pthread_cleanup_pop takes a single argument—an integer that can have either of
two values:

• If the value of this argument is 1, the thread that called pthread_cleanup_pop executes
the cleanup routine whose pointer is being removed from the cleanup stack.
Afterwards, the thread resumes at the line following its pthread_cleanup_pop call. This
allows a thread to execute a cleanup routine whether or not it is actually being
terminated.

 • If the value of this argument is 0, as it is in Example 4-18, the pointer to the routine is
popped off the cleanup stack, but the routine itself does not execute.

Second, the Pthreads standard requires that there be one pthread_cleanup_pop for each
pthread_cleanup_push within a given lexical scope of code. (Lexical scope refers to the
code within a basic block of a C program—that set of instructions bounded by the curly
braces { and }.) Why is this required? After all, the pthread_cleanup_pop function call we
planted in sitting_duck occurs after an infinite loop and is never called. The reason is that
this requirement makes it easier for Pthreads library vendors to implement cleanup
routines. The pthread_cleanup_push and pthread_cleanup_pop function calls are easily
and commonly implemented as macros that define the start and end of a block. Picture
the pthread_cleanup_push routine as a macro that ends with an open curly brace ({)

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_36.html#838745

and the pthread_cleanup_pop routine as a macro that begins with a close curly brace
(}). It's not hard to see why a C compiler would complain if we omitted the
pthread_cleanup_pop call.

Cancellation in the ATM Server

The worker threads in our ATM server are likely candidates for cancellation. There are a
couple of reasons why we might want to terminate a worker that is processing an account
request:

 • To allow a customer to abort a transaction that is in progress

 • To allow the system to abort a transaction for security reasons or when it is shutting
down

Remember that our worker threads do hold locks and do manipulate shared data—
accounts in the bank's database. Dealing with the possibility of cancellation in our worker
threads will have some interesting challenges.

In the remainder of this discussion, we'll focus on those changes to the server required to
make its worker threads cancelable, without worrying about how the cancellation
requests are generated. As a general model for a thread performing any type of request,
we'll look at how a worker thread processes a deposit request.

Aborting a deposit

The basic steps a worker thread performs in processing a deposit request are shown in
the following pseudocode:

1 process_request

2 switch based on transaction type to deposit()

3 deposit()

4 parse request arguments

5 check arguments

6 lock account mutex

7 retrieve account from database

8 check password

9 modify account to add deposit amount

10 store modified account with database

11 unlock account mutex

12 send response to client

13 free request buffer

14 return and implicit termination

Up to Step 5, the thread would have little difficulty accommodating a cancellation request
and terminating. After Step 5, it performs some tasks that make us consider ways in
which it must respond to cancellation:

• At Step 6, the thread obtains a lock on an account. At this moment, it must ensure

somehow that, if it is the victim of cancellation, it can release the lock so that other
threads can use the account after its demise. We can handle this from a cleanup
routine that we'll push onto the cleanup stack.

 • At Step 10, the thread commits a change to the account but has yet to send an
acknowledgment to the client. Let's assume that, after we commit a change to an
account, we want to make every effort to send a "transaction completed" response to
the client. We'll give the thread a chance to do this by having it turn off cancellation
before it writes anew balance. From that point to its termination at the end of

process_request, it cannot be canceled.

• At Step 13, the thread frees the request buffer. The buffer was originally allocated by
the boss thread, which passed it to the worker as an argument to the process_request
routine. Because the boss does not save its pointer to this buffer, the worker is the
only thread that knows where in the heap the buffer resides. If the worker doesn't free
the buffer, nothing will. This is another chore we'll assign to the cleanup routine.

We'll rewrite our process_request and deposit routines to illustrate these changes in
Example 4-19.We'll tackle process_request first. Note that, by default, threads starting in
process_request will have deferred cancellation enabled.

Example 4-19: Changes to process_request for Cancellation (atm_svr_cancel.c)

void process_request(workorder_t *workorderp)

 {;

 char resp_buf[COMM_BUF_SIZE];

 int trans_id;

 /**** Deferred cancellation is enabled by default ****/

 pthread_cleanup_push((void *)free, (void *)workorderp);

 sscanf(workorderp->req_buf, "%d", &trans_id);

 pthread_testcancel();

 switch(trans_id) {;

 case CREATE_ACCT_TRANS:

 create_account(resp_buf);

 break;

 case DEPOSIT_TRANS:

 deposit(workorderp->req_buf, resp_buf);

 break;

 case WITHDRAW_TRANS:

 withdraw(workorderp->req_buf, resp_buf);

 break;

 case BALANCE_TRANS:

 balance(workorderp->req_buf, resp_buf);

 break;

 default:

 handle_bad_trans_id(workorderp->req_buf, resp_buf);

 break;

 }

 /* Cancellation may be disabled by the time we get here, but
this

 won't hurt either way. */

 pthread_testcancel();

 server_comm_send_response(workorderp->conn, resp_buf);

 pthread_cleanup_pop(1);

 }

This version of process_request starts by calling pthread_cleanup_push to place a
pointer to the free system routine at the top of the thread's cleanup stack. It passes a
single parameter to free—the address of its request buffer. We've placed a matching call
to pthread_cleanup_pop at the end of process_request. We pass pthread_cleanup_pop
an argument of1 so that free will run and deallocate the buffer regardless of whether or
not the thread is actually canceled. If the thread is canceled, the buffer will be freed
before it terminates; if not, the buffer will be freed at the pthread_cleanup_pop call.

We'll now look at the changes to deposit in Example 4-20.

Example 4-20: A Cancelable ATM Deposit Routine (atm_svr_cancel.c)

void deposit(char *req_buf, char *resp_buf)

{;

 int rtn;

 int temp, id, password, amount, last_state;

 account_t *accountp;

 /* Parse input string */

 sscanf(req_buf, "%d %d %d %d ", &temp, &id, &password, &amount);

 .

 .

 .

 pthread_testcancel();

 pthread_cleanup_push((void *)pthread_mutex_unlock, (void
*)&account_mutex[id]);

 pthread_mutex_lock(&account_mutex[id]);

 /* Retrieve account from database */

 rtn = retrieve_account(id, &accountp);

 .

 .

 .

 pthread_testcancel();

 pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &last_state);

 /* Store back to database */

 if ((rtn = store_account(accountp)) < 0) {;

 .

 .

 .

 pthread_cleanup_pop(1);
}

This version of the deposit routine pushes the address of the pthread_mutex_unlock
function on to the thread's cleanup stack before calling pthread_mutex_lock to obtain the
mutex. As we did in the process_request routine, we've placed a matching call to
pthread_cleanup_pop at the end of deposit. We pass pthread_cleanup_pop an argument
of 1 so that pthread_mutex_unlock will be run at the pthread_cleanup_pop call, if the
thread is not previously terminated and the mutex unlocked, as the result of a
cancellation request.

Because deferred cancellation is enabled for the thread, we can be sure that it can be
cancelled only at a cancellation point. However, if there were a cancellation point
between the calls to pthread_cleanup_push and pthread_mutex_lock we could get into
trouble. If our thread were cancelled at that time, the cleanup would try to unlock a mutex
that hasn't yet been locked! The consequences of such extravagance are undefined by
the Pthreads standard, so we most surely want to avoid them. Our code is safe because
there's no such cancellation point between the calls. For the same reason, the order in
which we make the calls is immaterial.

Let's see what this means for our process_request routine. Remember that the request
buffer was allocated by the boss thread and passed to the worker thread in the
pthread_create call. Even though the new thread executing process_request immediately
pushes the address of free on to its cleanup stack, its push inarguably happens
sometime after the boss performed the initial malloc. Is this a case of too little too late?

Not necessarily. In our example of cancellation, the boss thread implicitly hands off
responsibility for the request buffer to the worker thread that's executing process_request.
The boss thread knows for certain that process_request is the first routine any newly
created worker thread will run. By default, all threads are created with deferred
cancellation enabled, and this is the cancelability type of the thread at the time it pushes
the address of free onto the stack. If it doesn't encounter a cancellation point before we
push free on the cleanup stack, there's no exposure. However, because some system
and library calls contain cancellation points, a thread is best off when it expects to be
canceled at any time. If any of your code relies on a particular thread not having any
cancellation points, be sure to include a comment to that effect.

Just before the deposit routine writes the new balance to the account database, it
disables cancellation by calling pthread_setcancelstate. Subsequently, the thread can
complete the deposit routine without fear of cancellation. In fact, when the thread exits
the deposit and returns to process_request, cancellation is still disabled.

We've made a lot of changes to our process_request and deposit routines to allow other
threads to cancel a worker thread in the middle of a deposit request. Each change adds
overhead to the real work of our ATM server. These safeguards against unexpected
cancellation are charged against the performance of a thread each time it executes
process_request or deposit, not just when it's destined to be canceled. Consequently, we
should carefully consider whether making our threads cancelable is worth the extra
performance cost. If the threads in question run for only a short period of time before
exiting, the complexity is hardly worthwhile. However, if the threads run for a long period
of time and consume many system resources, the performance gains of a cancellation
policy may certainly outweigh its inevitable overhead.

Following this line of reasoning, the Pthreads standard defines most blocking system calls,
plus many others that can take a long time to execute, as cancellation points. Some
implementations may include other library and system calls. See your platform's
documentation for information on exactly which calls it defines as cancellation points.

Scheduling Pthreads

The operating system continuously selects a single thread to run from a systemwide
collection of all threads that are not waiting for the completion of an I/O request or are not
blocked by some other activity. Many threaded programs have no reason to interfere with
the default behavior of the system's scheduler. Nevertheless, the Pthreads standard
defines a thread-scheduling interface that allows programs with real-time tasks to get
involved in the process.

Using the Pthreads scheduling feature, you can designate how threads share the
available processing power. You may decide that all threads should have equal access to
all available CPUs, or you can give some threads preferential treatment. In some
applications, it's beneficial to give those threads that perform important tasks an
advantage over those that perform background work. For instance, in a process-control
application, a thread that responds to input for special devices could be given priority over
a thread that simply maintains the log. Used in conjunction with POSIX real-time
extensions, such as memory locking and real-time clocks, the Pthreads scheduling
feature lets you create real-time applications in which the threads with important tasks

can be guaranteed to complete their tasks in a predictable, finite amount of time.*

* See the book POSIX.4: Programming for the Real World by Bill O. Gallmeister, from

O'Reilly & Associates, for in-depth discussion of the POSIX real-time extensions.

Note that, even though the Pthreads standard specifies a scheduling interface, it allows
vendors to support or not support its programming interface at their option. If your system
supports the scheduling programming interface, the compile-time constant

_POSIX_THREAD_PRIORITY_SCHEDULING will be TRUE.*

* If your implementation supports the POSIX real-time extensions, you can use the
sched_yield call to force some broad form of scheduling. A sched_yield call places the
calling thread at the end of its scheduling priority queue and lets another thread of the
same priority take its place.

Scheduling Priority and Policy

The eligibility of any given thread for special scheduling treatment is determined by the
settings of two thread-specific attributes:

 • Scheduling priority

A thread's scheduling priority, in relation to that of other threads, determines which
thread gets preferential access to the available CPUs at any given time.

 • Scheduling policy

A thread's scheduling policy is a way of expressing how threads of the same priority
run and share the available CPUs.

We'll be using these terms throughout the discussions that follow. Once we've set the
stage with some background information about scheduling scope, we'll consider the
scheduling priority and policy thread attributes in much greater detail.

Scheduling Scope and Allocation Domains

The concept of scheduling scope refers to the inclusiveness of the scheduling activity in
which a thread participates. In other words, scope determines how many threads—and
which threads—a given thread must compete against when it's time for the scheduler to
select one of them to run on a free CPU.

Because some operating system kernels know little about threads, the scope of thread

scheduling depends upon the abilities of an implementation.* A given implementation

may allow you to schedule threads either in process scope or in system scope. When
scheduling occurs in process scope, threads are scheduled against only other threads in
the same program. When scheduling occurs in system scope, threads are scheduled
again stall other active threads systemwide. Implementations may also provide a thread
attribute that allows you to set the scheduling scope on a per-thread basis. Here, too, you
can choose that a thread participate in scheduling in either process or system scope.

* As we'll discuss in Chapter 6, Practical Considerations , some systems provide the
abstraction of a thread within the container of the process without any help from the
kernel. On these systems the lower-level operating system kernel schedules processes
to run, not threads.

The discussion of scheduling scope is complicated when multiprocessing systems are
involved. Many operating systems allow collections of CPUs to be treated as separate
units for scheduling purposes. In Digital UNIX, for example, such a grouping is called a
processor set and can be created by system calls or administrative commands. The
Pthreads standard does recognize that such groupings may exist and refers to them as
scheduling allocation domains. However, to avoid forcing all vendors to implement
specific allocation domain sizes, the standard leaves all policies and interfaces relating to
them undefined. As a result, there's a wide range of standard-compliant implementations
out there. Some vendors, such as Digital, provide rich functionality, and others provide
very little, even placing all CPUs in a single allocation domain.

Figure 4-5: Scheduling with system scope and one allocation domain

Figure 4-5 shows a system using only system scheduling scope and a single allocation
domain. On one side of the scheduler we have processes containing one or more threads
that need to be scheduled. On the other side the scheduler has the available CPU
processing power of the system combined into the one allocation domain. The scheduler
compares the priorities of all runnable threads of all processes systemwide when
selecting a thread to run on an available CPU. It gives the thread with the highest priority
first preference, regardless of which process it belongs to.

Figure 4-6 shows a system with only process scope and a single allocation domain.

Figure 4-6: Scheduling with process scope and one allocation domain

The standard requires a scheduler that supports process scope to compare the

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1166241.html#1166241
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1166241.html#1166241
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/04FIG05_0.gif
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/04FIG06_0.gif

scheduling priority of a thread only to the priorities of other threads of the same process.
How the scheduler makes the comparison is also undefined. As a result, the priorities set
by the Pthreads library on a system that provides this type of scheduling may not
necessarily have any systemwide meaning.

For instance, consider such a scheduler on a multiprocessing system on which the
threads of a given process (Process A) are competing for CPUs. Process A has three
threads, one with very high priority and two with medium priority. The scheduler can
place the high priority thread on one of the CPUs and thus meet the standard's
requirements for process-scope scheduling. It need do no more—even if other CPUs in
the allocation domain have lower priority threads from other processes running on them.
The scheduler can leave Process A's remaining runnable medium priority threads waiting
for its high priority thread to finish running. Thus, this type of scheduling can deny a
multithreaded application the benefit of multiple CPUs within the allocation domain.

An implementation that uses system-scope scheduling with a single allocation domain,
such as the one we showed in Figure 4-5, behaves quite differently. If the threads of a
process in system scope have high enough priorities, they will be scheduled on multiple
CPUs at the same time. System-scope scheduling is thereby much more useful than
process-scope scheduling for real-time or parallel processing applications when only a
single allocation domain is available.

Figure 4-7 shows a system with multiple allocation domains supporting both process and
system scope. The threads of Process A all have process scheduling scope and
exclusive access to an allocation domain. Process B's threads have system scope and
their own allocation domain as well. The threads of all other processes have system
scope and are assigned to the remaining allocation domain.

Figure 4-7: Scheduling with process and system scope and multiple allocation
domains

Because the threads of Process A and Process B don't share an allocation domain with
those of other processes, they will execute more predictably. Their threads will never wait
for a higher priority thread of another process to finish or preempt another process's
lower priority thread. Because Process B's threads use system scope, they will always be
able to simultaneously access the multiple CPUs within its domain. However, because
Process A's threads use process scope, they may not always be able to do so. It
depends on the implementation on which they run.

You should take into account one potential pitfall of using multiple scheduler allocation
domains if your implementation allows you to define them. When none of the threads in
Process A or B are running on the CPUs in their allocation domains, the CPUs are idle,
regardless of the load on other CPUs in other domains. You may in fact obtain higher
overall CPU utilization by limiting the number of allocation domains. Be certain that you
understand the characteristics of your application and its threads before you set
scheduling policies that affect its performance and behavior.

If an implementation allows you to select the scheduling scope of a thread using a per-
thread attribute, you'll probably set up the thread's attribute object, as shown in Example

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_37.html#890331
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/04FIG07_0.gif

4-21.

Example 4-21: Setting Scheduling Scope in an Attribute Object (sched.c)

pthread_attr_t custom_sched_attr;

 .

 .

 .

 pthread_attr_init(&custom_sched_attr);

 pthread_attr_setscope(&custom_sched_attr,
PTHREAD_SCOPE_SYSTEM);

 pthread_create(&thread, &custom_sched_attr, ...);

 .

 .

 .

The pthread_attr_setscope function sets the scheduling-scope attribute in a thread
attribute object to either system-scope scheduling (PTHREAD_SCOPE_SYSTEM), as in
Example 4-21, or process-scope scheduling (PTHREAD_SCOPE_PROCESS).
Conversely, you'd use pthread_attr_getscope to obtain the current scope setting of an
attribute object.

For the remainder of our discussion, we'll try to ignore scope. We can't avoid using terms
that have different meanings depending upon what type of scheduling scope is active. As
a cheat sheet for those occasions when these terms appear, refer to the following:

 • When we say pool of threads, we mean:

In process scope: all other threads in the same process

In system scope: all threads of all processes in the same allocation domain

 • When we say scheduler, we mean:

In process scope: the Pthreads library and/or the scheduler in the operating system's
kernel

In system scope: the scheduler in the operating system's kernel

 • When we say processing slot, we mean:

In process scope: the portion of CPU time allocated to the process as a whole within
its allocation domain

In system scope: the portion of CPU time allocated to a specific thread within its
allocation domain

Runnable and Blocked Threads

In selecting a thread for a processing slot, the scheduler first considers whether it is
runnable or blocked. A blocked thread must wait for some particular event, such as I/O
completion, a mutex, or a signal on a condition variable, before it can continue its
execution. By contrast, a runnable thread can resume execution as soon as it's given a
processing slot.

After it has weeded out the blocked threads, the scheduler must select one of the
remaining runnable threads to which it will give the processing slot. If there are enough
slots for all runnable threads (for instance, there are four CPUs and four threads), the

scheduler doesn't need to apply its scheduling algorithm at all, and all runnable threads
will get a chance to run simultaneously.

Scheduling Priority

The selection algorithm that the scheduler uses is affected by each runnable thread's
scheduling priority and scheduling policy. As we mentioned before, these are per-thread
attributes; we'll show you how to set them in a few pages.

The scheduler begins by looking at an array of priority queues, as shown in Figure 4-8.
There is a queue for each scheduling priority and, at any given priority level, the threads
that are assigned that priority reside. When looking for a thread to run in a processing
slot, the scheduler starts with the highest priority queue and works its way down to the
lower priority queues until it finds the first thread.

Figure 4-8: Priority queues

In this illustration only three of the priority queues hold runnable threads. When running
threads either involuntarily give up their processing slot(more on this later) or go from
blocked to runnable, they are placed at the end of the queue for their priority. Over time,
the population of the priority queues will grow and decline.

Whenever a thread with a higher priority than the current running thread becomes
runnable, it interrupts the running thread and replaces it in the processing slot. From the
standpoint of the thread that's been replaced, this is known as an involuntary context
switch.

Scheduling Policy

A thread's scheduling policy determines how long it runs when it moves from the head of
its priority queue to a processing slot. The two main scheduling policies are
SCHED_FIFO and SCHED-RR:

 • SCHED_FIFO

This policy (first-in first-out) lets a thread run until it either exits or blocks. As soon as it
becomes unblocked, a blocked thread that has given up its processing slot is placed at
the end of its priority queue.

 • SCHED_RR

This policy (round robin) allows a thread to run for only a fixed amount of time before it
must yield its processing slot to another thread of the same priority. This fixed amount
of time is usually referred to as a quantum. When a thread is interrupted, it is placed at
the end of its priority queue.

The Pthreads standard defines an additional policy, SCHED_OTHER, and leaves its
behavior up to the implementors. On most systems, selecting SCHED_OTHER will give a
thread a policy that uses some sort of time sharing with priority adjustment. By default, all
threads start life with the SCHED_OTHER policy. After all, time sharing with priority
adjustment is the typical UNIX scheduling algorithm for processes. It works like

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/04FIG08_0.gif

SCHED_RR, giving threads a quantum of time in which to run. Unlike SCHED_FIFO and
SCHED_RR, however, it causes the scheduler to occasionally adjust a thread's priority
without any input from the programmer. This priority adjustment favors threads that don't
use all their quantum before blocking, increasing their priority. The idea behind this policy
is that it gives interactive I/O-bound threads preferential treatment over CPU-bound
threads that consume all their quantum.

The definitions of SCHED_FIFO, SCHED_RR, and SCHED_OTHER actually come from
the POSIX real-time extensions (POSIX.1b). Any Pthreads implementation that uses the
compile-time constant _POSIX_THREAD_PRIORITY_SCHEDULING will also recognize
them. As we'll continue our discussion, we'll find other POSIX.1b features that are useful
in manipulating priorities.

Using Priorities and Policies

Although you can set different scheduling priorities and policies for each thread in an
application, and even dynamically change them in a running thread, most applications
don't need this complexity.

A real-time application designer would typically first make a broad division between those
tasks that must be completed in a finite amount of time and those that are less time
critical. Those threads with real-time tasks would be given a SCHED_FIFO policy and
high priority. The remaining threads would be given a SCHED_RR policy and a lower
priority. The scheduling priority of all of these threads would be set to be higher than
those of any other threads on the system. Ideally the host would be capable of system-
scope scheduling.

As shown in Figure 4-9, the real-time threads of the real-time application will always get
access to the CPU when they are runnable, because they have higher priority than any
other thread on the system. When a real-time thread gets the CPU it will complete its task
without interruption (unless, of course, it blocks—but that would be a result of poor
design). No other thread can preempt it; no quantum stands in its way. These threads
behave like event (or interrupt) handlers; they wait for something to happen and then
process it to completion within the shortest time possible.

Figure 4-9: Using policies and priorities in an application

Because of their high priority, the non-real-time threads in the application also get
preferential treatment, but they must share the CPU with each other as their quantums
expire. These threads usually perform the background processing for the application.

An example of this kind of real-time application would be a program that runs chemical
processing equipment. The threads that deploy hardware control algorithms—periodically
reading sensors, computing new control values, and sending signals to actuators—would
run with the SCHED_FIFO policy and a high priority. Other threads that performed the
less critical tasks—updating accounting records for chemicals used and recording the
hours for employees running the equipment—would run with the SCHED_RR policy and
at a lower priority.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/04FIG09_0.gif

Setting Scheduling Policy and Priority

You can set a thread's scheduling policy and priority in the thread attribute object you
specify in the pthread_create call that creates the thread. Assume that we have a thread
attribute object named custom_sched_attr. We've initialized it with a call to
pthread_attr_init. We specify it in calls to pthread_attr_setschedpolicy to set the
scheduling policy and pthread_attr_setschedparam to set the scheduling priority, as
shown in Example 4-22.

Example 4-22: Setting a Thread's Scheduling Attributes (sched.c)

pthread_attr_t custom_sched_attr;

int fifo_max_prio, fifo_min_prio;

struct sched_param fifo_param;

.

.

.

 pthread_attr_init(&custom_sched_attr);

 pthread_attr_setinheritsched(&custom_sched_attr,
PTHREAD_EXPLICIT_SCHED);

 pthread_attr_setschedpolicy(&custom_sched_attr, SCHED_FIFO);

 fifo_max_prio = sched_get_priority_max(SCHED_FIFO);

 fifo_min_prio = sched_get_priority_min(SCHED_FIFO);

 fifo_mid_prio = (fifo_min_prio + fifo_max_prio)/2;

 fifo_param.sched_priority = fifo_mid_prio;

 pthread_attr_setschedparam(&custom_sched_attr, &fifo_param);

 pthread_create(&(threads[i]), &custom_sched_attr,);

The way in which pthread_attr_setschedparam is used demands a little more
explanation.

When you use pthread_attr_setschedpolicy to set a thread's policy to SCHED_FIFO or
SCHED_RR, you can also call pthread_attr_setschedparam to set its parameters. The
pthread_attr_setschedparam function takes two arguments: the first is a thread attribute
object, the second is a curious thing defined in the POSIX.1b standard and known as a
struct sched_param. It looks like this:

struct sched_param {;

 int sched_priority;
}

That's it. The struct sched_param has only a single required member and specifies a
single attribute—a scheduling priority. (Some Pthreads implementations may store other
information in this structure.) Let's see how we stick a priority into this thing.

The POSIX.1b standard specifies that there must be at least 32 unique priority values
apiece for the SCHED_RR and SCHED_FIFO priorities. (The standard does not require
that there be defined priorities for SCHED_OTHER.) The absolute values and actual
range of the priorities depend upon the implementation, but one thing's for certain—you
can use sched_get_priority_max and sched_get_priority_min to get a handle on them.

In our example, we call sched_get_priority_max and sched_get_priority_min to obtain the
maximum and minimum priority values for the SCHED_FIFO policy. We add the two
together and divide by two, coming up with a priority level that's happily in the middle of
the SCHED_FIFO priority range. It's this priority value that we insert in the priority
member of our struct sched_param. A call to pthread_attr_setschedparam and, voila!—
our thread has a nice middling priority with which to work.

Before we leave our discussion of setting a thread's scheduling attributes statically when
the thread is created, we'll make one final point. If you must retrieve the scheduling
attribute settings from a thread attribute object, you can use the functions
pthread_attr_getschedpolicy and pthread_attr_getschedparam. They work in the same
way as the corresponding functions for other thread attributes.

Now we'll look at a way to set the scheduling policy and priority of a selected thread while
it's running. In Example 4-23, we set a target thread's policy to SCHED_FIFO and its
priority to the priority level stored in the variable fifo_min_prio.

Example 4-23: Setting Policy and Priority Dynamically (sched.c)

fifo_sched_param.sched_priority = fifo_min_prio;

pthread_setschedparam(threads[i], SCHED_FIFO, &fifo_min_prio);

As you can see, the pthread_setschedparam call sets both policy and priority at the same
time. Conversely, the pthread_getschedparam function returns the current policy and
priority for a specified thread. Be careful when you use the pthread_setschedparam
function to dynamically adjust another thread's priority. If you raise a thread's priority
higher than your own and it is runnable, it will preempt you when you make the call.

Inheritance

If you decide to use scheduling, you don't need to individually set the scheduling
attributes of each thread you create. Instead, you can specify that each thread should
inherit its scheduling characteristics from the thread that created it. Like other per-thread
scheduling attributes, the inheritance attribute is specified in the attribute object used at
thread creation, as shown in Example 4-24.

Example 4-24: Setting Scheduling Inheritance in an Attribute Object (sched.c)

pthread_attr_t custom_sched_attr;

 .

 .

 .

 pthread_attr_init(&custom_sched_attr);

 pthread_attr_setinheritsched(&custom_sched_attr,
PTHREAD_INHERIT_SCHED)

 .

 .

 .

 pthread_create(&thread, &custom_sched_attr, ...);

The pthread_attr_setinheritsched function takes a thread attribute object as its first
argument and as its second argument either the PTHREAD_INHERIT_SCHED flag or the
PTHREAD_EXPLICIT_SCHED flag. You can obtain the current inheritance attribute from
an attribute object by calling pthread_attr_getinheritsched.

Scheduling in the ATM Server

We're now ready to assign different scheduling priorities to the worker threads in our ATM
server, based on the type of transaction they are processing. To illustrate how our server
might use scheduling attributes, we'll give highest priority to the threads that service
deposit requests. After all, time is money and the sooner the bank has your money the
sooner they can start making money with it. Specifically, we'll add code to our server so
that deposit threads run at a high priority with a SCHED_FIFO scheduling policy and the
other threads run at a lower priority using a SCHED_RR scheduling policy.

We don't need to change worker thread code; only the boss thread concerns itself with
setting scheduling attributes. We'll globally declare some additional thread attribute
objects (pthread_attr_t) in our atm_server_init routine in Example 4-25 and prepare them
to be used by the boss thread when it creates worker threads.

Example 4-25: Creating Attribute Objects for Worker Threads (sched.c)

/* global variables */

.

.

.

pthread_attr_t custom_attr_fifo, custom_attr_rr;

int fifo_max_prio, rr_min_prio;

struct sched_param fifo_param, rr_param;

atm_server_init()

{;

 .

 .

 pthread_attr_init(&custom_attr_fifo);

 pthread_attr_setschedpolicy(&custom_attr_fifo, SCHED_FIFO);

 fifo_param.sched_priority = sched_get_priority_max(SCHED_FIFO);

 pthread_attr_setschedparam(&custom_attr_fifo, &fifo_param);

 pthread_attr_init(&custom_attr_rr);

 pthread_attr_setschedpolicy(&custom_attr_rr, SCHED_RR);

 rr_param.sched_priority = sched_get_priority_min(SCHED_RR);

 pthread_attr_setschedparam(&custom_attr_rr, &rr_param);

 .

 .

 .
}

The boss thread will use the custom_attr_fifo attribute object when creating deposit
threads. The atm_server_init routine sets this attribute object to use the SCHED_FIFO
scheduling policy and the maximum priority defined for the policy. The boss thread will
use the custom_attr_rr attribute object for all other worker threads. It is set with the
SCHED_RR scheduling policy and the minimum priority defined for the policy. The boss
thread uses these attribute objects in the server's main routine:

Example 4-26: Creating threads with custom scheduling attributes (sched.c)

extern int

main(void)

 .

 .

 .

 atm_server_init(argc, argv);

 for(;;) {;

 /*** Wait for a request ***/

 workorderp = (workorder_t *)malloc(sizeof(workorder_t));

 server_comm_get_request(&workorderp->conn, workorderp->req_buf);

 sscanf(workorderp->req_buf, "%d", &trans_id);

 .

 .

 .

 switch(trans_id) {;

 case DEPOSIT_TRANS:

 pthread_create(worker_threadp, &custom_attr_fifo,
process_request,

 (void *)workorderp);

 break;

 default:

 pthread_create(worker_threadp, &custom_attr_rr,
process_request,

 (void *)workorderp);

 break;

 }

 pthread_detach(*worker_threadp);

 }

 server_comm_shutdown();

 return 0;
}

In our server's main routine, the boss thread checks the request type before creating a
thread to process it. If the request is a deposit, the boss specifies the custom_attr_fifo
attribute object in the pthread_create call. Otherwise, it uses the custom_attr_rr attribute
object.

Mutex Scheduling Attributes

We may take great pains to apply scheduling to the threads in our program, designating
those threads that should be given preferential access to the CPU when they're ready to
run. However, what if our high priority threads must contend for the same resources as
our lower priority threads? It's likely that at times a high priority thread will stall waiting for
a mutex lock held by a lower priority thread. This is the priority inversion phenomenon of
which we spoke earlier. The mutex plainly doesn't recognize that some threads that ask
for it are more important than others.

Consider a real-time multithreaded application that controls the operation of a power
plant. One controls fuel intake and must react quickly and predictably to changes in flow
rate and line pressure; this thread has high priority. Another thread collects statistics on
plant operations for monthly reports and collects information on the state of the plant
once an hour; this thread is assigned a lower priority. An additional thread, of medium
priority in the application, perhaps, faxes sandwich orders at lunch time.

Both the fuel-control and statistic-gathering threads must control a mechanical arm to
position a temperature sensor at various locations within the plant to take temperature
readings. Each contends for a single mutex that synchronizes access to the arm.

We'll start with a situation in which all threads are blocked and the mutex is unlocked.
Suppose that the sequence of events listed in the left column of Table 4-2 occurs. The
statistics-gathering thread runs first, grabs the mutex, and ends up by blocking the fuel-
control thread that is ready to run.

Table 4-2: Priority Inversion in a Power Plant Application (1)

Event

Fuel Control
Thread

Medium
Priority
Thread

Statistics
Gathering
Thread

Arm
Mutex

Start

Blocked
Blocked Blocked Unlocked

The statistics-
gathering thread
must take a
temperature.

Blocked

Blocked Running Unlocked

The statistics-
gathering thread
acquires the
mutex.

Blocked

Blocked Running

Locked
by
statistics-
gathering
thread

An event occurs,
waking the fuel-
control thread. It
preempts the
statistics thread.

Running

Blocked Runnable

Locked
by
statistics-
gathering
thread

The fuel-control
thread tries to get
the mutex and
blocks. The
statistics thread
regains the CPU.

Blocked on mutex

Blocked Running

Locked
by
statistics-
gathering
thread

The situation can actually get worse when, as shown in Table 4-3, the medium priority
thread awakens. It has a higher priority than the statistics-gathering thread and does not
need to wait for the mutex the medium thread currently holds. It's runnable and will
preempt the statistics-gathering thread. Now the fuel-control thread must wait for the
medium priority thread, too—and this thread doesn't even need to use the arm!

Table 4-3: Priority Inversion in a Power Plant Application (2)

Event

Fuel- Control
Thread

Medium
Priority
Thread

Statistics-
Gathering
Thread

Arm
Mutex

An event occurs,
waking the
medium priority
thread. It
preempts the
statistics-
gathering thread.

Blocked on mutex

Running Runnable

Locked
by
statistics-
gathering
thread

If the sirens and flashing lights weren't so distracting, we'd redesign the application so
that the fuel-control and statistics-gathering threads no longer use a common resource.
But we need to introduce a new Pthreads feature, and besides, we have only so much
time before we have to evacuate the plant.

The Pthreads standard allows (but does not require) implementations to design mutexes
that can give a priority boost to low priority threads that hold them. We can associate a
mutex with either of two priority protocols that provide this feature: priority ceiling or
priority inheritance. We'll start with a discussion of priority ceiling, the simpler of the two
protocols.

Priority Ceiling

The priority ceiling protocol associates a scheduling priority with a mutex. Thus equipped,
a mutex can assign its holder an effective priority equal to its own, if the mutex holder has
a lower priority to begin with.

Let's apply this feature to our power plant example and see what happens. We'll
associate a high priority with the mutex that controls access to the arm and revisit the
earlier sequence of events. Table 4-4 illustrates the results.

Table 4-4: Priority Inversion in a Power Plant Application

Event

Fuel- Control

Medium
Priority

Statistics-
Gathering

Arm
Mutex

Thread
Thread Thread

(High
Priority
)

Start

Blocked
Blocked Blocked Unlocked

The statistics-
gathering thread
must take a
temperature.

Blocked

Blocked Running Unlocked

The statistics-
gathering thread
acquires the
mutex. It gets an
effective priority of
high.

Blocked

Blocked Running

Locked
by
statistics-
gathering
thread

An event occurs,
waking the fuel-
control thread. It
does not preempt
the statistics-
gathering thread,
which is also at
high priority.

Runnable

Blocked Running

Locked
by
statistics-
gathering
thread

An event occurs,
waking the
medium priority
thread. It does not
preempt the
statistics-
gathering thread,
which is also at
high priority.

Runnable

Runnable Running

Locked
by
statistics-
gathering
thread

At this point, the statistics-gathering thread will complete its operation at the highest
priority and in the shortest period of time. Table 4-5 shows the sequence of events that
occurs when it releases the mutex.

Table 4-5: Priority Inversion in a Power Plant Application

Event

Fuel- Control
Thread

Medium
Priority
Thread

Statistics-
Gathering
Thread

Arm
Mutex
(High
Priority
)

The statistics-
gathering thread
unlocks the mutex.
It reverts to low
priority and is
preempted by the
highest priority
runnable thread.
This is the fuel-
control thread

Running

Runnable Runnable Unlocked

The fuel-control
thread tries to get
the mutex and
succeeds.

Running

Runnable Running
Locked
by fuel
thread

Now the fuel-control thread can do its work, having to wait only for the statistics-gathering
thread—not for the medium priority thread as well. Although the fuel-control thread must
wait, it waits for a shorter period of time and in a more predictable manner.

If your platform supports the priority ceiling protocol, the compile-time constant
_POSIX_THREAD_PRIO_PROTECT will be defined. Example 4-27 shows how to create
a mutex that uses the priority ceiling protocol.

Example 4-27: Setting a Priority Ceiling on a Mutex (mutex_ceiling.c)

pthread_mutex_t m1;

pthread_mutexattr_t mutexattr_prioceiling;

int mutex_protocol, high_prio;

.

high_prio = sched_get_priority_max(SCHED_FIFO);

.

pthread_mutexattr_init(&mutexattr_prioceiling);

pthread_mutexattr_getprotocol(&mutexattr_prioceiling,
&mutex_protocol);

pthread_mutexattr_setprotocol(&mutexattr_prioceiling,
PTHREAD_PRIO_PROTECT);

pthread_mutexattr_setprioceiling(&mutexattr_prioceiling,
high_prio);

pthread_mutex_init(&m1, &mutexattr_prioceiling);

We first declare a mutex attribute object (pthread_mutex_attr_t) and initialize it by calling
pthread_mutexattr_init. Our call to pthread_mutexattr_getprotocol returns the priority
protocol that is associated with our mutex by default. The priority protocol attribute can
have one of three values:

 • PTHREAD_PRIO_NONE

The mutex uses no priority protocol.

 • PTHREAD_PRIO_PROTECT

The mutex uses the priority ceiling protocol.

 • PTHREAD_PRIO_INHERIT

The mutex uses the priority inheritance protocol.

If the pthread_mutexattr_getprotocol call does not show that the mutex is using the
priority ceiling protocol, we call the pthread_mutexattr_setprotocol function to set this
protocol in the mutex's attribute object. After we've done so, we call
pthread_mutexattr_setprioceiling to set the fixed priority ceiling attribute in the mutex
object. (Conversely, a call to pthread_mutexattr_getprioceiling would return the current
value of this attribute.) The priority passed is an integer argument set up in the same
manner as a thread's priority value. Finally, we initialize the mutex by specifying the
mutex attribute object to pthread_mutex_init.

Priority Inheritance

The priority inheritance protocol lets a mutex elevate the priority of its holder to that of the
waiting thread with the highest priority. If we applied the priority inheritance protocol to
the arm mutex in our power plant example, the result would be that the statistics-
gathering thread wouldn't unconditionally receive a priority boost as soon as it won the
mutex lock; it would be elevated to high priority only when the fuel-control thread starts to
wait on the mutex. Because the priority inheritance protocol awards a priority boost to a
mutex holder only when it's absolutely needed, it can be more efficient than the priority
ceiling protocol.

If your platform supports the priority inheritance feature, the compile-time constant
_POSIX_THREAD_PRIO_INHERIT will be TRUE. Example 4-28 shows how to create a
mutex with the priority inheritance attribute. The process is nearly identical to the one we
used to set up the priority ceiling protocol for the mutex in Example 4-27.

Example 4-28: Setting Priority Inheritance on a Mutex (mutex_priority.c)

pthread_mutex_t m1;

pthread_mutexattr_t mutexattr_prioinherit;

int mutex_procotol;

.

.

.

pthread_mutexattr_init(&mutexattr_prioinherit);

pthread_mutexattr_getprotocol(&mutexattr_prioinherit,
&mutex_protocol);

if (mutex_protocol != PTHREAD_PRIO_INHERIT) {;

 pthread_mutexattr_setprotocol(&mutexattr_prioinherit,
PTHREAD_PRIO_INHERIT);

}

pthread_mutex_init(&m1, &mutexattr_prioinherit);

The ATM Example and Priority Inversion

Let's return to our ATM server example. In its most recent version, we introduced a
scheduling framework and started to assign different priorities to different threads. Having
done so, we've introduced a risk that our threads may encounter priority inversion
situations. A high priority thread could attempt to perform a deposit transaction on the
same account for which a low priority thread is already processing a different transaction.
When it does so, the high priority thread will very likely need to wait on the mutex that the

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_38.html#971091

low priority thread currently holds. We can help out our high priority threads by assigning
this mutex a scheduling attribute of some sort.

Which protocol should we use—priority ceiling or priority inheritance? If we use the
priority ceiling protocol, we would have to associate a very high priority ceiling with the
mutexes that guard the accounts. Overall, this would have a rather negative effect on our
server's behavior and the performance of deposit transactions in particular. Low priority
threads would always be given a priority boost whenever they obtained a mutex,
regardless of whether a deposit thread needs to lock the same mutex. Because each
worker thread holds the mutex for an account for a significant length of time, the
scheduler's priority queues would fill with runnable, high priority threads. A deposit thread
would just be another high priority thread in the queue and would not get any special
treatment. This is not what we want.

For a program like our ATM server, it makes much more sense to use the priority
inheritance protocol. If we assign the priority inheritance attribute to each of our account
mutexes, each mutex would boost the priority of its owner only when a high priority
thread is waiting. This would give our high priority deposit threads a better chance to
access accounts. The scheduler continues to favor the deposit threads, and when a
deposit thread is blocked by a low priority thread that is holding a required mutex, the
mutex's priority inheritance policy ensures that the low priority thread gets a needed
boost. As a result, the low priority thread can get its business done quickly, release the
mutex, and get out of the way of our important deposit threads. The worst case would be
when the deposit thread must wait for one in-progress operation on the account before it
can start its transaction.

To associate the priority inheritance protocol with our mutexes, we'll change our server's
initialization routine as shown in Example 4-29.

Example 4-29: Initializing Priority-Savvy Mutex in the ATM (mutex_priority.c)

.

.

.

pthread_mutex_attr_t mutexattr_prioinherit;

.

.

.

void atm_server_init(int argc, char **argv)

{;

 .

 .

 .

 pthread_mutexattr_setprotocol(&mutexattr_prioinherit,
PTHREAD_PRIO_INHERIT);

 for (i = 0; i < MAX_NUM_ACCOUNTS; i++)

 pthread_mutex_init(&account_mutex[i],
&mutexattr_prioinherit);

 .

 .

 .
}

Chapter 5: Pthreads and UNIX

Overview

Because operating systems are inherently designed to accommodate processes, not
threads, system implementors must often bend tradition to introduce thread support. It's
as if we were to discover one day that the sun did not orbit the earth, but that, in reality,
the earth revolves around the sun. The process is no longer central to our operating
system world. Whereas it used to schedule processes, our system now schedules
threads—no minor feat because, to do so, it must rototill its internal data structures and
reinvent some of its most basic notions. What's more, whereas it used to deliver signals
to processes, it now must deliver signals to threads. How it selects the thread to which it
delivers a given signal is yet another added complexity.

Further, the operating system has always allowed us to perform certain operations on
processes that become riddles in the world of threads. If we now consider a process to
be a sort of container for threads, and we recognize that all threads share their process's
address space, what happens when one of these threads launches an operation that has
processwide ramifications? Does a fork result in a copy of the entire process, including all
existing threads? Does an exec wipe them out?

Finally, it's a rare, and probably not very useful, program that does not make a single
library call. In the world of threads, what happens when a batch of threads in the same
process call the same library function concurrently? If this is the same library that existed
in the pre-threaded implementation, there's a great chance that the library's static data
will be overwritten at each successive call. Thus, operating system vendors must address
the behavior of libraries and system calls on top of everything else.

If a multithreaded program is to work correctly, it must rely on some well-defined,
consistent behavior from the operating system. A little knowledge about the areas in
which Pthreads and the operating system cross is well advised. In this chapter, we'll
examine some ways in which Pthreads implementors attempt to make an operating
system "thread friendly." We'll discuss:

 • Signals

Every program must respond to signal delivery in some way. Often a program must
provide a routine that handles signals of various kinds. The Pthreads standard defines
a method for threads to participate in signal handling that is compatible with the
traditional method in which processes handle signals.

 • Threadsafe libraries

Most system libraries maintain internal data for the currently executing process in
internal data. To allow multiple threads from the same process to execute library
routines simultaneously, library implementors must somehow protect this data from
unsynchronized accesses by otherwise cooperative threads. Libraries that eliminate
such race conditions are known as threadsafe libraries.

 • Cancellation-safe library functions

If a thread is canceled while in the middle of a library call that is modifying a library's
internal data, it may exit, leaving the data in an inconsistent or corrupted state. A
library function in which a thread can be canceled safely is known as a cancellation-
safe library routine.

 • Blocking functions

One of the greatest benefits of threads programming relies on the expectation that, if
one thread blocks while calling a library function, others may continue. The Pthreads
standard defines exactly which library functions can block and when.

 • Process management

Operating system support for threads complicates the standard operations that create
and destroy processes (such as fork, exec, and exit). The Pthreads standard specifies
the behavior of these operations in a multithreaded environment and requires
backward compatibility for nonthreaded applications.

 • Multiprocessor memory synchronization

Although more of an issue for platform machine architectures than for the operating
system, threads must be assured that their views of shared data (including the states of
mutexes and condition variables) are identical. This guarantee, as enforced by the
Pthreads standard, must hold true whether the threads are running on a uniprocessor or
on a multiprocessor.

Threads and Signals

The odd thing about signals in UNIX is that, although they're everywhere, their arrival—by
its very nature—is always a bit of surprise. (Well, that's a bit of an exaggeration. When
we're told that the furniture delivery person will be at our house between 9 a.m. and noon
on Tuesday, we're prepared for a knock on the door—maybe at 9:15, maybe at 11:45,
maybe even at 1:00, perhaps never. When the knock comes, we're ready with well-
rehearsed instructions for the paths the delivery person must follow through our house to
the place where the sofa will ultimately be placed. Some types of signals are like that;
others are more like our smoke alarm before the furniture delivery person knocked it
down.)

Nevertheless, our program may be interrupted at any time by a signal, and that signal
may have been sent from any of a number of places. The system may send us a signal to
report a hardware condition (a divide-by-zero or some other fault) or a software error. We
can use various facilities so that the system sends us a signal when a particular event
occurs, such as the expiration of a timer or the completion of an I/O operation. Other
processes can send us a signal (and we can send one back) as a sort of low-level IPC
mechanism. Even human beings can send us a signal by hitting CTRL-Z at the keyboard
to suspend our program.

Most programs that accomplish serious work must have a built-in way of dealing with all
of these signals flying around the system for all of these various purposes. This
presented the Pthreads standard committee with three chief challenges:

• A thread should be able to send and receive signals, yet, to allow this, a Pthreads

implementation cannot subvert a single-threaded process's ability to process signals in
the way it always has.

 • When a signal is delivered to a multithreaded process, a Pthreads implementation
must select one of the threads to perform the required action.

 • What can a thread do, while in a signal handler, that won't interfere with its mainline
execution?

The committee met the first of these challenges by not changing the semantics of signal
delivery to processes. In a Pthreads implementation, signals continue to be delivered to
processes, not threads. The table that lists the process's reaction to specific signals (the
sigaction) is shared by all threads. It dealt with the second by defining per-thread signal
masks that you can manipulate to direct a signal to (or away from) particular threads.

Unfortunately, the committee seriously limited the work that a signal handler can perform
in a thread's context. In fact, it left the behavior of the Pthreads tools themselves (mutex
variables, condition variables, keys, and the like) undefined when they're used in a
handler. Thus hampered, the signal handler cannot use Pthreads calls to communicate or
synchronize with other threads in the program.

We'll see how you can work around this problem a little later. Right now, let's quickly
review some basic signal-handling concepts and explore how signals work with threads.

Traditional Signal Processing

A special signal action structure (sigaction) allows a process to associate an action with
each type of signal that may be delivered to it. A process may choose to:

 • Ignore the signal (SIG_IGN)

 • Use the default action (SIG_DFL)

The default signal action depends on which signal is being received. Most signals
terminate the process, but a few are ignored by default. SIGSTOP and SIGTSTP
suspend the process, while SIGCONT resumes it.

 • Catch the signal, and execute a user-specified handler routine

When it's created, a process is given the default action for each signal. You can change
the action for most signals by using the sigaction call. Some signals (such as SIGKILL
and SIGSTOP), however, cannot be ignored or caught.

The arrival of a signal interrupts a process at its current point of execution and transfers
execution to a signal-handling routine. When the signal handler returns, the process
resumes at its prior execution point.

Sending signals and waiting for signals

Signals can be generated in a number of ways—a process can do something that causes
the system to deliver a signal to it, or some other process can send a signal to it by using
the kill system call. (The kill system call is poorly named; you can use it to send a variety
of signals, not just the termination signal, SIGKILL.) A process can also send a signal to
itself, by using either the kill or raise system call.

Normally the arrival of a signal interrupts process execution. However, some signals
resume a process that was suspended by a call to wait, sigsuspend, sleep, or pause.

Using a signal mask to block signals

A process can block certain types of signal for an indefinite period of time. If a process is
blocking a given type of signal and that type of signal happens to be sent to it, the signal
is marked as pending. The process may unblock the signal type later, at which time the
pending signal will be delivered.

A process specifies the signals it wants to block in its signal mask. By default, no signals
are blocked. The signals to be blocked are designated in a process's signal mask. The
program can use sigaction and sigsuspend to set and reset the blocking status for each
signal.

Signal Processing in a Multithreaded World

If multiple threads are executing within a process when a signal is delivered to it, the
system must select a thread to process it. At the highest level, the selection of the thread
is dictated by how the signal was generated, what action caused the signal, and what the
effective target of the signal is. The three possibilities are shown in Table 5-1.

Table 5-1: System Selection of a Thread to Handle a Signal

How signal was
generated

What generated the
signal

Effective
target of
the
signal

How the
signal-
processing
thread is
selected

Synchronously

The system, because of an
exception

A
specific
thread

Always
the
offending
thread

Synchronously

An internal thread using
pthread_kill

A
specific
thread

Always
the
targeted
thread

Asynchronously

An external process using
kill The

process
as a
whole

Per-
thread
signal
masks
of all
threads
in the
process

Let's examine the information in this table a little more closely.

Synchronously generated signals

Certain signals are synchronously generated in the sense that they are sent to a process
as the direct result of an operation within a particular thread. The system is sending the
process a signal because one of its threads tried to divide by zero (SIGFPE), touch
forbidden memory in the wrong way (SIGSEGV), use a broken pipe (SIGPIPE), or do
something else that triggered an exception. These signals are closely bound to the
activities of a given thread, and it will be that thread, in its own context, that will handle
the signal on behalf of the process as a whole.

The other type of synchronously generated signal results from one thread in a process
calling pthread_kill to send a signal to another thread in the same process. The calling
thread explicitly names the target thread by specifying its thread handle, as well as the
signal to be delivered to it. You cannot use pthread_kill to send signals to threads in other
processes.

Note that you shouldn't use pthread_kill in place of cancellation or condition variables.
Because the Pthreads standard doesn't define any new signals with a thread-specific
semantic, the pthread_kill function is limited to sending POSIX.1 and POSIX.1b signals.
Trying to terminate (or direct the behavior of) a single thread using a traditional signal is
like trying to comb your hair with a rake. It'll be difficult and you won't exactly get what
you want.

Asynchronously generated signals

Other signals are asynchronously generated in the sense that they cannot be easily
pinned to a particular thread. The arrival of these signals is asynchronous to the activities
of any and all threads within the process. They are typically job control signals—
SIGALRM, SIGHUP, SIGINT, and SIGKILL—or the user-defined signals—SIGUSR1 and
SIGUSR2. They are sent to the process by a kill call and can be handled by almost any
of its threads. (Because thread handles are unique only within a process, there's no way
that a kill call—or a pthread_kill call, for that matter—can send a signal from one process
to a thread in another process. As a result, all kill calls result in an asynchronously
generated signal.)

Per-thread signal masks

Like a traditional process, a thread has a signal mask that indicates which asynchronous
signals it's willing to handle (these are considered unblocked) and which ones it's not
(these are considered blocked). By default, the first thread in a child process inherits its
signal mask from the thread in its parent that called fork. Additional threads inherit the
signal mask of the thread that issued the pthread_create that created them. Use the
pthread_sigmask call to block and unblock signals in the mask.

When an asynchronously generated signal arrives at a process, it is handled once by
exactly one thread in the process. The system selects this thread by referring to the
collection of per-thread signal masks of all the threads. If more than one thread has the
signal unblocked, the system arbitrarily selects one of them. Although you can manipulate
the masks to influence the selection process, you cannot explicitly assign a specific
thread to handle a particular signal. Nevertheless, it's not hard to control the delivery of
signals. Here are some guidelines:

 • If any thread can handle the signal, rest easy. The signal is, by default, unblocked for
all threads.

 • If only certain threads can handle the signal, mask the signal in all but those threads.
The system will choose one of them to process the signal.

 • If only one thread can handle the signal, mask the signal in all other threads.

Suppose you want your program to perform some special processing when data arrives
or some other event occurs. If you associate a signal with this event, you can arrange it
so that the signal is blocked in all but one thread. No matter what is happening in any
thread in the program, it will be that thread that executes the handler when the signal
arrives.

If all threads have a certain signal blocked and one of these signals arrives, it becomes
pending for the entire process. Sometime later any thread can unblock the signal and
accept its delivery. Using this type of signal delivery policy, you can design a thread that
polls for a signal by setting and clearing the appropriate bit in its signal mask until the
signal is delivered.

Note that a fatal signal will terminate the whole process, regardless of which thread it's
delivered to. As a result, you don't need to do anything special to manage these signals
or others that you allow to kill the process.

Per-process signal actions

Although each thread has its own signal mask, all threads in a process must share the
process's own signal action (sigaction) structure. Consequently, if a process specifies
that a given signal should be ignored, it will be ignored, regardless of to which thread in
the process the system delivers it. Similarly, if a process's sigaction structure deems that
a certain signal should be subjected to the default action (whatever that might be for the
signal) or processed by a signal handler, the specified action will be carried out when the
signal is delivered to any of the process's threads.

Any thread can make a sigaction call to set the action for a signal. If a thread calls
sigaction to set the SIG_IGN action for the SIGTERM signal, any other thread in the
same process that does not block this signal is prepared to ignore a SIGTERM should
one be delivered to it. If a thread assigns the ei-e-io signal handler to the SIGIO signal,
any thread selected to handle SIGIO will call ei-e-io.

Putting it all together

Before investing a lot of complexity in your code by using these features, remember that,
by default, your multithreaded program will have the same response to signals as a
nonthreaded one. If you want to ignore signals, all you need to do is to use sigaction as

usual to set the signals' action to SIG_IGN. A standard sigaction call will also serve you
well if there are signals you want to handle and it doesn't matter which of your threads
process them. Even if you do want a specific thread to handle a particular signal, you
may not need to invent special code. For instance, if one thread in your program handles
all I/O operations, you might have that thread handle any SIGIO signal that may arrive (or
wait for the signal at times using sigwait).

A word to the wise: after you've set up particular threads to handle particular signals, it's
simplest to keep them that way. If you try to reassign signal-handling responsibilities in
the middle of your program, you'll likely encounter all the synchronization difficulties that
usually result from any change to a process state.

Threads in Signal Handlers

POSIX labels calls that can be made safely from a signal handler as asynchronous
signal-safe functions. These functions have a special property known as reentrancy that
allows a process to have multiple calls to these functions in progress at the same time.
Because a signal handler doesn't inherently know what calls were in progress at the time
it is placed in execution, it must restrict itself to calling only those functions that are
advertised as asynchronous signal-safe. In fact, many, many base POSIX calls can be
made from a handler:

access

alarm
cfgetispee
d

cfgetospee
d

cfsetispee
d

cfsetospee
d

chdir

chmod
chow
n

close creat dup

dup2

execle
execv
e

_exit fcntl fork

fstat

getgroups
getpgr
p

getpi
d

getppi
d

getui
d

kill

link
lseek

mkdi
r

mkfif
o

open

pathconf

pause
pipe read

renam
e

rmdir

setgid

setpgid
setsid setuid

sigactio
n

sigaddset

sigdelset

sigemptyset
sigfillset

sigismembe
r

sigpendin
g

sigprocmask

sigsuspend

sleep
stat sysconf

tcdrai
n

tcflo
w

tcflush

tcgetattr

tcgetpgr
p

tcsendbrea
k

tcsetattr

tcsetgrp

time
times umask

unam
e

unlink

utime
wait

waitpi
d

write

If your system supports the POSIX real-time extensions, you can also make any of the
following calls:

aio_error

aio_return
aio_sus
pend

clock_gettime

fdatasync
fsync

getegid

geteuid

sem
_pos
t

sigqueue

timer_getoverrun

timer_gettime

timer_settime

But where are the Pthreads calls? They're not in either of these lists! In fact, the Pthreads
standard specifies that the behavior of all Pthreads functions is undefined when the
function is called from a signal handler. If your handler needs to manipulate data that is
shared with other threads—buffers, flags, or state variables—it's out of luck. The

Pthreads mutex and condition variable synchronization calls are off limits.*

* Even if the data you intend to manipulate is private to a thread and you don't think you
need any Pthreads calls, you still need to be careful. Just as you would in a non-
threaded program, you must synchronize access to the data between the normal
context of the thread and its handler context. This synchronization is accomplished by
masking the arrival of the signal in the normal flow of the thread whenever it accesses
the data it shares with the handler.

Fine. We've explained very carefully how you can set up a particular thread in your
program so that it gets placed in a signal handler, and now you learn that, once it's there,
your thread can't make any Pthreads calls! Rest easy. If your thread must manipulate
shared data or communicate with other threads while it's executing its signal handler, it
has a number of options. If the POSIX real-time extensions are available to it, it can use
the sem_post call to communicate with other threads of the same process using a
semaphore. A better solution would be to forgo the idea of using the handler in the first
place and, instead, call sigwait to wait synchronously for the arrival of the signal. The
sigwait call either returns immediately to the calling thread because a signal is already
pending to the process but blocked or suspends the thread until a signal becomes
pending.

To make our program take an action when a signal arrives we can use sigwait as
follows:

 • Mask the interesting signals in all threads so that their arrival is made pending. The
sigwait call will detect these signals.

 • Create a dedicated thread that waits specifically for interesting signals to arrive.

• Insert a simple loop in the dedicated thread's code that calls sigwait, indicating the

signals that it will handle. Add the action routine that executes when the sigwait call
returns.

A Simple Example

Let's look at a program that processes an input stream and provides a statistics report,
upon request, to its users. Users ask the program for a report by sending the
asynchronous signal SIGUSR1 to the process. When it catches this signal, the program
should be able to generate and deliver the report without interrupting its computations on
the data stream. To allow this to happen, we'll set up a separate thread that waits for the
signal and responds accordingly.

In Example 5-1, we'll block the SIGUSR1 signal from delivery in all threads, including the
one that will ultimately handle it.

Example 5-1: Blocking the Signal (stat_sigwait.c)

pthread_t stats_thread;

pthread_mutex_t stats_lock = PTHREAD_MUTEX_INITIALIZER;

extern int

main(void)

{

.

.

.

sigset_t sigs_to_block;

.

.

.

/* Set main thread's signal mask to block SIGUSR1.

All other threads will inherit mask and have it blocked too

*/

sigemptyset(&sigs_to_block);

sigaddset(&sigs_to_block, SIGUSR1);

pthread_sigmask(SIG_BLOCK, &sigs_to_block, NULL);

.

.

.

pthread_create(&stats_thread, NULL, report_stats, NULL);

.

.

}

In Example 5-2, we'll create the statistics-reporting thread (report_stats) and have it wait
for SIGUSR1. When it calls sigwait, it must have SIGUSR1 blocked; here it does because
it inherited its signal mask from the main thread. While report_stats is processing one
SIGUSR1 signal, any other SIGUSR1 signals sent to the process will be held pending,

because all threads, including this one, have it blocked. The signal will be delivered the
next time the report_stats thread reenters sigwait.

Example 5-2: Waiting for and Handling the Signal (stat_sigwait.c)

void * report_stats(void *p)

{

sigset_t sigs_to_catch;

int caught;

sigemptyset(&sigs_to_catch);

sigaddset(&sigs_to_catch, SIGUSR1);

for (;;) {

 sigwait(&sigs_to_catch, &caught);

 /* Proceed to lock mutex and display statistics */

 pthread_mutex_lock(&stats_lock);

 display_stats();

 pthread_mutex_unlock(&stats_lock);

 }
return NULL;

}

Now, if we chose to process this signal in a signal handler instead of trapping it in a
sigwait call, we'd have a major problem. The display_stats routine references data
modified by other threads in the program. The routine would need to lock this data with a
mutex before printing it. However, it can't do this because it executes in a signal handler's
context, and the Pthreads mutex-locking routines are not asynchronous signal-safe.

Some Signal Issues

Some POSIX.1 functions return EINTR if they are interrupted by a signal. If a thread that
has called one of these functions receives this return value, it may have to reissue the
call. No Pthreads functions behave this way.

In addition, certain real-time extensions to the signal interface (specified by POSIX.1b)
have special adaptations that support threads. Most notably, the signotify structure can
be set to indicate that a new thread should be created and run in a start routine when a
timer event occurs.

Handling Signals in the ATM Example

We'll revise our ATM server to show how a more complex multithreaded program can
deal with signals. Let's fix it so that a remote client can send the SIGUSR1 signal to the
server to cause it to gracefully shut down. We added the shutdown capability at the end
of our discussion of synchronization in Chapter 3, Synchronizing Pthreads .

When the server process receives a shutdown request, it must allow existing workers to
complete their current requests and prevent the boss from creating any more. To
implement this we'll create an additional thread—a shutdown thread. We'll create the
shutdown thread at server startup and have it call sigwait to wait for the signal to arrive.
When this happens, the shutdown thread is released from the sigwait. It sets a global flag
that indicates to the boss and active workers that a shutdown should occur.

Before it creates the shutdown thread, the boss thread's server initialization routine must

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=366376.html#366376
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=366376.html#366376

make sure that the boss and all other threads have the SIGUSR1 signal blocked from the
get-go. (If it did not, a SIGUSR1 signal might be delivered before the threads themselves
could issue a pthread_sigmask call to block it.) We'll rely on the way a thread inherits its
signal mask from the thread that creates it and arrange it so that the boss blocks the
SIGUSR1 signal in its signal mask just before it creates the shutdown and worker
threads. As a result, at each of the boss pthread_create calls, a thread is created with a
signal mask that blocks SIGUSR1.

The other change we'll make to the server initialization routine involves the creation of the
shutdown thread itself and its start routine shutdown_thread, shown in Example 5-3.

Example 5-3: Creating a Signal Handling Thread in the ATM (atm_svr_signals.c)

int received_shutdown_req = FALSE;

pthread_mutex_t shutdown_lock = PTHREAD_MUTEX_INITIALIZER;

pthread_t shutdown_thread_id;

void atm_server_init(...)

{

sigset_t signals_to_block;

.

.

.

/* set signal mask to mask out SIGUSR1 in this thread

and all the threads we'll create */

sigemptyset(&signals_to_block);

sigaddset(&signals_to_block, SIGUSR1);

pthread_sigmask(SIG_BLOCK, &sigs_to_block, NULL);

/* create thread to catch shutdown signal */

pthread_create(&shutdown_thread_id,

 NULL,

 shutdown_thread,

 NULL);
.

.

.

}

The shutdown thread is pretty simple. It sets up a signal set to pass to sigwait to indicate
it's interested in SIGUSR1. Then it calls sigwait. If the signal has already been received
and is pending, the call returns immediately. Otherwise, it blocks until the signal is sent.
When the sigwait call returns, the shutdown thread does the following:

 • Sets a global flag to indicate to the boss thread that the time to shut down has arrived.
This causes the boss to stop creating new worker threads.

 • Checks the current count of worker threads and waits if necessary for it to reach zero.

 • When all worker threads have completed, terminates the program by calling exit.

Example 5-4 illustrates the actions of the shutdown thread.

Example 5-4: Waiting for a Shutdown Signal in the ATM (atm_svr_signals.c)

void shutdown_thread(void *arg)

{

 sigset_t signals_to_catch;

 int caught;

 /* Wait for SIGUSR1 */

 sigemptyset(&signals_to_catch);

 sigaddset(&signals_to_catch, SIGUSR1);

 sigwait(&signals_to_catch, &caught);

 /* got SIGUSR1—start shutdown */

 pthread_mutex_lock(&pthread_info.mutex);

 pthread_info.received_shutdown_req = TRUE;

 /* Wait for in-progress requests threads to finish */

 while (pthread_info.num_active > 0) {

 pthread_cond_wait(&pthread_info.thread_exit_cv,
&pthread_info.mutex);

 }

 pthread_mutex_unlock(&pthread_info.mutex);

 exit(0);

 return (NULL);
}

Threadsafe Library Functions and System Calls

Up to this point we've spent a lot of effort to ensure that multiple threads can execute
cleanly and efficiently in our own code. However, it's easy to forget that our applications
spend a lot of time in system-supplied libraries (and third-party-supplied libraries), running
code over which we have no control whatsoever. If the library fails to recognize potential
race conditions when its data is shared among threads and neglects to enforce
appropriate synchronization, our program will fail—just as if it ignored these issues itself!

This problem isn't an issue just for threaded programs. Race conditions can also occur in
traditional, single-threaded programs that use signal handlers or that call routines
recursively. A single-threaded program of this kind may have the same routine in
progress in various call frames on its process stack.

Threadsafe and Reentrant Functions

The degree to which a library function or routine allows itself to have multiple instances of
itself in progress at the same time is known as its reentrancy. The behavior of a reentrant
function doesn't vary whether one call or multiple calls to it are in progress. For multiple,
simultaneous function calls to work properly, a function cannot write to static data. If it
does, it creates a race condition with regard to the data, and its callers risk obtaining bad
results.

The Pthreads standard not only requires that almost all system-supplied library functions
be reentrant but also requires them to be threadsafe. A threadsafe function has been
designed to allow multiple, simultaneous calls specifically from threads. Whereas the

normal mechanism for making a function reentrant is to remove all references to global
data, a threadsafe function can employ thread synchronization primitives (such as
mutexes and condition variables) to protect the global data.

Example of Thread-Unsafe and Threadsafe Versions of the
Same Function

We'll show the behavior of a function that disregards the basic rules of thread safety in
Example 5-5. Although the example is contrived and oversimplified, it does illustrate how
certain functions were designed on many systems before Pthreads support was added.
Although it may be obvious to you that using a fixed-length global buffer in a callable
library is bad programming style, there are a couple of important lessons to be learned
here:

 • What may be bad programming style in a library called by different processes will be
deadly to threads calling the library from the same process.

 • It's a big, wonderful, and sometimes dangerous world out there! Know the types of
libraries your threads hang around in!

In Example 5-5, our thread-unsafe function is called reverse_string. It uses a static buffer
(my_buffer) as a temporary workspace while it reverses the order of the characters in an
input string.

Example 5-5: A Thread-Unsafe String Reversing Routine (reverse_string.c)

static char work_buffer[100];

void reverse_string(in_str)

char *in_str;

{

int size = 0, i = 0, j = 0;

/* Find the end of the in_str */

while ((in_str[size] != ‘\0') && (size != 100)) {

 size++;

 }

/* Copy from in_str into buffer, reversing it */

for (i = size-1; i > -1; i--) {

 work_buffer[j++] = in_str[i];

 }
work_buffer[j] = ‘\0';

/* Copy back from buffer to in_str */

for (i = 0; i < size+1; i++)

 in_str[i] = work_buffer[i];
}

Here's how a race condition develops when two threads call reverse_string at the same
time:

1. Thread A calls the reverse_string function with the input string "the cat". The

scheduler preempts the thread at the point at which the function has copied "tac e"
into work_buffer.

 2. Thread B now calls reverse_string with the input string "dog house". The function

writes "esuoh god" into work_buffer and returns.

3. When Thread A continues, reverse_string continues copying "the cat" into

work_buffer. When it completes, it returns the string "esuohht" instead of the correct
string "tac eht".

The problem with reverse_string does not lie with the indexes it uses; the indexes are
automatic data that is maintained by each individual thread. The problem is in the static
array work_buffer.

We can easily make reverse_string threadsafe by the few keystrokes it takes to move the
my_buffer array from the static variable area to the automatic variable area in Example 5-
6.

Example 5-6: A Threadsafe String Reversing Routine (reverse_string.c)

void reverse_string(in_str)

char *in_str;

{

int size = 0, i = 0, j = 0;

char my_buffer[100];

/* Find the end of the in_str */

while ((in_str[size] != ‘\0') && (size != 100)) {

 size++;

 }

/* Copy from in_str into buffer, reversing it */

for (i = size-1; i > -1; i--) {

 my_buffer[j++] = in_str[i];

 }

 .

 .

 .
}

When calling this version of reverse_string, each thread gets its own copy of my_buffer
on its own per-thread stack. The danger of corruption is removed because no other
thread can access the buffer.

Functions That Return Pointers to Static Data

Notice how transparent our solution is to the race condition in reverse_string. Because
we didn't add or change any parameters, its callers, Thread A and Thread B, don't need
to change—unless they depended on the previously incorrect results! Unfortunately, for
other thread-unsafe functions, there isn't such a simple and tidy solution. What if the
function call's interface includes in its argument list a return pointer to static data? Its
callers are bound to this interface (and, for many of them—the single-threaded callers—it
works fine). Moreover, this type of interface is not uncommon. You often find it in
functions that cache information (such as directory listings, host names, or times). It's
often easier and quicker to return a pointer to the static results than to copy information
into a caller-specified buffer.

The only way to produce a threadsafe version of this type of function is to change its
argument list. Regrettably, the threadsafe version will no longer be compatible with the

previous version, thus causing some amount of inconvenience to its callers.

Library Use of errno

In Chapter 1, Why Threads? , we pointed out that Pthreads library functions do not use
errno. However, traditional UNIX and POSIX.1 system calls (such as read and write) do
use errno, and this could be a big problem for multithreaded programs that call these
functions.

When a program makes an unsuccessful call to one of these functions, the system sets
the value of the global int variable errno to an error number. The programmer first tests
the function's return value to see if an error has occurred and then reads errno to
determine why. Typically, the libc function perror is used to decode the error and print an
explanatory string to standard error.

The following snippets of code show two threads making an unsuccessful system call at
the same time.

Thread 1 Thread 2

amt=read(...); rtn=ioctl(...);

if (amt<0) { if (rtn<0) {

fprintf(stderr, "error fprintf(stderr, "error

read() %d", ioctl() %d",

 errno) errno);
exit(-1); exit(-1);

} }

Because there is only one errno global variable for the entire process, the failing read

call and the failing ioctl call encounter a race condition when they write to it.
Consequently, when Thread 1 reads and prints out the value of errno, it can't tell

whether the error value is the result of its read call or Thread 2's ioctl call.

The Pthreads standard recognizes this problem and dictates that each thread must
perceive errno as having a thread-private value, independent of the errno values
seen by other threads. To achieve this, Pthreads library implementations define the string
"errno" as a macro. When expanded, this macro returns a thread-specific errno value.
Thus, existing error-checking code doesn't need to change to work within a thread. In
fact, our examples would work, too.

The Pthreads Standard Specifies Which Functions Must Be
Threadsafe

One of the most time-consuming aspects of deploying Pthreads for many system vendors
is the effort required to make their libraries and system calls threadsafe. The Pthreads
standard dictates that almost all POSIX.1 calls must be threadsafe. (Note that the
POSIX.1 calls include not only library functions but also system calls such as dup,
chmod, getpid, and open, and C language bindings such as atoi, malloc, printf, and
scanf.)

The small number of exceptions allowed by the standard include:

 • Calls whose argument lists include static data

 • Calls for which performance is a concern

 • Calls that involve file locking

Additionally, a vendor may make certain of its non-POSIX calls threadsafe. Before using

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=36527.html#36527
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=36527.html#36527

any non-POSIX interface in a multithreaded application, ensure that it is threadsafe by
checking your system's documentation.

Alternative interfaces for functions that return static data

The POSIX.1 readdir and localtime functions are good examples of the sort of function
that returns to its caller a pointer to static data (either a structure or string). Each time you
call one of these functions, it overwrites its static data area. In nonthreaded applications,
this means you need to use the returned pointer to copy the data somewhere else; this
may be annoying, but it does not prevent the call from returning correct results. However,
when you call one of these routines from multiple threads at the same time, it will return
corrupt results.

We've already mentioned that this type of function can be made threadsafe only by some
visible change to its call interface. The major drawback to this is that we'd break a lot of
programs if we change the existing interface of a call like readdir or localtime.

The solution the Pthreads standard adopts for functions like these is to leave the existing
functions alone and create new, alternative versions of the functions that are threadsafe.
In the new threadsafe functions (whose names end in _r for reentrant), the caller provides
a pointer to a buffer to which the function copies its results. Each time a thread calls the
threadsafe version of one of these functions, it maintains the data unique to its call in its
own buffer.

The Pthreads standard defines the following threadsafe versions of existing POSIX.1
functions:

asctime_r

ctime_r

getgrgid_r

getgrnam_r

getlogin_r

getpwnam_r

getpwuid_r

gmtime_r

localtime_r

rand_r

readdir_r

strtok_r

ttyname_r

Additional routines for performance considerations

The getc, getchar, putc, and putchar functions are commonly used POSIX.1 functions
that perform I/O to standard input and output. Because of the frequency with which
certain applications call them, the Pthreads standard committee determined that making
these functions threadsafe would result in serious performance hits for some single-
threaded applications (which don't need the extra thread-specific synchronization). As a

result, it decreed that, while vendors should make the existing functions threadsafe, they
should also offer new versions of the functions that provide better performance.

The new, thread-unsafe, better-performing versions of the getc, getchar, putc, and
putchar functions are getc_unlocked, getchar_unlocked, putc_unlocked, and
putchar_unlocked.

File-locking functions for threads

It's fairly common for a thread to read and write to a shared file. Although POSIX.1
defines calls (such as flock) hat allow a thread to synchronize access to a file shared with
another process, it did not define calls that allowed multiple threads within the same
process to synchronize similar activity. A thread that calls flock effectively locks a file
against access by threads from other processes but leaves it wide open to other threads
in its own process.

To synchronize access to a file shared with threads from the same process as well as
those of other processes, a thread could use a mutex in conjunction with its flock calls.
However, the Pthreads standard defines functions, listed in Table 5-2, that give you this
degree of synchronization with a lot less effort.

Table 5-2: New Routines for Thread-Specific File Locking

Function

Description

Flockfile

Locks a file on a per-thread basis

Ftrylockfile

Tries to lock a file on a per-thread
basis (returns immediately)

Funlockfile

Unlocks a file on a per-thread
basis

Where are the threadsafe functions?

The Pthreads standard specifies that the threadsafe versions of most POSIX.1 functions
must be available on your platform, but where?

Here, too, you should consult your operating system's documentation. Some systems
may support the new threadsafe versions of standard functions in one library while

continuing to support the thread-unsafe versions in another.* These systems may keep
the original functions in a standard library (named lib xxx. a) and the threadsafe functions
in a new library, lib xxx_r.a.

* There are a number of reasons the thread-unsafe libraries may still be available,
including performance (the traditional functions may be faster than the threadsafe
ones) and quality (the threadsafe functions may not have been tested as much as the
traditional ones).

Using Thread-Unsafe Functions in a Multithreaded
Program

Speaking of safety, if you are intent on walking on the sea wall during high tide, make
sure you do so only when the wind has stopped and you're wearing your good sneakers
—and stay away from those rocks! Similarly, if you are determined that your
multithreaded program needs the unique functionality of a system library or toolkit that is
thread-unsafe, you can still use it in your multithreaded application. However, if you do,
you must treat the entire function call as if it were a shared resource and use appropriate
synchronization.

The simplest synchronization scheme is to allow only one thread in your program to
make calls using the thread-unsafe interface. A little more complex solution would be to
associate a mutex or a condition variable with some or all of the interface calls. Any
thread in your program must lock the appropriate mutex before calling the thread-unsafe
function it protects.

For example, assume that we failed to make reverse_string unsafe. In Example 5-7, we'll
insert some code in a multithreaded program that calls it, surrounding the reverse_string
call with calls to lock and unlock a reverse_string_mutex lock and defining a macro that
will invoke this whole block of code. Now any thread in our program can use the
safe_reverse_string macro to launch a thread-safe call to the thread-unsafe
reverse_string function.

Example 5-7: Using a Mutex with a Thread-Unsafe Interface (reverse_string.c)

pthread_mutex_t reverse_string_mutex

#define safe_reverse_string(x) \

pthread_mutex_lock(&reverse_string_mutex); \

reverse_string(x); \

pthread_mutex_unlock(&reverse_string_mutex);

Cancellation-Safe Library Functions and System Calls

Using thread cancellation can have a number of pitfalls, not the least of which is the
accidental cancellation of a thread that holds a lock or that has just allocated some
memory. We helped you safeguard your code against such disasters in Chapter 4,
Managing Pthreads. Now we'll take some time to acquaint you with what Pthreads
vendors do to ensure that their libraries continue to work as expected when confronted
with cancellation in a multithreaded environment.

When you call library functions from a program that uses thread cancellation, you must
consider two important questions:

 • Can the thread be safely canceled while it's executing in these functions?

 • Do any of these functions act as cancellation points for a deferred cancellation?

Asynchronous Cancellation-Safe Functions

Remember that, when asynchronous cancellation is enabled for a thread, any
pthread_cancel call aimed at it will terminate the thread immediately, no matter what it's
doing. It's up to you to ensure that a routine running under the threat of thread
cancellation doesn't hold locks or have resources allocated. When a routine is designed
in this way, it's known as an asynchronous cancellation-safe function.

As we've seen, system libraries were originally written without consideration of threads.
Although the Pthreads standard requires vendors to make most POSIX.1 function calls
threadsafe (and defines various workarounds for the others), it doesn't force them to

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161

make POSIX.1 libraries (or ANSI C or vendor-specific libraries) asynchronous
cancellation-safe. This means if a thread is canceled in the middle of a library call, it may
terminate while library data is in an inconsistent state or while the library holds memory
allocated on the thread's behalf. As a result, when using asynchronous cancellation in a
multithreaded program, you should call only those library functions that are documented
as being asynchronous cancellation-safe. Very few are.

Nevertheless, if your program truly needs the functionality that these asynchronous
cancellation-unsafe functions provide, you can dodge potential problems by resetting the
thread's cancelability type to deferred for the duration of the function call. Defining a
wrapper macro, as shown in Example 5-8, should do the trick.

Example 5-8: An Asynchronous Cancellation Wrapper Macro (async_safe.c)

#define async_cancel_safe_read(fd, buf, amt) \

 {\
int oldtype; \

pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, &oldtype); \

if (read(fd, buf, amt) < 0) \

perror("read"), exit(-1); \

pthread_setcanceltype(oldtype, NULL); \

pthread_testcancel(); \

 }

A thread invokes the async_cancel_safe_read macro instead of calling read directly. The
macro first enables deferred cancellation with a pthread_setcanceltype call, which sets
things up so that while the thread is in the read call any cancellations delivered to it will
be made pending. When the read call returns, the macro makes a pthread_testcancel
call, forcing any pending cancellations to be delivered. If this is not the case, the macro
proceeds to the next line, a pthread_setcanceltype call that sets the thread's cancelability
type back to asynchronous.

Cancellation Points in System and Library Calls

Let's review what we know about cancellation points.

When deferred cancellation is enabled for a thread, it can be terminated only at defined
cancellation points. Thus far, we know of four Pthreads function calls that act as
cancellation points: they are pthread_testcancel, pthread_cond_wait,
pthread_cond_timedwait, and pthread_join. The pthread_testcancel function allows you
to insert an explicit cancellation point in a thread. Because the other functions can cause
a calling thread to block for a long time, they force a thread's termination if its cancellation
is pending at the time of the call.

It would be useful if other system and library calls that impose long waits on their callers
could also act as cancellation points. In fact, the Pthreads standard lists over fifty
POSIX.1 and ANSI C routines that vendors may define as cancellation points:

closedir , ctermid, fclose, fcntl, fflush, fgetc , fgets, fopen, fprintf, fputc, fputs , fread, freopen, fscanf,
fseek, ftell , fwrite, getc, getchar , getchar_unlocked, getc_unlocked , getcwd, getgrgid, getgrgid_r,
getgrnam, getgrnam_r , getlogin, getlogin_r, getpwnam, getpwnam_r, getpwuid , getpwuid_r, gets,
lseek, opendir, perror, printf, putc, putchar, putchar_unlocked, putc_unlocked , puts, readdir, remove,
rename, rewind , rewinddir, scanf, tmpfile, tmpname, ttyname , ttyname_r, ungetc, unlink,
 The following routines must be defined as cancellation points on all implementations:
aio_suspend , close, creat, fcntl, fsync, mg_receive, mg_send , msync, nanosleep, open, pause, read,
sem_wait , sigsuspend, sigtimedwait, sigwait, sigwaitinfo, sleep, system , tcdrain, wait, waitpid, write

Thread-Blocking Library Functions and System Calls

The key reason for using threads lies in the convenience and efficiency of letting one
thread block on an I/O operation or synchronization call while others continue performing
the useful work of your program. With this in mind, we've assumed from the start of the
book that each time a thread makes a system call that blocks, only the thread itself is
stalled, not the entire process. We haven't been entirely up front with you. Our
assumption's a bit presumptuous.

In a nonthreaded program, system calls that perform file I/O (like open, read, and write)
or synchronize processes (wait) block their callers until the requested operation
completes. You can avoid some blocking on a file operation by passing the POSIX
O_NONBLOCK flag or the BSD O_NDELAY flag to the file's open call, or the FIONBIO
flag to an ioctl call to the file. When a process issues a subsequent read or write call on
that file, it would receive notification of I/O completion through a SIGIO signal.

Process blocking is fine when a process has a single execution state, but it subverts the
whole purpose of threads. A system call that blocks a process would block all of our
threads, and we'd lose all of the advantages of concurrency until the system call
completes. If we used nonblocking calls as described previously, we'd need to add
synchronization code to our threads to wait for the completion signal.

Fortunately, the Pthreads standard requires that vendors implement many blocking
POSIX.1 calls so that they suspend only the calling thread and not the entire process. (The
nonblocking behavior of the I/O calls remains the same.) They include:

fcntl,open,pause,read,sigsuspend,sleep,wait,waitpid,write
What if a blocking call supplied by your system is not listed here? If you must use the call,
you have a few options:

 • You may get lucky and discover your implementation has implemented the code as
nonblocking. So much for portability!

• Let your entire application stall while the call blocks. (Think of it as a rock-climbing

expedition in which your more athletically adept friends stop to wait for you as you haul
yourself up behind them.)

 • Fork another process to do the call. (It works, but using threads was supposed to
eliminate the need for you to do this.)

• Use any available nonblocking alternative. Here, you avoid blocking the process, but

you'll need to add explicit synchronization to your thread so it can retrieve the results of
the call.

Chapter 5 - Pthreads and UNIX

Pthreads Programming

Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farrell

 Copyright © 1996 O'Reilly & Associates,
Inc.

Threads and Process Management

On a Pthreads-compliant system, calls that manipulate processes, like fork and exec, still
behave in the way they always have for nonthreaded programs. Let's see what happens
when we make these calls from a multithreaded process.

Calling fork from a Thread

A process creates another process by issuing a fork call. The newly created child process
has a new process ID but starts with the same memory image and state as its parent. At
its birth it's an exact clone of its parent, starting execution at the point of its parent's fork
call in the same program. Often, the new process immediately calls exec to replace its
parent's program with a new program. It then sets out on its own business.

In a Pthreads-compliant implementation, the fork call always creates a new child process
with a single thread, regardless of how many threads its parent may have had at the time
of the call. Furthermore, the child's thread is a replica of the thread in the parent that
called fork—including a process address space shared by all of its parent's threads and
its parent thread's per-thread stack.

Consider the headaches:

• The new single-threaded child process could inherit held locks from threads in the

parent that don't exist in the child. It may have no idea what these locks mean, let
alone realize that it holds one of them. Confusion and deadlock are in the forecast.

 • The child process could inherit heap areas that were allocated by threads in the parent
that don't exist in the child. Here we see memory leaks, data loss, and bug reports.

The Pthreads standard defines the pthread_atfork call to help you manage these
problems. The pthread_atfork function allows a parent process to specify preparation and
cleanup routines that parent and child processes run as part of the fork operation. Using
these routines a parent or child process can manage the release and reacquisition of
locks and resources before and after the fork.

This is pretty complex stuff, so please bear with us.

Fork-handling stacks

To perform its magic, the pthread_atfork call pushes addresses of preparation and
cleanup routines on any of three fork-handling stacks:

 • Routines placed on the prepare stack are run in the parent before the fork.

 • Routines placed on the parent stack are run in the parent after the fork.

 • Routines placed on the child stack are run in the child after the fork.

A single call to pthread_atfork places a routine on one or more of these stacks. With
multiple calls you can place routines on any given stack in a first-in last-out order.
Because the fork-handling stacks are a processwide resource, any thread—not just the
one that will call fork—can push routines on them.

In those carefree times when we throw caution to the winds and decide to fork from the
middle of a multithread program, we typically use pthread_atfork to push mutex-locking
calls on the prepare fork-handling stack and mutex-unlocking calls on the parent and
child stacks. We might also place routines that release resources and reset variables on
the child stack.

Let's demonstrate what would happen if we did not use pthread_atfork's capabilities in
one of those fork-crazy programs of ours. In Figure 5-1, we have two threads: a mutex
(Lock L) and the data the mutex protects. Thread A acquires Lock L and starts to modify
the data. Meanwhile, Thread B decides to fork. Now, the fork creates a child process
that's a clone of its parent process, and this child shows a locked Lock L. The child
process has a single thread, a replica of Thread B (the thread in the parent process that
called fork). The assortment of clones and replicas that result from the fork has little effect
on the threads in the parent process. However, things are not okay in the child. The
locked Lock L is an utter mystery to the new Thread B in the child. If it tries to acquire
Lock L, it will deadlock. (There's no Thread A in the child that will ever release Lock L in
the child process's context.) If it tries to access the data without first obtaining Lock L, it
may see the data in an inconsistent form. Life's never easy for our kids.

Figure 5-1: Results of a fork when pthread_atfork is not used

Now, let's use pthread_atfork to control Lock L's state at the time of the fork. The program
we show in Figure 5-2 also has Threads A and B, Lock L, and scrupulously guarded data.
However, we've added an initialization routine that pushes a routine that locks L on the
prepare fork-handling stack, and a routine that unlocks L on the child and parent fork-
handling stacks. We've taken care to do this in a routine that executes before any thread
actually uses the lock.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/05FIG01_0.gif

Figure 5-2: Results of a fork when pthread_atfork is used

Sometime later, Thread A acquires the lock and starts to modify the data. When Thread
B calls fork, the routine on the prepare stack runs in Thread B's context. This routine tries
to obtain Lock L and will block; Lock L is still held by Thread A. Ultimately, the fork is
delayed until Thread A releases Lock L. When this happens, the prepare routine
succeeds, Thread B will become the owner of the lock, and the fork proceeds. As
expected, a child process is created that's a replica of its parent. However, inthis case,
the newly cloned Thread B in the child knows about the locked lock it finds in the child's
context. At this point, the routine we placed on the child fork-handling stack runs and
releases Lock L. The same routine runs from the parent fork-handling stack and releases
the lock in the parent process. When the dust settles, the lock is unowned in both parent
and child, and the data it protects is in a consistent state. Who could ask for more?

Even given the capabilities of pthread_atfork, forking from a multithreaded program is no
picnic. We kept our example simple. Imagine having to track every lock and every
resource that may be held by every thread in your program and in every library call it
makes! Before pursuing this course, you should consider a less complex alternative:

 • If possible, fork before you've created any threads.

Instead of forking, create a new thread. If you are forking to exec a binary image, can
you convert the image to a callable shared library to which you could simply link?

 • Consider the surrogate parent model.

In the surrogate parent model, a program forks a child process at initialization time.
The sole purpose of the child is to serve as a sort of "surrogate parent" for the original
process should it ever need to fork another child. After initialization, the original parent
can proceed to create its additional threads. When it wants to exec an image, it
communicates this to its child (which has remained single-threaded). The child then
performs the fork and exec on behalf of the original process.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/05FIG02_0.gif

Calling exec from a Thread

An exec call changes the program image of a process. For instance, using an exec, a
process running the shell program can switch to the vi editor program. After the exec the
identity of the process remains the same (that is, it has the same process ID, user ID,
etc.), but its virtual memory image is completely new and based on the program it has
been asked to run.

If a thread in a multithreaded process issues an exec, we'd expect that thread to start in
the main routine of the new image. And this is essentially what happens. But what of the
other threads? It wouldn't be of much use if the system loader picked some random
routine entry points for them to start in. With this in mind, the Pthreads standard specifies
that an exec call from any thread must terminate all threads in the process and start a
single new thread at main in the new image.

Process Exit and Threads

Regardless of whether or not a process contains multiple threads, it can be terminated
when:

 • Any thread in it makes an exit system call.

 • The thread running the main routine completes its execution.

 • A fatal signal is delivered.

When a process exits, all threads in it die immediately, and their resources are released. (If
you call _exit directly, the system doesn't guarantee the cleanup.)

Multiprocessor Memory Synchronization

The Pthreads standard requires library implementors to synchronize memory writes (with
respect to reads and other writes) for a subset of Pthreads and POSIX.1 functions. For
example, if a thread calls pthread_mutex_lock, the function not only protects access to
the shared data but also ensures that prior modifications to that data are committed to
memory at the point of the call. The way in which this is done is implementation-specific,
but typically involves some memory-barrier machine instruction that synchronizes cache
and memory contents across the CPUs in a multiprocessing system. The end result is
that any thread's view of memory is the same as that of any other thread in the same
process, regardless of which CPUs the threads are running on.

The functions that must synchronize memory operations include:

pthread_cond_broadcast,pthread_mutex_unlock,pthread_cond_signal,sem_post,
pthread_cond_timedwait ,sem_trywait,pthread_cond_wait,sem_wait,pthread_create,

fork,pthread_join,wait ,pthread_mutex_trylock,waitpid,pthread_mutex_lock

Chapter 6: Practical Considerations

Overview

Writing a multithreaded program is a lot like being a bebop jazz musician in the late
Forties. It's great to know what notes to play and the order in which to play them, but if
the object is to play "Cherokee" as fast as possible, technique doesn't matter all that
much. You need to fit as many notes in as short a space of time as possible and be done
it with before the audience can catch its breath. It's performance, performance,
performance!

So it is with you, the writer of threaded applications. Portable library calls that provide
task concurrency within a process are fine, but only if they deliver on the promised
performance. So in this chapter, we move from the abstract to the practical, from the
world of standards and reference pages to the world in which things often go wrong or
don't go as well as we'd like. With this in mind, our discussions will focus on:

Pthreads implementations

Pthreads implementations differ to the degree to which they're based in user space or
kernel space. The way in which a thread library is designed on a given platform
determines how your threads are scheduled, whether they can actually run in parallel,
and, ultimately, how well they perform. Knowing a little bit about how your platform
supports Pthreads can help you design your program to take advantage of the
implementation's strong points

Debugging

Debugging a multithreaded program is something else. (We encourage you to write
yours without bugs.) A multithreaded program can encounter errors, such as race
conditions and deadlocks, that aren't found in a traditional program, and these types of
errors are not easy to debug. Moreover, the command set of conventional debuggers
allows you to direct only process execution; some may provide a similar command set
to allow you to control the execution of threads. Armed with a suitable tool, how do we
proceed to uncover and eradicate the bugs in our threads?

Performance

We added threads to our program to obtain performance we couldn't achieve in a single-
threaded version. How do we measure this performance? How can we tune it?

Understanding Pthreads Implementation

Pthreads implementations fall into three basic categories:

 • Based on pure user space.

 • Based on pure kernel thread.

• Implementations somewhere between the two. These hybrid implementations are

referred to variously as two-level schedulers, lightweight processes (LWPs), or
activations.

All implementations in these categories conform to the Pthreads standard and provide
concurrency (the basic goal of threads). However, your platform's choice of
implementation has a radical effect on the scheduling and performance of the threads in
your program. Just look for a moment at the extremes! Pure user-space thread
implementations don't provide global scheduling scope and don't actually allow multiple
threads from the same process to execute in parallel on different CPUs. At the other
extreme, pure kernel-thread implementations don't scale well when a process has 10, 20,
30, or more threads.

Because Pthreads implementations are varied and complex and because
implementations are evolving and improving at a swift rate, we can't do justice to them in
the brief space we have in this book. The goal of this section is to introduce you to those
differences in architectures that impact the way your program performs on various
implementations.

We'll set the stage for later discussions by reviewing some basic vocabulary.

Two Worlds

User mode commonly refers to the times when a process (or, by extension, a thread) is
executing the instructions in its program or a library (to which the program is linked). The
program or library knows about the various objects upon which it operates (such as code,
data, and other abstractions) because they are defined in user space and not in the
underlying operating system kernel.

Kernel mode refers to a process's (or a thread's) operational mode when it's executing
within the operating system's kernel—usually as a result of a system call or an exception.
In kernel mode, a process runs the instructions of the core operating system to access
resources and services on a program's behalf. While it's running in kernel mode, the
process can access objects that are defined in kernel space and, thereby, known only to
the kernel.

Two Kinds of Threads

The threads we've discussed in this book are user threads. They are programming
abstractions that exist to be accessed by calls from within your program. In fact, the
Pthreads standard doesn't require the operating system kernel to know anything at all
about them. Whether a Pthread has any meaning inside the kernel or within kernel mode
is up to the implementation.

A kernel thread*can be something quite different. It's an abstraction for an operating
system execution point within a process. To support the Pthreads standard, an
implementor doesn't need to use kernel threads. As we'll see, the standard allows for
great flexibility in the underlying implementation.

* The various UNIX operating systems use different terms for kernel thread. Digital
UNIX, which was derived from Mach 2.5, uses the term kernel thread; Sun's Solaris
uses the term lightweight process (LWP); others use the term activation or two-level
scheduler.

Some platforms have native, nonstandard user-space thread implementations that
predate the Pthreads standard. (The proliferation of these nonstandard interfaces was
actually the motivating force behind the effort to define the Pthreads standard.) These
native thread interfaces often have very similar semantics to those of the Pthreads
interfaces, but they don't fully comply with the syntax and functionality the standard
requires. On these platforms, an additional layer—sometimes only an include file—exists
to turn the native user-space threads into Pthreads that conform to the portable Pthread
interface.

Who's Providing the Thread?

A Pthreads implementation supports user threads by a Pthreads-compliant library and,
optionally, by changes to the operating system kernel. So, when we issue a
pthread_create call on a given implementation, what is involved in creating the thread—
the Pthreads library alone, the kernel itself, or some combination of the two? We'll look at
the various possibilities.

User-space Pthreads implementations

In pure user-space implementations, the kernel isn't involved at all in providing a user
thread. As shown in Figure 6-1, the Pthreads library itself schedules threads, multiplexing
all of a process's threads onto its single execution context. The kernel has no notion of
threads; it continues to schedule processes as it usually does.

This design is known as an all-to-one mapping. Out of all of a process's threads that are
able to run at a given time, the Pthreads library selects just one to run in its process's
context when that process is next scheduled by the kernel.

Figure 6-1: User-space thread implementations

A pure user-space implementation can be based quite simply on tools that UNIX
programmers have traditionally used to manage multiple contexts within a single process:
namely, setjmp, longjmp, and signals. The Pthreads library may define a user thread as a
data structure that stores an execution point in the form of a jmp_buf structure saved by a
setjmp call. When the current thread is rescheduled, it resumes the new thread that has
been selected to run by performing a longjmp to the new thread's stored jmp_buf
execution point.

There are several advantages to a pure user-space implementation:

 • Because it doesn't require changes to the operating system itself, it allows many UNIX
vendors, and vendors of other operating systems, to quickly provide a Pthreads-
compliant library without having to invent kernel threads. For instance, Digital
implemented its Pthreads library in this way on versions of OpenVMS prior to Version
7.0. (Version 7.0 uses kernel threads.) Additionally, DCE includes a user-space
implementation, thus encouraging its vendors to provide support for DCE threads by

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/06FIG01_0.gif

relieving them of wholescale changes to their operating systems.

• Because user-space implementation doesn't use expensive system calls to create
threads and doesn't require the operating system to perform a context switch between
threads, certain types of multithreaded applications can run faster than they would in a
kernel-thread implementation. Among these applications are those that run exclusively
on uniprocessing systems and those that don't have enough CPU-bound work to
effectively use multiple CPUs.

• Because user-space threads aren't known to the operating system, they can be

created quickly and without impact to the kernel. This scales well: you can create more
and more threads without overloading the system. Each thread is just another
timeslice from the set of resources originally assigned to your process.

There are also two considerable disadvantages:

• The Pthreads library manages the scheduling of user threads using an all-to-one
mapping of threads to a single process's execution context. As a result, threads within
the same process compete against each other for CPU cycles. The operating system
never sees an individual thread, only the process. If you raise the priority of a thread,
it'll run more often and longer than other threads of lower priority in the same process.
If it was your intention to give it a scheduling advantage over threads from other
processes on the system, you'll be disappointed. To get the responsiveness you
expect for a real-time thread from this type of implementation, you must either throw
everybody else off the system or always run your entire process and all of its threads
at a higher priority than everyone else. Either approach is likely to bring a system
administrator to your office.

• Because the Pthreads library's thread-scheduling ability is limited to threads within a
process, it restricts your multithreaded program from taking advantage of multiple
CPUs. Because the operating system is utterly unaware that many streams of
processing are beneath a given process, it allocates available CPUs to processes, not
threads. All threads in a process must share the CPU on which the process was
scheduled (and do so in the timeslice given to the process). The threads can never run
in parallel across the available CPUs, even if another CPU happens to be idle!

Kernel thread-based Pthreads implementations

In pure kernel thread-based implementations, the Pthreads library creates a kernel thread
for each user thread. Because each kernel thread represents the execution context of a
single user thread, this design is known as a one-to-one mapping. As we show in Figure
6-2, when a CPU becomes available, the kernel chooses a kernel thread to run from
among all the kernel threads available on the system, regardless of which processes they
represent.

Figure 6-2: Kernel thread-based implementations

A pure kernel thread-based implementation depends upon the operating system to
define, store, and reload the execution states of individual threads. The operating system

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/06FIG02_0.gif

must now manage on a per-thread basis some of the information it's traditionally
maintained for an individual process. For instance, each thread must have its own
scheduling priority, its own set of saved registers, and its own CPU assignment. Other
types of information, such as the file table, remain associated with the process.

A good example of a pure kernel thread-based implementation is the pre-Version 4.0
Digital UNIX, which was known as DEC OSF/1 at the time. Digital UNIX, based in part on
the Mach operating system developed at Carnegie-Mellon University (CMU), adopted
Mach's kernel thread design. Mach threads operate at a much lower level than Pthreads
and provide minimal functionality. Prior to Version 4.0, the Digital UNIX Pthreads library
requested a new Mach kernel thread from the system for each pthread_create call.
Because the Mach kernel thread design provides few synchronization primitives, it's the
role of the Pthreads library to implement such features as mutexes and thread joins atop
the Mach kernel thread functionality.

The advantages of a pure kernel thread-based implementation set to right the
disadvantages of the pure user-space implementation:

• The Pthreads library schedules user threads on a one-to-one basis to kernel threads.
As a result, threads compete against all other threads on the system for CPU cycles,
not just against other threads in the same process. The kernel is aware of threads. If
you raise the priority of a thread, it'll run more often and longer than other threads of
lower priority throughout the system.

• Because the kernel schedules threads globally across the entire system, multiple
threads in your program can run on different CPUs simultaneously, as long as their
relative priorities are higher than those of other threads on the system. Unlike a pure
user-space implementation, a pure kernel thread-based implementation doesn't limit
your program to a single executing thread.

The disadvantages of a kernel thread-based implementation are as follows:

• Although less expensive than creating a new process, the creation of a new kernel
thread does require some kernel overhead—the processing of a system call and the
maintenance of kernel data structures. If your application will never run on a
multiprocessor, or if its threads are not CPU bound, this overhead is unnecessary. A
user-space implementation would probably provide better performance.

• Because some cost is associated with creating and maintaining kernel threads,

applications that use a lot of threads ("a lot" meaning 10 or more on some systems,
hundreds on others) can significantly load a system and degrade its overall
performance, thus affecting all running applications.

Two-level scheduler Pthreads implementations: the best of both
worlds

In a two-level scheduler implementation, the Pthreads library and the operating system
kernel cooperate to schedule user threads. Like a pure kernel thread-based
implementation, a two-level scheduler implementation maps user threads to kernel
threads, but instead of mapping each user thread to a kernel thread, it may map many
user threads to any of a pool of kernel threads (see Figure 6-3). This is known as a
some-to-one-mapping. A user thread may not have a unique relationship to a specific
kernel thread; rather, it may be mapped to different kernel threads at different times.

Figure 6-3: Two-level scheduler implementations

Both the Pthreads library and the kernel maintain data structures that represent threads
(user threads and kernel threads, respectively). The Pthreads library assigns user

threads to run in a process's available kernel threads;* the kernel schedules kernel
threads from the collection of all processes' runnable kernel threads. The two levels of
scheduling allow better customized fits of actual execution contexts (kernel threads) to
user-specified concurrency (user threads).

* The Solaris Pthreads library maps user threads to LWPs. Digital UNIX Version 4.0 and

OpenVMS Version 7.0 map user threads to kernel threads.

For example, if a program's user threads frequently sleep on timers, events, or I/O
completion, it makes little sense to dedicate a kernel thread to each of them. The kernel
threads will see little CPU activity. It's much more efficient to allow the Pthreads library in
a two-level scheduler implementation to accommodate some of its user threads' spare
and sporadic execution behavior by allotting them a single kernel thread altogether. For
this type of program, the two-level scheduler effectively provides the benefits of a pure
user-space implementation—less kernel overhead and better performance.

At the other extreme, another program's user threads might be completely CPU-bound
and runnable. Here, the two-level scheduler might assign a kernel thread to each user
thread up to the number of CPUs on the system, acting like a pure kernel thread-based
implementation. Whenever a CPU becomes available, the kernel may thereby select any

of these user threads for scheduling.*

* The policies by which two-level scheduler implementations apportion their kernel
threads to deserving user-space threads vary considerably. Some sophisticated
implementations, such as Digital UNIX, may actually detect a change in a thread's
execution behavior (for instance, as it becomes more or less CPU-bound) and adjust
their kernel-thread assignments accordingly. Discussing the full range of
implementation possibilities is beyond the scope of this book. However, if you are
interested in reading more about two-level scheduler designs, we encourage you to
look at the following publications:

UNIX Internals: The New Frontiers by Uresh Vahala, Prentice Hall, 1996. Discusses
recent technological developments in UNIX operating systems, including Solaris, SVR4,
Digital UNIX, and Mach.

"Scheduler Activations: Effective Kernel Support for the User-Level Management of
Parallelism" by Anderson, Bershad, Lazowaska, and Levy, Department of Computer
Science and Engineering, University of Washington, Seattle. Describes activations in
their research operating system. This technology bears some resemblance to the
Digital UNIX Version 4.0 two-level scheduler implementation.

 "SunOS Multi-Threaded Architecture," USENIX Winter Conference Proceedings,
Dallas, Texas, 1991. Describes Solaris's lightweight process implementation.

Of course, most multithreaded programs are at neither extreme. In fact, a single program

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/06FIG03_0.gif

may encounter periods of high I/O activity and intense CPU use over time as it executes.
Its resource demands may change based on the input assigned to it on a given run. It
may be subject to different constraints, such as processor speed and I/O responsiveness,
depending upon the platform on which it's run. The ability to tailor its kernel thread
allocation policies to an individual program is the greatest advantage of a two-level
scheduler implementation. It can adapt automatically (or respond to customizations) to be
more responsive to different programs, or maintain an optimal execution environment as
a program's execution behavior changes.

Unlike a pure user-space implementation, a two-level scheduler implementation doesn't
bind all user threads in a process to a single kernel execution context. Instead, it allows
multiple threads in a process to run in parallel on multiple CPUs. Unlike a pure kernel
thread-based implementation, a two-level scheduler implementation doesn't create a
kernel thread for every user thread. By not doing so, it avoids needless overhead if a
kernel thread is not used enough to justify its creation. All in all, when you design tasks
for a multithreaded program that will run under a two-level scheduler, you can be less
finicky about segregating CPU-bound from I/O-bound work. The two-level scheduler will
adopt user-to-kernel thread mappings that are suitable to the program's actual execution
behavior.

Perhaps the only disadvantage of a two-level scheduler is in its level of internal
complexity and the effort a system developer must muster to implement one. That,
fortunately, is not a problem for you, the application developer. Nevertheless, you may
share in some of this complexity when you attempt to debug a multithreaded program on
a two-level scheduler implementation and discover that it's difficult to keep track of how
your user threads relate to the kernel threads that get placed into execution.

What a great way to get into our next topic!

Debugging

Well, you probably have an independent streak and, against our earlier advice, will write
some multithreaded programs with bugs. Debugging multithreaded programs will provide
you with some interesting new challenges. First of all, you'll investigate types of
programming errors that result from thread synchronization problems, namely deadlocks
and race conditions. Second, once you've seen a problem (for instance, some data
corruption or a hang), you'll discover you may have a hard time duplicating it. Because
the alignment of events among threads that run concurrently is largely left up to chance,
errors, once found, may be unrepeatable. Finally, because threads are a new technology,
many vendors have yet to upgrade their debuggers to operate well on threaded
programs.

All of this is to say, quite simply, that you'll need your wits about you when debugging a
multithreaded application! Sound like fun? Read on!

Deadlock

When one or more threads are spinning or have stopped permanently, chances are that
you've encountered a deadlock. You'll have a good idea that you've run into a deadlock,
because your program...will...just..., er, stop.

The most common reason for a deadlock—and the easiest to solve—is forgetting to
unlock a mutex. Deadlocks can also result from problems in the order in which threads
obtain locks. You may need to perform a bit of detective work to resolve these. The rule
is that all threads in your program must always pursue locks in the same order. If, en
route to obtaining Lock B, a lock must first obtain Lock A, then no thread should try to
obtain Lock B without first obtaining Lock A.

You may also encounter another form of deadlock. A thread may suspend itself to wait on
a condition variable that is never signaled by any other thread, thus falling into some sort
of deep, undisturbed sleep. If you see a deadlock of this sort, you'd do well to look for an
inconsistency in the way in which your thread interprets the condition. For instance, does
one thread sleep on count = = 0 and another thread signal the condition when count < 0 ?

A condition is usually signaled when a variable reaches a certain value. If the variable
can never reach that value, you can anticipate trouble. If you expect a flag to be set,
double check to ensure that it actually is; if you expect a counter to reach zero, make
sure that it actually does.

Fortunately, the Pthreads library knows all about the mutexes and condition variables in
use. If you are armed with a good thread-knowledgeable debugger, you can list which
thread is waiting for which mutex or condition variable and make great strides toward
pinpointing the culprits of the deadlock. Even without such a debugger, you can
periodically tap into the Pthreads library's statistics by adding simple wrapper routines
around the Pthreads calls in your program.

Race Conditions

A friend once told us the story of the time she and her husband set out to purchase a new
car. On her way home from work one Friday, she stopped at a Dodge dealer in New
Hampshire, saw the ideal minivan, and arranged a trade-in. On his way home from work
the same day, her husband stopped at a Dodge dealer in Massachusetts, found the
perfect vehicle, and also arranged a trade-in. We were at first surprised that they took a
multithreaded approach to buying an automobile (where we would have chosen a more
traditional monolithic approach) but that evening began to think about their predicament—
proud owners of three Dodge Caravans. Then again, it might be just two Caravans—they
did in fact trade one in. But they actually traded in the same minivan twice—to two
different dealers in two different states. The pettiest of crimes (inadvertent fraud would
surely qualify) becomes grossly magnified when state lines are crossed; maybe they
would somehow wind up with no Caravans if the dealers claimed a breach of contract. At
length, they did work things out (probably by using a pthread_join or something) and
ended up with a single minivan—a brand new one!

In our imagination, the behavior of our threaded friends may have had several possible
outcomes, some more inconvenient than others. At the end, they "got the right answer."
We wonder if they would get the right answer each time they set out to buy a new car in
this way.

This is a type of race condition. A race condition occurs when multiple threads share data
and at least one of the threads accesses the data without going through a defined
synchronization mechanism. (You'd think our friends would have used a mutex or, better,
a telephone call, to synchronize their car hunting.) As a result, a thread that reads the
data at the same time as the first thread may get a corrupted value—or not, depending
upon the timing between the two threads.

A race condition may be difficult to detect. It may lie around in your code like an accident
waiting to happen. It may not surface consistently; it might occur once in every hundred
(or thousand) executions. Even if does arise, you may miss it if you're not looking very
closely at your program's output. If you're lucky, a race condition will make a bad memory
reference, cause a fatal signal, and crash your program. At least then you can begin the
process of isolating the problem and identifying its cause.

Unlike deadlocks, race conditions involve resources (such as files, buffers, and counters)
that aren't managed by the Pthreads library. Often, a race condition involves a resource
that you didn't realize was shared among your threads. For example, perhaps two
threads called a nonreentrant routine from a system library, or executed some
initialization code that you intended to be run only once. A subtler problem arises if a
thread passes a pointer to its stack data as a parameter in a pthread_create call. Even
though a thread's automatic data is supposed to be private, nothing prevents another
thread from accessing it if you pass it its address! In other cases, you may be aware that
a particular resource is shared by multiple threads, but you didn't get its synchronization
right. For example, a thread might reference shared data after it has yielded the mutex
that protects the data.

Event Ordering

Because problems like deadlocks and race conditions can be intermittent, rearing up only

once every hundred or so program runs, debugging a multithreaded program requires
keener detective skills and more patience than you'd bring to a more traditional
debugging session.

The ordering of the events performed collectively by a program's threads at run time
becomes supremely important in debugging a multithreaded program. Unsynchronized
access to shared data often works if events on that data don't collide. For instance, if
Thread A performs an unsynchronized access of a resource it shares with Thread B
before Thread B accesses the resource, there's no chance for a race condition to
develop. However, if Thread B happens to access the resource while Thread A is still
busy with it, a race condition will result. Now, the race condition may not cause an error
every time it occurs. Sometimes your threads may, almost accidentally, come out of the
race condition with the right answers.

To make matters worse, various things in your program's run-time environment, unrelated
to the program itself, can impact the ordering of the program's events. Introducing a
debugger, for instance, can cause the events to occur in an order that's different from the
sequence they'd follow when the program is run in a production environment. Similarly,
you may discover bugs as you move your program from one platform to another. The
new platform's scheduling policy, performance, and system load could be different
enough so that some tasks complete faster than others, thus disrupting the usual
ordering of events that had up to that point concealed the bug.

Less Is Better

Remember, the roots of your program's race conditions and deadlocks are in its threads'
use of shared data. If your threads share little data, you'll have little opportunity to create
bugs that cause either of these problems. Moreover, because there is less
synchronization overhead, your threads will run faster. The reduction in a program's
complexity, as well as potential improvements in its performance, may make it worth your
while to look at ways of localizing data access to specific threads and minimizing the
program's overall synchronization needs.

Trace Statements

Regardless of the capabilities of your debugger, you can insert trace statements in your
code to monitor your program's activities. A trace statement usually takes the form of a
printf or a write to a log file.

If your debugger does not have built-in thread support, trace statements may be your
only means of monitoring what your threads are doing at the time of a deadlock.

It's handy to define trace statements as macros that can be conditionally compiled based
on the definition of a DEBUG symbol, as shown in Example 6-1.

Example 6-1: Trace Statement (trace.c)

#if DEBUG

#define DPRINTF(x) printf x

#else

#define DPRINTF(x)

#end

In our definition of DPRINTF, we allow a variable-sized argument list, as long as you
surround the list with double parentheses:

DPRINTF(("module com: start. %count, %size", count, size));

Where should you place trace statements? Trace statements are most useful when they
are inserted at those places where deadlocks and race conditions usually occur. For the
best payback, place them before and after each call to these functions:

pthread_mutex_lock, pthread_mutex_unlock, pthread_cond_wait, and
pthread_cond_signal. You can also use a trace statement at other points to track the
ongoing status of your program: for instance, which modules have been executed and
what the values of counters and key variables are.

What sort of information should a trace statement print? You should include the name of
the current routine at the very least, plus other information that is useful in that module's
context. If the routine is called by only one thread, the routine name may suffice to
identify the message. However, if the routine can be called by multiple threads, you must
also include some sort of thread identification, particularly if you're logging to the monitor
or a common log file. You may not be able to do this as neatly as you'd like. The Pthreads
library doesn't provide thread IDs, only thread handles. You could, however, pull
something together that works fairly well. You could print out the thread handle address,
which does uniquely identify each thread, and cope with a bit of awkward reading in the
trace output. Better yet, you could assign a meaningful string to each thread handle
address, storing them in keys or in a global array of pointers to char.

There is one last problem to solve here. You may remember that the thread handle is
returned in an output argument to the caller of pthread_create. This means that the
created thread doesn't know the address in which its creator stored its handle. You'll
need to provide some way for a thread to obtain this address so that it can include it in its
trace messages. One approach might be to have each creating thread store the handles
of the threads it creates in a global table. A thread that needs to find out the address of its
own thread handle calls pthread_self to obtain a copy of its handle. It then indexes
through this table to determine its unique handle address.

Beware of synchronization issues when using trace statements, particularly if they write
information to a common log file. If threads don't synchronize their writes, trace
messages in the log file may be garbled or out of order. Moreover, if they do synchronize
their writes by locking a mutex on the file, their execution will become linked at each
trace, possibly masking race conditions that could occur during normal program
execution. Furthermore, if you deploy the application with logging enabled, its
performance will be abysmal!

Debugger Support for Threads

Not surprisingly, the Pthreads standard does not address debugging support for threads.
Consequently, any thread-debugging capability you find in a debugger will be vendor-
specific. Nevertheless, a good system will extend its standard system debugger to help
thread programmers.

In some cases a system's debugger will not work, or become hopelessly confused, when
it's used with a multithreaded program. Some of the issues for a debugger are formidable.
When we set a breakpoint somewhere in a program, does it cause just the thread that
hits it to stop, or all threads of the process? It should probably stop all threads. When we
step through code, which thread runs?

As an example, the ladebug debugger on Digital UNIX has features to support the
debugging of multithreaded programs. The ladebug debugger has built-in features for
identifying individual threads within a process and printing out their state. For instance,
the where command allows you to specify which threads' call stacks you want to
examine. The thread command allows you to set a particular thread as being a "current"
thread, to which subsequent commands will apply. If we were to use ladebug to debug
our ATM server, the session might look like this:

% ladebug atm_svr

Welcome to the Ladebug Debugger Version 4.0-19

object file name: atm_svr

Reading symbolic information ...done

(ladebug) stop in main[#1: stop in int main(int, char**)]

(ladebug) run

Here, we didn't specify that any particular thread take the breakpoint. Consequently,
when we run the program, the entire process is stopped when any thread reaches main:

[1] stopped at [main:127 0x1200022bc]

 127 atm_server_init(argc, argv);
(ladebug) show thread

Thread State Substate Policy Priority Name

------ ---------- --------------- ---------- -------- -------------

> 1 running throughput 11 default thread

 -1 blocked kernel fifo 32 manager thread

 -2 ready idle 0 null thread for VP 0x0

(ladebug) where

>0 0x1200022bc in main(argc=1, argv=0x11ffff308) atm_svr.c:127

(ladebug) p $curthread

1

The show thread command tells us that three threads are running. Surprise! The
Pthreads library is itself a threaded program and creates its own daemon threads.
(Digital's implementation uses negative numbers to identify threads that are put there by
the system.) Thread 1 is the only thread that is created by our application. This makes
sense because we've only just gotten into main! The where command confirms that we're
in the first line of main.

Next, we ask the debugger to stop in process_request. This breakpoint will apply to all
threads—including those we're about to create. And so we continue:

(ladebug) stop in process_request

[#2: stop in void* process_request(void*)]

(ladebug) c

After a client issues a request, the server program hits the new breakpoint:

[2] stopped at [process_request:210 0x120002518]

 210 workorder_t *workorderp = (workorder_t *)input_orderp;

(ladebug) show thread

Thread State Substate Policy Priority Name

------ ---------- --------------- ---------- -------- ------------

 1 blocked kernel throughput 11 default thread

 -1 blocked kernel fifo 32 manager thread

 -2 ready idle 0 null thread for VP 0x0
> 2 running throughput 11 <anonymous>

(ladebug) where

>0 0x120002518 in process_request(input_orderp=0x140011000) atm_svr.c:210

#1 0x3ff80823e94 in thdBase(0x0, 0x0, 0x0, 0x1, 0x45586732, 0x3)

DebugInformationStrippedFromFile101:???

Now, we can see the new thread our server just created to process the incoming request.
The > in the output of show thread tells us that this is our current thread. When we

subsequently issue the where command, this thread's start function, process_request,
appears on the stack above the thread "base."

You don't need to change the current thread in ladebug just to look at a thread's stack,

but, just for illustration purposes, that's what we'll do here:

(ladebug) thread 1

Thread State Substate Policy Priority Name

------ ---------- --------------- ---------- ------- -------------

 1 blocked kernel throughput 11 default thread

(ladebug) p $curthread

1

(ladebug) where

>0 0x3ff82050f28 in /usr/shlib/libc.so

#1 0x120003a38 in server_comm_get_request(conn=0x140011100,

 req_buf=0x140011104="") atm_com_svr.c:187
#2 0x120002308 in main(argc=1, argv=0x11ffff308) atm_svr.c:135

We use the thread command to change the current thread, and then we show its stack
with the where command. The main thread is hanging out in a Standard C library (libc)
routine (select, to be exact) in server_comm_get_request.

As long as we don't send it another request, Thread 1 isn't going to do much. Let's step
through some of the processing of the request in Thread 2. Here we'll step to the
beginning of the open_account procedure:

(ladebug) thread 2

Thread State Substate Policy Priority Name

------ ---------- --------------- ---------- -------- -------------

 2 running throughput 11 <anonymous>

(ladebug) s

stopped at [process_request:216 0x12000251c]

 216 sscanf(workorderp->req_buf, "%d", &trans_id);

(ladebug) s

stopped at [process_request:220 0x12000253c]

 220 switch(trans_id) {

(ladebug) s

stopped at [process_request:223 0x1200025dc]

 223 open_account(resp_buf);

(ladebug) s

stopped at [open_account:327 0x120002a20]

 327 void open_account(char *resp_buf)

(ladebug) c

.

.

.

Process has exited with status 0

(ladebug) quit

%

Digital UNIX has integrated many Pthreads features into its ladebug debugger. The
ladebug debugger allows you to access even more detailed information by using the
pthread command. The pthread command allows you to issue a subclass of thread-

display commands that can show you the detailed states of mutexes, condition variables,
and threads, plus various other types of information that can help you debug a threaded
application. For example, you'd use the pthread command to see threads' cancellation
states and types, which threads have which signals blocked, or what the last exception a
thread handled was.

The pthread help command shows us a full listing of available commands.

Example: Debugging the ATM Server

Let's pretend we made some mistakes when writing our ATM server, and we've
encountered deadlocks during some of our test runs. In this section, we'll illustrate how
we'd investigate the problem using a thread-smart debugger. We'll use the Digital UNIX
ladebug debugger just because it has good thread support. Reading this section will help
you learn how to troubleshoot a deadlock or a race condition, even if you don't have this
debugger.

Debugging a deadlock caused by a missing unlock

A deadlock would occur if a worker thread's service routine failed to unlock the mutex
after it modified an account, as shown in Example 6-2.

Example 6-2: A Broken Deposit Routine (atm_svr_broken.c)

void deposit(char *req_buf, char *resp_buf)

{

 int rtn;

 int temp, id, password, amount;

 account_t *accountp;

 /* Parse input string */

 sscanf(req_buf, "%d %d %d %d ", &temp, &id, &password, &amount);

 /* Check inputs */

 if ((id < 0) || (id >= MAX_NUM_ACCOUNTS)) {

 sprintf(resp_buf, "%d %s", TRANS_FAILURE, ERR_MSG_BAD_ACCOUNT);

 return;

 }

 pthread_mutex_lock(&global_data_mutex);

 /* Retrieve account from database */

 if ((rtn = retrieve_account(id, &accountp)) < 0) {

 sprintf(resp_buf, "%d %s", TRANS_FAILURE, atm_err_tbl[-rtn]);

 }

 .

 .

 .

 /* Finish processing deposit */

 /* pthread_mutex_unlock(&global_data_mutex); */

}

Consider the following series of transactions on our account database:

 1. Read balance in account 3.

 2. Deposit $100 in account 3.

 3. Read balance in account 4.

 4. Deposit $25 in account 3.

Although the mutex unlock is missing, we can run the first three transactions without a
problem. Because the read service routine's locking behavior is correct, its read of
account 3 does not prevent the subsequent deposit to the same account. Remember too
that each account has its own lock, so the read to account 4 does not reveal a problem.
It's only when we again access account 3 that we stumble.

The worker thread that handles our fourth transaction suspends in its
pthread_mutex_lock call, waiting forever for the thread that performed the second
transaction to unlock account 3. Because of the flaw in the deposit routine, this will never
happen. Over time, the server will launch its maximum number of worker threads. Each
will eventually be drawn into the black hole of account 3 (and any other account to which
a previous thread has made a deposit).

We could easily identify the problem by inspecting our sources, but let's use the strange
behavior we've noticed in our server as a good reason to summon the debugger.

% ladebug atm_svr_broken

Welcome to the Ladebug Debugger Version 4.0-19

object file name: atm_svr_broken

Reading symbolic information ...done

(ladebug)

First, we'll need to choose a useful breakpoint. This is often the most difficult part of
troubleshooting. When in doubt, you should place breakpoints at the beginning and end
of the thread start routine, if your program contains one. In the ATM server, this would be
the process_request routine:

(ladebug) stop at process_request

[#1: stop in void* process_request(void*)]

(ladebug) stop at "atm_svr_broken.c":257

[#2: stop at "atm_svr_broken.c":257]

(ladebug) run

We'll get our debugging session moving by issuing some client requests. Our first
request, a deposit, would cause the debugger to stop the program at the breakpoint we
placed at the beginning of process_request: Here, we'll take a look at the locked mutexes
using the show mutex command:

[1] stopped at [process_request:213 0x120002518]

 213 workorder_t *workorderp = (workorder_t *)input_orderp;

(ladebug) where

>0 0x120002518 in process_request(input_orderp=0x140011100)
atm_svr_broken.c:213

#1 0x3ff80823e94 in thdBase(0x0, 0x0, 0x0, 0x1, 0x45586732, 0x3)
DebugInformationStrippedFromFile101:???

(ladebug) show mutex with state == locked

(ladebug)

The show mutex command shows that no mutex locks are being held by any thread at
this point. Let's continue the program so that we reach the breakpoint at the end of
process_request:

(ladebug) c

[2] stopped at [process_request:257 0x120002678]

 257 return(NULL);

(ladebug) show mutex with state == locked

Mutex 49 (normal) "mutex at 0x140001760" is locked

(ladebug)

Now we've hit the end of our process_request routine. This time, show mutex is telling us
there's a mutex still locked. At this point, the error is evident. There are no other
transactions in progress, so we know our thread has failed to unlock the mutex.

If we disable the breakpoints and continue (or even if we step through the program), we
find that subsequent commands to the same account hang. While one is hung, we can
get the debugger's attention with CTRL-C, and see what's happening (see Example 6-3).

Example 6-3: Watching Threads Hang in the ladebug Debugger

(ladebug) c

Thread received signal INT

stopped at [msg_receive_trap: ??? 0x3ff8100ea44]

(ladebug) show thread

Thread State Substate Policy Priority Name

------ ---------- --------------- ---------- ------- -------------

 1 blocked kernel throughput 11 default thread
> -1 blocked kernel fifo 32 manager thread

 -2 running idle 0 null thread for VP 0x0

 4 blocked mutex wait throughput 11 <anonymous>

(ladebug) where thread 1

Stack trace for thread 1

#0 0x3ff82050f28 in /usr/shlib/libc.so

#1 0x120003a08 in server_comm_get_request(conn=0x140011000,

 req_buf=0x140011004="") atm_com_svr.c:187
#2 0x120002308 in main(argc=1, argv=0x140008030) atm_svr_broken.c:138

(ladebug) where thread 4

Stack trace for thread 4

#0 0x3ff8082bbf4 in /usr/shlib/libpthread.so

#1 0x3ff80829700 in hstTransferContext(0x1, 0x140005a78, 0x3ffc0439dc0, 0x4,

0x3ffc0438a00, 0x140011180) DebugInformationStrippedFromFile109:???

#2 0x3ff80813edc in dspDispatch(0x140009a10, 0x1400081a8, 0x140008030, 0x0,

0x140001760,

 0x100000000) DebugInformationStrippedFromFile89:???
#3 0x3ff80817758 in pthread_mutex_block(0x1, 0x3ffc0433400, 0x3ffc0439dc0, 0x0,

0x140001760, 0x0) DebugInformationStrippedFromFile95:???

#4 0x3ff8082b9f0 in __pthread_mutex_lock(0x3ffc0433400, 0x3ffc0439dc0, 0x0,

0x140001760, 0x0, 0x120002bd4) DebugInformationStrippedFromFile111:???

#5 0x120002bd0 in deposit(req_buf=0x140011184="2 25 25 200",

resp_buf=0x140035a18="") atm_svr_broken.c:418

#6 0x1200025cc in process_request(input_orderp=0x140011180) atm_svr_broken.c:230

#7 0x3ff80823e94 in thdBase(0x0, 0x0, 0x0, 0x1, 0x45586732, 0x3)

DebugInformationStrippedFromFile101:???

(ladebug) quit

%

We see that there are two active application threads, one of which is the main thread.
The where command tells us that the main thread (Thread 1) is in its normal hangout,
waiting on select in server_comm_get_request. The where on Thread 4 shows us that it
is our process_request thread (stack entry #6) and that it's waiting in the depths of
pthread_mutex_lock (stack entry #4). It will stay there forever, because the thread that
should have unlocked the mutex terminated sometime ago!

Debugging a race condition caused by a missing lock

In the debugging session in Example 6-3, we looked at the results of a forgotten
pthread_mutex_unlock call. In Example 6-2, a unlock was forgotten and caused a
deadlock. Our efforts to debug the missing unlock were fairly straightforward. We placed
breakpoints at the beginning and end of the thread-starting routine and examined the
state of the mutexes at each. What if we had forgotten a pthread_mutex_lock call in one
of our threads? What would be the symptoms of this problem, and how would we
proceed to debug it?

Our ATM server starts getting into trouble as its clients issue more and more requests for
the same account. The more worker threads that are accessing this account at the same
time, the more likely our server is to encounter a race condition on the account's data.
More likely than not, we would discover such race conditions by running the server under
a suitable test suite that simulates a heavy client load. It would be unfortunate if we had
to wait for a race condition to surface from the disastrous effects our server might have
on our customers' real-world data. Our tests would know what results we expect from all
our threads combined and be able to compare the final state of account data against their
expectations.

As we proceed to debug a race condition, our first step will be to identify the data that is
being corrupted. Once we've found the victim, we'll ask questions that are very much like
those you'd ask during a good game of Clue: "Which threads knew the victim?" "When
was their last contact with the victim?" and "Do they have an alibi?" Those threads that
approached the account holding a mutex lock (and released the lock when leaving) have
an alibi that's air tight.

Assume that our test suite detected an account corruption problem in the ATM server. In
the server, threads access accounts by calling the retrieve_account routine and release
them by calling store_account. Before it calls retrieve_account, a thread should be
holding the account's mutex; it should release it after it calls store_account.

In the case of the ATM server, it's easier to find the missing pthread_mutex_lock call by
closely inspecting our code than by using the debugger. The retrieve_account routine is
called from only three places: deposit, withdraw, and balance. These three routines
themselves are called from only one place: process_request. Checking these four
routines for correctly paired lock and unlock calls would quickly reveal the source of the
error.

When confronted with a race condition in a more complex application, you may find it
easier to start with the debugger and then move on to code inspection. You might use the
debugger to set a watchpoint on a piece of shared data or to set breakpoints at those
program statements that change the data. While the program is stopped at a breakpoint,

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_48.html#1265119
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_48.html#1281667

you can identify the active thread and determine whether or not it holds the lock required
for the account it's accessing.

Performance

If well-designed and well-written, a multithreaded program can outperform a similar
nonthreaded application. However, if you make bad design decisions (trying to force
concurrency on a large set of strictly ordered tasks is a very basic bad design decision) or
poorly execute a good design, you may wind up with a program that fares worse than
what you started with. At the very end of Chapter 1, Why Threads? , we discussed which
types of applications are good candidates for threading. Here, we'll look at those
decisions you must make once you've selected the application and begun your design
work.

The Costs of Sharing Too Much—Locking

There's an unspoken tradition in our neighborhood that's beyond belief, but we'll tell you
about it anyway. Without exception, the parents raise their children so that they're mindful
of the virtues of sharing, which will surely be a benefit to them as they grow older and
socialize. On any given Saturday night, herds of kids wheel about the streets on bicycles,
skateboards, roller blades, scooters, and the like. When a boy tires of his bike, he
exchanges it for a girl's skateboard; when a girl tires of her roller blades, she trades them
for a boy's scooter; and so it goes. What the tradition seems to be is that any kid will
share his or her wheels with any other kid, as long as the borrower's Dad hauls the stupid
thing from the middle of the street back to its owner at the end of the evening. Anyone
who has seen the neighborhood Dads out on the streets at 10 p.m. on a weekend night
will learn this piece of wisdom: sharing is nice, but it's often inefficient—and inelegant.

Concurrency may give a multithreaded program its greatest performance advantage over
other styles of programming. However, the more its threads share, the more its
performance is pulled back to that of the rank and file. Shared data (and the associated
locks) is both the greatest asset and the biggest curse in multithreaded programming.
That threads in the same process have equal access to a common set of resources,
including the process's address space, allows them to communicate with each other
much faster than independent processes can. When they need to share a particular
resource, they don't have to copy it from one process's memory to another, nor do they
need to use System V shared memory functions. Normal memory accesses work fine.
Unfortunately, as we've seen, sharing isn't entirely free. It's as if multithreading allows you
to go a bit faster than traditional speed limits, but data sharing is the speed trap in the
bushes. We must apply a lock to brake a bit while we pass through, but once we're

through we can cruise once again.* Although we took a performance hit, we'll still reach
our destination sooner than we would've otherwise.

* None of the authors (nor anyone else affiliated with the publication of this book)

actually drives this way. The appearance of this metaphor in this book is not meant to
favor any particular driving style over another.

Locks reveal the dependencies among the threads in our program: at each lock point,
either threads share data, or one thread must wait for another to finish some task. The
impact of each lock on our program's performance is twofold:

• There's the time it takes for a thread to obtain an unowned lock. This has little impact

on our program's concurrency, so it's usually acceptable. The few calls required to lock
and unlock a lock are minimal overhead.

• There's the time a thread spends while waiting for a lock that's already held by another

thread. Because it keeps the thread from accomplishing its task, this delay may cause
a significant loss of concurrency. The loss can become magnified if other threads
depend on the results of the blocked thread.

Applications are suitable for threading only if access to shared data is a small part of
them. If you find that your threads regularly block on locks and spend a lot of time waiting
for shared data to become free, something's wrong with your program's design.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=36527.html#36527
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=36527.html#36527

As a rule, you should ensure that, when your threads do hold locks, they hold them for
the shortest possible time. This allows other threads to obtain the locks more quickly,
avoiding the long waits that are the major hits to a program's concurrency. Examine each
block of code framed by pthread_mutex_lock and pthread_mutex_unlock calls for
instructions that don't require the special synchronization and could well be performed
elsewhere.

In the following series of examples, we'll show you some common errors in using locks
and suggest ways that you can avoid similar problems in your code. In Example 6-4, let's
look at some code with poor locking placement.

Example 6-4: Code with Poor Locking Placement (badlocks.c)

pthread_mutex_t count_lock = PTHREAD_MUTEX_INITIALIZER;

int count = 0;

void r1(char *fname, int x, char **bufp)

{

 double temp;

 int fd;

 .

 .

 .

 pthread_mutex_lock(&count_lock);

 temp = sqrt(x);

 fd = open(fname, O_CREAT | O_RDWR, 0666);

 count++;

 *bufp = (char *)malloc(256);

 pthread_mutex_unlock(&count_lock);

 .

 .

 .
}

If count is the only piece of shared data used by this code, we can make the code
considerably more efficient by rearranging the pthread_mutex_lock and
pthread_mutex_unlock calls as shown in Example 6-5.

Example 6-5: Code with Poor Locking Placement, Improved (goodlocks.c)

pthread_mutex_t count_lock = PTHREAD_MUTEX_INITIALIZER;

int count = 0;

void r1(char *fname, int x, char **bufp))

{

 double temp;

 int fd;

 .

 .

 .

 temp = sqrt(x);

 fd = open(fname, O_CREAT | O_RDWR, 0666);

 pthread_mutex_lock(&count_lock);

 count++;

 pthread_mutex_unlock(&count_lock);

 *bufp = (char *)malloc(256);

 .

 .

 .
}

Finding poor locking policies is not often this simple. In Example 6-6, we'll look at the
more complex situation in which the code references the shared data (count) from within
a loop.

Example 6-6: Code with Poor Locking Placement in a Loop (badlocks.c)

pthread_mutex_t count_lock = PTHREAD_MUTEX_INITIALIZER;

int count = 0;

void r2(char *fname, int x, char **bufp)

{

 double temp;

 int i, reads;

 int start = 0, end = LOCAL_COUNT_MAX;

 int fd;

 pthread_mutex_lock(&count_lock);

 for (i = start; i < end; i++) {

 fd = open(fname, O_CREAT | O_RDWR, 0666);

 x = x + count;

 temp = sqrt(x);

 if (temp == THRESHOLD)

 count++;

 .

 .

 .

 /* Lengthy I/O operations */

 .

 .

 .

 }

 pthread_mutex_unlock(&count_lock);
}

When examining this code, we must first decide whether or not we should move the lock
calls from outside the loop to the inside. If the loop spends most of its processing time
performing operations on shared data, or if its total processing time is quite short, it's
probably most efficient to keep the lock calls outside. This would leave the whole loop in
the critical section. On the other hand, we'd move the lock calls inside if the loop has a
lengthy processing time and doesn't reference shared data. We need to be mindful that
the lock calls themselves take time. We don't really want to pay the cost of the lock calls
each time we go through the loop unless, in doing so, we significantly reduce the time we
spend blocking other threads. We'll assume that the code in Example 6-7 pays off in that
way.

Example 6-7: Code with Poor Lock Placement in a Loop Improved (goodlocks.c)

pthread_mutex_t count_lock = PTHREAD_MUTEX_INITIALIZER;

int count = 0;

void r2(char *fname, int x, char **bufp)

{

 double temp;

 int i, reads;

 int start = 0, end = LOCAL_COUNT_MAX;

 int fd;

 for (i = start; i < end; i++) {

 fd = open(fname, O_CREAT | O_RDWR, 0666);

 pthread_mutex_lock(&count_lock);

 x = x + count;

 temp = sqrt(x);

 if (temp == THRESHOLD)

 count++;

 pthread_mutex_unlock(&count_lock);

 .

 .

 .

 /* Lengthy I/O operations */

 .

 .

 .

 }
}

Once you've arranged it so that threads hold locks for the shortest time possible, you
should then focus on reducing the amount of data protected by any one lock (that is,
reducing the lock's granularity). The smaller the unit of data a lock protects, the less likely
it is that two threads will need to access it at the same time. For instance, if your program
currently locks an entire database, consider locking individual records instead; if it
currently locks records, try locking fields.

For example, suppose we've set up locks like this:

pthread_mutex_t data_lock;

struct record {

 int code;

 int field1;

 .

 .

 .
} data[DATA_SIZE];

Here, a single mutex, data_lock, protects the whole array. In the following code, we'll
rearrange our record's structure so that each record contains its own lock. Now our
threads can lock each record individually.

struct record {

 pthread_mutex_t data_lock;

 int code;

 int field1;

 .

 .

 .
} data[DATA_SIZE];

Be careful when following this course. As you tune your locks to finer and finer
granularity, you must know when to stop. Eventually, you pass the point at which it's
useful to break down the data a lock protects. In fact, at some point, your efforts may
result in your threads performing more locking operations—and unnecessary ones at
that. Performance tests and profiling can help you determine the granularity at which you
should impose locking on your program's data. Good tests can clearly identify how often
data is being accessed and what percentage of its execution time a program spends
waiting for locks on the data.

Now that you've reduced the size of the code a thread executes while holding a lock, and
reduced the size of the data each lock protects, you should consider whether some locks
might in fact synchronize more efficiently if they were condition variables. Here's the rule
of thumb: use locks to synchronize access to shared data, use condition variables to
synchronize threads against events—those places in your program where one thread
needs to wait for another to do something before proceeding.

It's easy to get mixed up. The beginning threads programmer will often rough out a bit of
code like that in Example 6-8.

Example 6-8: Using a Mutex to Poll State (polling.c)

pthread_mutex_t db_lock = PTHREAD_MUTEX_INITIALIZER;

int db_initialized;

.

.

.

pthread_mutex_lock(&db_lock);

while (!db_initialized)

 pthread_mutex_unlock(&db_lock);

 sleep(1);

 pthread_mutex_lock(&db_lock);
}

pthread_mutex_unlock(&db_lock);

.

.

.

However, when we think a little harder about what we want this code to do, we realize
that our threads are polling on the value of the db_initialized flag to determine when the
database-initialization event has occurred. When this event occurs, our threads can
proceed. When looked at in this light, it becomes clear that we should be using a
condition variable instead of the mutex, as in Example 6-9.

Example 6-9: Replacing a Mutex with a Condition Variable (polling.c)

pthread_mutex_t db_lock = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t db_init_cv = PTHREAD_COND_INITIALIZER;

int db_initialized;

pthread_mutex_lock(&db_lock);

while (!db_initialized) {

 .

 .

 .

 pthread_cond_wait(&db_init_cv, &db_lock);
}

.

.

.

pthread_mutex_unlock(&db_lock);

Using the condition variable, we can spare our threads the cycles it would take for them
to continually lock a flag and check for the event. Instead, we'll wake them only when the
database has actually been initialized.

After trying these methods to reduce lock contention, you might want to take a last look at
the tasks you've delegated to the program's threads. Some tasks you've assigned to
different threads may be linked so tightly that they can't be separated without introducing
some strained and perhaps impossible locking requirements. If this is so, you might be
able to increase the program's overall performance by joining the tasks and having them
performed by a single thread.

Thread Overhead

Although the cost of creating and synchronizing multiple threads is less than that of
spawning and coordinating multiple processes, using threads does involve overhead
nonetheless.

When a thread is created, the Pthreads library (and perhaps the system) must perform
database searches and allocate new data structures, synchronizing the creation of this
thread with other pthread_create calls that may be in progress at the same time. It must
place the newly created thread into the system's scheduling queues. In a kernel thread-
based implementation, this requires a system call. The result is that the operating system
allocates resources for the thread that are similar to those it allocates for a process.

You can minimize this overhead by avoiding the simplistic one-thread-per-task model. For
instance, our initial version of the ATM server example was rather wasteful in that it
created a thread for each client request and then let the thread exit when it completed the
request. The version of the server we developed at the end of Chapter 3, Synchronizing
Pthreads, was more efficient. When it started, it created a pool of worker threads and let
them block on a condition variable. When a new request arrived for processing, the boss
would signal on the condition variable, waking the workers. As they complete requests,
workers would return to sleep on the condition variable.

Reusing existing threads is an excellent way to avoid the overhead of thread creation.
You may need to experiment a little to determine how many threads can run efficiently at
the same time. At length, you should create the maximum number of threads at
initialization time so that a thread's creation expense is not billed against the request the
thread is meant to process.

Thread context switches

Once they've been created, threads must share often limited CPU resources. Even on a
multiprocessing platform, the number of threads in your program may easily exceed the
number of available CPUs. Regardless of whether you're using a user space or kernel
thread-based implementation, scheduling a new thread requires a context switch
between threads. The running thread is interrupted and its registers and other private
resources are saved. A new thread is selected from the scheduler's priority queues, and
its registers and private context are brought in from swap space.

Some context switches are voluntary. If a thread is waiting for an I/O call to complete or a
lock to be freed, it's just as if the thread has asked the operating system to remove it from
execution and give another thread a chance to run. Others are involuntary. Maybe the
thread has exceeded its quantum, and to be fair, it must yield the CPU. Maybe a higher
priority thread has become runnable and is being given the CPU. In a perfect world (the
same one in which threads never wait for other threads to unlock a mutex), no thread
would be suspended involuntarily. Be that as it may, we'll look toward reducing the
number of involuntary context switches as a good way to avoid the overhead of
unnecessary context switches and improve our program's performance.

The most common cause of involuntary context switches among threads is the normal
expiration of time quanta. If your platform's scheduler uses a round-robin scheduling
policy, one good place to start reducing the number of context switches is by increasing
the quantum value. Be careful, though. Because time quanta are meant to more fairly
distribute CPU cycles among runnable threads, you may need to cope with some side
effects on certain types of operations. For instance, if a user clicks on a box to request a
quick operation, he or she may need to wait longer than before because a thread
performing a slow operation has yet to use up its quantum.

Some Pthreads implementations allow you to control their scheduling policy, allowing you
to ensure a quicker response time for high priority threads that are performing important
tasks. There's a trade-off here, too, of course. The overall application might run slightly
slower than under the default policy, because the favorable treatment enforced for high
priority threads is causing more involuntary context switches.

Finally, too many context switches may simply mean that your program has too many

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=366376.html#366376
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=366376.html#366376
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=366376.html#366376

threads. Try running the program with fewer threads, and see if the program speeds up.
Eventually, you should determine when the system reaches its saturation point and limit
the number of concurrent threads accordingly.

Synchronization Overhead

Each synchronization object (be it a mutex, condition variable, once block, or key)
requires that the Pthreads library create and maintain some data structures and execute
some code (possibly even a system call). Consequently, creating large numbers of such
objects has its own cost. The cost can be magnified by the way in which you deploy the
synchronization objects. For instance, if you create a lock for each record in a database,
you increase the disk space required to store the database as well as the memory
required to hold it while a thread is running. Nevertheless, the overhead could be
worthwhile if the database must support different client requests simultaneously, and
establishing fine-grained lock points at the record level allows it to do so efficiently.

How Do Your Threads Spend Their Time?

Profiling a program is a good first step toward identifying its performance bottlenecks. To
track the time a program's threads spend using the CPU or waiting for locks and I/O
completion, we can use any profiling tool that supports threads. (On Digital UNIX, the
standard profiling tools, prof or pixie, can provide per-thread profiling data.)

By examining the profiling data, you'll get an idea of your threads' behavior. You should
look for answers to the following questions:

 • Do the threads spend most of their time blocked, waiting for other threads to release
locks?

This is a sign that the tasks the threads perform aren't really independent of each other
or that locking is applied too coarsely to the shared data.

 • Are they runnable for most of their time but not actually running because other threads
are monopolizing the available CPUs?

In this case, the number of CPU-intensive threads is outstripping the number of CPUs
in the system. (This can also happen to multiprocess applications.) Use the W and
xload utilities to obtain the system's load factor: that is, the average number of
processes and threads waiting to access the CPU. Use vmstat and iostat to determine
the percentage of time the CPU is running in user space, is running kernel-mode code,
or is idle. If the load factor is constantly high, or the amount of idle time is negligible,
then you have too many processes or threads for your CPU.

 • Are they spending most of their time waiting on the completion of I/O requests?

In this case, most of your I/O may be directed at a single disk and that disk is
becoming quickly saturated. Thereafter, requests sent to it will wind up queued in the
driver or at the disk. To avoid this bottleneck, you must spread the data across other
available disks. Use the iostat tool to list the I/O transaction rates to the devices on
your system. If you cannot utilize additional disks, you may need to reorganize your
application so that it requires fewer disk writes.

Performance in the ATM Server Example

Let's return to our ATM server and look at its performance. We'll create a specialized
client program that can send the server a stream of requests and measure its response
time. The test client measures the total time the server takes to complete a large set
number of account transactions.

As shown in Figure 6-4, the ATM test parent program can start multiple test client
processes to issue requests to the server across multiple connections. It can also specify
how often a test client process accesses a specially designated "hot-spot" account.

Finally, we can adjust the ATM server itself so that the work it performs to satisfy a
client's request is more or less I/O intensive or CPU intensive.

Figure 6-4: The ATM performance test setup

To find out exactly how useful threads are, we created two additional versions of the ATM
server—a serial server (one that doesn't use threads at all) and a multiprocess server.

We didn't optimize any of these programs in any sense and have often added code
specifically to increase the amount of I/O or CPU work performed by the server. Our tests
are meant to highlight common high-level aspects of multithreaded program performance
and are not intended to be specific benchmarking results for the platform on which we ran
them. Results will vary across different platforms.

We recorded the results we'll present in this section on a single-CPU Alpha-processor-
based DEC 3000 M300 workstation with 32 megabytes of memory, running Version 3.2C
of the Digital UNIX operating system. The programs we used were Pthreads Draft 4
versions of our ATM server programs.

Performance depends on input workload: increasing clients and
contention

The ATM is a classic server—it receives multiple concurrent requests. It performs I/O
both to obtain the requests and to process them. As we'll show in the following test runs,
the multithreaded version of the server generally outperforms the other versions. But
even so, the tests show that the results depend heavily on the type of input the server
receives and the characteristics of the work the server performs to service the requests.
The input can vary, based on the number of clients that are simultaneously active and
how often clients request access to the same account at the same time. The server's
response to a client's request can involve different amounts of I/O and more or less CPU-
intensive tasks.

First, let's see whether our multithreaded server or our serial server fares better as the
number of clients increases. During this test run, we'll increase the number of active clients
from 1 to 15, while keeping the net amount of work the server <?troff .hw
performs>performs constant. All the clients access their own accounts and never access
the hot-spot account. We'll run the test on our uniprocessor under the following conditions:

Figure 6-5 shows the results (in terms of the ratio of the execution time of the multithreaded
server over that of the serial server).

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/06FIG04_0.gif

Figure 6-5: Multithreaded server with increasing clients

When we increase the number of clients, the results show:

 • When there's just one client, the serial server outperforms the multithreaded server.

 • When there's more than one client, each requesting transactions on different accounts,
the multithreaded server bests the serial server.

When there's only one client, the server has only one request to process at any given
time. After it issues a request, each client waits for a response before making another. In
this situation, the actions taken by the multithreaded server to create a new thread and
synchronize access to data are pure overhead. Because this overhead is not offset by
any gain from concurrency, the multithreaded server's performance when only one client
is active is, at best, close to that of the serial server. We could eliminate some overhead if
we used a thread pool, effectively moving thread creation from the server's transaction-
processing path to its initialization routine.

When there are multiple clients, the worker threads that are processing client requests
can work concurrently. While one thread waits for the completion of an I/O operation to a
database account, other threads can continue their tasks and issue I/O requests to other
accounts. In this test run, we made sure that no two threads would access the same
account. As a result, our threads suffer the overhead of locking, but they never block on a
lock that's held by another thread.

Now let's see what happens to our servers when we ask the clients to modify the same
account. During this test run, we'll gradually increase the percentage of the total requests
that each client makes to the hot-spot account. Here, too, we'll keep the net amount of work
the server performs constant. We'll run the test on our uniprocessor under the following
conditions:

Figure 6-6 shows the results.

Figure 6-6: Multithreaded server with increasing contention

When we increase the amount of contention, the results show that, when multiple clients
are accessing a single hot-spot account, the serial server outperforms the multithreaded
server.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/06FIG05_0.gif
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/06FIG06_0.gif

As the number of requests from different clients to the hot-spot account increases, the
performance of our multithreaded server declines. When all requests from all clients are
directed at the same account, the server loses all concurrency; each worker thread must
wait to obtain the lock, on the account and it's almost always held by another thread.
When there's this amount of contention among threads, it's clear that we're asking the
threads to perform tasks that are not independent. They're related by the shared data of
the single account.

The results of this test run demonstrate that multithreaded programs perform best when
contention is the exception and not the rule. Consequently, when you're trying to
determine whether or not an application would benefit from threads, look for tasks that
can be performed independently, without interference from other tasks. Moreover, after
you've designed the threads, minimize the amount of data they must share.

Performance depends on a good locking strategy

Now we'll look at how different locking strategies affect the performance of our
multithreaded ATM server. We'll test three different locking designs:

 • No locks at all (We'll disregard the inevitable race-conditions.)

 • One lock for the entire database

 • One lock for each account in the database

As in our last test run, we'll gradually increase the percentage of the total requests that
each client makes to the hot-spot account. However, in this test run, we'll track the extent
to which a locking strategy impacts the server's performance. We'll compare the two
versions of the server that use locks (one using a single lock on the whole database and
one using a lock for each account) against an ideal version that uses no locks. We'll run the
test on our uniprocessor under the following conditions:

Figure 6-7 shows the results.

Figure 6-7: Multithreaded server locking designs

The results show that, when a lock is assigned to each account in the database,
performance is better than when a single lock protects the entire database.

When a single lock is used for the database, performance is uniformly bad, regardless of
the amount of contention. Because all worker threads must obtain the one and only lock
whenever they access any account in the database, they cannot concurrently access
accounts. It matters little whether they're accessing different accounts or the same hot-
spot account.

When we use one lock per account, we see better performance because multiple threads
can now independently access different accounts. When we reach the extreme of
targeting all client requests to the hot-spot account, the single-lock and multilock versions
perform about the same. Here, the hot-spot account lock is acting like the single global
lock because it's the only one being used.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/06FIG07_0.gif

The results of this test demonstrate that careful distribution of a larger number of locks
can have less performance impact than the use of a single lock for which all threads
contend. In another sense, the fewer locks threads can fight over the better.

Performance depends on the type of work threads do

Now we'll look at the types of work threads perform.

When we add threads to an application it's to concurrently perform a set of computational
tasks. Each task has a certain average time to complete and a certain mix of I/O and
CPU-intensive activity. In our ATM server, the task that is being performed by worker
threads is a deposit to an account in a bank's database.

We've adapted our server so that we can supply startup arguments that increase either
its I/O activity or CPU-intensive activity. We increase I/O activity by forcing threads to
write changed accounts to disk multiple times; we increase CPU-intensive activity by
causing them to spin in a simple counting loop. Using these arguments, we'll adjust the
combination of CPU and I/O work a thread must perform to complete a deposit
transaction.

In our test run, we'll move from a completely I/O-intensive workload to a completely CPU-
intensive workload and record the results. We'll run the test on our uniprocessor under the
following conditions:

Figure 6-8 shows the results.

Figure 6-8: Multithreaded server with varying I/O and CPU workloads

The results demonstrate:

 • In a uniprocessor configuration, the serial server outperforms the multithreaded server
on a pure CPU-intensive workload.

 • On a mixed workload, the multithreaded server outperforms the serial server.

As the server's work becomes completely CPU intensive, threads no longer provide a
performance benefit. The single CPU becomes a bottleneck for the many threads waiting
to perform CPU-bound tasks. Think of the CPU as a resource with a single lock for which
all threads contend.

Key performance issues between using threads and using processes

We'll now use our ATM server test program to highlight the ways in which performance
differs between multithreaded and multiprocess versions of the same servers. Threads
and processes are alike in many respects, although using processes results in more
overhead than using threads. Processes are more expensive to create, and once
created, they use more resources than threads to intercommunicate.

If we replaced the multithreaded server in the previous tests with a multiprocess one, the
basic curve of the test results would remain essentially the same. However, the point at
which the performance of the multiprocess server would exceed that of the serial server

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/06FIG08_0.gif

would be further out than the point we charted for the multithreaded server. In fact, to
justify using a multiprocess server, we'd need more clients, more contention at shared
data, or less CPU-intensive work than we'd need to justify writing a multithreaded server.

First, let's see how our multithreaded server and multiprocess server compare as the
number of clients increases. As in the earlier test run, we'll increase the number of active
clients from 1 to 15, while keeping constant the net amount of work each server performs.
All the clients access their own accounts and never access the hot-spot account. We'll run
the test on our uniprocessor under the following conditions:

Figure 6-9 shows the results.

Figure 6-9: Multithreaded vs. multiprocess server performance with increasing
clients

The results demonstrate that the multithreaded server outperforms the multiprocess
server, regardless of the number of clients.

The difference between the multithreaded and multiprocess servers is in the relative
costs of creating threads vs. creating processes. Although both threads and processes
must obtain locks to access shared data, they don't have to wait on locks because this
test run eliminates contention for the data.

Now let's introduce the contention, and see how our servers fare. As in the earlier test run,
we'll ask the clients to modify the same account and gradually increase the percentage of
the total requests that each client makes to this account. Here too we'll keep constant the
net amount of work the server performs. We'll run the test on our uniprocessor under the
following conditions:

Figure 6-10 shows the results.

Figure 6-10: Multithreaded vs. multiprocess server performance with increasing
contention

The results show that the synchronization mechanisms used by the multithreaded server
are more efficient than those used by the multiprocess server.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/06FIG09_0.gif
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/06FIG10_0.gif

Where the multithreaded server uses mutex locks to control access to shared data, the
multiprocess server uses System V semaphores. When there is little contention among
threads for account data, the multithreaded server operates more efficiently because the
Pthreads mutex-locking calls operate within user space. On the other hand, the
multiprocess server's semaphore-locking calls are system calls and involve the operating
system's kernel. As client contention for the hot-spot account increases, the multiprocess
server starts catching up to the multithreaded server. It no longer matters that the
Pthreads synchronization primitives are lighter in weight than the multiprocess ones.
Because worker threads and child processes alike are blocked waiting for account
access, neither server is able to provide any concurrency.

One last difference between multithreaded and multiprocess servers that would be worth
examining is the ways in which they share data. Whereas threads exchange data by simply
placing it in global variables in their process's address space, processes must use pipes or
special shared memory segments controlled by the operating system. Because we did not
design the threads in our ATM server to share data, we have no good way of testing the
performance of the servers' data communication mechanisms.

Conclusion

Back at the beginning of Chapter 1, we claimed that multiple threads were more efficient
than multiple processes at performing the same amount of work. Now that we've reached
the end of the book, we've shown this to be true—by our examples throughout and,
objectively, by the performance measurements we've just discussed.

Efficient is an odd word to use. It hints of speed, and let's face it, speed is what we want
from our programs. (Our programs give correct results, let's leave it at that!) However,
speedy performance is only part of the story. We want to make it clear that threads not
only streamline the many tasks in our programs, but they also allow us to make optimal
use of our platform's processing cycles.

Why should we spend CPU time running the operating system when we don't have to?
When we choose threads over processes to multitask our programs, the CPUs spend less
time in system scheduling code, managing the grand tectonic plate shifts that process
context switches often seem to be (the many swap I/O requests, the allocation of memory
for child processes, the copies of parent data to a child's address space). We avoid the
system calls that establish and manage shared memory regions. Although we cannot
forego the expense of synchronizing access to our shared data, this is a liability for both
thread and process multitasking models. (Judicious use of shared data and well-placed
synchronization calls are key to any well-designed multitasking program.) All in all,
multithreading benefits not just our program, but anyone else who is sharing the CPUs with
us.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=36527.html#36527

Appendix A: Pthreads and DCE
The Distributed Computing Environment (DCE), developed by the Open Software
Foundation (OSF), consists of a toolkit and library that simplify the creation of secure,
portable, and distributed applications for heterogeneous environments. Although DCE
contains a great number of programming tools and server programs (and even supplies
its own file system), we'll focus on its programming library and run-time environment in
this appendix.

DCE-based applications consist of client programs and server programs that use remote
procedure calls (RPCs) to communicate with each other. Their client-server structure
makes DCE applications natural candidates for threading. In fact, thread support is tightly
integrated into the DCE libraries and services. We'll use this appendix to give you an idea
of the role threads can play in a DCE-based application.

DCE currently provides and uses the Draft 4 Pthreads interface. Check out Appendix B
for a summary of the differences between the final Pthreads standard (which this book
describes) and Draft 4.

The Structure of a DCE Server

A DCE server performs the same type of work as other servers. It waits for client
requests on a communication channel and processes requests as they arrive. In fact, a
DCE server looks just like any of the boss-worker style servers that we've presented
elsewhere in this book, but it can take advantage of DCE library routines that:

 • Automate the task of generating the more mundane server components.

 • Transparently perform any data conversions that are required when servers or clients
running on different platforms intercommunicate.

• Integrate RPC services with other important DCE services, such as the security

service and the name service (which locates resources for your program on remote
systems).

To allow a DCE server to process multiple requests concurrently, its engine uses POSIX
threads.

Let's look back at the ATM server program we've been using as an example. Figure A-1.
illustrates the components of our original version of the server; Figure A-2 shows how the
server would look in a DCE implementation.

Figure A-1: Original ATM server components

We can map each component in the original ATM server to a similar component in the
DCE version of the server, as shown in Table A-1. We'll compare each component of the
original server with its corresponding component in the DCE version in the following
sections of this appendix.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/r_51.html#1411382
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1445442.html#1445442
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/AFIG01_0.gif

Figure A-2: The ATM as a DCE server

What Does the DCE Programmer Have to Do?

One of the most difficult aspects of using threads under DCE-especially for the novice-is
that DCE hides much of what is going on. If you're new to using threads, this may be
somewhat confusing. It may appear that several critical steps are missing. For instance,
in a DCE server you never need to call a pthread_create routine, specify thread
attributes, or detach threads. The rpc_server_listen routine does all of this for you.

This must delight you experienced threads programmers (who appreciate the value of a
free lunch). What do you need to do to complete a multithreaded application that you've
designed under DCE?

Primarily, your job is to ensure that worker thread accesses to shared data are
appropriately synchronized. To do so, you'd add the necessary calls to the functions
pthread_mutex_lock, pthread_mutex_unlock, pthread_cond_wait, and
pthread_cond_signal in the server management routines (and any submodules or
libraries they call).

Although we've discussed only basic server tasks in this appendix, DCE applications do
use threads for other purposes. For instance, you might explicitly call pthread_create to
add threads to a DCE server for such tasks as:

 • Renewing security credentials

 • Handling signals

 • Background processing

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/img/AFIG02_0.gif

Appendix B: Pthreads Draft 4 vs. the Final
Standard

So you've read the book that describes the final Pthreads standard and now discover that
you must support or port a multithreaded program that's based on the interfaces defined
by Draft 4. Help!

The Pthreads interfaces and library implementations adopted by many vendors at Draft 4
can be significantly different from those the same vendors supply now in compliance with
the final standard. We'll help you sort out the differences in this appendix.

To help you track down the changes that particularly affect your program, we've
organized this appendix into sections corresponding to the major activities of a
multithreaded program. In each section, we've classified differences as relating to either
features or syntax. (Of course, if a Draft 4 feature was removed in the final standard, you
may need to make a syntax change in your program to remove an undefined call or
constant.)

Detaching a Thread

Feature: Draft 4 doesn't allow you to create a thread in a detached state; the final
standard allows you to do so by using an attribute object. (See the section on thread
attributes later in this appendix.)

Syntax: In an implementation that conforms to the final standard, you specify the argument
to the pthread_detach function as a pthread_t; in a Draft 4 implementation, you specify the
same argument as a pointer to a pthread_t (* pthread_t).

Mutex Variables

Feature: In the final draft, mutexes have both defined and optional attributes (the priority-
scheduling attributes and the process-shared attribute we discussed in Chapter 3,
Synchronizing Pthreads). Draft 4 defines no mutex attributes. As a result, the mutex
attribute calls listed below and the compile-time constants
PTHREAD_PROCESS_SHARED and PTHREAD_PROCESS_PRIVATE have no
meaning in a Draft 4 implementation.

 • pthread_mutexattr_getshared

 • pthread_mutexattr_setshared

 • pthread_mutexattr_setprotocol

 • pthread_mutexattr_getprotocol

 • pthread_mutexattr_setprioceiling

 • pthread_mutexattr_getprioceiling

Feature: Because Draft 4 doesn't allow you to statically initialize mutexes (with
PTHREAD_MUTEX_INITIALIZER), you may need to use the pthread_once function in a
Draft 4 implementation to avoid library initialization problems.

Syntax: When dynamically initializing a mutex in a Draft 4 implementation, you use the
pthread_mutexattr_default constant to request default attributes. In an implementation that
conforms to the final standard, you specify NULL.

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=366376.html#366376
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=366376.html#366376
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1448826.html#1448826
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1448826.html#1448826

Condition Variables

Feature: In the final draft, condition variables have both defined and optional attributes
(the process-shared attribute we discussed in Chapter 4, Managing Pthreads). Draft 4
defines no condition variable attributes. As a result, the condition variable attribute calls
(which are pthread_condattr_getshared and pthread_condattr_setshared) and the
compile-time constants (which are PTHREAD_PROCESS_SHARED and
PTHREAD_PROCESS_PRIVATE) have no meaning in a Draft 4 implementation.

Feature: Because Draft 4 doesn't allow you to statically initialize condition variables
(using the PTHREAD_COND_INITIALIZER constant), you may need to use the
pthread_once function in a Draft 4 implementation to avoid library initialization problems.

Syntax: When dynamically initializing a condition variable in a Draft 4 implementation, you
use the pthread_condattr_default constant to request default attributes. In an
implementation that conforms to the final standard, you specify NULL.

Thread Attributes

Feature: In the final draft, threads have stack-address and detached-state attributes (as
discussed in Chapter 4). Draft 4 doesn't define these thread attributes. As a result, the
thread attribute calls (pthread_attr_setstackaddr, pthread_attr_getstackaddr,
pthread_attr_setdetachstate, and pthread_attr_getdetachstate) have no meaning in a
Draft 4 implementation.

Feature: Draft 4 does not define a way for you to set the scheduling scope of a thread.
(See the section on scheduling later in this appendix.)

Syntax: To destroy a thread attribute object in a Draft 4 implementation, you call
pthread_attr_delete; in an implementation that conforms to the final standard, you call
pthread_attr_destroy.

Syntax: The Pthreads library calls you use to change thread-scheduling attributes have
different names in Draft 4 and the final standard. (See the section on scheduling later in
this appendix.)

The pthread_once Function

Syntax: Whereas Draft 4 defines the constant pthread_once_init (in lowercase letters) to
represent the initialized value of a once block, the final standard defines the constant
PTHREAD_ONCE_INIT (in uppercase letters).

Keys

Feature: Draft 4 has no equivalent to the pthread_key_delete function that's defined in
the final standard.

Syntax: To initialize a key in a Draft 4 implementation, you call pthread_keycreate; in an
implementation that conforms to the final standard, you call pthread_key_create.

Cancellation

Syntax: To set the cancellation state of a thread on an implementation that conforms to
the final standard, you call pthread_setcancelstate with either the
PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE constant. In a Draft 4
implementation, you call pthread_setcancel with either the CANCEL_ON or
CANCEL_OFF constant (to enable or disable cancellation, respectively).

file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1460340.html#1460340
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=1460340.html#1460340
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161
file:///home/lukac/.chmsee/bookshelf/b2e36da61f9c832636da0a8262e8090d/htm/viewer_r.html+bkid=232&destid=676161.html#676161

Syntax: To set the cancellation type of a thread on an implementation that conforms to the
final standard, you call the pthread_setcanceltype function with either the
PTHREAD_CANCEL_ASYNCHRONOUS or PTHREAD_CANCEL_DEFERRED constant.
In a Draft 4 implementation, you call pthread_setasynccancel with either the CANCEL_ON
or CANCEL_OFF constant (to asynchronous cancellation or deferred cancellation,
respectively).

Scheduling

Feature: Draft 4 does not define a way for you to set the scheduling scope of a thread. As
a result, the scheduling scope calls (pthread_attr_setscope and pthread_attr_getscope)
have no meaning in a Draft 4 implementation.

Feature: Draft 4 defines a number of symbolic constants (for example, PRI_FIFO_MAX)
to represent the maximum and minimum scheduling priorities of threads. These
constants have been removed from the final standard. As a result you must call
POSIX.1b functions such as sched_get_priority_max to obtain scheduling priority limits.

Feature: In a Draft 4 implementation, a thread calls the pthread_yield function to
surrender the CPU to another runnable thread. In an implementation that conforms to the
final standard, a thread calls the thread-specific POSIX.1b function sched_yield.

Syntax: In a Draft 4 implementation, you use the pthread_setscheduler and
pthread_setprio functions together to dynamically set a thread's scheduling
characteristics; in an implementation that conforms to the final standard, you use just one
—pthread_setschedparam.

Syntax: In a Draft 4 implementation, you use the pthread_attr_setprio and
pthread_attr_getprio functions to set and get a thread's scheduling-priority attribute; in an
implementation that conforms to the final standard, you use pthread_attr_setschedparam
and pthread_attr_getschedparam.

Syntax: In a Draft 4 implementation, you use the pthread_attr_setsched and
pthread_attr_getsched calls to set and get a thread's scheduling policy; in an
implementation that conforms to the final standard, you use the
pthread_attr_setschedpolicy and pthread_attr_getschedpolicy calls.

Signals

Feature: Whereas the final standard requires vendors to provide the pthread_kill function,
Draft 4 left it optional. If a given Draft 4 implementation supports it, the compile-time
constant _POSIX_THREADS_PER_THREAD_SIGNALS_1 is true.

Syntax: To manipulate per-thread signal masks in a Draft 4 implementation, you call the
POSIX.1 sigprocmask function. (Draft 4 defined a thread-specific version of this call.) In an
implementation that complies with the final standard, you call pthread_sigmask. Note that
the final standard leaves the behavior of sigprocmask in a multithreaded program
undefined.

Threadsafe System Interfaces

Feature: In Draft 4, threadsafe system interfaces are optional; if the interfaces are
supported on a given implementation, the compile-time constant
_POSIX_REENTRANT_FUNCTIONS is TRUE. On an implementation that supports the
final standard, this constant, when defined, must always be TRUE.

Feature: The Draft 4 version uses the term reentrant more often than it does threadsafe.

Feature: Draft 4 and the final standard vary in their lists of those library functions and
system calls that don't need to be made threadsafe and those calls that require new,
alternative reentrant versions.

Feature: Draft 4 does not define the ftrylockfile call.

Syntax: In Draft 4, the names of the faster versions of the threadsafe character-cell I/O
calls have the form unlocked_<xxx>; in the final standard, the names have the form
<xxx>_unlocked.

Error Reporting

Feature: In Draft 4, Pthreads library functions use the errno global to indicate the reason
(that is, the error number) for an unsuccessful function call. The final standard specifies
that Pthreads library functions should not use errno . Instead, most Pthreads library
functions provide the error number as the return value of an unsuccessful call.

System Interfaces and Cancellation-Safety

Feature: Draft 4 requires implementations to make some ANSI C routines, but no
POSIX.1 routines, cancellation-safe; the final standard doesn't require that any ANSI C or
POSIX.1 routines be cancellation-safe.

Feature: Draft 4 doesn't require any system or library call to act as a cancellation point; the
final standard requires many calls to be cancellation points.

Process-Blocking Calls

Feature: Draft 4 lists creat, close, and tcdrain as calls that must block only the calling
thread, not the entire process. The final standard doesn't specify the behavior of these
calls.

Process Management

Feature: Draft 4 doesn't define the pthread_atfork call.

Feature: Draft 4 leaves as undefined the behavior of a multithreaded process when one of
its threads calls exec.

Appendix C: Pthreads Quick Reference
In this appendix, we'll provide a brief listing of the C language bindings of the Pthreads
library routines:

pthread_atfork ()

int pthread_atfork (

void (*prepare)(void),

void (*parent)(void),

void (*child)(void));

Declares procedures to be called before and after a fork call. The prepare fork handler
runs in the parent process before the fork. After the fork, the parent handler runs in the
parent process, and the child handler runs in the child process.

pthread_attr_destroy()

int pthread_attr_destroy (

pthread_attr_t *attr);

Destroys a thread attribute object.

pthread_attr_getdetachstate()

int pthread_attr_getdetachstate (

const pthread_attr_t *attr,

int *detachstate);

Obtains the setting of the detached state of a thread.

pthread_attr_getinheritsched()

int pthread_attr_getinheritsched (

const pthread_attr_t *attr,

int *inheritsched);

Obtains the setting of the scheduling inheritance of a thread.

pthread_attr_getschedparam()

int pthread_attr_getschedparam (

const pthread_attr_t *attr,

struct sched_param *param);

Obtains the parameters (for instance, the scheduling priority) associated with the
scheduling policy attribute of a thread.

pthread_attr_getschedpolicy()

int pthread_attr_getschedpolicy (

const pthread_attr_t *attr,

int *policy);

Obtains the setting of the scheduling policy of a thread.

pthread_attr_getscope()

int pthread_attr_getscope (

const pthread_attr_t *attr,

int *scope);

Obtains the setting of the scheduling scope of a thread.

pthread_attr_getstackaddr()

int pthread_attr_getstackaddr (

const pthread_attr_t *attr,

void **stackaddr);

Obtains the stack address of a thread.

pthread_attr_getstacksize()

int pthread_attr_getstacksize (

const pthread_attr_t *attr,

size_t *stacksize);

Obtains the stack size of a thread.

pthread_attr_init()

int pthread_attr_init (

pthread_attr_t *attr);

Initializes a thread attribute object. A thread specifies a thread attribute object in its
calls to pthread_create to set the characteristics of newly created threads.

pthread_attr_setdetachstate()

int pthread_attr_setdetachstate (

pthread_attr_t *attr,

int detachstate);

Adjusts the detached state of a thread. A thread's detached state can be joinable
(PTHREAD_CREATE_JOINABLE) or it can be detached
(PTHREAD_CREATE_DETACHED).

pthread_attr_setinheritsched()

int pthread_attr_setinheritsched (

pthread_attr_t *attr,

int inherit);

Adjusts the scheduling inheritance of a thread. A thread can inherit the scheduling
policy and the parameters of its creator thread (PTHREAD_INHERIT_SCHED) or
obtain them from the thread attribute object specified in the pthread_create call
(PTHREAD_EXPLICIT_SCHED).

pthread_attr_setschedparam()

int pthread_attr_setschedparam (

pthread_attr_t *attr,

const struct sched_param *param);

Adjusts the parameters (for instance, the scheduling priority) associated with the
scheduling policy of a thread. The scheduling priority parameter (as specified in the
struct sched_param) depends upon the selected scheduling policy (SCHED_FIFO,
SCHED_RR, or SCHED_OTHER). Use sched_get_priority_max and
sched_get_priority_min to obtain the maximum and minimum priority settings for a
given policy.

pthread_attr_setschedpolicy()

int pthread_attr_setschedpolicy (

pthread_attr_t *attr,

int policy);

Adjusts the scheduling policy of a thread. Pthreads defines the SCHED_FIFO,
SCHED_RR, and SCHED_OTHER policies.

pthread_attr_setscope()

int pthread_attr_setscope (

pthread_attr_t *attr,

int scope);

Adjusts the scheduling scope of a thread. A thread can use system-scope scheduling
(PTHREAD_SCOPE_SYSTEM), in which case the operating system compares the
priorities of all runnable threads of all processes systemwide in order to select a thread
to run on an available CPU. Alternatively, it can use process-scope scheduling
(PTHREAD_SCOPE_PROCESS), in which case only the highest priority runnable
thread in a process competes against the highest priority threads of other processes in
the system's scheduling activity.

pthread_attr_setstackaddr()

int pthread_attr_setstackaddr (

pthread_attr_t *attr,

void *stackaddr);

Adjusts the stack address of a thread.

pthread_attr_setstacksize()

int pthread_attr_setstacksize (

pthread_attr_t *attr,

size_t stacksize);

Adjusts the stack size of a thread. The stack size must be greater than or equal to
PTHREAD_STACK_MIN.

pthread_cancel()

int pthread_cancel (

pthread_t thread);

Cancels the specified thread.

pthread_cleanup_pop()

void pthread_cleanup_pop (

int execute);

Removes the routine from the top of a thread's cleanup stack, and if execute is
nonzero, runs it.

pthread_cleanup_push()

void pthread_cleanup_push (

void (*routine)(void *),

void *arg);

Places a routine on the the top of a thread's cleanup stack, and when the routine is
called, ensures that the specified argument is passed to it.

pthread_condattr_destroy()

int pthread_condattr_destroy (

pthread_condattr_t *attr);

Destroys a condition variable attribute object.

pthread_condattr_getpshared()

int pthread_condattr_getpshared (

pthread_condattr_t *attr,

int *pshared);

Obtains the process-shared setting of a condition variable attribute object.

pthread_condattr_init()

int pthread_condattr_init (

pthread_condattr_t *attr);

Initializes a condition variable attribute object. A thread specifies a condition variable
attribute object in its calls to pthread_cond_init to set the characteristics of new
condition variables.

pthread_condattr_setpshared()

int pthread_condattr_setpshared (

pthread_condattr_t *attr,

int pshared);

Sets the process-shared attribute in a condition variable attribute object to either
PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE.

pthread_cond_broadcast()

int pthread_cond_broadcast (

pthread_cond_t *cond);

Unblocks all threads that are waiting on a condition variable.

pthread_cond_destroy()

int pthread_cond_destroy (

pthread_cond_t *cond);

Destroys a condition variable.

pthread_cond_init()

int pthread_cond_init (

pthread_cond_t *cond,

const pthread_condattr_t *attr);

Initializes a condition variable with the attributes specified in the specified condition
variable attribute object. If attr is NULL, the default attributes are used.

pthread_cond_signal()

int pthread_cond_signal(

pthread_cond_t *cond);

Unblocks at least one thread waiting on a condition variable. The scheduling priority
determines which thread is awakened.

pthread_cond_timedwait()

int pthread_cond_timedwait (

pthread_cond_t *cond,

pthread_mutex_t *mutex,

const struct timespec *abstime);

Atomically unlocks the specified mutex, and places the calling thread into a wait state.
When the specified condition variable is signaled or broadcast, or the system time is
greater than or equal to abstime, this function reacquires the mutex and resumes its
caller.

pthread_cond_wait()

int pthread_cond_wait (

pthread_cond_t *cond,

pthread_mutex_t *mutex);

Atomically unlocks the specified mutex, and places the calling thread into a wait state.
When the specified condition variable is signaled or broadcasted, this function
reacquires the mutex and resumes its caller.

pthread_create()

int pthread_create (

pthread_t *thread,

const pthread_attr_t *attr,

void *(*start_routine)(void *),

void *arg);

Creates a thread with the attributes specified in attr. If attr is NULL, the default
attributes are used. The thread argument receives a thread handle for the new thread.
The new thread starts execution in start_routine and is passed the single specified

argument.

pthread_detach()

int pthread_detach (

pthread_t thread);

Marks a thread's internal data structures for deletion. When a detached thread
terminates, the system reclaims the storage used for its thread object.

pthread_equal()

int pthread_equal (

pthread_t t1,

pthread_t t2);

Compares one thread handle to another thread handle.

pthread_exit()

void pthread_exit (

void *value);

Terminates the calling thread, returning the specified value to any thread that may
have previously issued a pthread_join on the thread.

pthread_getschedparam()

int pthread_getschedparam (

pthread_t thread,

int *policy,

struct sched_param *param);

Obtains both the scheduling policy and scheduling parameters of an existing thread.
(This function differs from the pthread_attr_getschedpolicy function and the
pthread_attr_getschedparam function in that the latter functions return the policy and
parameters that will be used whenever a new thread is created.)

pthread_getspecific()

void *pthread_getspecific (

pthread_key_t key);

Obtains the thread-specific data value associated with the specified key in the calling
thread.

pthread_join()

int pthread_join (

pthread_t thread,

void **value_ptr);

Causes the calling thread to wait for the specified thread's termination. The value_ptr
parameter receives the return value of the terminating thread.

pthread_key_create()

int pthread_key_create (

pthread_key_t *key,

void (*destructor)(void *));

Generates a unique thread-specific key that's visible to all threads in a process.
Although different threads can use the same key, the value any thread associates with
the key (by calling pthread_specific) are specific to that thread alone and persist for
the life of that thread. When a thread terminates, its thread-specific data value is
destroyed (but the key persists until pthread_key_destroy is called). If a destructor
routine was specified for the key in the pthread_key_create call, it's then called in the
thread's context with the thread-specific data value associated with the key as an
argument.

pthread_key_delete()

int pthread_key_delete (

pthread_key_t key);

Deletes a thread-specific key.

pthread_kill()

int pthread_kill (

pthread_t thread,

int sig);

Delivers a signal to the specified thread.

pthread_mutexattr_destroy()

int pthread_mutexattr_destroy (

pthread_mutexattr_t *attr);

Destroys a mutex attribute object.

pthread_mutexattr_getprioceiling()

int pthread_mutexattr_getprioceiling (

pthread_mutexattr_t *attr,

int *prioceiling);

Obtains the priority ceiling of a mutex attribute object.

pthread_mutexattr_getprotocol()

int pthread_mutexattr_getprotocol(

pthread_mutexattr_t *attr,

int *protocol);

Obtains the protocol of a mutex attribute object.

pthread_mutexattr_getpshared()

int pthread_mutexattr_getpshared(

pthread_mutexattr_t *attr,

int *pshared);

Obtains the process-shared setting of a mutex attribute object.

pthread_mutexattr_init()

int pthread_mutexattr_init (

pthread_mutexattr_t *attr);

Initializes a mutex attribute object. A thread specifies a mutex attribute object in its
calls to pthread_mutex_init to set the characteristics of new mutexes.

pthread_mutexattr_setprioceiling()

int pthread_mutexattr_setprioceiling (

pthread_mutexattr_t *attr,

int prioceiling);

Sets the priority ceiling attribute of a mutex attribute object.

pthread_mutexattr_setprotocol()

int pthread_mutexattr_setprotocol(

pthread_mutexattr_t *attr,

int protocol);

Sets the protocol attribute of a mutex attribute object. There are three valid settings:
PTHREAD_PRIO_INHERIT, PTHREAD_PRIO_PROTECT, or
PTHREAD_PRIO_NONE.

pthread_mutexattr_setpshared()

int pthread_mutexattr_setpshared(

pthread_mutexattr_t *attr,

int pshared);

Sets the process-shared attribute of a mutex attribute object to
PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE.

pthread_mutex_destroy()

int pthread_mutex_destroy (

pthread_mutex_t *mutex);

Destroys a mutex.

pthread_mutex_init()

int pthread_mutex_init (

pthread_mutex_t *mutex,

const pthread_mutexattr_t *attr);

Initializes a mutex with the attributes specified in the specified mutex attribute object. If
attr is NULL, the default attributes are used.

pthread_mutex_lock()

int pthread_mutex_lock (

pthread_mutex_t *mutex);

Locks an unlocked mutex. If the mutex is already locked, the calling thread blocks until
the thread that currently holds the mutex releases it.

pthread_mutex_trylock()

int pthread_mutex_trylock (

pthread_mutex_t *mutex);

Tries to lock a mutex. If the mutex is already locked, the calling thread returns without
waiting for the mutex to be freed.

pthread_mutex_unlock()

int pthread_mutex_unlock (

pthread_mutex_t *mutex);

Unlocks a mutex. The scheduling priority determines which blocked thread is resumed.
The resumed thread may or may not succeed in its next attempt to lock the mutex,
depending upon whether another thread has locked the mutex in the interval between
the thread's being resumed and its issuing the pthread_mutex_lock call.

pthread_once()

int pthread_once (

pthread_once_t *once_block,

void (*init_routine) (void);

Ensures that init_routine will run just once regardless of how many threads in a
process call it. All threads issue calls to the routine by making identical pthread_once
calls (with the same once_block and init_routine). The thread that first makes the
pthread_once call succeeds in running the routine; subsequent pthread_once calls
from other threads do not run the routine.

pthread_self()

pthread_t pthread_self (

void);

Obtains the thread handle of the calling thread.

pthread_setcancelstate()

int pthread_setcancelstate (

int state,

int *oldstate);

Sets a thread's cancelability state. You can enable a thread's cancellation by
specifying the PTHREAD_CANCEL_ENABLE state, or disable it by specifying
PTHREAD_CANCEL_DISABLE.

pthread_setcanceltype()

int pthread_setcanceltype (

int type,

int *oldtype);

Sets a thread's cancelability type. To allow a thread to receive cancellation orders only

at defined cancellation points, you can specify the PTHREAD_CANCEL_DEFERRED
type; this is the default. To allow a thread to be canceled at any point during its
execution, you can specify PTHREAD_CANCEL_ASYNCHRONOUS.

pthread_setschedparam()

int pthread_setschedparam (

pthread_t thread,

int policy,

const struct sched_param *param);

Adjusts the scheduling policy and scheduling parameters of an existing thread. (This
function differs from the functions pthread_attr_setschedpolicy and
pthread_attr_setschedparam in that they set the policy and parameters that will be
used whenever a new thread is created.)

pthread_setspecific()

int pthread_setspecific (

pthread_key_t key,

void *value);

Sets the thread-specific data value associated with the specified key in the calling
thread.

pthread_sigmask()

int pthread_sigmask (

int how,

const sigset_t *set,

sigset_t *oset);

Examines or changes the calling thread's signal mask.

pthread_testcancel()

void pthread_testcancel (

void);

Requests that any pending cancellation request be delivered to the calling thread.

Pthreads Programming
Bradford Nichols, Dick Buttlar and Jacqueline Proulx Farre

	Chapter 5 - Pthreads and UNIX

