
1

2

Copyright ..5
Dedication ..6

Foreword...6
References ..8

Preface...9
Goals ..9
Audience ..9
Organization...9
More Information...10
Acknowledgments ...10

PART I: DESIGN PATTERN BASICS ...12
Chapter 1. Introduction...13

1.1 Basic Modeling Concepts of the UML ..13
1.2 Models..14
1.3 Structural Elements and Diagrams...15
1.4 Behavioral Elements and Diagrams...34
1.5 Use Case and Requirements Models..46
1.6 What Is a Design Pattern?..48
References ..50

Chapter 2. Architecture and the UML...51
2.1 Architecture..51
2.2 Logical and Physical Architecture ...52
2.3 The Five Views of Architecture...59
2.4 Implementing Architectures...71
References ..78

Chapter 3. The Role of Design Patterns...80
3.1 Introduction..80
3.2 The ROPES Development Process ..80
3.3 Design Pattern Basics...103
3.4 Using Design Patterns in Development ...107
References ..110

PART II: ARCHITECTURAL DESIGN PATTERNS ..112
References ..114

Chapter 4. Subsystem and Component Architecture Patterns..115
4.1 Layered Pattern ..115
4.2 Five-Layer Architecture Pattern...119
4.3 Microkernel Architecture Pattern...122
4.4 Channel Architecture Pattern ...126
4.5 Recursive Containment Pattern..131

3

4.6 Hierarchical Control Pattern ..136
4.7 Virtual Machine Pattern ...140
4.8 Component-Based Architecture...146
4.9 ROOM Pattern ...153
References ..159

Chapter 5. Concurrency Patterns...160
5.1 Introduction..160
5.2 Concurrency Pattern...160
5.3 Message Queuing Pattern...162
5.4 Interrupt Pattern ...167
5.5 Guarded Call Pattern..173
5.6 Rendezvous Pattern..177
5.7 Cyclic Executive Pattern..180
5.8 Round Robin Pattern..183
5.9 Static Priority Pattern ...187
5.10 Dynamic Priority Pattern ...194
References ..198

Chapter 6. Memory Patterns ..200
6.1 Memory Management Patterns ..200
6.2 Static Allocation Pattern ..200
6.3 Pool Allocation Pattern ..204
6.4 Fixed Sized Buffer Pattern...209
6.5 Smart Pointer Pattern ...213
6.6 Garbage Collection Pattern ..218
6.7 Garbage Compactor Pattern ...223
References ..228

Chapter 7. Resource Patterns ...229
7.1 Introduction..229
7.2 Critical Section Pattern ..234
7.3 Priority Inheritance Pattern ..238
7.4 Highest Locker Pattern...245
7.5 Priority Ceiling Pattern ..250
7.6 Simultaneous Locking Pattern ...257
7.7 Ordered Locking Pattern..263
References ..268

Chapter 8. Distribution Patterns ..269
8.1 Introduction..269
8.2 Shared Memory Pattern ...270
8.3 Remote Method Call Pattern..275
8.4 Observer Pattern...281
8.5 Data Bus Pattern...286
8.6 Proxy Pattern..296
8.7 Broker Pattern ..302
References ..308

Chapter 9. Safety and Reliability Patterns ..310
9.1 Introduction..310

4

9.2 Protected Single Channel Pattern...313
9.3 Homogeneous Redundancy Pattern ...317
9.4 Triple Modular Redundancy Pattern..321
9.5 Heterogeneous Redundancy Pattern ..325
9.6 Monitor-Actuator Pattern...329
9.7 Sanity Check Pattern..333
9.8 Watchdog Pattern...337
9.9 Safety Executive Pattern ..342
References ..347

Appendix A. Notational Summary ...348
Class Diagram..348
Collaboration Diagram...352
Sequence Diagram ...353
Use Cases ...354
Implementation Diagrams..355
Package diagram ..356
Statechart..357
Activity Diagrams ..361

Appendix B. Pattern Index..363

5

Copyright
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special sales.
For more information, please contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales

(317) 581-3793

international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Douglass, Bruce Powel.

Real-Time Design Patterns : robust scalable architecture for Real-time systems / Bruce Powel Douglass.

p. cm.—(The Addison-Wesley object technology series)

Includes bibliographical references and index.

(alk. paper)

1. Real-time data processing. 2. Software patterns. 3. Computer architecture.

I. Title. II. Series.

qa76.54 .D68 2003

004'.33—dc21

http://www.awprofessional.com/
mailto:international@pearsontechgroup.com
mailto:corpsales@pearsontechgroup.com

6

2002074701

Copyright © 2003 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a written
request to:

Pearson Education, Inc.

Rights and Contracts Department

75 Arlington Street, Suite 300

Boston, MA 02116

Fax: (617) 848-7047

Text printed on recycled paper

1 2 3 4 5 6 7 8 9 10—CRS—0605040302

First printing, September 2002

Dedication
For Sarah. With all my heart, I dedicate this book and the following haiku to you.

Mist
cool forest mist
subdued hues, shrouded souls
walking, touching, sigh

Foreword
In this book, Bruce Douglass illustrates for the first time how two important contemporary software
engineering advances—patterns and the UML—can be applied advantageously to the concepts and
techniques traditionally used in mainstream real-time software. Most other publications about software
patterns (such as [1]) have not addressed real-time systems per se in any depth, or have focused on the
narrower and more advanced topic of real-time middleware ([2]), or have been application domain
specific ([3]).

This book offers a significant benefit to the practice of real-time computing, because software patterns
and the UML enable potentially lower software costs in many systems. Real-time software spans the

7

entire range of complexity and costs. In some real-time systems, the software is so small and simple,
and the hardware is so complex and/or expensive, that software costs are a small fraction of the system
costs (for example, software in a laser gyroscope). In other real-time systems, the software is so large
and complex that regardless of the hardware costs, the software costs are a major part of the system
costs (for example, software in a military or commercial aircraft). Barry Boehm, in his recent book
updating the ubiquitous Cocomo software cost model [4], assigns an effort multiplier of 1.74 (the highest
one) to all lifecycle phases of this latter kind of software, compared to "nominal" software (depending on
the project circumstances, that multiplier can easily be a major underestimation). Most real-time
software lies between these two extremes, and it is that mainstream audience of practitioners who will
benefit the most from this book.

Historically, developers of real-time software have lagged behind other developers in using the most
contemporary software engineering methodologies. There are several reasons for this.

One is, as mentioned above, that some real-time software is so simple that only the most elementary
methodologies are needed.

A more common reason is that many real-time systems with non-trivial software suffer from hardware
capacity constraints (due to size, weight, power, and so on). Software structured for purposes such as re-
usability, modularity, or flexibility does tend to consume additional time or space resources. This is
sometimes compensated for by the fact that commodity computing system hardware cost is always
declining and its performance is always increasing. But in many real-time systems, hardware cost is still
an easily measured quantitative factor that is thought to outweigh the hard-to-measure qualitative
factors of software quality and costs.

Yet another reason is that real-time software practitioners are frequently application experts who are not
always educated enough in modern software engineering to understand and employ it properly. New
computer science and engineering graduates rarely enter the real-time field, because their formal
education has not exposed them to much if any significant realistic real-time practice (real-time is a
uniquely disadvantaged aspect of computer science and engineering in this respect), and what little real-
time theory they may have learned is still of very limited practical relevance.

This book provides an introduction to software patterns and the UML—by one of the most authoritative
contributors to those topics—as applied to mainstream real-time software, in a manner that is easily
understood by practitioners in that field without prerequisite knowledge. Those who make a modest
investment in learning this material can expect to discover how to cast much of their hard-earned
professional experience in a framework that can make their real-time software designs more
predictable—not just in terms of their timeliness (timeliness predictability being the raison d'être of real-
time computing), but also in terms of their lifecycle costs.

Another prospective benefit for many real-time software designers of becoming familiar with software
patterns and the UML is that these issues are of rapidly increasing importance to building larger scale,
more dynamic and complex, and more distributed real-time computing systems. Such systems offer
highly significant (albeit as yet not always fully appreciated) added value to many enterprises, and hence
offer perhaps the most challenging and rewarding career development opportunities in the field of real-
time computing systems. This book is an excellent starting point toward that future.

8

—E. Douglas Jensen
Natick, Massachusetts
July 2002

Doug Jensen is widely recognized as one of the pioneers of real-time computing systems, and especially
of dynamic distributed real-time computing systems. He is credited with the research leading to the
world's first deployed distributed real-time computer control system product. He has over three decades
of hardware, software, and systems research and technology development experience in military and
industrial real-time computing, and was on the faculty of the Computer Science Department of Carnegie
Mellon University for eight years. He is currently in a senior technical leadership position at The MITRE
Corporation, where he conducts research and technology transition on real-time computing systems for
projects of strategic national interest. Doug Jensen's Web site is http://www.real-time.org.

References
1. Boehm, Barry, Ellis Horowitz, Ray Madachy, Donald Reifer, Bradford Clark, Bert Steece, A. Winsor
Brown, Sunita Chulani, and Chris Abts. Software Cost Estimation with Cocomo II. Upper Saddle River, NJ:
Prentice Hall, January 2000.

2. Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, MA: Addison-Wesley, 1995.

3. Lea, Doug. Design Patterns for Avionics Control Systems, http://st-
www.cs.uiuc.edu/users/patterns/patterns.html, 1994.

4. OOPSLA 2001, Workshop on Patterns in Distributed Real-Time and Embedded Systems, ACM, October
2001.

http://st-www.cs.uiuc.edu/users/patterns/patterns.html
http://st-www.cs.uiuc.edu/users/patterns/patterns.html
http://www.real-time.org/

9

Preface
 Goals

Audience

Organization

More Information

Acknowledgments

Goals
Real-time and embedded systems (RTE systems) must execute in a much more constrained environment
than "traditional" computer systems such as desktop and mainframe computers. RTE systems must be
highly efficient, optimally utilizing their limited processor and memory resources, and yet must often
outperform systems with significantly more compute power. In addition, many RTE systems have
important safety-critical and high-reliability requirements because they are often used in systems such as
avionics flight control, nuclear power plant control, life support and medical instrumentation. The creation
of RTE systems to meet these functional and quality of service requirements requires highly experienced
developers with decades of experience. Yet, over the years, these developers have encountered the same
problems over and over—maybe not exactly the same problems but common threads. The very best
developers abstract these problems and their solutions into generalized approaches that have proved
consistently effective. These generalized approaches are called design patterns. They are often best
applied at the level of the system or software architecture—the sum of design decisions that affect the
fundamental organization of the system. Real-Time Design Patterns is an attempt to capture in one place
a set of architectural design patterns that are useful in the development of RTE systems.

Audience
The book is oriented toward the practicing professional software developer and the computer science
major in the junior or senior year. This book could also serve as an undergraduate- or graduate-level
text, but the focus is on practical development rather than a theoretical dissertation. The book assumes a
reasonable proficiency in at least one programming language and a basic understanding of the
fundamental concepts of object orientation, the Unified Modeling Language (UML), and real-time
systems.

Organization
Part I consists of three chapters. Chapter 1 provides a very brief review of the major concepts in the
Unified Modeling Language. Chapter 2 introduces the fundamental concepts of architecture as they are
defined in the Rapid Object-oriented Process for Embedded Systems (ROPES), including the primary
division of architecture into logical (design-time) and physical (run-time) aspects, and the five important
architectural views. In the third chapter, the book gets into a discussion of design patterns and their role
in defining architecture. Because it is difficult to discuss architecture in a process-free environment, the
ROPES process, and the key technologies it tries to optimize, are introduced to provide a background in
which design patterns may be effectively discussed. Once process has been introduced, design patterns

http://safari.informit.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-69956-7/?xmlid=0-201-69956-7/23981533

10

are next. Their various aspects are explained, and the fundamental organization of design patterns used
in this book is provided. The chapter finishes with a discussion of how design patterns can be applied in
the development of real systems.

Part II contains the architectural design patterns that reify the ways that large-scale system components
are organized and structured to optimize some set of general system criteria.

The patterns in Part II are organized around the architectural concept they address. Chapter 4 is
dedicated to high-level structural patterns— focused around what is called the Subsystem or Component
architecture. Because concurrency and resource management is so crucial to real-time and embedded
systems, Chapter 5 focuses on the common patterns of concurrency. Memory management is crucial for
many systems in this domain, and it is the subject of Chapter 6. We see even more general resource
management patterns in Chapter 7. Chapter 8 presents a number of common distribution architecture
patterns that define how objects can be distributed across multiple address spaces and computers.
Finally, Chapter 9 provides a number of patterns that deal with building safe and reliable architectures.

Two appendixes appear at the end of the book. The first is simply a summary of the UML graphical
notation, and the second is an index of the patterns by name.

The CD-ROM provides a number of interesting and useful tools. It contains a full copy of the Rhapsody
UML tool with instructions on how to get a temporary license from I-Logix. Other additional potentially
useful tools for developers of real-time systems are also provided. The Papers chapter contains some
papers on various topics as well as some useful OMG specifications.

More Information
Additional information on the UML, object-oriented technology, and the development of real-time systems
can be found at www.ilogix.com. In addition, the current UML, MDA, and CORBA standards can be seen
at www.omg.org. For more information on using the UML in real-time systems, Real-Time UML, 2nd
Edition is also available from Addison-Wesley, as is the more comprehensive Doing Hard Time:
Developing Real-Time Systems with UML, Objects, Frameworks and Patterns. Many other well-written
and useful books on the UML and software engineering are similarly available.

Acknowledgments
A book like this is always a joint effort, not only of the direct contributors, such as the editorial staff of
Addison–Wesley Professional (and I'd especially like to thank my editor, Paul Becker, for the sometimes
less-than-gentle pushing to complete the book!) but of many others who in their own way have raised
the bar for all of us. The core team members working on the UML—Cris Kobryn, Eran Gery, Jim
Rumbaugh, Bran Selic, and many, many others are certainly among those who should be acknowledged
in bringing forth a useful standard language for capturing and manipulating models of systems. Also,
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides deserve recognition for bringing the
concept of design patterns into common use with their wonderful book Design Patterns: Elements of
Reusable Object-Oriented Software. David Harel (inventor of statecharts, the semantic basis for all
behavior in the UML) and Werner Damn continue to make significant contributions to the state of the art,
especially with respect to formal verification of systems modeled with the UML.

My two boys, Scott and Blake Douglass, continue to delight and amaze me—and keep me humble at the
same time—and make all this effort worthwhile.

http://safari.informit.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-69956-7/?xmlid=0-201-69956-7/23981533
http://www.omg.org/
http://www.ilogix.com/

11

12

Part I: Design Pattern Basics
Introduction

Several prerequisites are necessary to be successful in the application of design patterns
into your own designs. First, in this book we will use the Unified Modeling Language
(UML) to represent the patterns and the sample models. To make sure everyone starts on
more or less the same footing, Chapter 1 introduces the basic semantics and notation of
the UML. (Appendix A provides a notational summary for a quick reference.) Both
structural and behavioral aspects are discussed well enough so that if you are a beginner,
the patterns presented in Part I will at least make sense. It is not meant to be a full-
blown UML tutorial—there are many other books available for that. If you need such a
tutorial, then the reference section in Chapter 1 gives a list of suggested titles. Chapter 1
also talks a little about what a design pattern is and why its use is justified.

Once you know a little about the UML, it behooves us to understand what we mean by
the term architecture. There are many different uses of the term as applied to software,
so Chapter 1 explains how the term is used in this book, including the two basic types of
architecture (logical and physical) and within physical architecture, the important
architectural views or aspects that are subject to pattern analysis. Chapter 2 goes on to
discuss how architectures may be implemented and describes the Model-Driven
Architecture (MDA) initiative of the Object Management Group (OMG), the standards
organization that owns the UML specification.

Once we have an understanding of architecture under our cognitive belts, the last thing
we must understand before delving into the patterns per se is how patterns fit into design
and how design fits into an overall development process. Of course, there are many
different viable development processes, so this chapter will focus on one—the Rapid
Object-oriented Process for Embedded System (ROPES)—and use this to explain how
design in general, and patterns in particular, fit into the development of real-time and
embedded systems. The first part of Chapter 3 introduces the ROPES process, and the
latter part discusses the structure and use of design patterns, including the identification,
use, and application of design patterns.

13

Chapter 1. Introduction
This chapter discusses the following.

• Basic modeling concepts of the UML; overview of the UML; definition of design patterns
• Class and object models—what they are; how classes and objects work together in

collaborations; collaborations; packaging of logical elements
• Component and deployment models; representing run-time artifacts and localizing them on

processor nodes—State machines and behavioral models
• Use case and requirements models; capturing black-box behavior without revealing internal

structure

1.1 Basic Modeling Concepts of the UML
The Unified Modeling Language (UML) is a third-generation object-modeling language standard, owned by
the Object Management Group (OMG). The initial version of the OMG UML standard, 1.1, was released in
November 1997. Since then, a number of minor revisions have been made. As of this writing, the current
standard is 1.4 [1] and is available from the OMG at www.omg.org.

The response from the development community to the introduction of the UML has been overwhelming.
The UML is now the de facto standard for software modeling. There are a number of reason for this, and
it is the totality of all of them that, I believe, accounts for the phenomenal success of the UML.

First, the UML has a well-defined underlying semantic model, called the UML metamodel. This semantic
model is both broad (covering most of the aspects necessary for the specification and design of systems)
and deep (meaning that it is possible to create executable models that can be executed as-is or be used
to generate source-level code for compilation). The upshot is that the developer can fairly easily model
any aspect of the system that he or she needs to understand and represent.

Second, the notation used by the UML is easy to master and, for the most part, simple to understand.
Although some people claim that the UML has too many diagrams, in reality there are only a few:
structure (class) diagrams, deployment diagrams, statecharts, activity charts, and use case and sequence
diagrams. They work in the obvious way and use a few common principles. Although the breadth of the
notation can be a bit overwhelming to newcomers, in reality, complex systems can be easily developed
with three core diagrams: class diagrams, statecharts, and sequence diagrams. The other diagrams can
be used to model additional aspects of the system (such as capturing requirements or how the software
maps onto the underlying hardware).

Third, the UML is a standard, rather than most modeling languages that are both proprietary and single-
sourced. Using a standard means that the developer can select both tools and services from many
different sources. For example, there are at least a couple of dozen different UML modeling tools. The
availability of different modeling tools enables the developer to find tools that emphasize the aspects of
development that may be important to them at a cost point that makes sense for their business or
project. For example, Rhapsody from I-Logix emphasizes the deep semantics of the UML, allowing the
validation and testing of the user's models via execution of the model using the UML notation. This
execution can take place on the host development machine or on the final target hardware, and the
generated code can then be used in the final delivered system. Other tools emphasize other aspects,
such as drawing the diagrams but permitting more flexibility for a lower price point. The availability of so

http://www.omg.org/

14

many different tools in the market gives the developer a great deal of latitude in tool selection. It also
encourages innovation and improvement in the tools themselves. Because the UML is such as well-
adopted standard, many companies provide training in the use and application of the UML. Indeed, the
UML is taught in many college courses. My previous books [2, 3] are in use in undergraduate and
graduate courses in many different universities throughout the world.

Last, the UML is applicable. Being a third-generation object-oriented modeling language, we now have
person-centuries of experience applying object-oriented methods to the development of systems,
including real-time and embedded systems. We have strengthened support for ideas that have worked
well in the Darwinian world of systems development and removed those things that weren't useful. The
UML is used today to model and build systems that vary in scope from simple one- or two-person
projects up to those employing literally hundreds of developers. The UML supports all the things
necessary to model timeliness and resource management that characterize real-time and embedded
systems. That means that the developer need not leave the UML to design the different aspects of their
system, regardless of how complex or arcane those things might be.

In this chapter, we introduce the basics of the UML. This is not meant to supplant other books about the
UML but to provide enough information to understand and utilize the concepts and patterns that form the
main content of this book. For a more in-depth discussion of the UML, the reader is referred to the
references at the end of the chapter. Additionally, there are many whitepapers available on the I-Logix
Web site: www.ilogix.com.

1.2 Models
The purpose of the UML is to allow the user to define a model of the system. A model is an integrated,
coherent set of abstractions that represents the system to be designed. The model consists of both the
semantics and the user views of those semantics. The important part of the user model is the definition
of the semantics of the system under development. These semantics have three primary aspects:
structural, behavioral, and functional. The structural aspect of the model identifies the "things" that make
up the system. For example, a set of objects and their relations represents the state or condition of the
system at some point in time—a "snapshot" view. The set of classes and their relationships specify the
possible sets of objects and object relations that may exist at run-time. The difference is that the objects
exist at run-time while the classes (being a specification) exist only at design time. At a larger scale,
subsystems (basically big objects or classes) and components (also basically big objects or classes) form
larger-scale abstractions for more complex systems. These concepts allow you to think about and
manipulate the system at different levels of abstraction, which is required to build today's more complex
and comprehensive systems.

The behavioral aspect of the model defines how the structural elements work and interact in the
executing system. Behavior can be modeled and viewed for individual structural elements or for
assemblies of structural elements working together to achieve larger-scale behaviors. For individual
structural elements, such as objects, classes, subsystems, components, or use cases, the UML provides
statecharts and activity diagrams to specify the actions and their permitted sequencing. Interactions are
used to model how assemblies of structural elements, called collaborations, work together over time to
achieve larger-scale behaviors. The UML uses two kinds of interaction diagrams: sequence and
collaboration diagrams. Of these, sequence diagrams are by far more commonly used.

http://www.ilogix.com/

15

Finally, system functional aspects refer to required behavior without regard to the implementation of that
behavior. In the UML, functional aspects are modeled as use cases; the detailed requirements of use
cases are modeled using statecharts and interaction diagrams.

With the use of the UML, the user creates the application model. The goal is to create an application
model that is complete, consistent, and accurate. If done properly, this model can be verified via analysis
or execution and can (and should!) be used to generate the source level code to implement the system.
This code can be automatically generated if you're using a tool such as Rhapsody, or it can be generated
by hand. There are many advantages to automatic code generation, such as reduction of effort and the
maintenance of consistency between the UML model and the code, but either approach can be used to
create the final system.

As mentioned previously, the application model consists of the semantics and all the views. The views
reflect some particular set of the system semantics shown at some specific level of abstraction. The
semantics are the sum of the semantics represented in the multitude of views, so it isn't necessary to
show all the semantics in a single view. The views, however, are very useful. For one thing, they provide
a very usable approach for the entry of the semantic information into the model. By drawing the classes
on class diagrams, for example, we can define the structural semantics of that part of the system. By
drawing the statechart for those classes, we enter the behavioral semantics for those elements. Thus,
there is in principle a tight coupling between the set of diagrams you draw and the semantic model you
construct of the system. That is one of the primary advantages of using a design automation tool as
opposed to a drawing tool, such as Visio or Powerpoint. The design automation tool not only allows you to
draw the diagrams but also manages the semantics of the application, making sure that they are
consistent, performing checks on those semantics, and even validating the model through simulation or
execution.

Now that we understand, in general terms, what a model is, let us discuss the semantic elements of the
model and how to represent them on UML diagrams.

1.3 Structural Elements and Diagrams
The UML has a rather rich set of structural elements, and it provides diagrammatic views for related sets
of them.

1.3.1 Small Things: Objects, Classes, and Interfaces

There are a number of elementary structural concepts in the UML that show up in user models: object,
class, data type, and interface. These structural elements form the basis of the structural design of the
user model. In its simplest form, an object is a data structure bound together with operations that act on
that data. An object only exists at run-time; that is, while the system is executing, an object may occupy
some location in memory at some specific time. The data known to an object are stored in attributes—
simple, primitive variables local to that object. The behaviors that act on that data are called methods.
These are the services invoked by clients of that object (typically other objects) or by other methods
existing within the object.

A class is the design-time specification of a set of objects. That is, the objects are instances of the class.
A class may have many instances in the system during run-time, but an object is an instance of only a
single class. A class may specify a statechart that coordinates and manages the execution of its primitive

16

behaviors (called actions, which are often invocations of the methods defined in the class) into allowable
sets of sequences driven by the different events received. Statecharts are discussed later in this chapter.

For example, a Sensor class may contain attributes such as value (of the physical thing it is monitoring)
and calibrationConstant and have methods such as acquire (to get a sensed value), getValue (to return
the last acquired value to the client on request), and setCalibrationConstant (for the calibration of the
sensor). Diagrammatically, the Sensor class can be shown as it is in Figure 1-1. This view option shows
three segments. The first gives the name of the class—in this case, Sensor. The middle segment gives a
list of the attributes. The bottom segment shows the methods. The lists of attributes and methods don't
need to be complete; in fact, it is very common to only show the features of the class relevant to the
purpose of the diagram and not show those unrelated to the purpose of the diagram. Other features of
the sensor class might be shown on other diagrams or appear in no diagram at all, being visible only
when browsing the object repository of the UML tool or in a report generated from that repository.

Figure 1-1. Basic Class Diagram

Figure 1-1 shows two other classes as well with a line (called an association—more on that later)
connecting them to the Sensor class. The first is the Filter class. This class offers services for filtering the
data acquired by the Sensor class. It is shown in the figure using the same display format as the Sensor
class. The other is the SensorClient class; its features are hidden. In this view, called the canonical form,
only the class name is shown on the diagram. To view its features, it is necessary to browse the model
repository or look on another diagram.

An interface is a named collection of operations. While it is not required to do usable modeling, interfaces
allow you to separate out a set of services that may be called on a class from the implementation of

17

those services. As we've seen, a class contains methods, which include the lines of code that implement
the service. An operation is a specification of the service that does not include this implementation. To be
well formed, the operation should define the signature for invoking the service, including the required
parameters and return value (if any), plus the preconditional and postconditional invariants of the
operation. Preconditional invariants are things that must be true prior to the invocation of the service,
while postconditional invariants are things that the operation guarantees are true upon its completion.

Interfaces may not have attributes or methods, and they are not directly instantiable. A class is said to
realize an interface if it provides a method for every operation specified in the interface and those
methods have the same names, parameters, return values, preconditions and postconditions of the
corresponding operations in the interface.

Interfaces may be shown in two forms. One looks like a class except for the key word interface placed
inside guillemet, as in «interface». This form, called a stereotype in UML, is used when you want to show
the operations of the interface. The other form, commonly referred to as the "lollipop" notation, is a small
named circle on the side of the class. Both forms are shown in Figure 1-1. When the lollipop is used, only
the name of the interface is apparent. When the stereotyped form is used, a list of operations of the
interface may be shown. In the figure, the Sensor class is said to depend on the interface iFilter, while
the Filter class realizes that interface.

Interfaces are used to ensure interface compliance—that is, the client class can consistently and correctly
invoke the services of a server class. There is another means to ensure interface compliance that uses
the generalization relation from what is called abstract classes (classes that may not be directly
instantiated). Abstract classes define operations but not methods, just as an interface does, and so may
be used to ensure interface compliance. Either (or both, for that matter) approach can be used to ensure
that the clients and servers connect correctly at run-time. Generalization and other class relations are
discussed in the next section.

Of course, the UML model must ultimately map to source code. In Java and C++, the mapping is
straightforward. The source code for such a class diagram in Java is the most straightforward because
Java contains interfaces as a native concept. The Java source code would look like the Java code in Code
Listing 1.

Code Listing 1: Class Diagram in Java

public SensorClient {
 protected myISensor iSensor;
 public void displayValue(void) {
 int sensedValue = iSensor.getValue();
 System.out.println(value);
 };
}; // end class SensorClient

interface iSensor {
 int acquire(void);
 int getValue(void);
 void setCalibrationConstant(long
 newCalibrationConstant);

}; // end interface iSensor

public class Sensor implements iSensor {
 protected iFilter myIFilter;

18

int value;
 long calibrationConstant;

public int acquire(void){ /* method here */ };
 public int getValue(void) {
 return myIFilter.filter(value); };

public void setCalibrationConstant(long
 newCalibrationConstant) {
 calibrationConstant = newCalibrationConstant;
 };
}; // end class Sensor

interface iFilter {
 public int filterValue(int value);
}; // end interface iFilter

public class Filter implements iFilter {
 int lowPass;
 int highPass;
 public int filtervalue(int value) {
 /* method here */
 };
 public setFilterParameters(int newLowPass,
 int newHighPass) {
 lowPass = newLowPass;
 highPass = newHighPass;
 };
}; // end class Filter

In C++, the code is almost as straightforward as the Java code, but not quite, because an interface is not
a native concept in C++. There are two common approaches to implement interfaces is C++. The first,
shown in Code Listing 2, is to create an abstract base class by declaring the interface operations as pure
virtual. The other common approach is to use the Interface or Façade pattern. This involves creating the
interface class as an instantiable class that associates to a separate implementation class.

Code Listing 2: Class Diagram in C++

class SensorClient {
protected:
 iSensor* myISensor;
public:
 void displayValue(void) {
 int sensedValue = iSensor.getValue();
 cout << value << endl;
 };
};

class iSensor { // abstract class
public :
 virtual int acquire(void)=0; // pure virtual
 virtual int getValue(void)=0; // pure virtual
 virtual void setCalibrationConstant(long
 newCalibrationConstant)=0;
};

class Sensor : public iSensor {
protected :

19

iFilter* myIFilter;
 int value;
 long calibrationConstant;
public :
 int acquire(void);
 int getValue(void){
 return myIFilter->filterValue(value);
 };
 void setCalibrationConstant(long
 newCalibrationConstant) {
 calibrationConstant =
 newCalibrationConstant;
 };
};

class iFilter {
public :
 virtual int filterValue(int value)=0;
 // pure virtual
};

class Filter : public iFilter {
public :
 int filterValue(int value) {
 lowPass = newLowPass;
 highPass = newHighPass;
 };
};

In summary, an object is one of possibly many instances of a class. A class has two notable features:
attributes (which store data values) and methods (which provide services to clients of the class).
Interfaces are named collections of operations that are realized by classes. Interfaces need not be
explicitly modeled. Many useful systems have been designed solely with classes, but there are times
when the additional level of abstraction is useful, particularly when more than a single implementation of
an interface will be provided.

1.3.2 Relations

Classes, objects, and interfaces are little things. To do anything systemwide, many of these small things
need to work together. And to work together, they must relate in some way.

1.3.2.1 Associations

The UML defines a number of different kinds of relations. The most important of these are association,
generalization, and dependency. The most basic of these is called the association. An association is a
design-time relation between classes that specifies that at run-time, instances of those classes may have
a link and may be able to request services of one another.

The UML defines three distinct kinds of associations: association, aggregation, and composition. An
association between classes means simply that at some time during the execution of the system, those
objects may have a link that enables them to call or somehow invoke services of the other. Nothing is
stated about how that is accomplished, or even whether it is a synchronous method call (although this is
most common) or an asynchronous message transfer. Think of associations as conduits that allow objects
at run-time to find each other and send messages. Associations are shown as lines connecting classes on
class diagrams.

20

There are a number of aspects of an association between two classes that can be specified. For example,
the ends of the associations may have role names. These name the instances with respect to the other
class. It is a common practice to give the role name on the opposite end of the association to the pointer
that points to that class. For example, in Figure 1-2, the Switch class might contain two pointers—one
named primarySource and one named backupSource—that would be dereferenced at run-time to send
the instance of the Charger and Battery classes messages, such as to enable or disable them.

Figure 1-2. Association, Aggregation, and Composition

Although somewhat less common, association labels may also be used, such as between the Power
Subsystem and Display Subsystem classes. The label is normally used to help explain why the association
exists between the two classes. In this case, the label "displays messages for" indicates that is how the
Power Subsystem intends to use the Display Subsystem. To get the directionality of the label (is the
Power Subsystem displaying messages for the Display Subsystem?), you can add an arrowhead next to
the label to show the speaking perspective.

The multiplicity is probably the most important property of an association end. The multiplicity of an
association end indicates the possible numbers of instances that can participate in the association role at
run-time. This may be any of the following.

21

• A fixed number, such as "1" or "3"
• A comma-separated list, such as "0,1" or "3,5,7"
• A range, such as "1..10"
• A combination of a list and a range, such as "1..10, 25", which means "one to ten, inclusive, or

25"
• An asterisk, which means "zero or more"
• An asterisk with an endpoint, such as "1..*," which means "one or more"

In Figure 1-2, we see multiplicities on all the associations. Multiplicity is shown at the role end of the
class to which it applies. Thus, each Switch object associates with zero or one Charger object, but each
Charger object associates with exactly one Switch object.

Finally, the directionality of the association may be specified. A normal line with no arrowheads means
that the association is bidirectional; that is, an object at either end of the association may send a
message to an object at the other end. If only one of the objects can send a message to the other and
not vice versa, then we add an open arrowhead (we'll see later that the type of arrowhead matters)
pointing in the direction of the message flow. Thus, we see that a Switch object can send a message to a
Battery object, but not vice versa. This does not imply that the Switch object cannot retrieve a value
from a Battery object because it can call a method that returns a value. It means, however, that an
object of type Battery cannot spontaneously send a message to a Switch object.

All of these adornments, except for perhaps multiplicity, are optional and may be added as desired to
further clarify the relationships between the respective classes.

An association between classes means that at some point during the lifecycle of instances of the
associated classes, there may be a link that enables them to exchange messages. Nothing is stated or
implied about which of these objects comes into existence first, which other object creates them, or how
the link is formed.

1.3.2.2 Aggregation

An aggregation is a specialized kind of association that indicates a "whole-part" relation exists between
the two objects. The "whole" end is marked with a white diamond, as in Figure 1-2. For example,
consider, the classes Message List and Message. The Message List class is clearly a "whole" that
aggregates possibly many Message elements. The diamond on the aggregation relation shows that the
Message List is the "whole." The "*" on the myMsg association end indicates that the list may contain
zero or more Message elements. If we desired to constrain this to be no more than 100 messages, we
could have made the multiplicity "0..100."

Since aggregation is a specialized form of association, all of the properties and adornments that apply to
associations also apply to aggregations, including navigation, multiplicity, role names, and association
labels.

Aggregation is a relatively weak form of "whole-part," as we'll see in a moment. No statement is made
about lifecycle dependency or creation/destruction responsibility. Indeed, aggregation is normally treated
in design and implementation identically to association. Nevertheless, it can be useful to aid in
understanding the model structure and the relations among the conceptual elements from the problem
domain.

22

1.3.2.3 Composition

Composition is a strong form of aggregation in which the "whole" (also known as the "composite") has
the explicit responsibility for the creation and destruction of the part objects. Because of this, the
composite exists before the parts come into existence, and it exists after they are destroyed. If the parts
have a fixed multiplicity with respect to the composite, then it is common to create those parts in its
constructor (a special operation that creates the object) and destroy them in its destructor. With nonfixed
multiplicities, the composite dynamically creates and destroys the part objects during its execution.
Because the composite has creation and destruction responsibility, each part object can only be owned by
a single composite object, although the part objects may participate in other association and aggregation
relations. Composition is also a kind of association, so it can likewise have all of the adornments available
to ordinary associations.

Composition has two common presentations: nested class boxes and a filled-in diamond. There is no
semantic difference between the two, and individual preferences vary. Personally, because composition is
so distinct from aggregation, I prefer to nest the class boxes on the diagrams, but your mileage may
vary.

Figure 1-2 shows both forms. The Power Subsystem, for example, is a composite class that contains
parts of type Charger, Battery, and Switch. The Button class is also a composite that contains a single
Light part. With the containment presentation, there is an issue as to how to show the multiplicity of the
part (by definition, the multiplicity on the whole end of a composition is exactly "1"). Since there is no
line on which to place the multiplicity, it is common to put the multiplicity in one of the upper corners of
the part class. This is called instance multiplicity. We see that the Power Subsystem contains either one
or two objects of type Switch, zero or more objects of type Charger, and zero to two objects of type
Battery.

There is also the issue of how to show the role names. The common way is to use a class role name. A
class role name precedes the class name and a slash (/) separator. In the figure, instances of class
Switch have a class role name of PowerSwitch. As an aside, we can also show object names if we like,
independently from the class role names. An object name is shown as preceding the class name, with a
colon (:) separator. Thus,

 PowerSwitch/ thePowerSwitch: Switch

shows a role called PowerSwitch that is played by an object named thePowerSwitch, which happens to be
an instance of class Switch.

The most common implementation of an association, as seen in the previous code examples, is an object
pointer (in C++) or an object reference (in Java). This is true regardless of which kind of association it is,
whether it is an ordinary association, an aggregation, or a composition. There are many other ways of
implementing an association—including nested class declaration, object identifier reference (as in a MS
Windows handle or a CORBA object ID), an operating system task ID, and so on—but using a pointer is
the most common.

A Word About Stereotypes Figure 1-2 has a couple of places where a class has a special adornment called
a stereotype. A stereotype is a way of tailoring the UML to meet a specific need or purpose. It is part of
the lightweight extension mechanism defined within the UML. A stereotype is a user-defined kind of
element that is based on some already defined element in the UML, such as Class, Operation,

23

Association, and so on. Stereotypes are usually shown by attaching the stereotype name in guillemets
with the stereotyped element or shown using a user-defined icon. In the example figure, a class box is
used for a large-scale element called a Subsystem. To indicate that this is that special kind of element,
we attach the stereotype «subsystem» to the class box. Subsystems are discussed later in this chapter.

1.3.2.4 Generalization

The generalization relation in the UML means that one class defines a set of features that is either
specialized or extended in another. Generalization may be thought of as "is a type of" relation and
therefore only has a design-time impact rather than a run-time impact.

Generalization has many uses in class models. First, generalization is used as a means to ensure
interface compliance, much in the same way that interfaces are used. Indeed, it is the most common way
to implement interfaces in languages that do not have interfaces as a native concept, such as in C++.
Also, generalization can simplify your class models because a set of features common to a number of
classes can be abstracted together into a single superclass, rather than having to redefine the same
structure independently in many different classes. In addition, generalization allows for different
realizations to be used interchangeably. For example, one realization subclass might optimize worst-case
performance, while another optimizes memory size, while yet another optimizes reliability because of
internal redundancy.

Generalization in the UML means two things. First, it means inheritance—that subclasses have (at least)
the same attributes, operations, methods, and relations as the superclasses they specialize. Of course, if
the subclasses were identical with their superclasses, that would be boring, so subclasses can differ from
their superclasses in either or both of two ways: specialization or extension.

Subclasses can specialize operations or state machines of their superclasses. Specializing means that the
same operation (or action list on the statechart) is implemented differently than in the superclass. This is
commonly called polymorphism. In order to make this work, when a class has an association with
another that is a superclass, at run-time an instance of the first can invoke an operation declared in the
second, and if the link is actually to a subclass instance, the operation of the subclass is invoked rather
than that of the superclass.

This is much easier to see in the example presented in Figure 1-3. The class MsgQueue is a superclass,
and it defines standard queue-like behavior, storing Message objects in a FIFO fashion with operations
such as insert() and remove(). CachedQueue specializes and extends MsgQueue (the closed arrowhead
on the generalization line points to the more general class). The Communicator class associates with the
base class MsgQueue. If it needs to store only a few messages, a standard in-memory queue—that is, an
instance of MsgQueue—works fine. But what if some particular instance of Communicator needs to store
millions of messages? In that case, the instance can link to an instance of the CachedQueue subclass.
Whether Communicator actually links to an instance of MsgQueue or one of its subclasses is unknown to
the instance of Communicator. It calls the insert() or remove() operations as necessary. If the connected
instance is of class MsgQueue, then the correct operations for that class are called. If the connected
instance is of class CachedQueue, then the operations for that class are invoked instead, but the client of
the queue doesn't know which is invoked.

Figure 1-3. Polymorphism

24

It is common not to show inherited methods in the subclass unless they override (redefine) methods
inherited from the superclass, but this is merely a stylistic convention. Remember that a CachedQueue is
a MsgQueue, so everything that is true about the latter is true of the former, including the attributes,
operations, and relations. For example, CachedQueue aggregates zero or more Message objects and has
a composition relation to the class Semaphore because its superclass does. However, in this case, the
operations for insert and remove are likely to work differently.

For example, MsgQueue::insert() might be written as shown in Code Listing 1-3.

Code Listing 1-3: MsgQueue::insert() operation

void MsgQueue::insert(Message m) {
 if (isFull())
 throw OVERFLOW;
 else {
 head = (head + 1) % size;
 list[head] = m;
 };
 };

However, the code for the insert operation in the subclass must be more complex. First, note that the
subclass contains (via composition) two MsgQueues: one for input buffering and one for output buffering.
The CachedQueue::insert() operation only uses the MsgQueue instance playing the inputQueue role. If
this is full, then it must write the buffer out to disk and zero out the buffer. The code to do this is shown
in Code Listing 1-4.

Code Listing 1-4: CachedQueue::insert() operation

25

void CachedQueue::insert(Message m) {
 if (inputQueue->isFull()) {
 // flush the full queue to disk and then
 // clear it flush();
 inputQueue->clear();
 };
 inputQueue->insert(m);
 };

Similarly, the operations for remove(), getSize(), clear(), isEmpty(), and isFull() need to be overridden as
well to take into account the use of two internal queues and a disk file.

Note that in the UML, attributes cannot be specialized. If the superclass defines an attribute of time
sensedValue and it has a type int, then all subclasses also have that attribute, and it is of the same type.
Subclasses can also extend the superclass—that is, they can have new attributes, operations, states,
transitions, relations, and so forth. If you need to change the type of an attribute, you should use the
«bind» stereotype of dependency, discussed in Section 1.3.2.5.

The other thing that generalization means in the UML is substitutability. This means that anyplace an
instance of the superclass was used, an instance of the subclass can also be used without breaking the
system in any overt way. Substitutability is what makes generalization immensely useful in designs.

Figure 1-4 shows the previous queue example in a larger context. In this example, CachedQueue is still a
subclass of MsgQueue. We see that MsgQueue also has a composition relation to a semaphore to ensure
its integrity if it is called in the presence of multiple threads. We see the MsgQueue superclass has two
different kinds of clients: end user clients (who want to send and receive messages), which are types of
Communicating Object, and Communicators, which use the queue to do transmission and reception of the
queues. Both of these are abstract, which means that they define at least one operation for which they
do not supply a corresponding method. In C++ terms, they are pure virtual classes. The intended usage
of these classes is that a class that wants to be able to send and receive messages will subclass from
Communicating Object, and a class that wants to be able to use queues to perform transmission and
reception will subclass Communicator.

Figure 1-4. Generalization

26

1.3.2.5 Dependency

Association, in its various forms, and generalization are the really key relations defined within the UML.
Nevertheless, there are several more relations that are useful. They are put under the umbrella of
dependency. The UML defines four different primary kinds of dependency: Abstraction, Binding, Usage,
and Permission. Each of these may be further stereotyped. For example, «refine» and «realize» are both
stereotypes of the Abstraction relationship, and «friend» is a stereotype of Permission. All of these special
forms of dependency are shown as a stereotyped dependency (dashed line with an open arrowhead).

Arguably, the most useful stereotypes of dependency are «bind», «usage», and «friend». Certainly, they
are the most commonly seen, but there are others. The reader is referred to [1] for the complete list of
"official" stereotypes.

The «bind» stereotype binds a set of actual parameters to a formal parameter list. This is used to specify
parameterized classes (templates in C++-speak or generics in Ada-speak). This is particularly important
in patterns because patterns themselves are parameterized collaborations, and they are often defined in
terms of parameterized classes.

27

A parameterized class is a class that is defined in terms of more primitive elements that are referred to
symbolically without the inclusion of the actual element that will be used. The symbolic name is called a
formal parameter, and the actual element, when bound, is called an actual parameter. In Figure 1-5,
Queue is a parameterized class that is defined in terms of two symbolic elements: a class called Element
and an int called Size. Because the exact elements that these parameters refer to are not provided in the
definition of Queue, Queue is not an instantiable class; those undefined elements must be given
definitions. The «bind» dependency does exactly that—binding a list of actual elements to the formal
parameter list. In the case of MsgQueue, Element is replaced by the class Message, and the int Size is
replaced by the literal constant 1000. Now that the actual parameters are specified and bound,
MsgQueue is an instantiable class, meaning that we can create objects of this class at run-time.

Figure 1-5. Dependency

The diagram shows three common forms for showing the «bind» dependency. Form 1 is the most
common, but the other forms are prevalent as well.

The Usage relation indicates some element requires the presence of another for its correct operation. The
UML provides a number of specific forms, such as «call» (between two operations), «create» (between
classifiers, e.g., classes) , «instantiate» (between classifiers), and «send» (between an operation and a

28

signal). Of these, «call» is common, as well as an unspecified «usage» between components, indicating
that one component needs another because some of the services in one invoke some set of services in
the other.

The Permission relation grants permission for a model element to access elements in another. The
«friend» stereotype is a common one between classes, modeling the friend keyword in C++. «access» is
similar to Ada's use keyword, granting access of a namespace of one Ada package to another. The
«import» relation adds the public elements of one namespace (such as a UML package) into another.

1.3.3 Structural Diagrams

UML is a graphical modeling language, although, perhaps surprisingly, the notation is nonnormative for
the language. Nevertheless, there is a common set of graphical icons and idioms for creating these views
of the underlying model. We call these views "diagrams." UML has been unjustly criticized for having too
many diagram types—class diagrams, package diagrams, object diagrams, component diagrams, and so
on. The fact is that these are all really the same diagram type—a structural diagram. Each of these
diagrams emphasizes a different aspect of the model, but they may each contain all of the elements in
the others. A package diagram may contain classes, and a class diagram may contain objects, whereas a
component diagram might have objects, classes, and packages. In truth, the UML has a structural
diagram that we call by different names to indicate the primary purpose of the diagram.

We use diagrams for a number of different purposes: as a data entry mechanism, as a means to
understand the contents of the model, and as a means to discuss and review the model. The model itself
is the totality of the concepts in your system and their relations to one another. When we use diagrams
as a data entry mechanism, we add, modify, or remove elements to the underlying model as we draw
and manipulate the diagrams.

The most common diagrams you'll draw are the class diagrams. These diagrams emphasize the
organization of classes and their relations. The other aspects are drawn as needed, but class diagrams
provide the primary structural view.

In real systems, you really cannot draw the entire system in a single diagram, even if you use E-size
plotter paper and a 4-point font. As a practical matter, you must divide up your system into different
structural views (behavioral views will be described later). How, then, can we effectively do this? What
criteria should we use to decide how many diagrams we need and what should go on them?

In the ROPES process [3], we use a simple criterion for decomposing the views of the system into
multiple diagrams. The ROPES process introduces the concept of a mission of an artifact—its "purpose for
existence." For diagrams, the mission is straightforward: Each diagram should show a single important
concept. This might be to show the elements in a collaboration of objects or classes realizing a use case,
or a generalization taxonomy, or the contents of a package. Usually, every element of your model
appears in some diagram somewhere, but it is perfectly reasonable for it to appear in several diagrams.
For example, a class might be involved in the realization of three use cases (resulting in three different
diagrams), be a part of a generalization taxonomy, and also be contained in a package of your model. In
this case, one might expect it to appear in five different diagrams. It is also not necessary for all aspects
of the class to be shown in all views. For example, in the class diagrams showing collaborations, only the
operations and attributes directly involved in the mission of that collaboration would be shown; in a
diagram showing generalization, only the features added or modified by that class would be shown; in a

29

diagram showing the contents of the package that owns the class, you probably wouldn't show any
attributes or operations.

Which of the views is right? The answer is all of them. Just because a feature of a class or some other
element isn't shown doesn't mean or imply that the feature doesn't exist or is wrong. The semantics of
the class or model element is the sum of the semantic statements made in all diagrams in which it
appears. Indeed, you can define model elements without explicitly drawing them on diagrams at all. One
of the most valuable things that modeling tools provide over simple drawing tools is the maintenance of
the semantic information about the structure and behavior of your system.

Normally, you don't draw object diagrams directly. Most often, classes and class relations are drawn, and
these imply the possible sets of objects and their relations. If for some reason you want to depict
particular configurations of the run-time system, the object diagrams are the appropriate venue.

1.3.4 Big Things: Subsystems, Components, and Packages

Classes, objects, and interfaces are little things. It takes collaborations of many of them to have
systemwide behavior. Because of the complexity of today's systems, it is unusual to find a system that
can be effectively developed and managed without thinking about larger-scale structures. The UML does
provide a number of concepts to manage systems in the large scale, although most of the literature has
not effectively explained or demonstrated the use of these features. And, to be honest, the UML
specification does not explain them and how they interrelate very well either.

Since the focus of this book is architectural design patterns, we will use these concepts extensively in the
patterns that form the bulk of this book, so it behooves us to be clear and precise about these concepts
and how we'll apply them.

Packages are model elements that can contain other model elements, including other packages. Packages
are used to subdivide models to permit teams of developers to manipulate and work effectively together.
Packages cannot be instantiated and can only be used to organize models. They do define a namespace
for the model elements that they contain, but have no other semantics. The UML does not provide any
criterion as to whether a class should go in this package or that; it merely provides packages as a model
building block to aid in whatever organizational purpose the developer desires.

The ROPES process recommends that packages be used with a specific criterion: "common subject matter
or common vocabulary." This is similar to the Shaler and Mellor concept of a domain, and the ROPES
process uses the stereotype «domain» to indicate this particular usage of packages. Indeed the Layered
Architecture Patterns in Chapter 4 use «domain» packages to organize a model. This is a special case in
which the subsystem organization maps one-to-one to the package structure. However, packages can be
used to organize the application model in any desired way.

A package normally contains elements that exist only at design-time— classes and data types—but may
also contain use cases and various diagrams, such as sequence and class diagrams. These design pieces
are then used to construct collaborations that realize systemwide functionality. Packages are normally the
basic Configuration Items for a configuration management tool, rather than the individual classes. Figure
1-6 shows that packages are drawn to look like a tabbed folder and may optionally show the elements
that they semantically contain.

Figure 1-6. Packages

30

Subsystems are different animals, although in the UML 1.4 they are partially based on packages. A
Subsystem is a stereotype of both Package and Classifier. This makes subsystems instantiable, meaning
that you can create an instance of the type that occupies memory at run-time. A subsystem is used to
organize the run-time system consisting of instances; the criterion for inclusion in a subsystem is
"common behavioral purpose." The real work of a subsystem is implemented by the run-time instances
contained within the subsystem; the subsystem offers up the collaborative behavior of those elements.
Subsystems don't do any "real work" in and of themselves. The "real work" is done by what is sometimes
called the semantic objects of the system—the primitive objects that actually perform the bottom-level
functionality. A subsystem is at a higher level of abstraction of the system than these primitive semantic
objects, and this level of abstraction allows us to view and manipulate the structure and behavior of
complex systems much more easily.

Subsystems have three aspects: operation, specification, and implementation. The operations are the set
of services directly offered by the Subsystem.

31

Various notations for subsystems are shown in Figure 1-7. One notation shows the «subsystem»
stereotype of a package with segments for the specification and realization elements (a fork can be used
in lieu of the stereotype). However, because a Subsystem is also a subclass of Classifier, it is also
reasonable to show Subsystems as a stereotype of Class as well. And, in fact, this is a common way to
show subsystems—showing the run-time instances that do the real work of the subsystem as being
contained via the composition relation between classes, as shown at the bottom of the figure.

Figure 1-7. Subsystems

Like the metatype Class, a Component is also a kind of Classifier; it can have methods that realize
interfaces, have statecharts and use cases. It is used to represent the replaceable pieces of the system.
Typically, components have language-independent opaque [1] interfaces and may have «usage»
dependencies on other components. Components are coarse-grained elements that are usually replaced
as a whole in the application. Components usually fit into a component framework, such as COM+, CCM
(CORBA Component Model), or EJB. These component frameworks provide the means to load or unload
the components as needed and standard ways for components to find each and to invoke services on
them. As the UML 1.4 specification states, "There are only subtle differences between the semantics of
components and classes."

32

[1] By "opaque" we mean that the underlying implementation is not visible, just a way to
invoke the service.

So how, then, are components different from classes and subsystems? The answer is "usage." While
components are certainly larger scale than most classes, they differ from both subsystems and classes in
that they are used as replaceable building blocks. Components are often purchased, such as math
libraries, TCP/IP protocol stacks, or databases, or they may be specially constructed, such as
configuration tables or static or dynamic link libraries. In typical usage, they are also designed to work
within a specific component framework, and this is less true with subsystems. Finally, Component-Based
Development (CBD) approaches use the metaphor of construction through assembly (of existing parts)
rather than construction via invention. Where possible, CBD can provide a tremen-dous savings of effort
and time. That presumes, of course, that the component framework runs on your target hardware
environment, suitable components are available for you to purchase, and these components meet your
quality of service constraints, such as worst-case performance, memory size, and predictability.

Often, components and subsystems are mixed in with the deployment model, particularly for asymmetric
deployment architectures—that is, where the processor location of a component or subsystem is known
at design time. Nodes are the only three-dimensional icon in the UML notation and represent the
hardware environment on which one or more software entities run (the «processor» node stereotype) or
a piece of hardware that is just used but doesn't itself execute software that you write (the «device»
node stereotype). Figure 1-8 shows components with the «usage» stereotype. In the figure, the
components are placed on processor nodes, but this isn't necessary. Note also the stick figure in Figure
1-8. This is called an actor. An actor is an object that is outside the scope of concern but interacts with
the element under development in ways that we care about. We will see actors used more extensively
later in the section about use cases and requirements modeling.

Figure 1-8. Components

33

While the concepts of System, Subsystem, and Component are sufficiently flexible to support most any
organizational schema you would like to employ, I generally find it useful to use these concepts in a
particular sizing. The System (shown with the «system» class stereotype) represents the entire system
under development. The largest-scale pieces of the System are «subsystem» objects. Subsystems may in
turn contain Components. Components may contain multiple threads, modeled with «active» objects. And
the passive or semantic objects that do the real "work" of the system run within the «active» objects. For
really large projects, you may have all of these levels and perhaps even multiple at one or more levels—
for example, you may have multiple layers of subsubsystems before you get to the Component level. For
simpler systems, you may not require all of these levels. You might skip Subsystem level and just have
Components. You may even find that for very simple systems, you need only the System, «active»
objects, and semantic objects. Your mileage may vary in terms of how you apply these concepts, but I
have found this a useful way to use the organizational concepts in practice. This size hierarchy is shown
in Figure 1-9.

Figure 1-9. System, Subsystem, Component, and Active Objects Organized by Size

34

1.4 Behavioral Elements and Diagrams
What we've discussed so far is the definition of structural elements of the system: classes and objects (in
the small) and systems, subsystems, and components (in the large). As developers, we are usually even
more concerned about how these structural elements behave dynamically as the system runs. Behavior
can be divided up into two distinct perspectives: how structural elements act in isolation and how they
act in collaboration.

In the UML metamodel, ModelElements are the primary structural elements that have behavior.
Classifiers (which are types of ModelElements) also have BehavioralFeatures, specifically Operations, and
the realization of operations, Methods. In practice, we are primarily concerned with the specification of
the reactive behavior of only certain Classifiers (classes, objects, subsystems, components, and use
cases) and certain other ModelElements (Actions, Operations, and Methods).

1.4.1 Actions and Activities

An action is "a specification of an executable statement that forms an abstraction of a computational
procedure that results in a change in the state of the model, and can be realized by sending a message to
an object or modifying a link or a value of an attribute" [1]. That is, it is a primitive thing, similar in
scope to a single statement in a standard source-level language, such as "++X" or "a=b+sin(c*PI)". The
UML 1.4 specification identified a number of different kinds of actions such as the following.

• CreateAction— action that results in the creation of an instance
• CallAction— action that results in the synchronous invocation of an Operation or Method
• ReturnAction— action that results in the synchronous return of control to a caller Operation,

Method, or Action
• SendAction— action that results in the asynchronous transmission of an event
• TerminateAction— action that terminates the behavior of an ActionSequence
• DestroyAction— action that results in the destruction of an instance

35

• UninterpretedAction— action that does something unspecified
• ActionSequence— action that has parts, each of which is an action

Actions are normally computationally simple things and, by far, are most commonly represented using an
action language. The UML does not define an action language because most developers want to use the
implementation source level language for the action language. That is, almost all of the time, actions in a
UML model are provided in the implementation language of that system. A more abstract action language
is possible, providing the ability to generate code in multiple target languages, but the UML does not
define one.

Actions have "run-to-completion" semantics, meaning that once an action is started, it will run until it is
done. This does not mean that an action cannot be preempted by another action running in a higher-
priority thread, only that when the context executing that action returns from preemption, it will continue
executing that action until it is complete. This means that if an object is executing an action, that action
will run to completion even if that object receives events directing it to do something else. The object will
not accept the incoming events until the action has completed.

An Activity is an action that runs when a Classifier is in a state and is terminated either when it is
complete or when the Classifier changes state. That is, Activities do not have run-to-completion
semantics. An object executing an activity may receive an event that triggers a transition, exiting the
state and terminating the activity. Thus, the UML allows the modeling, at a primitive level, both
interruptable and noninterruptable behaviors.

1.4.2 Operations and Methods

An Operation is a specification of an invocable behavior of a Classifier, whereas a Method is the
implementation of an Operation. That is, an Operation is a specification of a Method. Operations are
synchronously invoked and are logically associated with CallEvents in the UML metamodel. Operations
have typed parameter lists, as you might expect, and can return typed values. It is common to use an
operation call as an action on a state behavior.

Modeling of the behavior of an operation is done primarily in two ways. First, and most common, is to
simply list, in a textual fashion, all of the actions comprising the internals of the operation or method. The
second, which will be described shortly, is to model the operation with a synchronous state machine or
with an activity diagram.

1.4.3 Statecharts

A finite state machine (FSM) is a machine specified by a finite set of conditions of existence (called
"states") and a likewise finite set of transitions among the states triggered by events. An FSM constrains
the behavior of a model element by explicitly stating which events are handled for each of the states of
that element, as well as what actions are performed under what conditions.

Actions, such as the invocation of an operation, may be specified to be executed when a state is entered
or exited, or when a transition is taken. The order of execution of actions is exit actions of the
predecessor state, followed by the transition actions, followed by the entry actions of the subsequent
state.

36

The UML uses statecharts as its formal FSM representation because of their expressiveness and
scalability. Statecharts have these notable improvements over "classical" Mealy-Moore FSMs.

• Nested states for specifying hierarchical state membership
• And-states for specifying logical independence and concurrency
• Pseudostates for annotating commonly needed specific dynamic semantics

Figure 1-10 shows some of the basic elements of a statechart—basic or-states and transitions—as well as
a few less elementary concepts, including nested states and conditional, initial, and terminal
pseudostates.

Figure 1-10. Simple Statechart

Transitions are arrowed lines coming from a predecessor state and terminating on a subsequent state.
Transitions usually have the optional event signature and action list. This is the basic form of an event
signature.

 event-name '('parameter-list')' '['guard']' '/' action-list

The event-name is simply the logical name of the event class that may be sent to an instance of the
Classifier at run-time, such as "Send" or "tm" in Figure 1-10. The UML defines four distinct kinds of
events that may be passed or handled.

• SignalEvent— an asynchronously sent event
• CallEvent— a synchronously sent event

37

• TimeEvent— an event due to the passage of an interval of time (most common) or arrival of an
epoch

• ChangeEvent— a change in a state variable or attribute of the Classifier

Asynchronous event transfer is always implemented via queuing of the event until the Classifier is ready
to process it. That is, the sender "sends and forgets" the event and goes on about its business, ignorant
of whether the event has been processed. Synchronous event transfer executes the state processing of
the event in the thread of the sender, with the sender blocked from continuing until that state processing
is complete. This is commonly implemented by invoking a class method called an event handler that
executes the relevant part of the state machine, returning control to the sender only when the event
processing is complete.

Events may have parameters, which are typed values accepted by the state machine that may then be
used in the guard and actions in the processing of the event. The statechart specifies the formal
parameter list, while the object that sends the event must provide the necessary actual parameters to
bind to the formal parameter list.

Time events are almost always relative to the entry to a state. A common way to name such an event
(and what we will use here) is "tm(interval)," where "interval" is the time interval parameter for the
timeout event. If the timeout occurs before another specified event occurs, then the transition triggered
by the timeout event will be taken. If another event is sent to the object prior to the triggering of the
timeout, then the timeout is discarded. If the state is reentered, the timeout interval starts over from the
beginning.

If a transition does not provide a named event trigger, then it is activated by the "completion" or "null"
event. This event occurs either as soon as the state is entered (which includes the execution of entry
actions for the state) or when the activities complete, if the state declares activities to be executed.

A guard is a Boolean expression that returns only TRUE or FALSE and does not have side effects. If a
guard is specified for a transition, then if the event trigger (if any) occurs, then the transition will be
taken if and only if the guard evaluates to TRUE. If the guard evaluates to FALSE, then the triggering
event is quietly discarded.

The action list for the transition is executed if and only if the transition is taken. That is, the named event
is received by the object while it is in the predecessor state, and the guard, if any, evaluates to TRUE.
The entire set of actions—that is exit actions, transition actions, and entry actions—is executed in that
order and is executed using run-to-completion semantics, as noted previously.

In addition to entry and exit actions, states may also have activities that, as noted previously, are actions
that may be interrupted by incoming events that trigger named reactions in the specified state.

Figure 1-11 shows an important additional concept in statecharts: and-states. While or-states are disjoint
and exclusive, and-states are disjoint but not nonexclusive. Given a set of or-states, the object must be
in one and only one or-state in a state context. Given a set of and-states, the object must be in every
active and-state simultaneously. In Figure 1-11, the object only has a single high-level state: Operating.
The Operating state, however, has two and-substates: Processing and Testing. The fact that these are
and-states is denoted with the dashed-line separating them. This means that while in the Operating
state, the object must be in both Processing and Testing state. Since each of these two substates have
sub-or-states, any combination of a single or-state from each of the two and-states is semantically

38

correct. For example, the object could be in Idle and Checking or Handling and Controlling at the same
time. This is, of course, logically concurrency, albeit concurrency "in the small."

Figure 1-11. And-States

When the and-states are truly independent, life is pretty easy and care-free. However, just as in other
kinds of concurrent systems, when the and-states are not completely independent, life can be complex.
The figure shows a couple of common ways that and-states can communicate and synchronize with each
other. The first is via the use of guards. The evDataReady event is guarded by the condition
"[IS_IN(Waiting)]." The IS_IN operator only returns TRUE when the other and-state is currently in the
specified state.

Another common means for and-state synchronization is called "propagation of events," in which one
and-state generates an event that is then processed by the other and-state. We see that the transition
with the event trigger "evBad" generates an event "evAbort" that is used in the upper and-state. The way
to think about event processing with and-states is to imagine that each active and-state receives its own
individual copy of each event received by the object and is free to act on or discard that event as
appropriate. It is common for multiple and-states to respond to the same event sent to the other, each
independently.

As mentioned previously, there are special annotations or marks used in statecharts for specific purposes.
These are collectively known as pseudostates. Psuedostates are most certainly not states because the
object can't "rest" at a pseudostate as it can with a state. Nevertheless, pseudostates provide a broad set

39

of capabilities to statecharts that are difficult to replicate with only states and transitions. The most
common pseudostates are shown in Figure 1-12.

Figure 1-12. Pseudostates

The UML defines a number of different pseudostates, as shown in Figure 1-12. We've already seen some
of these, but others have not yet been introduced. Here are some brief descriptions.

• Branch or Conditional [2]

[2] This pseudostate was removed in the 1.3 revision of the UML after it was noted
to be just a kind of the junction pseudostate. However, since it is still widely used
in tools, I have continued to use it here.

The branch pseudostate indicates a set of possible target or-states, at most one of which will be
selected on the basis of a guarding condition. The branch pseudostate is nothing more than a
junction with guards on exiting transition segments. However, it was called out in previous
versions of the UML with a special icon (either a © or a small diamond) and is still indicated using
an independent icon by many modeling tools, so it is separately identified here.

• Terminal or Final

The final state indicates that the enclosing composite state is terminated. If the final state
appears in the outermost level of nesting, it indicates that the object no longer accepts any
event, usually because it is about to be destroyed.

• Synch

A synch pseudostate is a kind of queue holding logical (that is, "colorless") tokens and is used as
a kind of guard between and-states. A transition may fork into one state and a synch
pseudostate. When this transition is taken, it "deposits" a token into the synch pseudostate. In a
transition from the synch, pseudostate terminates on a join in another and-state and acts like a

40

guard on that transition. When the synch state contains one or more tokens, the guard is TRUE
and the guarded transition can be taken, and when it does, one token is removed from the synch
pseudostate.

• Fork

A connector that branches into multiple transitions, each entering a different and-state from a
single input transition. This is not the same as a branch because in a branch only a single
transition activates; in a fork, all outgoing transition segments activate.

• Join

A connector that joins together multiple incoming transitions from peer and-states into a single
transition. This is not the same as a merge. (And-states are discussed in the previous section.)

• Choice Point

A choice point is a kind of junction that executes its action list before going on to the next
transition segment. This allows actions bound to the first transition segment to execute prior to
the evaluation of subsequent guards.

• Shallow History

This pseudostate indicates that the default state of a composite state is the last state visited of
that composite state, but not including nested substates (their defaults still apply).

• Deep History

This pseudostate indicates that the default state of a composite is the last state visited of that
composite state, including substates nested arbitrarily deeply.

• Initial or Default

Within a superstate context, the initial pseudostate indicates which substate is initially entered as
a default. The initial substate may be overridden, either by transitioning directly to a substate or
with the history pseudostate.

• Junction

Vertices used to join together multiple transitions or to divide a transition into a set of sequential
transition segments. Regardless of the number of transition segments connected, they all execute
in a single run-to-completion step.

• Merge Junction [3]

[3] The merge pseudostate is also just a kind of junction and was removed from
the UML metamodel.

41

A junction in which multiple incoming transitions can be joined together to create a single
transition entering an or-state. This is used as shorthand, particularly when multiple transitions,
triggered by different events, share a common action list and/or guard and a common target
state.

• Stub

A stub pseudostate is basically a "diagram connector" linking a state machine transition
appearing on one diagram to one appearing on another. For example, when a transition enters a
substate of a composite state, but the details of that composite state are shown on a different
statechart, then the transition "enters" a stub state on the primary statechart and "leaves" the
stub state on the submachine statechart.

For a more in-depth discussion of statecharts and pseudostates, see [2].

1.4.4 Activity Charts

Activity charts are a specialized form of statecharts in that they share a common underlying semantic
metamodel, although this is likely to change in UML 2.0. The notation for activity charts is reminiscent of
flowcharts (as seen in Figure 1-13), which is basically what an activity chart is: a concurrent flow chart.
In usage, activity charts are used to model sequential and concurrent control flow, when control flows
from state to state primarily on the basis of completion of the previous work rather than on the basis of
the reception of external events. In the figure, you can see the states have entry and exit actions, as
normal states do, but primarily control flows from one state when the actions in it are complete. While
you can name the event transitions, just as you can in statecharts, you can also use special symbols,
such as the event reception state and event transmission state to show the cases where event reception
and transmission occur.

Figure 1-13. Activity Chart

42

In practice, statecharts are used to model the reactive behavior of classes and use cases when they
proceed via the reception of events. Activity charts are used to model control flow behavior of operations,
use cases, and, less often, classes. For this reason, a common use of activity charts is to show
computational algorithms.

1.4.5 Interactions

In the previous section, we saw how the behavior of individual classifiers, such as classes and use cases,
can be modeled using statecharts and their close cousin, activity charts. In this section, we will see how
the UML models the collaborative behavior of multiple entities working together. Collectively known as
interactions, collective behavior concerns itself with the (partially) sequenced exchange of messages
(which may be events, operation calls, or instance creation/destruction actions), among a possibly large
set of interacting objects.

43

There are two diagrammatic forms in the UML for depicting interactions: collaboration diagrams and
sequence diagrams. Collaboration diagrams are basically object diagrams with messages shown with
numbers. One such collaboration diagram, depicting a scenario for a Jolt Cola machine, is shown in Figure
1-14.

Figure 1-14. Collaboration Diagram

You can see that the collaboration diagram shows both the structure of the objects in the collaboration
and the ordered set of messages in the scenario. The difficulty with collaboration diagrams is equally
apparent: Because sequence is shown with numbers, finding the next message in the sequence involves
some searching. For this reason, collaboration diagrams are used less than the other kind of interaction
diagrams— sequence diagrams—which we describe next.

The next figure, Figure 1-15, shows the very same scenario, but instead as a sequence diagram. As
previously mentioned, sequence diagrams are more commonly used than collaboration diagrams, even
though they show basically the same information. The reason is that sequence diagrams emphasize
sequence over structure, so it is very easy to find the "next" message—it is the message following the
current one in the diagram. Time goes down the page but not usually linearly. That is, further down

44

implies later in time, but 2 cm at one place in the diagram does not imply the same amount of time as 2
cm somewhere else on the diagram. Sequence diagrams can be made linear by attaching a time line
"ruler" along one edge, but more commonly timing constraints are added. Two common forms for timing
constraints are shown in Figure 1-15, as indicated by callouts.

Figure 1-15. Sequence Diagram

The vertical lines, called "lifelines," represent the object (or object role). Objects (or object roles) can
both send and receive messages. Messages are shown by the arrowed lines going from one lifeline to
another.

There are many annotations that are commonly added to sequence diagrams to show various things, but
they are beyond the scope of this book. Interested readers are referred to [1] or other books on the UML.

A note on ordering in interactions is appropriate here. Most UML users, even experienced ones, are
surprised to learn that interactions are only partially ordered. They expect that if a message begins or
terminates below another, then it comes after the other in absolute time. However, this is not quite true.
Sequence diagrams have concurrency semantics.

For example, does message A precede B in Figure 1-16? The answer is, We don't know. If all of the
objects are concurrently running, they may be running in different locations. The diagram does not give
enough information to determine whether message A actually precedes B, which is the common
interpretation. Most people using sequence diagrams conclude that A precedes B because they implicitly
assume nonconcurrent semantics in the system. In the presence of concurrency, we don't know, or care,
which comes first.

45

Figure 1-16. Sequence Diagram

The situation is even a bit more complex than that. Let us assume that two events are associated with
each message: a send event and a receive event. On a single processor with objects in the same thread
using a synchronous rendezvous, we can collapse the message into a single event, but in general we
must assume the possibility of distributed objects running in different threads. We can assume that the
send precedes the receive, which removes half of the possibilities. The remaining possible orderings are
as follows.

 A.send -> A.receive -> B.send -> B.receive
 A.send -> B.send -> A.receive -> B.receive
 A.send -> B.send -> B.receive -> A.receive
 B.send -> B.receive ->A.send -> A.receive
 B.send -> A.send -> B.receive -> A.receive
 B.send -> A.send -> A.receive -> B.receive

These are all equally valid interpretations of Figure 1-16.

Looking at the rest of the sequence diagram, what else can we say about it? Quite a bit, although not as
much as might be intuitive. For example, we can say not only that C.send precedes C.receive but we can
also say that C.receive precedes D.send because along a single lifeline, events are fully ordered. So we
know that the following orderings are determined.

46

C.send -> C.receive -> D.send -> F.send -> F.receive
 D.send -> D.receive -> E.send -> E.receive

But we can say nothing about the orderings of [F.send, E.send] and [F.receive, E.receive]. When
desirable, you can add a constraint {fully order} to a set of messages to indicate that the intuitive
interpretation is in fact the correct one. This is shown in the bottom half of the figure. The constraint is
applied between the set of partition lines, denoting that the proper interpretation of the ordering of those
messages is as follows.

 G.send -> H.send -> G.receive -> H.receive -> J.send -> J.receive
 -> K.send -> K.receive -> L.send -> L.receive -> M.send
 -> M.receive

1.5 Use Case and Requirements Models
A use case is an explicitly named capability of a system or large-scale element of a system. It is a
functional aspect of the system that must return a result to one or more actors, and it should not reveal
or imply anything about the internal implementation of that functionality. A use case is a placeholder for
potentially many specific detailed requirements. The use case may be thought of as a "bag" that in some
sense "holds" or contains a coherent, cohesive set of detailed requirements around the capability. Use
cases are commonly applied to systems, of course, but in large-scale applications, to subsystems and
components as well.

There are two different kinds of requirements typically applied against a system or system element:
functional requirements and so-called non-functional or Quality of Service (QoS) requirements. Functional
requirements refer to what the system needs to do, as in "The system shall maintain the attitude of the
spacecraft." QoS requirements refer to how well the functional aspects are to be achieved, as in "The
system shall maintain the attitude of the spacecraft within two degrees of roll, pitch, and yaw from the
control settings."

Use cases are represented as ovals that associate with actors, indicating that the realizing collaborations
interact in meaningful ways with those specified actors. In addition, use cases may relate to other use
cases, although the novice modeler is cautioned against overuse of these relations. [4] The three relations
among use cases are generalization (one use case is a more specialized form of another), includes (one
use case includes another to achieve its functional purpose), and extends (one use case may optionally
add functional aspects to another). An example use case diagram is shown in Figure 1-17.

[4] In my experience, it is all too easy to use the use case relations in a misguided
attempt to functionally decompose the internals of the system, which is not the point. The
purpose of use cases is to define the functional behavior of a system, subsystem, or other
large-scale classifier in an implementation-free way.

Figure 1-17. Use Cases

47

Since a use case provides little more than a name and relations to actors and other use cases, the
detailed requirements must be captured somewhere. The ROPES process refers to this as "detailing the
use case." There are two complementary approaches to detailing use cases: by example and by
specification. In both cases, however, the internals of the structure of the system cannot be referred to,
since the requirements should be captured in an implementation-free manner.

The most common use of use cases is to capture requirements for systems, but it can be used on any
nonprimitive piece of the system as well. It is common for complex large-scale systems, such as aircraft
or automobiles, to also apply use cases to the subsystems as well. This is especially true when the
subsystems are to be developed by independent teams and especially when they are geographically
separated from the rest of the developers.

1.5.1 Capturing Black-Box Behavior Without Revealing Internal Structure

Use cases may be thought of as "bags" that contain related detailed requirements. These requirements,
as mentioned previously, may be a combination of functional and QoS requirements. These details are
captured in one or both of two ways: scenario modeling or specification.

Scenario modeling of use cases involves the creation of sequence diagrams that capture different
scenarios of the use case. Each scenario captures a very specific system-actor interaction. These
scenarios capture messages sent to the system from the actors and from the system to the actors, as
well as the allowable set of sequences of such messages.

48

When doing scenario modeling, it is important to remember the purpose is to capture requirements, not
to functionally decompose the internals of the system. Therefore, for requirements scenarios, the only
classifiers that may appear are the system actors and the system or the use case, not pieces internal to
the system. In the case of subsystem use cases, the peer subsystems are treated as actors to the
subsystem of concern.

The other approach to requirements capture is via specification. The specification may be done via the
"Victorian novel" approach—by entering "shall" textual statements in the description of the use case. The
other approach is to use a formal behavioral specification language, such as statecharts or activity charts,
to define all possible scenarios. When statecharts are used in this way, messages from the actors are
represented as events on the statechart, while messages from the system to the actors are shown as
actions on the statechart.

1.6 What Is a Design Pattern?
A design pattern is a generalized solution to a commonly occurring problem. What problems do design
patterns solve? Well, the ROPES process defines analysis as identification of the essential properties of
the system, such that if the delivered system does not have those properties, it is incorrect or
incomplete. Design, on the other hand, is all about optimization. The hard part about design is that there
are so many things to optimize and so little time. A design model differs from an analysis model in that it
contains aspects that are not required but are included to make the system work better in some way. The
following are some of the ways a design may optimize an analysis model.

• Performance
o Worst case
o Average case

• Predictability
• Schedulability
• Minimize resource requirements

o Memory
o Heat
o Weight

• Reusability
• Portability
• Maintainability
• Readability
• Extendability
• Development time/effort
• Safety
• Reliability
• Security

Now the really hard part of design is that you typically must optimize against many or all of these aspects
simultaneously. The system QoS requirements ultimately drive the design because the QoS requirements
specifically state which of these aspects are most important and the specific acceptance criteria for what
is "optimal enough." To optimize all of these at once, we must rank them in order of importance to the
success of the project and product. In some systems, safety and worst-case performance may be crucial,
whereas reusability and security are relatively unimportant. In other systems, time to market and

49

portability may be much more important than performance issues. Thus, a good design optimizes the
analysis model with all of the important QoS aspects ranked in accordance to their importance to the
success of the project or product.

Since design is all about optimization, design patterns are all about optimization, too. They optimize
some aspect of the system in some way while deoptimizing it in some other ways. As designers, it is our
job to determine which set of patterns form a "best fit" of all the possibly conflicting design optimization
criteria.

A pattern consists of three important aspects. First, there is the Problem. This is a statement of the
aspect of design that the pattern is meant to address—that is, the specific optimization or QoS aspect
solved by the pattern. Next, there is the Solution. This is the pattern itself. The pattern is shown as a
structural (class) diagram with the roles indicated. Finally, there are the Consequences. Since a pattern
optimizes some aspects over others, it is important to understand the negative as well as the positive
aspects of the pattern because optimizing one aspect almost universally means deoptimizing some other
aspect. In addition, each pattern is presented with an Example to show how the pattern might be applied
to a problem in the real-time and embedded domain.

Another way to look at a design pattern is as a parameterized collaboration. A collaboration is a set of
classifier roles working together to achieve a higher-level purpose, such as the realization of a use case.
A design pattern is parameterized in the sense that it defines a set of roles that will be ultimately played
by objects that you create in the specific application. The pattern defines a structure and a set of
supporting behaviors that optimizes how that structure collaborates.

Most design proceeds largely through the application of design patterns. Design patterns may be applied
at different levels of scope. Architectural patterns affect most or all of the system—that is, architectural
patterns are broadly and strategically applied to the system. This book concerns itself with architectural
patterns of particular relevance to real-time and embedded systems. Architectural patterns are typified
by patterns such as those to be found in [4]. There are also patterns more local in scope, such as those
in the class GoF (Gang of Four) reference [5]. We call these mechanistic design patterns because they
define mechanisms for object collaborations. Such patterns have a much more limited scope—a single
collaboration. Mechanistic design patterns are not discussed in this book.

The ROPES process (see Chapter 3) identifies these five primary aspects of architecture.

• Large-scale organization
• Concurrency and resource management
• Distribution across multiple address spaces
• Safety and reliability aspects
• Mapping of the other aspects onto the underlying computing platform(s)

A system model embodies all of these aspects. It is possible to create diagrams that depict these aspects
in isolation from the others. We refer to these as architectural views. This book is organized around those
five architectural views and presents patterns that optimize different aspects of each of these views.

The first view is called the Subsystem and Component View. It consists of ways of organizing the system
at a high level to optimize how these large-scale pieces work together, how they are constructed, or how
they are managed. These patterns are discussed in Chapter 4.

50

The next view has to do with the management of task threads and finite resources. Because this is so
important for real-time and embedded systems, three chapters are devoted to this topic. Chapter 5
discusses patterns for the identification and scheduling of task threads. Chapter 6 focuses on patterns
that optimize the use of memory, including allocation and deallocation. Chapter 7 deals with policies for
effective use and sharing of resources when contention is a serious concern.

The next aspect of design is how objects are distributed across multiple address spaces and possibly
remote computers. This includes the policies and procedures for objects to find each other and
collaborate. This aspect includes communications protocols. Chapter 8 provides a number of patterns
useful for real-time and embedded systems. This chapter includes some different deployment patterns to
optimize the allocation of software to the underlying computing hardware.

The last chapter focuses on the problems of safety-critical and high-reliability systems. There are a
number of ways that different aspects of safety, reliability, and cost can be played against each other,
and that is the topic of Chapter 9.

It is not only common but practically required that you will mix architectural patterns from most or all of
these views. A particular system may not have any special concerns around—say, Safety or Distribution—
but most systems will require optimization (and hence pattern application) in most or all of these aspects.

References
[1] OMG Unified Modeling Language Specification Version 1.4, Needham, MA: Object Management Group,
2001.

[2] Douglass, Bruce Powel. Real-Time UML, 2nd Edition: Developing Efficient Objects for Embedded
Systems, Boston, MA: Addison-Wesley, 2000.

[3] Douglass, Bruce Powel. Doing Hard Time: Developing Real-Time Systems with UML, Objects,
Frameworks and Patterns, Reading, MA: Addison-Wesley, 1999.

[4] Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. A System of Patterns: Pattern-
Oriented Software Architecture, New York, NY: John Wiley and Sons, 1996.

[5] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software, Reading, MA: Addison-Wesley, 1995.

51

Chapter 2. Architecture and the UML
This chapter discusses the following.

• The definition of architecture
• Logical architecture
• Physical architecture
• The Five Views of architecture

o Subsystem and Component View
o Concurrency and Resource View
o Distribution View
o Safety and Reliability View
o Deployment View

• Implementing architectures
o Model-driven architecture
o Creating architectural elements

2.1 Architecture
There are many ways to define the term architecture. We will define it in a specific way here and use it as
a basis for capturing patterns for the main part of this book. Architecture is defined as the set of strategic
design decisions that affect most or all of the system. The differentiation from other (smaller-scale)
design decisions has to do with the scope of the decision being made. Whether to make an association for
one particular class a pointer or a reference is not, by this definition, an architectural decision.
Architecture normally refers to the structural organization of systems and only implicitly refers to
behavioral aspects. We are concerned with architecture in this book because we want to identify
structural organizational patterns that have various properties that we find useful.

Architecture is a part of design. As we will see in the next chapter, design differs from analysis. Analysis
is defined to be the specification of the essential aspects of a system—that is, those aspects without
which the system is considered to be incorrect or incomplete. Analysis is driven by the functional
requirements of the system or what the system needs to accomplish. Many different designs can be used
to implement the same analysis model. The criteria that we use to select one design over another is how
well the implementation works—how quickly, how predictably, how reliably, how safely, how reusably,
and so on. These aspects are collectively referred to as qualities of service (QoS). In some systems,
worstcase performance and safety are the most important aspects of a good design, and that drives the
developer to certain design solutions. In other systems, distributability across many platforms and
reusability are more important, driving that developer to different design solutions. Architecture is a part
of design because there are many designs that could be used to implement an analysis model, so it is
not, in that sense, essential. A good architecture is at least approximately optimal in terms of the various
QoS properties of the system.

What makes design hard is that many of the desired or required QoS aspects may be conflicting. For
example, you might strongly desire that the system be optimal in terms of worst-case performance. On
the other hand, you may also need to make the system highly reusable. These properties are usually at
odds with each other, and a good design strikes the right balance between opposing design concerns. In
fact, a good design optimizes the importance-weighted sum of all the desired or required QoS aspects of
the system. If you think of each QoS aspect as an inde-pendent feature with its relative importance as a

52

weighting factor, then a good design finds a nonlinear optimal sum among all these independent aspects.
In other words, a good design finds the minimum

where Weightj refers to the relative importance of the associated jth QoSFeature.

The ROPES [1] process is discussed in more detail in Chapter 3. For now, just understand that it is an
iterative approach to systems development in which architecture plays a crucial role. Figure 2-1
highlights the parts of the ROPES spiral model where architecture is of particular relevance.

[1] Rapid Object-oriented Process for Embedded Systems

Figure 2-1. ROPES and Architecture

2.2 Logical and Physical Architecture
The ROPES process defines two fundamental kinds of architecture: logical and physical. The logical
architecture refers to the organization of things that exist only at design time—that is, the organization of
classes and data types. Logical architecture is concerned with how models are themselves organized, and
this organization can be simple or very complex, depending on the needs and structure of the team(s)
using it. The logical architecture is unrelated to the organization of the system at run-time, although one
of the logical architecture patterns is to mirror the physical architectural structure. Figure 2-2 shows the
roles of logical and physical architectures.

Figure 2-2. Logical and Physical Architecture

53

Although Systems Engineering is in the analysis phase of the spiral, it really focuses on system design.
Systems Engineering is an optional phase in the ROPES process and is included either when there is
significant hardware/software codesign or when the system is complex enough to be broken across
multiple teams. Systems Engineering is placed in the analysis phase because in complex systems,
analysis often must take place at the subsystem level of abstraction as well as at the system level.
However, to be effective, there must be an overall run-time structure into which those smaller analysis
efforts will fit. A high-level subsystem model provides exactly that.

In the Systems Engineering phase, the primary work activities are as follows.

• Identification of the high-level subsystems and their relations
• Mapping the system-level requirements (captured as system level use cases) to subsystems (as

subsystem-level use cases)
• Specification of subsystem interfaces
• Detailing of multidisciplinary algorithms—that is, algorithms met by a combination of hardware

and software

Systems Engineering phases exist so the different teams can go off and work more or less independently
within a well-defined framework into which their subsystem will ultimately fit. For this to occur, a high-
level run-time architecture must be in place, with well-defined interfaces among those elements. That is
the primary job for Systems Engineering.

Architectural design work primarily is done, naturally enough, in the architectural design part of the
design phase. Here, strategic design decisions are made in each of the five views (or four views, if the
subsystem architecture is already defined in the Systems Engineering part). These views will be detailed
in the next section.

The last place where architecture is a primary concern is the integration and test phase. In this phase,
pieces of the architecture are brought together in an incremental fashion to construct the system
prototype. This is primarily a test of the architecture and the interfaces of the architectural pieces.

For the most part, architecture is done through the application of architectural design patterns, as we'll
discuss in the next chapter. A design pattern, as we will see, is a generalized solution to a commonly

54

occurring problem. Design patterns have three primary parts: a problem to be solved, the solution (the
pattern), and a set of consequences. With architectural design patterns, the problem to be solved is
always based in optimizing some small set of QoS properties at the expense of others. Certain patterns
optimize safety but do so by increasing recurring cost or complexity. Other patterns enhance reusability
but at the expense of average execution time. Still others optimize predictability of execution time at the
expense of optimal worst-case execution time.

Patterns can be mixed and matched as necessary, although clearly some mixes won't make any sense. It
is common, for example, to mix a pattern for primary subsystem organization with another pattern for
allowing distributed objects to communication and another pattern for concurrency management and
another pattern for fault management and still another pattern for mapping to the underlying hardware.
This gives rise to the notion of different aspects of architecture. The complete architecture of the system
is the melding together of all the architectural patterns used. In the ROPES process, we identify five
different views of architecture. It is common to have at least one pattern from each (and in some cases,
more than one pattern in each) mixed together to form the complete system architecture.

2.2.1 Logical Architecture

There are many possible logical architectures—that is, ways to organize your design model. The ROPES
process recommends a logical architecture based on the concept of domains. A domain is an independent
subject area that generally has its own vocabulary. The use of the term domain in this way is similar to
its use in [1]. Domains provide a means by which your model can be organized—partitioned into its
various subjects, such as user interface, hardware, alarm management, communications, operating
system, data management, medical diagnostics, guidance and navigation, avionics, image reconstruction,
task planning, and so on.

Used in this way, a domain is just a UML package. UML packages contain model elements, but other than
providing a namespace, packages have no semantics and are not instantiable. [2] The UML does not
provide a criterion for what should go in one package versus another, but domains do. For this reason,
we represent domain as a «domain» stereotype package that includes a mission, specifically "hold classes
and types around the common subject matter." The use of domains does not dictate how objects will be
organized and deployed at run-time but what the physical architecture is all about.

[2] In other words, you cannot create an instance of a package at run-time. Packages are
a purely design-time organizational concept.

Figure 2-3 shows a typical domain diagram—a package diagram that shows the relations of the domains
themselves and the classes within the domains. In the figure, we see that the alarm domain contains
classes around the concept of alarm management: a couple of types of alarms, an alarm manager, and
an alarm filter policy class. The alarms must be displayed in a list, so the alarm manager associates with
a text list class that is a user interface element and so is found in the user interface domain. Alarms
themselves are displayed as text, so the alarm class (in the alarm domain) associates with the text class
in the user interface domain. Alarms must also be annunciated, so the alarm manager associates with the
speaker class in the hardware domain. Also, the user needs to be able to acknowledge and silence the
alarm, so the alarm manager associates with a button class from the hardware domain.

Figure 2-3. Logical Domain Architecture

55

Domains are often arranged in one-way dependency hierarchies, as shown in Figure 2-4. The more
abstract (closer to the problem space) domains depend on the more concrete (closer to the hardware)
domains. This can be represented using dependencies from the more abstract to the more concrete
domains. This manifests itself in primarily one-way associations from classes in the more abstract
domains to classes in the more concrete domains. This is what we usually want: Most associations are
ultimately one-way relationships anyway. A button, for example, need not know (and you don't want it to
know!) that it is connected to an alarm manager, or an elevator, or a microwave emitter. A button is a
button is a button. In principle, you do not want the button to know anything about its usage context.
Usually, the more concrete class does not know the specific client who wants to use its services, and this
is inherent in the classic "client-server" model of relations. The astute reader will note that the
relationship between the alarm manager and the button classes is a bidirectional association. How we
would expect the relationship to work is that when an episodic event occurs with the button (for example,
"Press event"), it notifies the alarm manager. To make this into a one-way relationship, the button might
have a "subscribe(addr)" operation that enables the alarm manager to give the button enough
information to contact it (for example, the address of an event acceptor function) when the button
receives a push event.

Figure 2-4. Domain Hierarchy

56

Generalization relationships typically fall inside a single domain, and domains may be subdivided into
smaller packages, either to represent smaller subject matters or simply to divide up the work into smaller
pieces to distribute to development team members.

Physical architecture is concerned with the organization of things that exist at run-time. While packages
(and therefore domains) don't exist at run-time (being solely design-time concepts), they provide a place
for the definition of the classes that will be used via instantiation in the various subsystems.

Domain structure usually does not completely reflect the physical architecture. For example, the physical
architecture may have the concept of a "power subsystem," which is constructed from instances of the
classes defined in various domains. For example, the power subsystem may contain instances of many
classes from a number of different domains, as shown in Figure 2-5. Using the standard name scoping
operator "::," the name of the domain package precedes the name of the class. So, for example,
hardware_domain::switch is the class switch in the hardware_ domain package, whereas
communications_domain::message_transaction is the message_transaction class in the
communications_domain package. [3]

[3] We could also have nested the package inside the subsystem as a notational
alternative.

Figure 2-5. Relating Logical and Physical Architecture

57

That being said, often there may be specialized domains containing classes only instantiated in one
subsystem. For example, classes from a guidance and navigation domain will be likely instantiated solely
in a navigation subsystem. Most domains are more general than that, however, and are represented in
many, if not all, subsystems.

2.2.2 Physical Architecture

Physical Architecture refers to the large-scale organization elements of the system at run-time, so these
elements must be instantiable things. The typical elements are subsystems, components, and «active»
objects, but other specialized forms, such as a channel (see Chapter 9) may be used. These large-scale
organizational elements don't do much in and of themselves, but they organize the more primitive
instances that do the real work and provide management oversight and delegation of requests and
messages to the appropriate objects. They allow us to view and understand the system at different levels
of abstraction. This is crucial for the construction and understanding of large, complex systems. We need
to look at assemblies of parts and refer to them as a single, albeit more abstract, element. Figure 2-6
shows a common set of abstraction levels.

Figure 2-6. Levels of Abstraction in Architecture

58

The most abstract level in the figure is the complete System Level (Level 0)—for example, "Mars Sample
Return Mission." The next level down is the Systems Engineering Level (Level 1), where subsystems are
defined. In the Mars project example, subsystems might be "Deep Space Network," "Launch Vehicle,"
"Orbiter," "Lander," "Spacecraft," and "Ground System." There can be multiple sublevels at this level of
abstraction before the system is further decomposed into hardware and software aspects. For example,
the "Spacecraft" could be decomposed into subsubsystems such as "Guidance and Navigation,"
"Avionics," "Attitude Control," "Communications," and "Power Management."

Next, we've decomposed the system into the different disciplines (Level 2): Electronic, Mechanical,
Chemical, and Software. If a system uses COTS (Commercial Off The Shelf) hardware, then this step is
usually skipped, but if you are developing novel hardware, then it may be very important. Notice that
hardware/software decomposition is done primarily at the subsystem level rather than at the system

59

level. For example, the Attitude Control Subsystem can be thought of as being composed of electronic
aspects (processors, relays, motors, valve controls, a variety of sensors and serial connections),
mechanical parts (reaction wheels, thruster assemblies, fuel lines and mixers, and enclosures), chemicals
(fuel mixture and oxygen), and, of course, software (the "smarts" to receive and interpret commands,
control electronic parts that control mechanical parts that work with chemicals).

The software for the subsystem may then be decomposed into its major architectural units, often
components (Level 3), although the notion of a software subsystem can be used here just as well. These
are the major replaceable pieces of software that comprise the subsystem. For example, these
components for the Attitude Control System might include a TCP/IP communications protocol stack, math
library, PID control loops for reaction wheels and thrusters, fuel management component, reaction wheel
control component, and so on.

Last, we see the Thread Level (Level 4). This is the level at which concurrency is managed. Some
components may be "passive" in the sense that they execute in the thread of the caller. However, there
will be at least one component (or software subsystem) that creates and executes at least one thread.
These threads will be owned by design-level «active» objects that also aggregate, via composition, the
so-called primitive objects that ultimately perform application services.

The next level down is the Object Level (not shown). These are the primitive objects that do the real
work of the system. In any particular system, there may be either a greater or fewer number of these
abstraction levels, depending on the complexity and scale of the system. For a cardiac pacemaker, you
might represent only the System Level and the Thread Level of architecture, while in our Mars project
example, you might ultimately have as many as eight or ten levels. Not all of these levels need to be
visible to all developers, of course.

The physical architecture may be constructed from virtually any model organization, and so is considered
distinct from the organization of the model per se, although it is possible to organize your model around
the physical architecture. The high-level physical architecture is usually constructed in with the Systems
Engineering phase of the ROPES spiral, but it may be deferred to the architectural design phase if the
Systems Engineering phase is omitted.

Physical architecture has five primary aspects, called the Five Views. These focus on more or less
independent aspects of the large-scale run-time structure of the system. Of course, ultimately there is
only one system, so we refer to them as views because they focus on a single aspect of the system at a
time.

2.3 The Five Views of Architecture
The ROPES process identifies the Five Views of (physical) architecture. These aspects are not completely
independent and certainly should not conflict with one another. The best way to think about this is to
understand that there is a single model underlying the system that includes the architecture. The views
just look at parts of that single model that are related to each other in specific ways. So these are not
independent aspects but a filtered view that only shows certain aspects at a time.

The Five Views of architecture defined in the ROPES process are shown in Figure 2-7.

Figure 2-7. The Five Views of Architecture

60

These views of architecture capture structure aspects and so are typically captured with UML structural
diagrams. A concurrency "Task Diagram," for example, is nothing more than a class diagram showing the
structural elements related to the concurrency view—things like «active» objects, message queues,
semaphores, and the like. To show architectural behavior, it is usually the interaction of the architectural
elements that is of primary concern, so mostly sequence diagrams are shown. To show the behavior of
the architectural element in isolation, usually the functionality is divided up into use cases for the
element, and then each of these may be detailed with a statechart or activity chart.

Figure 2-8 shows a system view for an air traffic control system, using Rhapsody from I-Logix, [4] a
common tool used in the real-time and embedded development environment. We will provide an example
using Rhapsody for the various aspects that might be used in such a hypothetical air traffic control
system. We see in Figure 2-8 the System object ACME_AirTrafficControlSystem and its environmental
context. This consists of the actors [5] with which the system interacts.

[4] Interested readers should see I-Logix's Web page: www.ilogix.com.
[5] An actor is an object outside the scope of the system that has interactions of interest
with the system as the system executes.

Figure 2-8. System View

http://www.ilogix.com/

61

2.3.1 Subsystem and Component View

The Subsystem and Component View (or Subsystem View for short) identifies the large-scale pieces of
the system and how they fit together. As previously mentioned, this is usually done during the Systems
Engineering phase, but it may also be done later in the architectural design phase for projects not using a
Systems Engineering phase. Subsystem architecture is captured using a subsystem diagram (see Figure
2-9), which is really a class diagram that shows primarily the subsystems.

Figure 2-9. Subsystem View

62

In a software-only development in which one is not concerned about the underlying hardware (or at least
not very concerned), a subsystem is a run-time organization of software. It is a "large-scale" object that
contains, via composition, "part objects" that do the real work of the subsystem. The criteria for inclusion
in the subsystem is "common behavioral purpose"—that is, the objects included in the subsystem are
there because they contribute to the subsystem's use case realization. Software subsystems provide a
means for thinking about systems at different levels of decomposition rather than just as a flat sea of
relatively undifferentiated objects.

The subsystem concept can be used in a couple of different ways. Subsystems can be used to reason
about systems before they are broken down into hardware and software parts, as discussed in the
previous section. You may also use subsystems as a software-only concept. In either case, a subsystem
is a really big object that provides well-defined interfaces and delegates service requests to internal
hidden parts. How you use these UML building blocks is up to you. UML provides the vocabulary, but it's
up to you to write the story.

If a component-based development approach is used, then components are also architectural elements.
The UML has a different icon for components, although UML 1.x is not prescriptive about the differences
between a component and a subsystem. In the UML, a subsystem is basically a big object that contains
"part" objects that do the real work of the subsystem. A component, on the other hand, is a replaceable
part of the system. Typically, components use a component framework for loading and unloading
components, component identification, and so on. Nevertheless, the distinction between subsystem and
component isn't clear. Is a component bigger or smaller than a subsystem? How should they be mixed
and matched? The UML does not say anything about these issues. As a general rule, I recommend that
subsystems are the largest-scale parts of a system, and these may be internally decomposed into
components as desired. An example of that perspective was provided in Figure 2-6.

63

The UML component diagram is just another structural diagram—this time emphasizing the component
aspects of the system. An example of a component diagram is given in Figure 2-10. It shows the
components for the Display_Subsystem of the ACME_AirTrafficControlSystem.

Figure 2-10. Component View

There are patterns around how to effectively use these elements to architecturally structure your system.
Chapter 4 discusses those that have particular relevance to real-time and embedded systems.

2.3.2 Concurrency and Resource View

This view of the system architecture focuses on the management of resources and the concurrent aspects
of system execution. Because of the importance of this aspect, it is the subject of Chapters 5, 6, and 7.
By concurrent, we mean that objects may execute in parallel rather than sequentially. We are stating
that we neither know nor care about the relative order of execution of actions between the threads, [6]
except where specifically mentioned. These points of synchronization are often called rendezvous and are
the hard parts of concurrency modeling. Sharing data and information is a common reason for threads to
rendezvous and synchronize. Another is the need to control and coordinate asynchronously operating
system elements.

[6] In this book thread and task are treated identically. There are some detailed design
differences, but both are units of concurrency and may be treated the same at the
architectural level. If that distinction is important in your design, then you can make it
clear by using appropriate stereotypes.

A resource is an element that has a finite and quantifiable aspect to its provided service. For example, it
may only allow a single accessor at a time to its internal data. Since the hard parts of concurrency have
to do with the sharing of resources, resources are treated with concurrency.

64

Figure 2-11 shows a task diagram for the alarm_subsystem done in UML—a class diagram that
emphasizes the task structure. All the «active» objects are shown with a heavy border (standard UML).
Additionally, they have a «Task» stereotype. Some of the classes show the stereotype as text, whereas
others use an icon. Similarly, the figure contains two «resource» objects: AlarmList and ListView. The
first is associated with a semaphore (shown to its left) that manages the serialization of requests. The
second is managed by its owning thread Alarm_Annunciation_Thread, which, incidentally, has a
«MessageQueue» object to manage information sharing.

Figure 2-11. Concurrency and Resource View

«Active» objects are the primary means for modeling concurrency in the UML. An «active» object owns
the root of a thread and manages the execution of the thread and delegation of messages from the
thread message queue to the appropriate objects.

There are a number of common strategies for identifying threads that will be later reified as «active»
objects.

• Single-event groups
• Event source
• Related information
• Interface device
• Recurrence properties
• Target object
• Safety level

65

The single-event groups strategy creates a separate thread for every event, and that event pends on its
occurrence. This strategy is useful for simple systems, but it doesn't scale up to large complex systems
well.

The event source strategy creates a thread for each source of an event and pends on any event from that
source. It is useful when you have a small number of event sources and relatively simple designs.

The related information strategy creates a thread that manages all data within a topic or subject matter,
such as all information related to cardiac health. In an anesthesia machine, this information might include
pulse rate (from a blood pressure monitor), heart rate (from an ECG monitor), preventricular contraction
count, cardiac output, stroke volume, temperature of the blood coming from the Superior Vena Cava and
emptying in the right atrium, and so on. This information comes from a variety of sources, and a single
thread could manage it. This strategy is effective for "sensor fusion" applications that require significant
processing of data from disparate sources. Further, this strategy tends to reduce the number of thread
rendezvous, which can be a source of significant overhead.

The interface device strategy is a specialized form of the event source strategy that is used for systems
with multiple data and command buses. One or more threads are spawned to manage the bus traffic and
related processing.

The recurrence properties strategy is a demonstrably optimal strategy for thread selection when
schedulability of the threads is an important concern. The recurrence properties include whether the
event set processed by the thread is periodic (time-based) or aperiodic (event-based). Periodic tasks
execute and do work every so often with a defined frequency of execution. It is common to have several
periodic tasks, each handling events that occur in a common time frame—for example, one for the 10-
ms-based events, one for the 100-ms-based events, and another for the 250-ms-based events. Aperiodic
events can either be handled by a general aperiodic event handler, or you can introduce a separate
thread for each aperiodic event (the same as in a single event group strategy). Most systems must
process a combination of periodic and aperiodic events.

The target object strategy creates a thread for a few special objects that are the target of events from
disparate sources. For example, database or data manager objects sometimes have threads assigned to
them so they can do appropriate processing.

The safety level strategy creates threads for managing safety and reliability functionality, such as the
execution of periodic built-in tests (BITs), stroking watchdogs, monitoring actuation to ensure that it is
proceeding correctly, and so on.

However you finally decide which set of threads you want to use, the common development approach is
to first construct the collaborations— sets of objects working together to realize a use case—and then
identify the set of threads and create an «active» object for each thread. Each "primitive" object from the
collaboration is aggregated via composition by the appropriate «active» object, allowing it to execute in
the appropriate thread.

2.3.3 Distribution View

The Distribution View deals with how objects that may be in different address spaces find and collaborate
with each other. The Distribution View includes policies for how the objects communicate, including the
selection and use of communication protocols. In asymmetric architectures, an object is dedicated to a

66

particular address space at design time. This makes finding that object during run-time easy, since the
other objects can be granted a priori knowledge about how to locate and contact the object in question.
In symmetric architectures, the location of an object isn't decided until run-time. Symmetric architectures
are useful for complex system that must dynamically balance processing load over multiple processors.
When objects become ready to run, the distributed OS runs the object in an optimal locale, based on the
current loadings on the various processors. This improves overall performance but at a cost: increased
complexity. How, for example, can objects find each other during run-time? This is the subject of the
distribution patterns in Chapter 8. Figure 2-12 shows an example of using a broker architecture to
mediate communication among distributed objects.

Figure 2-12. Distribution View

Selecting a distribution architecture is highly driven by the quality of service of the collaboration. The
most relevant qualities of services to drive the distribution architecture include the following.

• Performance

- Worst case

- Average case

- Predictability

• Throughput

- Average

- Burst

67

• Reliability

- Of message delivery

- Of message integrity

• Recurring (hardware) cost

Of course, in real-time and embedded systems, performance can be crucial to system success. In hard
real-time and safety critical systems, worst-case delivery time is the most important concern. For
example, control loops are notoriously sensitive to time delays. To implement distributed closed-loop
control systems, you want an architecture with a short worst-case delivery time for certain messages,
implying that a priority-based message delivery scheme might be the most appropriate. In such a case,
using an asymmetric architecture (or some variant of the observer pattern) with a predictable priority-
based transport protocol might fit the system performance needs—for example, an asymmetric
distribution on top of a bit-dominance protocol, such as the CAN bus protocol.

In so-called "soft" real-time systems, the average performance is a more important criterion than worst-
case performance. Average performance may be measured in terms of average length of time for
message delivery or in "mean-lateness" of the messages. Such systems usually don't care if a small set
of the messages is late when the system is under load, as long as the average response is sufficient. In
some cases, it may even be permissible to drop some messages altogether when the system is under
stress. For example, a broker pattern with a CDMA transport protocol, such as a UDP transport protocol
on top of an Ethernet network protocol, will serve this purpose well if the average load is low. CDMA
stands for Collision Detect Multiple Access and allows multimastering of the bus. When collisions occur,
the senders back off and retry later, usually at random times. When loading is low, the overhead of such
a protocol is low, resulting in good (average) performance. Once loading reaches about 30 percent,
however, the bus spends a disproportionate amount of time arbitrating collisions, and performance drops
drastically. For systems in which peak loads are few and far between, and individual message delivery
times are not crucial, CDMA can be a good choice. Interestingly, many systems are built on CDMA when
it is demonstrably a poor choice given the quality of service requirements for the system.

TDMA, or Time Division Multiple Access, protocols work by dividing up time available to communicate
among the devices on the bus. Each device gets to transmit for a certain period of time and then passes
along a "master token" to the next device on the bus. TDMA protocols have low communication
arbitration overhead but don't scale up to large numbers of devices well. Further, like a round robin
approach to task scheduling, such a system is not responsive in an event-driven application, since an
event requiring transmission must wait until the owning device has the master token.

Priority-based protocols typically have more overhead on a permessage basis but allow higher-priority
messages through first at the expense of lower-priority messages, making it a natural fit for systems in
which scheduling is primarily priority driven. Bit-dominance protocols are a common way to achieve
priority-based messaging. In a bit-dominance protocol, each sender listens to what appears on the bus
while it's transmitting. If a higher-priority bit occurs in the bus when it sent out a lower-priority bit, then
it assumes that it is in conflict with a device trying to send out a higher-priority message, and so it drops
out to retry later. The device sending out the higher-priority message "wins" and keeps transmitting. For
example, this is how the CAN bus protocol works. Each message contains a priority sequence called a
message identifier, followed by the message contents. If each message has a unique identifier, then it
has a unique position in the priority scheme. An issue with the CAN bus protocol is that it allows only 8

68

bytes of data per message, requiring larger messages to be fragmented into multiple bus messages
during transmission and reassembled at the receiver end. The SCSI bus is another example of a priority-
based transmission protocol, but the SCSI bus is also a parallel bus, meaning that it can achieve greater
bandwidth. Complicating its use as a general message passing bus, however, is the fact that the priority
is not based on the message but on the device transmitting the message.

Reliability for distribution means the reliability of correct message delivery. There are many reasons why
messages might not be properly delivered, such as attenuation due to distance, interference from
electrical noise, temporary or permanent failure of the media, or associated device and software or
hardware design flaws. These things may be handled by adding complexity into the communications
protocol to check the integrity of messages and to retry transmission if the message is either corrupted
or not delivered. Of course, redundant buses are a solution as well, with the advantage of improved
reliable and timeliness in the presence of errors but at a higher recurring cost.

Software solutions for message integrity usually require the addition of some level of redundancy, such
as a parity bit (very lightweight), checksum (lightweight), or cyclic redundancy check (CRC). Of these,
the best is the CRC because it will identify all single and x-bit errors as well as a very high percentage of
multiple-bit errors. CRCs are somewhat more complex to compute than a checksum, but a table-driven
CRC computation can be very fast, and hardware chips are available that can compute a CRC from a
serial bit stream.

Another approach is using Hamming codes, which are codes that are differentiated by what is called a
Hamming distance—the minimum number of bit errors necessary to come up with an incorrect but valid
code. For example, in an 8-bit byte, the following codes have a Hamming distance of 2 because they
require two bits to be modified before you can come up with another valid code.

Binary Decimal Hexadecimal
00000000 0 0H
00000011 3 3H
00010100 20 14
10001000 136 88

The use of Hamming codes provides some protection against bit errors because it requires multiple bit
errors to construct another valid possibility. It is even possible to send the message multiple times
(usually twice, if error detection is required, and thrice, if error correction is needed). If the message data
is sent twice, then the second copy can be sent as a ones-complement of the original so that stuck-at bit
errors can be detected.

2.3.4 Safety and Reliability View

The Safety and Reliability View examines how system redundancy is defined and managed to raise
system reliability and safety. The safety and reliability architecture is concerned with correct functioning
in the presence of faults and errors. Redundancy may be used in many ways to get different degrees and
types of safety and reliability. Chapter 9 provides a number of patterns in common use in highly reliable
and safety-critical systems.

In Figure 2-13, heterogeneous redundancy (also known as diverse redundancy) is used to provide
protections from failures and errors. The primary radar channel processes surface reflection RADAR

69

information, producing three-dimensional position data (in terms of direction, range, and azimuth) as
well as velocity data using the Doppler effect. The secondary channel uses the beacon return codes to get
a transponder code from the aircraft and the aircraft's position and velocity information.

Figure 2-13. Safety and Reliability View

Reliability is a measure of the "up-time" or availability of a system— specifically, it is the probability that
a computation will successfully complete before the system fails. It is normally estimated with mean time
between failure, or MTBF. MTBF is a statistical estimate of the probability of failure and applies to
stochastic failure modes.

Reducing the system down time increases reliability by increasing the MTBF. Redundancy is one design
approach that increases availability because if one component fails, another takes its place. Of course,
redundancy only improves reliability when the failures of the redundant components are independent. [7]
The reliability of a component does not depend on what happens after the component fails. The reliability
of the system remains the same whether the system fails safely or not. Clearly the primary concern
relative to the reliability of a system is the availability of its functions to the user.

[7] Strict independence isn't required to have a beneficial effect. Weakly correlated failure
modes still offer improved tolerance to faults over tightly correlated failure modes.

Safety is distinct from reliability. A safe system is one that does not incur too much risk to people or
equipment (see [2] and [3]). A risk is an event or condition that can occur but is undesirable. Risk is the
product of the severity of the incident and its probability. The failure of a jet engine is unlikely, but the
consequences can be very high. Thus, the risk of flying in a plane is tolerable, even though it is unlikely
that you would survive a crash from 30,000 feet. At the other end of the spectrum, there are events that
are common but are of lesser concern. There is a risk that you can get an electric shock from putting a 9-

70

volt battery in an MP3 player. It could easily occur, but the consequences are small. Again, this is a
tolerable risk.

The key to both safety and reliability is redundancy. For improving reliability, redundancy allows the
system to continue to work in the presence of faults because other system elements can take up the
work of the broken one. For improving safety, additional elements are needed to monitor the system to
ensure that it is operating properly and possible other elements are needed to either shut down the
system in a safe way or take over the required functionality.

2.3.5 Deployment View

The deployment view focuses on how the software architecture maps onto the physical devices such as
processors, disk drives, displays, and so on. The UML uses the concept of a node to represent physical
devices. These are often stereotyped to indicate the kind of hardware the node represents. Some models
only differentiate between processors (devices that execute code that you write) and devices (ones that
don't), while other models identify more detail such as whether a device is a stepper motor, DC motor,
thermometer, IR sensor, and so on.

Figure 2-14 is a typical UML deployment diagram; most stereotypes are shown using icons, but text in
guillemets («Bus») can be used as easily and is a matter of personal preference. This deployment
diagram shows two «Bus» devices, several different processors, redundant flight recorder devices, and
redundant display controllers. The diagram also indicates some of the components executing on selected
processors.

Figure 2-14. Deployment View

The primary use for the Deployment View is to represent asymmetric deployment architectures. Then the
hardware platform can be schematically represented, and the mapping of software subsystems and

71

components can be detailed. For asymmetric systems this is particularly important to understand how the
software on the different processors will collaborate, and it permits performance analysis. You can either
nest the software components inside the system or use a dependency from the component or software
subsystem to indicate that the node supports or executes that software element. Figure 2-14 shows a
couple of nodes with components nested inside them. Any software element can be shown in this way,
but usually components and subsystems make the most sense.

For symmetric architectures, the deployment diagram is perhaps less interesting but only marginally so.
The underlying hardware is even then a mixture of symmetric and asymmetric aspects. The "interesting"
part—the execution of software elements on the nodes—is in principle not known when the deployment
diagram is drawn at design time. In some cases, a software element might even migrate from one node
to another. The UML provides the «becomes» stereotype of the dependency relation to indicate that an
element might move from one node to another, such as might happen in the event of a fault on the
original processor.

2.4 Implementing Architectures
In 2000, the Object Management Group (OMG), owners of the UML standard, launched the Model-Driven
Architecture (MDA) initiative [4], [5]. MDA is an attempt by the Object Management Group to unify the
two primary independent technologies owned by the OMG: CORBA and the UML. The OMG has always
been primarily concerned with interoperability of systems—both in terms of running on distributed
heterogeneous hardware (the CORBA part) and of models (the UML part). This inter-operability has been
both in terms of integration with legacy systems and with systems you plan to construct or integrate with
in the future even though they haven't yet been planned. The primary advantage of the MDA is a unified
approach to the design and development of platform-independent systems that can be easily ported from
one environment to another and can be hosted on heterogeneous environments easily.

2.4.1 Alphabet Soup: CORBA, UML, and MDA Basics

CORBA (Common Object Request Broker Architecture) is a powerful, mature technology for constructing
systems that are distributed across many, usually heterogeneous, computing environments. This is
accomplished through the application of the Broker Design Pattern (see Chapter 8). This is an
architectural design pattern in which the centerpiece is the underlying CORBA infrastructure: the Object
Broker. One of the difficulties in large-scale distributed systems design is designing so-called symmetric
architectures—architectures in which you don't know at design time where objects and services will run.
Many complex systems must perform dynamic load balancing, executing objects and services from
currently lightly loaded processors in your system. Since you cannot predict at design time where these
services will execute, how do you invoke them?

That's where the Object Broker comes in. The Object Broker serves as a repository so that at run-time
when one object is ready to provide services, it registers with the Broker. Later, when another object
needs to invoke the services of the former, it locates the desired object by asking the Broker. The Broker
serves as dynamic glue to bind together objects that need to collaborate but lack the a priori knowledge
of how to find each other—sort of the computational equivalent of a dating service.

The entire infrastructure must also include bindings to different communications protocols—the most
common being TCP/IP—and bindings to different source-level languages—such as C, C++, and Java, to
name but a few. Because hand-coding all the relevant calls into the Broker when all you really want to
say is "Send a message to Object X" would be tremendously onerous, CORBA implementations use what

72

is called IDL—Interface Description Language (which happens to look a lot like C++). You write your
object requests in IDL, ignoring for the most part the fact that you're using CORBA. But since you are
writing service requests in IDL, the IDL compiler takes your relatively high-level program and generates
your selected source-level language statements that make the calls into the CORBA infrastructure,
effectively removing your need to be overly concerned with how it all happens.

CORBA is an infrastructure ("middleware") standard (a simplification—it's actually a set of many
interrelated standards), and so there are many CORBA-compliant implementations that run on many
different hardware platforms. The standard was constructed so that in principle, the same program runs
no matter what the underlying platform looks like. This greatly simplifies integration and portability, as
you can imagine.

Of course, to complicate the issue, there are a great many middleware standards: COM+, .NET,
Enterprise Java beans, XML/SOAP, CORBA Component Model (CCM), to name a few. So the problems of
integrating across multiple middleware infrastructure platforms exist as well.

The UML, on the other hand, is a modeling standard. The UML is a standardized language for specifying
and describing system requirements and designs. In many respects, the UML is more general than
CORBA because it can be used to create non-CORBA models as easily as CORBA-compliant models. It
provides notation and semantics for specifying structure (in terms of object and class structure,
component structure, deployment structure, and model structure), behavior (both in terms of individual
objects and classes and in terms of collaborations of objects), and functionality (implementation-free
requirements).

Because the UML is a modeling standard, it too is independent of the underlying hardware platform,
although being essentially a very high-level programming language, you can specify OS and hardware-
dependent aspects if desired. But for the most part, the hardware-dependent aspects of your application
are added during the implementation of the model— whether that model is hand-coded or the code is
generated automatically by your UML design automation tool.

One of the strengths of the UML is its ability to be adapted to specific vertical markets with specific
concepts and needs. In the UML standard, these are called profiles. One such profile, the UML Profile for
Schedulability, Performance and Time [6], the so-called Real-Time UML Profile, was recently adopted by
the OMG. A profile is a subset of the UML, with semantics consistent with the UML standard but with
some small extensions, including stereotyped elements, tagged values, constraints, and possibly some
special notations. There are many UML profiles today, and that number is expected to grow significantly
in the next couple of years.

There are other modeling standards within the OMG as well—Metamodel Object Facility (MOF) and
Common Warehouse Model (CWM)—with which your UML-designed applications must somehow interact.

2.4.2 MDA to the Rescue

So you can see the problem. We have a proliferation of component and distribution infrastructure
environments, an ongoing evolution to new source-level programming languages, and different modeling
standards. How does one build a system today that integrates these disparate technologies? How does
one build a system today that will be robust and stable in the years to come as even more new
technology comes into use?

73

MDA exists to bring the whole shebang together via the application of modeling technology. The MDA is a
development approach to develop applications that integrate today and in the future. In MDA, you
develop a UML model of your application that is platform-independent. This platform independent model
(PIM) is then mapped into one or a set of appropriate infrastructure and implementation environments,
such as CORBA and C++, or .NET and Java. The MDA will provide standard mappings to help tools
automate this process to ease the programmer burden inherent in developing PIMs.

Once the PIM is constructed, the next step is to create the application itself. This can be done in a
number of different ways, such as constructing layered models (the PIM being the upper layer and the
technology-specific infrastructure specified in lower layers) or through the use of translation tools that
automatically perform the mapping of the PIM to a specific target platform. The more general application
PIM semantics are then carried through into the more detailed platform-dependent application (PDA).

The most robust, and programmer-efficient, means to do this is to automatically generate the PDA from
the PIM and a UML-compiler to apply the mapping rules from the PIM to the specific infrastructure
technology.

Because MDA is inherently platform-independent, adding new platforms, such as operating systems,
source-level languages, and distribution and component middleware infrastructures, is comparatively
simple because it is a matter of defining the appropriate mapping rules and then constructing a compiler
to apply the mapping. This allows the developer a greatly enhanced ability to reuse existing designs as
the implementation technology evolves, as well as integrating diverse platforms together into well-
coordinated systems.

The application of MDA does not mean that we need to throw away all previously constructed legacy
systems. These legacy systems can be reused by wrapping them with MDA-compliant interfaces,
constructed with the same modeling tools, so that they can work with the new and evolving MDA
systems. Of course, as the legacy systems themselves are maintained, they may be redesigned
incrementally over a relatively long period of time to make them internally MDA compliant. This provides
a smooth migration path from noncompliant applications to fully MDA-compliant systems in the future.

The big win is a huge ROI on your intellectual investment, your application-specific intellectual property
that is now captured in platform-specific models. By moving to MDA compliance, the investment in this
corporate IP can be retained and enhanced without requiring the traditional throw-away-and-redesign.

2.4.3 Creating Architectural Elements—the Model Level

Okay, so at this point we have a fair idea of what architecture means, the (five) important architectural
aspects, and the advantage of the MDA approach. So how do we go about actually creating architectural
elements?

2.4.3.1 Basic Elements

In the "small," the fundamental concepts to consider are class and interface. Implementation of classes in
C++ and Java is straightforward because in both cases classes are a native concept. In C-based object-
oriented programming, structs are used (in C++, struct and class are basically identical) [7]. The
difference between C and C++ is that in C++ struct can contain member functions, whereas in C, structs
contain only data. The common solution for this in the C world is to define the member functions
separately and embed pointers to those functions into the C struct. In this way the member function can

74

be invoked by dereferencing the pointer. There is a difficulty in identifying which instance of the struct
should be referenced by the member function. After all, struct is a type, and there may be any number of
instances, each with independent data values at run-time. C++ compilers solve this problem by invisibly
embedding a this pointer as the first argument to all nonstatic member functions. In C, the this pointer
must be made explicit. For example, if a class in C++ is defined to be

class Foo
private:
 int data;
public:
 int getFoo(void) { return data; };
 void setFoo(int d) { data = d; };
}; // end Foo

an equivalent class in C would be

typedef struct Foo Foo;
struct Foo {
 int data;
 int (*getFoo)(Foo* const this);
 void (*setFoo)(Foo* const this, int d);
};

int getFoo(Foo *this) { return this->data; };

void setFoo(Foo *this, int d) { this->data = d; };

or alternatively, the member functions don't have to be a part of the struct declaration.

typedef struct Foo Foo;
struct Foo {
 int data; /*## attribute data */
};

int Foo_getFoo(Foo* const this) {
 return this->data
};

void Foo_setFoo(Foo* const this, int d) {
 this->data = d
};

Interfaces are a native concept in Java, and the UML interface maps directly to the Java interface. C and
C++ don't have interfaces per se, and so interfaces in your model must be mapped somehow to concepts
that are supported. There are two common approaches: the use of interface classes to represent the
interface and inheritance from abstract classes. An interface class can be a substitute for an interface. Its
implementation just delegates the implementation off to the concrete (implementation) class. It differs
from true interfaces in that interface classes can have attributes and must have methods, whereas true
interfaces cannot have attributes or methods, only operations. Interface classes are a bit more general
than interfaces because while the name and parameter list of a class method must exactly match the
name and parameter list of its matching operation, an interface class can massage the information where
necessary. This means that the interface class is somewhat more powerful because it can perform
"impedance matching" from one form to another, possibly invoking multiple different operations with
different classes. This is also known as the Adapter Pattern [8].

75

Generalization from abstract classes and the use of interfaces serve the same purpose: to enforce
interface compliance. Interfaces have no data and declare operations but do not provide the
implementation—easily represented by data-free abstract classes. [8] So when you use an explicit
interface in a model that is being translated to C++, one solution is to just create an abstract class with
the required operations declared as virtual and then subclass it and define those methods in the concrete
(implementation) subclass. This solution works in C as well, but the implementation of generalization
requires some elaboration.

[8] An abstract class is one that is not instantiable because it declares an operation but
does not provide an implementation method for it.

C++ supports the notion of polymorphism. A more general class can define an operation and it can be
redefined in the subclass. When you call the method of an object, the most specific method appropriate
for the object will be invoked. Further, the operations may even have different parameter lists, and the
function to invoke is distinguished by the compiler at compile time on the basis of the name of the class,
the name of the operation, and the list of parameters and their types.

Internally, C++ compilers do this through the introduction of "name mangling." Really, as far as the
computer is concerned, the fact that one operation has the same name as another is incidental—they are
distinctly different methods to invoke. So the original AT&T Cfront translator added the name of the class
to the name of the operation to keep them straight.

For example, the function Foo::setFoo(int d) might be mangled to be __Foo_setFoo_FSi, where Foo is the
name of the class, setFoo is the name of the function per se, the following F indicates that it is a function,
and Si indicates that the parameter is a signed int. If you are hand-writing your own C code from UML
models, then you will have to mangle your own names if you want to support generalization and operator
overloading. While it isn't difficult to do, it does make it more interesting to debug your program at the C
level—especially when the function has a long parameter list.

For operator overloading to work well, the methods of a class should be virtual. In C++, this means that
the function calls are dynamically dispatched using a virtual function table, or VTBL for short. This adds a
very small amount of overhead but provides the significant benefit of making generalization work
effectively. In C++, with its "you only pay for what you use" philosophy, you must include the virtual
keyword. In Java, functions are virtual unless you go out of your way to make them final, static, or
private. To use dynamic dispatching in C, you'll have to explicitly construct the VTBL yourself. This is
nothing more than an index array of function pointers. When the virtual method is called, the call
provides the index of the appropriate function in the appropriate class, using indexed offset addressing
rather than direct addressing.

Implementing unary or optional (0,1) associations is straightforward: In C and C++, you will primarily
use pointers, and in Java, you must use references. The various kinds of associations—normal
association, aggregation, and composition—can all be implemented in this way. The primary distinction is
that with composition, only the composite is responsible for the creation and the destruction of the part
object, but this needn't change the implementation of the association itself.

When the association is "many" (*), then the most common implementation approach is to use a
container class. In this case, a 1-* association between a class and a multiple becomes a 1-1 association
from a class to the container, and then the container manages a 1-* association with the multiples (that
is, after all, what containers do). Figure 2-15 shows how this works. The ButtonPanel class aggregates a

76

collection of buttons. Rather than write in the ButtonPanel class itself all the logic to add, remove, find
buttons, we delegate this to a ButtonList class. In this case, it is a parametric instantiation of the general
template class List. The instiantiation process is done with the «bind» stereotype of dependency, binding
the actual parameter (class Button) with the formal parameter (T).

Figure 2-15. Container Pattern

Some UML-compiler tools, such as Rhapsody from I-Logix, apply the Container Pattern for you
automatically when you generate the code from the model. However, if you manually code your model,
then you will have to manually insert the containers. The C++ standard includes the Standard Template
Library, a large set of different kinds of templatized [9] containers such as vector, stack, queue, list, map,
and so on. Of course, there's no reason why you can't just write your own container and not use the
standard containers, but there is little reason not to take advantage of them if you can. Java does not
currently support parameterization, but containers are also available because in Java all objects are
ultimately children of class Object. You can simply create a container class that can contain objects and
then use it to contain objects of any type. You can also use the containers defined in the standard library
java.util.

[9] A "template class" is C++-speak for parameterized class in the UML. Parameterized
classes were introduced in Chapter 1.

In C, you'll have to either hand-code your containers, buy commercial off-the-shelf container libraries, or
use macros to emulate parameterized classes. [10]

[10] In the original implementation of C++, templates were implemented using macros, so
it can be done.

2.4.3.2 Logical Model

77

For the larger-scale organization of the model, the primary organizational element is the package and the
particular stereotype «domain». This maps directly to C++ namespace and to Java packages. C has no
namespace concept, and traditionally files are used to limit visibility and name scope.

2.4.3.3 Physical Model

The physical model implementation is rather straightforward in virtually all cases. When in doubt for how
to implement an architectural element, you can almost always do it as a class (in C++ or Java) or struct
(in C).

2.4.4 Subsystem and Component View

The primary elements in this view are components and subsystems. These are basically just classes that
contain others via the composition relation. These larger-scale classes may have use cases (while
packages such as domains do not), and particular emphasis is placed on getting the interfaces well
specified. The interfaces are collections of operations of these large-scale classes that are exposed to
other subsystems (and potentially their parts as well), and so may be invoked. Internally, these
operations delegate the actual work to the contained part objects. There need not be a one-to-one
mapping between a subsystem interface operation and a part object method. In general, the subsystem
must create and destroy the part objects and orchestrate their collaboration. This may involve delegation
of portions of the requested service to many different part objects.

Components may be implemented in exactly the same fashion. If the system uses a commercial
component framework, such as COM+, .NET, or CCM, then those frameworks will impose specific
structural and behavioral requirements on the component classes as well. In COM+, for example, it is
common to have a one-to-one mapping to the underlying part COM+ enabled class. For specifics, see
references on the particular component framework of interest.

2.4.5 Concurrency and Resource View

The basic UML element of concurrency is the «active» object. This is nothing more than a class that, in its
constructor, creates a thread to run in and its destructor removes it. How to create and destroy threads
is very OS-dependent. For example, VxWorks from Wind River uses taskSpawn() to create a task and
taskDelete() to remove one. The other task control functions, such as creating and deleting semaphores,
pending on event queues, and so on, are likewise OS-specific.

Generally, it is recommended that «active» classes not be application-domain classes but exist instead in
a separate OS domain. The «active» class works best as a superclass from which you subclass when you
make the subclass active. The application objects can then be aggregated into the «active» class via
composition to do the real work.

The «active» object also must usually handle asynchronous rendezvous. This is usually done with
message queues (also available from most operating systems—see the Message Queue Pattern in
Chapter 5). When it runs, it reads the posted messages and then delegates it to the appropriate target
object(s). For synchronous rendezvous, that means that an object that nominally runs in the thread of
one «active» object is invoked using a direct call across the thread boundary. Serialization of access is
almost always required in this case. This is most effectively accomplished by allocating a semaphore from
the OS and invoking it from all public operations that are potentially in conflict (see the Guarded Call
Pattern in Chapter 5). Resource objects are also implemented with some protection mechanism, and by
far, semaphores are the most common solution used.

78

2.4.6 Distribution View

There are a great many approaches to make systems distributable (see Chapter 8 for a number of
distribution patterns). In asymmetric distribution architectures, you usually want to have a
communications component that understands how to transmit and receive messages with the necessary
qualities of service. There is still the issue of how the messages are constructed. A "makeAmessage()"
method for the communications component is one possibility. Another is that each object that needs to
communicate across the bus knows how to make and interpret messages: This can be accomplished by
subclassing a CommunicatingObject class. The communications component needs to be able to locate the
objects targeted by messages, and one way to achieve that is through registration of a global object ID
and a receptor function address. Symmetric architectures usually use some form of middleware, such as
a CORBA ORB.

2.4.7 Safety and Reliability View

Safety and reliability also use large-scale objects to manage the redundancy. Subsystems are often used
for this purpose. Channels are a kind of subsystem, presented in Chapter 9. Of course, just having the
redundancy doesn't solve the problem. How to use the redundancy is the point of the patterns presented
in Chapter 9.

It is usually technically much easier to improve safety and reliability by running the redundant elements
on separate processors, avoiding "common mode failures" in which a single point failure brings down all
redundant copies of an element. A variant on this is to separate the safety-critical aspects onto a
separate processor from the nonsafety-critical elements. Since it is much harder and more expensive to
make an element safe, reducing the size of that element by isolating it away from aspects that needn't be
safety-critical can simplify the development effort a great deal.

2.4.8 Deployment View

The deployment view identifies how the software units, particularly the subsystems and components,
map onto the hardware processors in the system. The most common solution for this is to create a
separate executable for each separate processor, each executable consisting of a set of subsystems
and/or components. It is equally reasonable to write multiple application executables for each processor
as well. If your underlying OS provides different levels of protection of threads, then usually different
applications are more protected from each other, but the overhead for task rendezvous is relatively high.
Running a single application with multiple subsystems with their own threads allows for potentially
lighter-weight rendezvous but may provide less protection from other misbehaving threads.

References
[1] Shlaer, Sally, and Steve Mellor. Object Lifecycles: Modeling the World in States, Englewood Cliffs, NJ:
Prentice-Hall, 1992.

[2] Leveson, Nancy. Safeware, Reading, MA: Addison-Wesley, 1995.

[3] Douglass, Bruce Powel. Doing Hard Time: Developing Real-Time Systems with UML, Objects,
Frameworks and Patterns, Reading, MA: Addison-Wesley, 1999.

79

[4] Richard Soley and the OMG Staff Strategy Group. The Architecture of Choice for a Changing World,
Document 00-11-05.PDF, Needham, MA: OMG, 2000. www.omg.org.

[5] OMG Architecture Board (ORMSC). Model-Driven Architecture (MDA), Document ormsc/01-07-01,
Needham, MA: OMG, 2001. www.omg.org.

[6] Response to the OMG RFP for Schedulability, Performance, and Time, Document ad/2001-06-14,
Needham, MA: OMG, 2001. www.omg.org.

[7] Holub, Allen. C + C++: Programming with Objects in C and C++, New York: McGraw-Hill, 1992.

[8] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software, Reading, MA: Addison-Wesley, 1995.

http://www.omg.org/
http://www.omg.org/
http://www.omg.org/

80

Chapter 3. The Role of Design Patterns
This chapter discusses the following.

• The ROPES development process
• Why process?

o ROPES process overview
� Key enabling technologies
� Process timescales

o ROPES microcycle in detail
� Party!
� Analysis
� Design
� Translation
� Test

• Design pattern basics
o What is a design pattern?
o Basic structure of design patterns
o How to read design patterns in this book

• Using design patterns in development
o Pattern hatching
o Pattern mining
o Pattern instantiation

3.1 Introduction
In this chapter, we define design patterns and discuss why they are useful and how to apply them in the
design of systems. Before we go into patterns per se, however, it will be useful to review software
development process. Development processes govern what activities you do, how you do them, and
when you do them. The question "How do I use design patterns?" is fundamentally a process question.

There is a very broad range of development processes in use today, from "We don't need no stinking
process" to very formal rigorous processes. In order to frame our discussion of how and when to apply
design patterns, we must do so in the context of a reference process. For this purpose, this chapter
begins with a short discussion of the ROPES [1] process—a process used in a great many real-time and
embedded development environments. Once that is done, we will discuss the application of patterns,
using the ROPES process as an example. If you use a different process, then you may need to adapt the
rules for pattern usage accordingly.

[1] Rapid Object-oriented Process for Embedded Systems

3.2 The ROPES Development Process
Most software projects run late, miss functionality goals, have numerous and serious defects, and
generally cost much more to produce and main-tain than estimated—every time. Why is that? I believe
it's because software is just plain hard. It is hard in principle because it involves the most complex parts
of the entire system coded up into inflexible rules of logic, implemented in formal and unforgiving

81

languages. Either that, or it's because we're all stupid. I prefer to believe it's hard. (That's my story, and
I'm sticking to it!)

Software is among the most complex artifacts created by humans today, rivaling the most complex
physical structures ever created by man. It is not bound by physical constraints. Instead, we must not
only make up the rules for what the system has to do, we also have to create the environment in which
those rules make sense, the terms and concepts we want to use, and the semantic laws that govern how
those concepts interact.

It is as if we wanted to construct a bridge, but first we had to decide how to make a rock from which to
make concrete, from which we made structural members. And not only make the rock but also define all
of its physical properties, such as weight, density, tensile strength, shear strength, porosity, and so on.
And we would have to define what these concepts mean—for example, what do we mean by weight, and
how does it relate to the gravitational field of the earth? Further, we would have to define whether we
started to construct the structural members first or part of the span. Then we have to determine how to
connect the parts—because, after all, we can use cables, chemical bonding, welding, and so on. And what
do those things mean? If this sounds daunting with respect to the job of building a bridge, then it should
also sound difficult with respect to constructing software systems because we do the analogue of these
things on a daily basis when we construct software systems.

In order to actually get things built, we try to simplify the overall problem. We construct logic systems
with relatively simple and unambiguous rules, such as programming languages, that allows us to reason
about the rules that we want our system to implement. We also simplify how we construct and put
together the pieces of the system and decide that it's correct. To simplify our problem, we define a
simple set of rules and guidelines that control what we do and when we do it, and the structure and
content of what we produce. We call rules that govern how we work process.

3.2.1 Why Process?

The basic reason why we as software and system developers should be concerned about and use a good
process is to improve our lives and our products. Specifically, a good process does the following.

• Provides a project template to guide workers through the development and delivery of a product
• Improves product quality in terms of

- Decreased number of defects

- Lowered severity of defects

- Improved reusability

- Improved stability and maintainability

• Improves project predictability in terms of

- Total amount of effort

- Length of calendar time required for completion

82

• Communicates project information appropriate to different stakeholders in ways that they can use
effectively

If your process doesn't achieve these goals, then you have a bad process, and you should think about
changing it for the better. These goals can be achieved with a good process, or they can be inhibited by a
bad process.

So what's a process? In ROPES, we define a process as follows.

A process is the specification of a sequenced set of activities performed by a collaborating
set of workers resulting in a coherent set of project ar tifacts, one of which is the desired
system.

A process consists of worker roles, the "hats" worn by workers while they do various project activities.
Each activity results in the creation or modification of one or more artifacts. For example, most processes
have requirements capture (activity) somewhere early on before design occurs. This is performed by
someone (worker) acting as a requirements specifier (worker role), and it might result in a requirements
specification, a set of use cases and elaborated sequence diagrams (artifacts). A high-level view of the
basic elements of a development process is shown in Figure 3-1.

Figure 3-1. Basic Elements of Process

83

The activities are the tasks the worker does in performing his or her duty. At the high level, these
activities are modeled as the development phases, such as "requirements analysis" or "integration and
test." Activities are typically subdivided into subactivities, possibly at several different levels of
abstraction. At a more detailed level, activities may be, for example, creating a single (or several)
sequence diagrams, writing code for a class method body, unit testing a class, or reviewing a document.

Artifacts are what is created or modified during activities. The single most important artifact is the
"system" being produced, but there are many others that may be produced. Generally speaking, every
activity results in the creation or modification of at least one artifact. Some common artifacts are
requirements specifications, use case diagrams, system prototypes, class diagrams, source code, test
plans, test vectors, reuse plan, and meeting minutes.

One of the desirable properties for a process is scalability. This means that the process works well for a
small project and is not too onerous in terms of effort and yet also works well for large projects,
providing all of the communication and artifacts needed there as well. In general, scalability means that if
x effort is required for a project of size y, then an effort of 100xc (where c is a constant) is required if the

84

size of the project is 100y. Process scalability must take into account the fact that the larger the project,
the more ritual required. As the project scale grows, teams become less colocated and more global;
systems gain additional levels of abstractions such as subsystems, subsubsystems, and so on; potential
lines of communication grow exponentially with the total number of team members; and the cost of
errors skyrockets because of the potential interaction of effects in complex systems. For these reasons,
more rigor is required for more complex projects than for simpler ones. Overall, scalability of a process is
achieved when you only do what you need to do to create and maintain a consistent level of quality,
effort, and predictability of your project—neither more nor less. A scalable process will provide guidelines
to aid project managers in deciding what activities and artifacts are necessary and what is appropriate
based on the properties of the project at hand.

The ROPES process, described in more detail in the next section, achieves scalability in a couple of
different ways. First, the process is viewed at multiple timescales: macro, micro, and nano. Smaller
projects will give much more attention to the micro and nano cycles, but as the projects grow in size,
more attention is shifted to the macro scale to organize and orchestrate the entire development process.
Second, a number of artifacts are optional and created during the process only if necessary. Hazard
analysis, for example, is only used for safety-critical applications. The subsystem architecture view, for
another example, is only created when systems are large enough to profit from such decomposition. In
fact, the entire systems engineering phase is optional and is used only when the system is either complex
or when there is significant hardware-software codesign.

3.2.2 ROPES Process Overview

The ROPES process is a general systems development process that, while emphasizing the software
development aspects, includes systems engineering and systems integration and test as well. It is, and
continues to be, a work in progress that has evolved over the last 25 years. New concepts and methods
are added and adapted as they become proven, and older ones are discarded when they no longer serve
the need. The ROPES process has been used effectively on very small one- to three-person projects as
well as large teams consisting of hundreds of members. ROPES is a highly scalable, "medium-weight"
process, striking a balance between static heavyweight processes and lightweight, so-called "agile
methods," such as Extreme Programming (XP) [1], while incorporating aspects of both.

ROPES has but a single mission: "to produce systems with less effort, fewer defects, and greater project
predictability." Although it emphasizes aspects that are of particular importance to real-time and
embedded systems developers, ROPES is certainly more general than that—being applicable to all kinds
of software-intensive systems development efforts [2]. It is constructed to optimize technology to
achieve its mission, and it focuses special attention on six key technologies.

3.2.2.1 Key Enabling Technologies

Developers using the ROPES, or any other modern process, will employ a great many technologies from
compilers to configuration management to the Internet. However, there is a small number of
technologies that provide key advantages that the ROPES process attempts to optimize (see Figure 3-2).

Figure 3-2. Key Enabling Technologies

85

3.2.2.1.1 Visual Modeling

Visual modeling brings two primary things to the table for the development of systems and software: the
ability to look at and focus on different aspects of the system and the ability to look at an aspect of the
system at different levels of abstraction. Just as when we construct an office building, we need to look at
floor plans, structural members, heat exchange, water flow, and vibration resistance, when we build
software, we must be able to focus on the structural aspects, the behavioral aspects, and the functional
aspects. [2] Further, we must be able to look at these aspects at many different levels of abstraction from
a very high-level system view to a very low-level "transistor" view. Only having the source code makes it
extremely difficult to focus on different aspects or at any level of abstraction different from the code
itself.

[2] Functional in this context means "implementation-free required functionality."

3.2.2.1.2 Model Execution

It has been said that the best way to have no defects in a product is to not put them there. Okay, but
since we are fallible, what does that mean in practice? What I think it means is that we can identify
defects as soon as we introduce them. If we're constructing a class diagram of 50 collaborating objects,
and we make an error in the statechart of the second object, we want to be able to look at that second
object as soon as we insert the defect and see that it is obviously in error. How can we do that?

86

The answer is model execution. The use of executable models allows us to execute and test even partial
models as soon as we capture them in our design tool. This means that testing doesn't just come at the
end but is an integral part of identifying each of the 50 objects in our collaboration. With modern tools, a
partially completed collaboration can be ready for execution literally at the press of a button and can be
debugged and tested at the model level (as opposed to code level) using model-level debuggers.
Rhapsody, a UML-compliant executable modeling tool from I-Logix, [3] is a prime example of this and will
be referenced in this discussion.

[3] I-Logix Inc., 3 Riverside Drive, Andover, MA 01810. Tel: 978-682-2100. Fax: 978-682-
5995. http://www.ilogix.com.

This is a new way of developing systems. The traditional way of developing systems, even with visual
modeling tools, is to create huge models and then set about getting them to work. This "test at the end"
philosophy is very difficult and error-prone, and by the time it does identify errors, they have often
spread throughout much of the system. This makes tracking down and stamping out all the defects an
arduous task, consisting of writing possibly thousands of lines of code and getting them to not only
compile but be correct.

With the test-as-you-design approach, you might put down two or three related objects and demonstrate
that within that context, these objects work properly. This is generally very easy because the scope of
the testing problem is small. Once you have that small set of objects working, you add the next few and
get them to work. The idea is to always construct your design using pieces known to work properly.
Then, as you add more functionality to your collaboration, you introduce only small changes before
reexecuting and retesting your model.

The primary reason this hasn't been done traditionally is the difficulty in getting the models to execute. It
involved closing down the modeling tool, getting out the source code editor, pounding out some source
code, compiling it, fixing the compilation errors until you have a clean build and then debugging it with a
source-level debugger, identifying the coding (translation) errors and fixing them in the source editor and
repeating the process, and finally (!) identifying the modeling errors, closing down your debugging
environment, and reopening the modeling tools and making an "equivalent fix" in your model. This is
such a pain that developers put it off as long as possible.

However, with the use of executable models, it is a simple matter to construct the parts of the model you
want to execute, push a button to generate the code, and then debug and test it using the visual
debugger (rather than the source-level debugger). This tests and debugs your model using modeling
concepts, not source-level concepts. A screen snapshot of Rhapsody executing a model is shown in Figure
3-3.

Figure 3-3. Visual Model Execution and Test

http://www.ilogix.com/

87

In Figure 3-3, the statecharts for two objects are shown with color-coding, [4] indicating their current
state. The sequence diagram is dynamically drawn as the objects run, providing a visual history of their
collaboration. You can also view the current attribute values of the objects, look at the call stack and
event queues, and so on. In effect, this is the model analogue to the source-level debugger. The model
can be executing on your desktop or on the actual target hardware and in either case send the execution
information back to Rhapsody for display and control.

[4] Hard to see on a black-and-white page, though!

Using this kind of tool greatly facilitates the running of the model because creating a running application
from the selected portion of your model is literally no more difficult than clicking the mouse, and it
generally requires only a few seconds. Execution is tightly integrated with your model, and you can test
and debug with the same concepts that you used to design the model. Finally, because it is so simple and
fast, there is no reason not to do this all the time. We will see how we use this later in the "nanocycle" for
software design and construction.

3.2.2.1.3 Model-Code Associativity

One of the painful aspects of using visual models comes from the fact that generally there is no rigorous
connection between the visual model of the system design and the source code that is compiled to
construct the running system. In fact, many people think their task is to maintain two very different

88

views of the model—the graphical diagrams and the source code—in synch. What happens inevitably is
that eventually the graphical diagrams and the source code gradually begin to deviate from each other
until finally the graphical representation is abandoned altogether and all work is shifted to the source
code. As we've seen, there are some real benefits to using graphical languages such as the UML to
represent your system, so abandoning it to leave an entirely code-based system is a bad thing.

The issue, I believe, is that the metaphor is flawed. The problem is not to maintain two separate models
in synch but to maintain a single model of which graphical representation and source code are merely
two dynamically linked views. A model can be thought of as a coherent set of semantic entities and their
relationships. A class diagram represents some of those, and so is a view of that underlying semantic
model. As is a statechart. As is a sequence diagram. As is source code. Make changes in one view, and
because that view is dynamically linked to the underlying semantic model, all the other views change
automatically to reflect the changed semantics. We call this dynamic model-code associativity.

Modeling tool support is required for this to become a reality, but fortunately, there are tools on the
market that do a good job at this. Some "executable modeling" tools achieve this by generating code
automatically from the model and not allowing the developers to modify it. While it is true that most
fundamental changes to the model should probably be done in graphical views, most developers consider
unacceptable the restriction that they cannot modify the code at all without breaking the linkage to the
semantic model. There are times when they want to modify the code, such as when they're doing a rapid
coding/debugging nanocycle. What you want in principle is to be able to work in any model view,
including source code, and have the changes applied to the underlying semantic model automatically.
Fortunately, such tools exist, of which Rhapsody is one example.

3.2.2.1.4 Automated Requirements-Based Testing

If we think of debugging as "playing around with the model to make sure that it is relatively defect-free,"
then testing is a more rigorous process to ferret out and remove defects from a system. In high-reliability
systems development, testing is often 50 percent or more of the entire development effort, even though
it is widely acknowledged that it is impossible to exhaustively test modern systems. Any good
development process should reduce the tremendous cost of testing while at the same time improving its
effectiveness.

One of the reasons that testing is so expensive is that it usually takes place only at the end. This is the
most expensive place to identify defects. The ROPES process attempts to place the identification and
removal of defects much earlier in the process.

The reason that testing at the end is so expensive has to do with the nature of the really expensive
defects. The really expensive defects are called strategic defects—requirements and architectural defects.
The reason these defects can cost as much as 10,000 times the cost of simple coding errors is twofold.
First, they are broad-sweeping in their scope, affecting many parts of the system. Second, they tend to
be introduced very early and caught very late. This means that as other pieces of the system are added,
these new parts depend on these basic flaws. Thus, fixing the original defect means that all of the
potentially subtle dependencies must be tracked down and repaired as well.

ROPES provides a evolutionary requirements-based testing strategy that continuously tests the system
against what it is supposed to do. This results in much earlier identification and removal of defects at a
much lower cost. Automated support for early testing that can evolve with the system design greatly
enhances the efficacy of this approach.

89

Testing in ROPES is done in a small scale during what is called the nanocycle (more on this later) and in a
larger scale during the microcycle (spiral) via incremental construction of the system. The primary
artifact produced during each microcycle is an executable, tested version of the system called a
prototype. A prototype builds on previous prototypes by adding more functionality. Each prototype has a
mission—the purpose of the prototype—that is explicitly tested during the test phase of the microcycle.
Usually, a prototype's mission is a small set of use cases and/or the reduction of some small set of risks.
The prototype produced is a high-quality artifact containing code that will actually be shipped to the
customer when the system is released. However, early prototypes do not contain all of the system
functionality, and so they are incomplete. Whenever possible, prototype functionality is introduced in a
high-risk-earliest fashion with the explicit purpose of reducing the largest risks as early as possible.

Figure 3-4 shows schematically the evolution of prototypes. In this example, the first prototype is called
"Hello World" and has a precisely defined mission: create the basic subsystem architecture, perform low-
level data acquisition, and display those data values in a basic user interface. This prototype is produced
during the first microcycle and is tested against that mission. Defects identified during testing are either
repaired then (if they are serious) or noted for fixing in the next microcycle. Note that the basic high-
level architecture is in place already in this early prototype. If it has a fundamental error, it will likely be
found in the testing of this prototype. Fixing any such errors now will be much cheaper than if we wait
until the entire system is constructed and then find and repair the flaw.

Figure 3-4. Incremental Development with Prototypes

The next prototype contains all the elements of the first but adds several new ones. It also has a well-
defined mission: integrate a transport protocol so that objects can collaborate across different address
spaces, display the data as a waveform on the user interface, permit the user to control the setting of the
control variables, and perform data logging. The architecture is tested again during the test of this

90

prototype. Architectural flaws that passed through the first prototype validation test will likely be
uncovered during this prototype's testing. This is still much earlier than if the error is caught at the end of
the project.

The last prototype in the figure adds even more to its predecessor. It adds reliable communications and
sockets for long-duration dialogs among the distributed processors, adds the facility to do closed-loop
control of actuation, and adds in the built-in test functionality.

In reality, as we'll see, a prototype is usually completed and tested every four to six weeks. Some
projects may create prototypes in a longer or shorter period. However, longer periods between
prototypes raises the risk that repair of defects may require more effort than if those defects were
identified earlier. The benefit of building and testing incremental prototypes is that the high-risk features
are tested as early as possible and potentially serious defects can be repaired while it is still easy to do.

Using automated tools to convert the requirements for the prototype into test vectors that can be applied
against the prototype can provide a tremendous time and effort savings. And when the tools can partially
or completely automate the testing process, then the savings are improved even more.

3.2.2.1.5 Frameworks

In my experience, 60 to 90 percent of every application you construct is very similar to previous
applications. Every system you construct requires a common set of functions—like manage the creation
and destruction of objects, manage memory, schedule tasks, handle interrupts, queue events for
asynchronous task rendezvous, serial access with semaphores for synchronous task rendezvous, execute
state machines, and so on. And yet, we create code to do these things as if it were novel each and every
time we build a new system. Wouldn't it be nice to start your next project with a partially completed
application that already knew how to do all those things so all you had to do was add that 10 to 40
percent application-specific code?

That's the power of frameworks. A framework is a "partially completed application that you customize or
specialize for your specific application." A framework differs from a library in that a library is a passive
thing that you call to invoke a service. A framework is your application that invokes the problem-specific
services that you want performed.

The creation of frameworks is much more difficult than the creation of applications. Fortunately
commercial frameworks are available. Microsoft's MFC (Microsoft Foundation Classes) and Borland's OWL
(Object Windows Library) are examples of commercial frameworks that have improved developer
productivity within those environments by an order of magnitude. Some executable tools provide
frameworks for your applications as well. Some companies are investing in the construction of domain-
specific frameworks for automotive, aerospace, and other application domains. The initial cost of
development for frameworks is high, but the long-term benefits are potentially tremendous.

3.2.2.1.6 Iterative Development

The last key technology is the improvement in productivity and predictability we gain by employing
iterative, incremental development to the creation of software-intensive systems. There has been a great
deal published about the effective use of the spiral development lifecycle and its advantages. The primary
advantage, in my experience, is the early testing of systems. Far too many people throw a system
together with low-quality software parts and then beat on it with testing until it (more or less) works. The

91

essence of the spiral lifecycle is that it is incremental—building small pieces of the system and proving
that they work and then adding more pieces and proving that they work, and so on. The results are
higher-quality software done with much less rework and in less calendar time and less effort. The
iterative spiral is the centerpiece of the ROPES process, but it is really only one of three different time-
based views of the project.

3.2.2.2 Process Timescales

Even though the waterfall lifecycle has been pretty resoundingly denounced over the last 20 years, it is
still by far the most common way of scheduling and managing projects. The reason is that is it easy to
plan and understand. The problem that no project actually follows such a lifecycle leads to any number of
problems in the development process. The most fundamental difficulty with the waterfall lifecycle is that
defects introduced early in the process are not identified or fixed until late in the process. By far, the
most expensive defects are specification and architectural defects. The reason that these defects are so
expensive is that their scope is far reaching and because many other system aspects end up depending
on them. In order to fix such defects, it is necessary to also fix all the aspects of the system that depend
on those flaws. This is inherent in the waterfall lifecycle because testing comes at the end. The longer
you wait to identify and repair defects, the more they have become entrenched, and the greater the
number of dependencies on the flawed aspects.

To reduce or remove the problems associated with the simplistic waterfall lifecycle, the spiral or iterative
lifecycle has become popular. The basic advantage of the spiral lifecycle is that the system is tested,
early and often, so that fundamental flaws can be caught early when there is less rework to do. This is
done by breaking up the development project into a set of smaller projects and scheduling them so that
one such subproject builds on and uses those that come before and provides a building block for those
that come after. This is the "spiral." Each subproject is more limited in scope, is produced with much
greater ease, and has a much more targeted focus than the entire system. The result of each subproject
or spiral is an iterative prototype—a functional, high-quality system that is not as complete (or perhaps
not done in as high fidelity) as the final system. Nevertheless, the prototype does correctly implement
and execute some portion of the requirements and/or reduce some set of risks.

The ROPES process can be conceptualized as occurring simultaneously in three different scales or time
frames (see Figure 3-5). The macrocycle process occurs over the course of many months to years and
guides the overall development from concept to final delivery. The ROPES macro process has four
primary, but overlapping, phases. Each macrophase actually contains multiple microcycles, as we will see
shortly, and the result of each microcycle is the production of an iterative prototype.

Figure 3-5. ROPES Spiral Macrocycle

92

The macrophases are a way of showing that the missions of the prototypes evolve over time. The early
prototypes tend to focus on key concepts, such as requirements, architecture, or technology. The next
several prototypes introduce and focus on the secondary concepts of requirements, architecture, and
technology. After that, the focus shifts to design and implementation concerns. The last set of prototypes
emphasizes optimization and deployment (in the target hardware and in the customer's environment).
The shift in focus of the prototypes tends to be gradual, hence the overlapping nature of the
macrophases.

The microcycle has a much more limited scope than the macrophase. It is usually completed within four
to six weeks, whereas a macrophase may last many months or years. The microcycle is focused around
the production and delivery of a single prototype with limited but high-quality functionality. This is most
commonly focused around one or a small number of use cases, but it may also include specific risk-
reduction activities.

The nanocycle is the most limited scope of all—on the order of a few minutes to hours. In the nanocycle,
ideas are modeled/executed/fixed at a very high rate. The so-called "agile processes," such as Extreme
Programming (XP) approach, focus almost exclusively on the nanocycle scale of development.

The macrocycle extends through the entire life of the project. The microcycle, on the other hand, is of
much shorter duration—typically four to six weeks—and it focuses on the production of a single
prototype. [5] Figure 3-6 shows a single spiral and the microphases involved. The Party phase is where
project planning and periodic assessment takes place. Following that, the Analysis phase defines the
essential aspects of the prototype; these are defined to be the aspects such that if the produced
prototype doesn't possess them, it must be considered to be faulty. The Analysis model may be
implemented by any number of designs. Following this, Design optimizes the analysis model by making
specific technology selections and applying them to the analysis model. The Design phase, incidentally, is
where design patterns are applied, which is, of course, the focus of the main part of this book. Following
the Design phase, the Translation phase produces the compiled and linked architectural pieces of the
system. Finally, the Test phase integrates these architectural pieces together and tests that they
correctly implement the architecture as well as satisfy the prototype's mission.

93

[5] In large projects with disparate teams, it is possible to run prototypes in parallel and
merge them together in a future prototype.

Figure 3-6. ROPES Microcycle (Overview)

The next timescale down is called the nanocycle. The premise is that as you construct the model you are
constantly testing to be sure that you've got it right so far. Thus, you continuously test, on your desktop
or on the target hardware, as you modify code, add objects, change relationships, and so on. Your goal in
the nanocycle is to never be more than a few minutes away from being able to execute and test your
model. Figure 3-7 shows the basic work activities of the nanocycle. The entire nanocycle usually lasts
only a few minutes, and with the use of modern UML compiler tools, the generation and compilation of
code should normally take less than a minute.

Figure 3-7. ROPES Nanocycle

94

3.2.2.2.1 Semispiral Lifecycle Model

Some managers, developers, and organizations are very uncomfortable with a fully iterative approach
because it's different and it entails deferment of the identification of requirements and architectural
details later than the waterfall lifecycle. These concerns are not entirely groundless. In some situations,
the system development involves significant hardware development with very long hardware production
times. This means that the hardware development must precede the software development by a
significant period of time, and all the requirements for the hardware must be understood prior to the
production run. In this case, a fully iterative solution, which doesn't uncover detailed requirements until
the spiral during which they will be designed and implemented, may not be appropriate. In other cases,
an organization may be funded just to develop a requirements model. This happens in some DoD
projects, for example. In this case, a fully spiral approach is also inappropriate.

To address these other projects to which a fully incremental spiral approach doesn't apply well, the
ROPES process provides the semispiral lifecycle—a combination of waterfall and spiral models that is
tailored to address projects in which a more complete requirements and/or systems engineering effort is
required up front.

Figure 3-8 shows the dual aspects of the semispiral lifecycle. The first two phases, Requirements Analysis
and Systems Engineering, are done outside of the iteration, just as they are done in a waterfall lifecycle.
That is, they are done just once but more completely than in a single spiral of the spiral lifecycle. In the
spiral lifecycle, the first iteration will identify the "lay of the land" of the requirements—the primary
capabilities of the system—but won't identify and define the detailed requirements for those capabilities
until they are to be implemented in the current prototype. The detailed requirements definition is
deferred until later so that the more critical or higher-risk aspects of the system can be specified and
designed earlier. In the semispiral model, all requirements are fully detailed before the phase is
considered to be complete. Of course, just as in the classic waterfall lifecycle, if the requirements are in
error, then they will be more expensive and laborious to correct.

Figure 3-8. ROPES Semispiral Lifecycle

95

Following the Requirements is the Systems Engineering phase. This is similar to the Systems Engineering
phase in the standard spiral microcycle (described in the next section), but again, it will be more
complete than in a full spiral lifecycle. In the full spiral approach, only the parts of the architecture
required for the current prototype are defined in the System Engineering phase so that the architecture
grows over time. Not true with the semispiral lifecycle! In this latter case, the entire (high-level)
architecture is defined first, and then the subsystems of the architecture are decomposed into software
and hardware aspects before turning loose the engineers in the various disciplines to work on the design.

The primary difference between the waterfall and the semispiral life-cycles is the Spiral Part, in which a
series of prototypes are created from elements created by the different engineering disciplines working in
parallel. They are brought together during the Integration and Test phase, and the prototype is validated
during the Validation Test phase. While in the spiral model, the detailed requirements are defined and
realized in the spirals. In the semispiral model, they are only realized in different spirals. So early on, in
the first Party phase of the Spiral Part, the set of prototypes and their properties are defined in terms of
when requirements will be realized via design, which prototypes will integrate which hardware and

96

software elements and their level of maturity, and so on. For example, the breadboarded hardware may
be integrated with the software in prototype 3, while in prototype 7 the mechanical enclosures are
integrated with the fuel valves and chemical mixing, electronic motors, and software control of the valves
and motors. Then in prototype 10, the actual production electronic hardware will be integrated with the
production mechanical parts. These prototypes, just as in the full spiral model, are the primary
scheduling points against which progress is tracked and measured.

3.2.3 The ROPES Microcycle in Detail

The ROPES microcycle has been discussed from an overview perspective, but to understand how to use
the process, it is necessary to understand in more detail the work activities and artifacts produced. The
full spiral ROPES microcycle is shown in Figure 3-9. [6] We see that each of the primary phases in the
spiral has subphases. The work activities are almost identical in the semispiral lifecycle, and differences
will be noted in the relevant subphase description.

[6] It should be noted that some authors show the spiral spiraling outwards rather than
inwards, as it is here. It is shown spiraling inwards to emphasize the convergence of the
prototype to the final delivered system.

Figure 3-9. ROPES Spiral Microcycle (Detail)

3.2.4 Party!

The spiral starts in the so-called Party phase, [7] which is the location of the primary project planning and
ongoing assessment activities. During the first spiral's Party phase, the general schedule, software
development plan, configuration management plan, reuse plan (if any), project scope, initial primary use
case set, and engineering approach are selected and defined. On subsequent spirals, the project and
system are assessed against those plans and modified as necessary. The Party phase includes the
following areas.

[7] The Party phase corresponds to both Initial Concept and Postmortem Assessment
phases in some other development process models. The use of the term party is to re-

97

inforce the notion of "celebration of ongoing success" rather than "figure out what went
wrong."

• Schedule
• Architecture
• Process
• Next prototype mission

One of the more serious project management mistakes is inadequate assessment and adjustment of
projects during their execution. As DeMarco and Lister note, "You cannot control what you do not
measure" [3]. It is equally important, however, that if you do measure, you must apply the information
to make adjustments. In terms of schedule, such adjustments may be reassignment of resources,
reordering activities, deletion of activities, reductions (or enhancements) of scope and/or quality,
rescheduling subsequent activities, and so on.

Because the selection and implementation of a good architecture are crucial to the long-term success of a
project and product, the Party phase evaluates architecture on two primary criteria. First, is the
architecture adequately meeting the needs of the qualities of services that are driving the architectural
selection? Second, is that architecture scaling well as the system evolves and grows? The process of
reorganizing the architecture is called refactoring the system. If the project team finds that the
architecture must be significantly refactored on each prototype, then this is an indication that the
architecture is not scaling well, and some additional effort should be given to the definition of a better
architecture.

Early on in the project, selections are made about how to manage the project—what tools will be used,
where they and their data are located and how they are accessed, security procedures, artifact review
and quality assessment procedures, work and artifact guidelines, and so forth. It is likely that at least
some of these decisions will prove to be suboptimal as the project proceeds. Rather than live with a
suboptimal process, the Party phase seeks to improve the process during the course of the project rather
than waiting until the next project. For example, it might be that the decision was made to run the
configuration management repository on a remote server so that the distributed team could access it.
However, during the first prototype, it is discovered that the low speed and poor reliability of the
particular network server used are significantly hampering the team's ability to access the configuration
items. The Party phase Process Assessment activity provides an opportunity to identify and remedy that
problem.

Last, although the plan for the prototype mission is decided early on (and scheduled against), this plan is
reviewed and possibly adjusted at each iteration. It is common to make minor adjustments about the
mission scope, but if nothing else, explicitly reviewing the plan ensures that everyone knows what to do
over the next four to six weeks it takes to complete the microcycle.

3.2.5 Analysis with the ROPES Process

The purpose of analysis is to define the essential properties of the system to be developed. Essential
refers to properties whose absence makes a system wrong or incomplete. Whether the system internally
contains a serial port is not an essential property, but the fact that it can control the internal actuators is.
True enough, there are times when this distinction becomes fuzzy, but many embedded systems
developers have difficulty distin-guishing between analysis and design concerns. Analysis is typically a
black-box view, and any design that provides the required functionality within the specified QoS is

98

sufficient. In the ROPES process, a strong distinction is made between decisions that are essential
(analysis) and decisions that are for optimization (design).

3.2.5.1 Requirements Analysis Phase

In the Requirements phase, the requirements of the current prototype are identified and captured in
detail. The use cases for the prototype have already been selected, but the detailed specification of what
the use cases contain has not. An exception is in the semispiral lifecycle, where the details have already
been fully elaborated prior to starting the spirals. In the semispiral case, the Requirements phase in the
spiral is superfluous except for selecting which detailed requirements are to be implemented in the
current prototype.

There are two primary ways to detail a use case: by example and by specification. By example means
that a (possibly large) set of scenarios is created that illustrates typical and exceptional uses of the
system for the use case in question. The advantages of scenarios are that they are easy for nontechnical
stakeholders to understand and they can serve as a basis for the set of test vectors to be applied later to
the completed prototype. The disadvantages of scenarios are that requirements of a use case are spread
out over possibly dozens of different sequence diagrams rather than being in a single place, and the
requirements may be difficult to represent concisely. Additionally, some things, such as negative
requirements (for example, "The elevator shall not leave the floor with the door open") are very difficult
to state. Scenarios are most commonly captured using UML sequence diagrams.

The other approach to detailing use cases is by specification. This specification may be informal, using
text to describe the requirements of the use case or a formal behavioral language such as Z, temporal
logic, UML statecharts or UML activity diagrams. The advantages of detailing use cases by specification
are that it is concise, it is more precise than scenarios, and it is easy to represent requirements that are
difficult to show in scenarios. The disadvantages are that it is more difficult to understand, particularly for
nontechnical personnel, and directly relating the requirements to the design may be more difficult as
well. For continuous and piecewise continuous behavior requirements, we recommend using control law
diagrams and binding these to individual use cases.

Both of these approaches are useful, and in fact, the ROPES process recommends that both are used. A
formal specification using statecharts or activity diagrams captures the requirements concisely, whereas
scenarios derived from the formal specification can help nontechnical stakeholders to understand the
system. Further, the scenarios derived from the formal specification may be used to generate the test
vectors for validation at the end of the microcycle.

Requirements are detailed using a combination of the following.

• Sequence diagrams
• Statecharts
• Activity diagrams
• Control law diagrams (non-UML)
• Textual descriptions
• Constraints

3.2.5.2 Systems Engineering Phase

99

The Systems Engineering phase is actually high-level architectural design. It is an optional part of the
microcycle, used when the project has a significant amount of hardware-software codesign or the project
is complex enough to require a number of separate teams. The purpose of constructing a high-level
design at this point is so the teams can work on their pieces of the architecture and have a framework
into which to plug their architectural elements. These are the primary activities of the Systems
Engineering phase.

• Define subsystem architecture
• Define subsystem interfaces and interaction protocols (the set of allowable message sequences)
• Define how the subsystems collaborated together to realize the system use cases, specifying the

role of each subsystem in the collaboration but not the detailed internal structure of that
subsystem

• Decompose system use cases and requirements into subsystem use cases and requirements and
allocate them to the appropriate subsystems

• Algorithmic analysis and control law specification for systems that exhibit continuous and
piecewise continuous behavior

• Break down the subsystems into their technical disciplines: electronic, mechanical, chemical, and
software

The primary representation used in Systems Engineering is the subsystem diagram. This is nothing more
than a class diagram that shows primarily the elements of the subsystem view: subsystems, actors,
interfaces, and associations. The collaborative behavior of the subsystems is shown using primarily
sequence diagrams. The specification of the individual subsystem requirements uses all the same
techniques as in the Requirements phase but now at the subsystem level. The hardware-software
decomposition is shown using deployment diagrams. Interfaces can be shown using class diagrams that
explicitly show the interfaces and their properties or using a textual specification of the interfaces. In any
case, it is important to capture the messages accepted (and possibly emitted as well), their parameter
lists, and limitations on their use via constraints or statecharts.

Representing algorithmic and continuous behavior is problematic, since UML is a discrete modeling
language. The most common approaches are to use UML activity diagrams (see [7] for an example) or to
use control law diagrams to represent this aspect and bind them to individual use cases at the subsystem
level.

3.2.5.3 Object Analysis Phase

A use case can be thought of as a bag that contains a set of detailed requirements relating to a single
system capability. The realization (implementation in UML-speak) of a use case is a collaboration—a set
of objects working together to achieve this coherent set of requirements. Object analysis in the ROPES
process is primarily done to construct this collaboration of objects and is performed one use case at a
time. This means that for the current prototype, one collaboration is constructed for each use case
implemented by the prototype. If the systems engineering step is present, this is done at the subsystem
level by each separate subsystem team; otherwise the collaboration is constructed at the system level.
Using an appropriate logical architecture (see Chapter 2) to organize the system model allows the
subsystems to share common objects, classes, and types by placing them in shared domains. Typically,
each domain has a "domain owner" in charge of the contents of the domain. If a subsystem team
member wants to put a class in that domain, it goes through the domain owner to ensure a consistent,
clean set of classes.

100

Care should be taken to minimize the introduction of design elements during analysis. Limit the
collaboration at this point to elements that clearly must be present in the object analysis model. For
example, if the collaboration is to model the use case "Manage Account" for a banking system, then if the
collaboration does not contain an object such as customer, account, debit transaction, and credit
transaction, then you'd say it was wrong. In a navigation system, you would expect to see concepts
represented by objects or their attributes, such as position, direction, thrust, velocity, altitude, waypoint,
and trajectory. The goal is to include only the objects and relations that are crucial for correctness and to
omit design optimizations. The objects and attributes are named using the proper problem domain
vocabulary for the concepts they represent.

A key question arises during the construction of the object collaboration: "Is this right?" Are the concepts
properly represented? Are the relationships among those concepts correct? Do they behave
appropriately? The answer to these questions is answered rapidly during the nanocycle. You can really
only evaluate the correctness of an object model via execution and test. This is done by generating and
executing the code of the object analysis model while it is in various stages of completion, rather than
waiting until the end. Take the sequence diagrams used to show scenarios that captured the
requirements in a black-box way and elaborate them with the objects just created and demonstrate, via
execution, that they fulfill the expected roles within that scenario realization. Tools such as Rhapsody
allow you to execute your model and dynamically construct a sequence diagram of the collaboration as
the system executes. During this process, it is not uncommon that hidden requirements may be
uncovered during object analysis.

The collaborations are captured as class diagrams—no surprise there. Individual object behavioral
specifications are usually captured as a statechart (if the objects react to events in a discrete way) or
activity diagrams (if not). The behavior of the collaboration as a whole is captured primarily with
sequence diagrams.

3.2.6 Design with the ROPES Process

An analysis model defines a coherent set of required properties of the system under development. A
design model is a more concrete blueprint for exactly how those properties will be realized. An analysis
model may be implemented by many different designs with different optimization characteristics. A
design is a particular solution to the problem. Design is always an optimization of an analysis model. The
set of optimization criteria is the required qualities of service of the system. The difficult part of design is
that many different QoS properties must be simultaneously optimized, some of which may be in conflict
with others. Design deci-sions are made at three levels of abstraction: architectural (system scope),
mechanistic (collaboration scope), and detailed (object scope).

3.2.6.1 Architectural Design Phase

As discussed in some detail in Chapter 2, the ROPES process recognizes these five important views of
architecture.

• Subsystem and Component View
• Concurrency and Resource View
• Distribution View
• Safety and Reliability View
• Deployment View

101

In the Architecture Design phase, one or more of these views is elaborated, depending on the needs of
the current prototype. This is done primarily via the application of architectural design patterns (see
Section 3.4). These patterns are large in scope, affecting most or all of the system, similar to many of
the patterns presented in [4, 8].

Architectural design representation uses the same views as in Systems Engineering and Object Analysis:
class diagrams to represent the structure and sequence diagrams to represent collaborative behavior.
Components are similar to subsystems and may be mixed on the subsystem diagrams or put into
separate component diagrams. Since subsystem, component, and class diagrams are all structural, you
can mix elements on the structural diagram as appropriate. The concurrency and resource view will
emphasize «active» objects and other objects that are important in this view—features such as event
queues and semaphores, for example. The deployment view uses primarily deployment diagrams.

3.2.6.2 Mechanistic Design Phase

The Mechanistic Design phase is concerned with the optimization of individual collaborations so the scope
of mechanistic design decisions is generally an order of magnitude smaller than those found in
architectural design. Similar to architectural design, mechanistic design largely proceeds via the
application of design patterns, although the scope of the patterns is much smaller than those found in
architectural design. This is where the classic Gang of Four patterns [5] and other more fine-grained
patterns are applied.

The mechanistic design view is an elaboration of the object analysis view and uses the same graphical
representation: class and sequence diagrams for collaborations structure and sequence, activity, and
statechart diagrams for behavior.

3.2.6.3 Detailed Design Phase

The Detailed Design phase elaborates the internals of objects and classes, and it has a highly limited
scope: the individual object or class. Most of the optimization in detailed design focuses on these issues.

• Data structuring
• Algorithmic decomposition
• Optimization of an object's state machine
• Object implementation strategies
• Association implementation
• Visibility and encapsulation concerns
• Ensuring compliance at run-time with preconditional invariants (such as ranges on method

parameters)

There are many rules of thumb, guidelines, and practices for detail design, although these commonly fall
under the title of "idioms" rather than "patterns." For most objects, detailed design is little more than a
trivial detail, but there is usually a small (5 to 10 percent), but important, set of objects that requires
special attention during detailed design.

Generally, it is considered "good form" for object attributes to be "primitive"—things like integers,
floating point numbers, and strings. Sometimes, for optimization reasons, the structure is not primitive,
in which case its organization may be a concern. Algorithmic decomposition is usually shown with activity
diagrams, whereas statecharts represent the state machines. Most of the rest of the object details are

102

stored internally inside your design tool, since it is normally not helpful to show them graphically. For a
more detailed discussion of what goes on in the Detailed Design phase see [6, 7].

3.2.7 Translation

The Translation phase is concerned with the correct construction of the properly working architectural
elements. This phase includes the generation of code (whether it is automatically generated from your
model, written by hand, or a combination of the two), unit level testing of that source code and the
associated model elements, integration with legacy source code, the linking together of the pieces of the
architectural element (including, possibly, legacy components), and the unit testing of the architectural
element itself.

The following are the primary artifacts for the Translation phase.

• Source code generated from the model elements
• Unit test plan, procedures, and results (textual documents)
• Inspection report for the source code (textual document)
• Compiled and tested software components

3.2.8 Test

The Test phase constructs the prototype from the architectural elements and ensures that they fit
together (Integration and Test) and that the prototype as a black box meets its mission statement
(Validation Test). The first of these, Integration and Test, is concerned with architecture. The tests are
"gray box" and are limited to demonstrating that the interfaces of the architectural elements are used
properly and that none of the constraints are violated. This normally proceeds in a stepwise fashion,
according to an integration plan, that adds the architectural elements one at a time, testing to ensure
that the partially integrated prototype works as expected so far. It is in this phase that hardware
elements are formally integrated with the software elements for prototypes that have hardware-software
integration as part of their mission. The integration test plan and procedures may be developed once the
subsystem and component architecture of the prototype is specified—that is, either at the end of Systems
Engineering or Architectural Design (if the Systems Engineering phase is skipped).

The Validation phase tests the assembled prototype against its mission. The mission for a prototype is
normally a small set of use cases and/or the reduction of a small number of risks. The validation test plan
and procedures may be written as soon as the requirements for the prototype are understood—that is, at
the end of the microcycle's Requirements Analysis phase.

If defects are found during testing, they may be either fixed then (required if the defect is severe enough
to stop the continuation of testing) or deferred until the next prototype.

These are the primary artifacts for the Test phase.

• Integration test plan, procedures, and results
• Validation test plan, procedures, and results
• Tested, executable prototype
• Defect report

103

3.3 Design Pattern Basics
Experienced developers find that when they are trying to solve a new problem, the situation usually has
something in common with a solution they have already either created or seen. The problems may not be
identical, and an identical solution will rarely solve a new problem, but the problems are similar, so a
similar solution should work. This similar solution generalized and formalized, is called a design pattern.
Creating design patterns is a problem of abstracting the similarities of the two problems and the solution
so that the generic aspects of the original solution can be applied to the new problem.

Of the two fundamental concerns associated with patterns, the first has to do with the application of
patterns. The problem of identifying the nature of the problem and examining the patterns "library" for
the best ones to apply is called pattern hatching [9]. And, as John Vlissides, author of that excellent
book, points out, this name implies that we're not creating something new but "developing from
preexisting rudiments." These preexisting rudiments are our captured design patterns that we can use to
construct solutions that work in novel circumstances.

The other issue, of course, is the identification and capture of new patterns to add to the library. I call
this process pattern mining. It involves the abstraction of the problem to its essential properties, creating
a generic solution and then understanding the consequences of that solution in the problem context in
which the pattern applies.

Patterns are not just software reuse but rather a kind of concept reuse. Most patterns, such as those
presented in this book, are design patterns. Design is always an optimization of an analysis model, and
design patterns are always a general concept for how to optimize an analysis model in a particular way
with particular effects.

Optimization is a fickle partner. Optimization always entails improving some aspect of the system at the
expense of others. For example, some patterns will optimize reusability at the expense of worst-case
performance. Other patterns will optimize safety at the expense of system recurring cost (cost per
shipped item). Whenever you optimize one set of aspects you deoptimize others. This is just a fact of life,
or else we would all be driving at the speed of sound with no need for gasoline and at zero risk and cost.

3.3.1 What Is a Design Pattern?

A design pattern is "a generalized solution to a commonly occurring problem." To be a pattern, the
problem must recur often enough to be usefully generalizable. The solution must also be general enough
to be applied in a wide set of application domains. If it only applies to a single application domain, then it
is probably an analysis pattern. An analysis pattern is similar to a design pattern, but it applies to a
specific application domain, such as finance or aerospace. Analysis patterns define ways for organizing
problem-specific object analysis models within a single application domain. See [12] for some examples
of domain-specific analysis patterns.

Analysis is driven by what the system must do, whereas design is driven by how well the system must
achieve its requirements. A design pattern is a way of organizing a design that improves the optimality of
a design with respect to one or a small set of qualities of service. Here are some of them.

• Performance

- Worst case

104

- Average case

• Predictability
• Schedulability
• Throughput

- Average

- Sustained

- Burst

• Reliability

- With respect to errors

- With respect to failures

• Safety
• Reusability
• Distributability
• Portability
• Maintainability
• Scalability
• Complexity
• Resource usage—for example, memory
• Energy consumption
• Recurring cost—for example, hardware
• Development effort and cost

Of course, as we discussed in the previous chapter, many of these QoS properties are to some degree
conflicting. A design pattern always has a focused purpose: to take one or a small set of these QoS
properties and optimize them at the expense of the others.

Patterns may be applied at the different levels of design abstraction. Architectural patterns, the focus of
this book, have systemic scope and apply mostly to only one of the Five Views of architecture. At the
next level down in design abstraction, mechanistic design patterns apply to individual collaborations,
optimizing the same QoS properties but in a more narrow arena. Patterns usually do not apply to detailed
design, but idioms and practices do.

The patterns presented in this book are primarily structural design patterns. That is, they call for
organizing systems or parts of systems in certain ways so that behavioral strategies can be applied to
optimize the desired QoS. Patterns need not be structural. The book Doing Hard Time [6], for example,
provides a set of behavioral design patterns for ways in which state machines may be "behaviorally
structured" to optimize how the state machine works.

Sets of interrelated patterns tailored specifically to work well together are called frameworks. In a
framework-based development effort, the majority of the application is provided by the instantiated

105

framework. This includes the "meat and potatoes" of the application, offering services to construct GUI
elements, manage devices, manage concurrency, execute state machines, and so on. The developer need
only then build the elements of the system that are peculiar to that particular system, relying on the
framework to support those application services.

Frameworks provide four primary usage strategies—instantiation, generalization, parameterization, and
extension—and many frameworks use all four. The instantiation usage strategy uses some aspect of the
framework, such as scheduling threads or executing state machines, directly with no change. The
generalization strategy takes an abstract framework element and specializes it, adding new functionality.
A real-time framework might provide a Sensor class that fits into a Model-View-Controller style pattern,
with the expectation that you will subclass this Sensor class for your particular device and overwrite the
inherited methods. This is a very common way of using patterns. Parameterization is applied when the
Framework provides parameterized classes—such as containers in C++'s STL—with the intention that you
will provide the actual parameters when you instantiate that portion of the framework. Finally, most
frameworks have special places were you can plug in pieces and extend the framework. An example of
this would be plugging in a CAN bus communications protocol or an HDLC (High-level Data Link
Communications) protocol. The disadvantages of frameworks are that they limit the ways in which you do
things and frameworks are much more difficult to design and construct than applications, even though
they greatly simplify application development. Nevertheless, frameworks are prime examples of effective
use of patterns.

3.3.2 Basic Structure of Design Patterns

According to Gamma et al. [5], a pattern has these four important aspects.

1. Name

The name provides a "handle" or means to reference the pattern.

2. Purpose

The purpose provides the problem context and the QoS aspects the pattern seeks to optimize.
The purpose identifies the kinds of problem contexts where the pattern might be particularly
appropriate.

3. Solution

The solution is the pattern itself.

4. Consequences

The consequences are the set of pros and cons of the use of the pattern.

The pattern name brings us two things. First, it allows us to reference the pattern in a clear,
unambiguous way, with the details present but unstated. Second, it gives us a more abstract vocabulary
to speak about our designs. The statement "The system uses a layered structural architecture with
messages queuing concurrency distributed across a symmetric deployment with a broker pattern" has a
lot of information about the overall structure of the system because we can discuss the architecture in
terms of these patterns.

106

The purpose of the pattern brings into focus the essential problem contexts required for the pattern to be
applicable and what qualities of service the pattern is attempting to optimize. This section specifies under
which situations the pattern is appropriate and under which situations it should be avoided.

The solution, of course, is the most important aspect. It identifies the elements of the pattern and their
roles in relation to each other. As we'll see in the next section, these elements are replaced by, or
subclassed by, your application objects to instantiate the pattern.

The consequences are important because we always make tradeoffs when we select one pattern over
another. We must understand the pros and cons of the pattern to apply it effectively. The pros and cons
are usually couched in terms of improvement or degradation of some qualities of service, as well as a
possible elaboration of problem contexts in which these consequences apply.

3.3.3 How to Read Design Patterns in this Book

All the patterns of this book are organized in the same fashion to improve the usability of the patterns.

• Abstract

The abstract gives a brief description of the pattern use or justification. This is meant as an
overview of the problem, solution, and consequences.

• Problem

The problem section gives a statement of the problem context and the qualities of service
addressed by the pattern.

• Pattern Structure

This section provides a structural UML diagram of the pattern, showing the important elements of
the pattern. These elements are the places into which you will substitute your own specific
application elements to instantiate the pattern. Relations among elements of the pattern are
shown as well.

• Collaboration Roles

This section elaborates the properties of the individual elements in the pattern collaboration.

• Consequences

The consequences section describes the tradeoffs made when the pattern is used.

• Implementation Strategies

This section discusses issues around the implementation of the pattern on different computing
platforms or in different source-level languages.

• Related Patterns

107

The related patterns section references other patterns in this book that may be used instead of
this pattern (with different optimization criteria, of course) or are often used in conjunction with
this pattern.

• Example Model

Each pattern is shown in an example that illustrates how the pattern is applied in some particular
case. This usually involves the presentation of a UML structural diagram showing particular
application elements fulfilling the pattern collaboration roles and a sequence diagram showing
one trace through the execution of that collaboration.

The notation used throughout this book is generic, standard UML. The UML represents a collaboration
using a dashed oval. A pattern as a parameterized collaboration uses a dashed oval as well. The dashed
oval itself adds little information to the structural diagram, so it is omitted in this book. Chapter 1
introduced the UML basics, and Appendix A gives a UML notational summary. For a more detailed
understanding of the UML itself, see [6, 7, 10, 11].

There is very little source-level code in this book because the book concerns itself with architecture. Code
examples to illustrate these points would either be too simplified to be useful or would be too lengthy.
Using UML models as examples, we believe, suits the purpose and focus of the book better.

3.4 Using Design Patterns in Development
By this point, you should have a reasonably good understanding of what a pattern is and how one is
organized. You should also have a fair grasp of the ROPES process and our view of where design fits into
the overall scheme of things. From the previous chapter, you got a foundation in what we mean by the
term architecture and the Five Views of architecture. In the first chapter, you read about the basic
building blocks of the UML. At this point, you are almost ready to examine the patterns in this book and
apply them to your applications development. But first, let's briefly discuss how we might use patterns in
our daily work lives.

3.4.1 Pattern Hatching—Locating the Right Patterns

You're facing a design problem. How do you find the patterns that can be applied to solve your particular
design issues? We recommend a multistep approach, as shown in Figure 3-10.

Figure 3-10. Pattern Hatching

108

1. First, before starting your design, familiarize yourself with the patterns literature. [8] There are a
number of books, papers, and Web sites devoted to patterns in many application domains. Some
of those patterns are given here, and others are given in the references. Once you have
increased your vocabulary to include patterns likely to be relevant to your application domain,
you have more intellectual ammunition to face your design challenges.

[8] That means "Read the book!"

2. Apply "linear thinking." Characterize the nature of the design problem you face. What is the
scope of the problem—architectural, mechanistic, or detailed? What are the relevant quality of
service issues—worst-case performance? Reusability? Safety? Portability? Memory usage? Rank
them according to criticality. Sometimes once you've done this, a design solution will suggest
itself.

3. Apply pattern matching. This is the fun part. Your cerebral cortex is a wonderful pattern-matching
machine. It operates autonomously from your linear thought processing. This is why you have
the "Eureka!" experience when you're in the shower, getting ready for bed, or eating dinner. [9]
Once you've applied the linear thinking step, your unconscious pattern-matching machinery has
enough information to go to work.

[9] For me, it occurs mostly when I run. In fact, I measure problem difficulty in
miles—how far I have to run to solve the problem. The downside is that it can be
a hard sell to managers when you tell them, "I have to solve this design problem,
so I'm going to run ten miles. See you in an hour and a half. It's work—honest!"

109

4. "A miracle occurs." The pattern-matching machinery identifies a potential solution, usually the
application of a pattern, whether that pattern was explicitly formulated as a general solution or
not. This doesn't mean that the proposed solution is a good one, just that it matches the desired
properties closely enough for further evaluation.

5. Evaluate the proposed solution. This is another application of linear reasoning in which you
logically analyze and evaluate the pattern suggested. If the solution is good, then you apply it
(step 6); if not, you clearly go back to step 3, or perhaps even step 2.

6. Instantiate the pattern. Organize your structural elements to be consistent with the pattern. This
may involve breaking objects apart, merging them together, reassigning collaboration
responsibilities, or introducing new elements altogether.

7. Test the solution. Elaborate your analysis scenarios with the elements of the collaboration, and
demonstrate that they meet the functional and behavioral requirements. Once you're satisfied
that the collaboration is doing the right thing, measure the desired qualities of service, if
necessary, to ensure that the pattern is achieving your quality of service goals. This is especially
true for performance and resource usage goals.

3.4.2 Pattern Mining—Rolling Your Own Patterns

Creating your own pattern is useful, especially when you have a depth of experience to understand the
optimization issues in a particular area and sufficient breadth to understand the general properties of the
solutions enough to abstract them into a generalized solution. We call this pattern mining (see Figure 3-
11). Pattern mining isn't so much a matter of invention as it is discovery—seeing that this solution in
some context is similar to that solution in another context and abstracting away the specifics of the
solutions. Keep in mind that to be a useful pattern, it must occur in different contexts and perform a
useful optimization of one or more qualities of service.

Figure 3-11. Pattern Mining

3.4.3 Pattern Instantiation—Applying Patterns in Your Designs

110

Pattern instantiation is the opposite of pattern mining. It is applying the pattern to a particular
collaboration to gain the benefits of the pattern (see Figure 3-12). Patterns are normally applied to an
object collaboration. A collaboration is a set of objects (at some scope these may be small, low-level
objects, whereas at others they may be large-grained objects such as subsystems and components). The
purpose is to organize, and possibly elaborate, this already existing collaboration with the pattern.

Figure 3-12. Pattern Instantiation

The application or instantiation of a pattern in your design is a matter of defining the elements that will
fulfill the collaboration roles in the application. For some of the patterns you may create the role as a
superclass from which you subclass to instantiate that pattern. In other patterns, you may simply replace
the pattern element with one from your application domain, adding in the required operations and
behavior. Or you may choose to create objects just as they exist in the pattern itself.

References
[1] Beck, Kent. Extreme Programming Explained, Boston, MA: Addison-Wesley, 2000.

[2] Douglass, Bruce Powel. "On the ROPES," Embedded Systems Programming, December 2000.

[3] DeMarco, Tom, and Timothy Lister. Peopleware: Productive Projects and Teams, New York: Dorset
House Publishing Company, 1987.

[4] Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. A System of Patterns: Pattern-
Oriented Software Architecture, New York: Wiley and Sons, 1996.

[5] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software, Reading, MA: Addison-Wesley, 1995.

111

[6] Douglass, Bruce Powel. Real-Time UML, 2nd Edition: Developing Efficient Objects for Embedded
Systems, Boston, MA: Addison-Wesley, 2000.

[7] Douglass, Bruce Powel. Doing Hard Time: Developing Real-Time Systems with UML, Objects,
Frameworks and Patterns, Reading, MA: Addison-Wesley, 1999.

[8] Zalewski, Janusz. Real-Time Software Architecture and Design Patterns: Fundamental Concepts and
Their Consequences. Annual Reviews in Control, Vol. 25, No. 1, pp. 133–146, July 2001.

[9] Vlissides, John. Pattern Hatching: Design Patterns Applied, Reading, MA: Addison-Wesley, 1998.

[10] Rumbaugh, J., I. Jacobson, and G. Booch. The Unified Modeling Language Reference Manual,
Reading, MA: Addison-Wesley, 1999.

[11] OMG Unified Modeling Language Specification Version 1.4, Needham, MA: Object Management
Group, 2001.

[12] Fowler, Martin. Analysis Patterns: Reusable Object Models, Reading, MA: Addison-Wesley, 1997.

112

Part II: Architectural Design Patterns
Introduction

Analysis identifies the essential, or required, properties of a system under development.
Design adds specific details meant to optimize the design in order to "best" meet system
needs. As discussed in Chapter 3, the ROPES process breaks down design into three
abstraction levels, based on the scope of the decisions made. This part focuses on design
patterns that address the largest-scale system design concerns: architectural design. The
design choices made in architectural design affect most or all of the systems under
development. Most of these choices can be grouped into one of the following areas.

• Domain view
• Subsystem or component view
• Concurrency view
• Distribution view
• Safety and reliability view
• Deployment view

The first two deal with what some developers call the logical-physical dichotomy. A
domain is an area of subject matter, usually with its own specific vocabulary, and often it
requires a specific area of expertise. Domains are modeled as a stereotype of package
«domain». The set of domains decompose what Grady Booch calls the "sea of classes" [1]
into relatively small, manageable subject matters that may undergo some level of
independent analysis. Virtually all classes will be defined in the domains. In fact, virtually
each generalization taxonomy is located within a single domain. Domains themselves may
be divided up into small subpackages for parceling out to different developers or teams of
developers. The set of domains comprises the logical or essential model of the system.
This logical model does not concern itself with how it will be structured into run-time
artifacts (the job for the subsystem and component model) but instead focuses on the
classes and relationships required for logical correctness. To be sure, object
collaborations normally span multiple domains in order to achieve the required use cases.
Nevertheless, each class is defined within a single domain, and the classes are grouped
together into a domain when they fall within the same subject matter. Example domains
typically found in embedded systems include user interface, hardware abstraction, data
management, data communication, and alarm management. Application areas will add
their own more specific domains such as guidance and navigation, attitude control,
anesthesia delivery, patient monitoring, aircraft targeting, and so on. It is common for a
domain to define classes that instantiate in many or all subsystems. For example, all
subsystems may need to communicate across a bus. The classes that define the means to
marshal, send, and receive messages across a bus are defined in a communications
domain, but they may be instantiated in all subsystems. It is also common for classes
defined with a domain to be instantiated only within a single subsystem. For example,
while a spacecraft attitude control subsystem will contain instances of classes from
multiple domains, classes defined within an attitude control domain will likely only be
instantiated within the attitude control subsystem.

113

A subsystem, unlike a domain, is not a logical structure but a run-time artifact. It is an
organization composed of objects, rather than classes, based on common run-time
behavioral purpose rather than subject matter. A subsystem contains objects instantiated
from classes from many or all domains defined within a system. In the UML, a subsystem
is a meta-subclass of both Classifier and Package, making it both a structural executable
entity and a container for instances. Subsystems do not define the classes they
instantiate (those classes are defined in the relevant domains), [1] but they do contain
instances. Subsystems are rather large things and may be composed of components
rather than directly of class instances. In the UML, a component is a run-time artifact that
represents a replaceable piece of a system or subsystem. Components, in turn, contain
object instances of various kinds, including, for example, «active» classes that serve as
the roots of threads. The subsystem and component model is one aspect of what is called
the physical model. Another aspect is the deployment view, which is where these run-
time artifacts actually get mapped to the underlying hardware. The only classes actually
defined within a subsystem are those responsible for organizing the execution of
instances of the domain classes. These will include composite objects (see the Recursive
Containment pattern, for example) and interface classes for these composites.

[1] There are exceptions to this rule. Specifically, classes solely used to
organize and deploy the instances of the domain classes (e.g., the
subsystems themselves) and provide interfaces to these organizational
classes are normally defined by the subsystem itself. The real work,
though, is done by instances of the classes defined in the domains.

One of the advantages of separating the logical and physical models is that they may
vary independently. A logical model may be "repackaged" into a different set of
subsystems and components to efficiently map to different hardware configurations.
Similarly, a common subsystem organizational model (especially when built up around
teams with specific expertise) may be reused to package different logical elements.
Chapter 4 provides structural patterns for both the logical and subsystem models.

The concurrency view is also part of the physical model; it represents the mapping of
instances to threads of control. In the UML, a thread is managed by an «active» object
and is part of a component or subsystem. Passive objects are aggregated by the active
object (normally using the strong form of aggregation, called composition) and execute in
the thread of their composite «active» object. The concurrency view concerns itself with
the identification of threads, the mapping of objects to threads, and the rules for
managing thread execution and the sharing of common resources.

The distribution view is about principles and means by which objects distributed among
different address spaces will communicate. Objects may be distributed among different
threads of a single processor, among multiple processors, or among different remote
systems. Concurrency and distribution patterns are presented in Chapters 5, 6, 7, and 8.

The safety and reliability view focuses on organizational principles necessary to meet
system safety and reliability requirements. Safety refers to "freedom from accidents or
losses," while reliability refers to "probability that a system will continue to achieve its
behavioral function." These are significantly different concerns. In some systems,
improving reliability decreases safety and vice versa. See [2] for more information on the

114

relevant concepts of safety and reliability as they apply to embedded and real-time
software. Safety and reliability patterns are presented in Chapter 9.

We present patterns organized into these different aspects of architectural design. As an
aside, many of these patterns are structural in nature, and code-based examples fail to
properly illustrate their character. For this reason, many of the architectural patterns will
provide C and C++ implementation guidelines rather than actual code. Where actual
source code is useful to illustrate the pattern, source code will be provided preferentially.

References
[1] Booch, Grady. "Software as a Strategic Weapon" in Best of Booch, New York: SIGS
Books and Multimedia, 1996.

[2] Douglass, Bruce Powel. Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks, and Patterns, Reading, MA: Addison-Wesley, 1999.

[3] Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorenson. Object-Oriented
Modeling and Design, Englewood Cliffs, NJ: Prentice Hall, 1991.

[4] Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. A System of
Patterns: Pattern-Oriented Architecture, New York: John Wiley & Sons, 1996.

115

Chapter 4. Subsystem and Component
Architecture Patterns
The following patterns are presented in this chapter.

• Layered Pattern: Organizes domains into layers of abstraction
• Five-Layer Pattern: A specific set of layered domains for small to medium systems
• Microkernel Architecture Pattern: Organizes system into a set of core services with optional

services that may be linked to it
• Channel Architecture Pattern: Organizes system into sets of sequential transformational elements
• Recursive Containment Pattern: Organizes the system into several layers of abstraction
• Hierarchical Control Pattern: Distributes complex control algorithms at different levels of

abstraction
• Virtual Machine Pattern: Enhances portability by constructing the system in terms of an abstract

machine
• Component-Based Architecture Pattern: Organizes system into replaceable units with opaque

interfaces
• ROOM Pattern: Organizes system using a set of heavyweight abstractions with strong

encapsulation

High-level structural patterns are those that refer to the organization of the domains of the logical model,
subsystems and components of the subsystem, and component view, and nodes (and the mapping
subsystems and components to nodes) of the deployment view. In this chapter we examine all of these
types of patterns as a group, and we define which pattern applies to which view.

Note

As with all architectural patterns, we do not provide coding examples of the patterns. Because
of the scale of architectural patterns, the number of lines of code would be cumbersome and
not particularly helpful for understanding the pattern. Instead, we have provided specific
application models that illustrate the application of the pattern.

4.1 Layered Pattern
The Layered Pattern organizes domains into a hierarchical organization based on their level of
abstraction.

4.1.1 Abstract

Many systems domains may be thought of as comprising a set of semantic concepts at a particular level
of abstraction. The more abstract concepts in one domain are realized in terms of more concrete
concepts in others. For example, Figure 4-1 shows how the concepts useful to a cardiologist can be
expressed in less abstract terms. Cardiologists think in terms of concepts such as heart block,
preventricular contraction, and heart rate. These may be expressed in terms of myoneurobiology. Myo-
neurobiology can be expressed in terms of cell physiology. The functioning of cells can be explained in
terms of chemical reactions of complex molecules including enzymes, neuro-transmitters, and energy
substrates such as adenosine triphosphate (ATP). Chemistry can be explained in terms of the underlying
physics of electron shell interactions. Ultimately, atomic physics can be explained (although often with

116

some difficulty, as I recall) in terms of quantum physics. However, the cardiologist would find it
difficult to focus on his immediate concerns if he was required to always think in terms of chemistry (let
alone the underlying physics) rather than the more suitable abstract concepts of cardiology. By
constructing a set of abstractions that makes sense to the cardiologist but ultimately depend on less
abstract concepts, he or she can work more effectively. So it is with software developers.

Figure 4-1. Cardiology Conceptual Hierarchy

4.1.2 Problem

In a system in which abstract domains must be implemented in terms of more concrete (less abstract)
domains, we need a simple organizational pattern. Additionally, in many systems we need portability of
the application to other platforms, or we want to provide an abstract platform or execution environment
for which applications may be easily adapted.

117

4.1.3 Pattern Structure

Figure 4-2 shows the organization of the layered pattern. Note that it only contains a single primary
element (the domain package) and its interface; the constraint elucidates the structure of the pattern.

Figure 4-2. Layered Pattern Structure

4.1.4 Collaboration Roles

This is a very simple pattern with a single role used recursively.

• Domain

The domain role is an idiomatic use of the UML concept of a package. A package in the UML may
be thought of as a bag that contains model elements. No guidance is provided by the UML per se
on suitable criteria for selection of which elements should be put in which packages. One criteria
is to group model elements by common subject matter. All of the concepts of a single subject
matter normally share a common vocabulary. This subject matter is called a domain. For
example, a common domain is user interface. In such a domain, one would expect to find classes
such as window, scroll bar, font, image, dialog box, cursor, and so on.

4.1.5 Consequences

The Layered Pattern allows the system to provide highly abstract concepts, closely relevant to the
application's needs and vocabulary, even when those services will ultimately be provided by a set of
simpler services provided by more concrete classes. In a closed layered architecture, the classes in one
layer can only invoke operations of classes in the same layer or in the next layer down [3]. In an open
layered architecture, classes in one layer may invoke operations of classes in the same or any layer
below it. There may be some loss of performance by providing a model with many abstraction levels with
a closed layered architecture. On the other hand, a closed layered architecture offers significantly better
encapsulation, and it is generally much easier to correctly modify the classes in one layer because you
can be assured that only classes in that layer or the one immediately above it will be affected.

Layered logical architectures tend to be very portable. The upper layers are more application-specific,
while the lower layers are more platform-specific. A layered architecture allows portability in both
directions. Applications are more portable because the lower layers can be easily replaced with similar
lower layers specific to other platforms. On the other hand, the upper layers can be easily replaced to
allow other applications to be deployed on the same platform.

118

4.1.6 Implementation Strategies

Implementation of a layered architecture is quite straightforward. Although the dependency relationships
among the layers are present, the important relationships are ultimately the one-way client-server
associations among the classes in one layer and the classes in the lower layer(s) invoked. It is crucial
that these associations between layers are one way, allowing messages to be sent to the lower layers but
not the other way. The lower-level abstractions cannot depend on the higher-level abstractions that use
them.

4.1.7 Related Patterns

The Five-Layer Architecture Pattern, also in this chapter, is a particular adaptation of this pattern
common to real-time and embedded systems. The Recursive Containment Pattern is to physical
architecture what the layered pattern is to logical architecture.

4.1.8 Sample Model

A simplified model is shown in Figure 4-3. In this example, the logical model of an ECG monitor is divided
up into four domains: an ECG_Domain containing medical-related classes; a Trend_Domain containing
classes related to managing histories of data streams; an Alarm_Domain that provides classes necessary
to manage and annunciate alarms; a UserInterface_Domain whose classes provide views of data; and a
Transport_Domain containing classes to manage communication among distributed elements of the
system.

Figure 4-3. ECG Domain Model

Collaborations almost always span domain (and frequently subsystem) boundaries. Figure 4-4 shows an
example collaboration of objects spanning domain boundaries in the set of layers. Note that, as is also
common, the associations among the classes between domains are unidirectional, from the classes in the

119

more abstract domains to the classes in the more concrete domains. As a general policy in the layered
pattern, classes "know about" classes in the more concrete domains so that they can invoke their
operations, but classes in the concrete domains don't know about their more abstract clients.

Figure 4-4. ECG Collaboration

4.2 Five-Layer Architecture Pattern
The Five-Layer Architecture Pattern is a specific architecture useful for the general structuring of many
embedded and real-time systems. It is a specific adaptation of the Layered Pattern, discussed in the
previous section.

4.2.1 Abstract

For many small- to medium-scale systems, a similar organization of the logical architecture permits
developers to quickly and easily understand the organization of a new system. The Five-Layer
Architecture Pattern is a common one that applies broadly to many applications.

4.2.2 Problem

In a system in which domains can be thought of as being in a common layer of abstraction that must be
implemented in terms of more concrete (less abstract) domains, we need a simple organizational pattern.
Additionally, in many systems we need portability of the application to other platforms, or we want to
provide an abstract platform for which applications may be easily adapted.

4.2.3 Pattern Structure

The structure for the Five-Layer Architecture Pattern is shown in Figure 4-5. It is a specific set of the
layers defined in the Layered Pattern.

120

Figure 4-5. Five-Layer Architecture Pattern Structure

4.2.4 Collaboration Roles

• Application Domain

The Application Domain contains the application-level classes. In a ventilator system, classes
specific to that domain are specified. These might be classes such as tidal volume, lung volume,
respiration rate, inspiration to expiration ratio, pressure, and expiratory end pressure.

• User Interface Domain

The User Interface Domain contains classes specific to the user interface: window, scroll bar,
font, image, dialog box, cursor, and so on.

• Communication Domain

The Communication Domain contains classes necessary to transport data, commands, and events
among the objects. This domain is often subdivided into two subdomains: middleware and data
transport (also known as transport protocol). The middleware domain contains classes such as
those found in CORBA, such as CORBA message, broker, proxy, and various transportable data
types. The data transport domain contains classes necessary to marshal and unmarshal

121

messages, convert to network format, fragment and defragment messages, perform reliable and
unreliable transport, create sessions, maintain communication links, and so on.

• Abstract OS Domain

The Abstract OS Domain focuses on adapters that isolate the system from the specific syntax and
structure of the underlying OS. These will include classes to manage threads and memory as well
as other typical OS services.

• Abstract Hardware Domain

This domain provides classes that represent devices and their interfaces. Classes will include
things like sensors, actuators, bus interfaces, and device drivers.

4.2.5 Consequences

The consequences of this pattern are largely the same as for the Layered Pattern. This pattern is usually
open in the sense that the user interface domain may require the use of communications, but application
communications are not mediated by classes in the user interface domain.

A small number of layers means that this pattern is likely to be highly efficient. However, because of the
few layers, it may not provide an adequate set of domains to decompose complex systems.

4.2.6 Implementation Strategies

See Section 4.1, Layered Pattern.

4.2.7 Related Patterns

See Section 4.1, Layered Pattern.

4.2.8 Sample Model

The example provided here is a simple ventilator model shown in Figure 4-6. To keep the example
tractable in the scope of a pattern example, only the most visible classes and relations are shown.

Figure 4-6. Ventilator Example Domains

122

The same implementation guidelines presented in Section 4.1.8 also apply to this architectural pattern.

4.3 Microkernel Architecture Pattern
The Microkernel Architecture Pattern is a useful pattern when a system consists of a core set of services
that may be augmented at build-time with a variety of additional services.

4.3.1 Abstract

It is possible to construct a subsystem from a core service set in such a way that the developer can
choose the set of services needed in an application. Such a structure makes the subsystem much more
reusable by providing build-time configurability. A common subsystem example is a real-time operating
system (RTOS). Many, if not most, such subsystems contain a core set of services (such as create a task,
delete a task, allocate and deallocate memory, provide task event and message queues, and
schedule/execute a task set). On top of those services, the developer can link in additional components
to provide more services. Common service components for RTOS include bus communications, file
services, networking services, and middleware services (see the Broker Pattern in Chapter 8, Distribution
Patterns). With this configurability, an RTOS becomes usable in a much wider set of application problems
from tiny, highly memory-constrained systems to systems consisting of sets of high-powered networked
CPUs.

4.3.2 Problem

Some subsystems provide a set of basic services that may be optionally augmented at build-time and
must be reusable in a variety of contexts.

4.3.3 Pattern Structure

123

Figure 4-7 shows the organization of the Microkernel Architecture Pattern. The subsystem Platform is
named thusly because the subsystem normally provides an executable infrastructure on which the
application depends. All the components inside the platform provide opaque interfaces, the sum of which
form the API. The order of dependency is that Internal Components depend only on the Microkernel and
its interfaces (although sometimes special visibility is provided to interfaces that should remain hidden
from the Client). External Components may use Internal Components or may use the Microkernel
directly. The Client has access to all components, although, as mentioned before, certain internal
interfaces may be hidden from the Client.

Figure 4-7. Microkernel Architecture Pattern Structure

4.3.4 Collaboration Roles

• API

The API (application program interface) has the set of subsystem interfaces from the Microkernel,
Internal Services, and External Services components. There may be more than one interface per
subsystem.

• Client

The Client is an actor outside the scope of the subsystem that uses the services provided by the
subsystem. The Client is typically the user-designed portion of the overall system.

• External Services

124

An External Services component provides an optional set of services commonly bound to the
Microkernel. These services are accessible to the Client via a set of interfaces. An External
Services component may provide a number of different interfaces. It is common to have many
different External Services subsystems providing different sets of optional services. The External
Services component is often written by a systems programmer to augment the features provided
by the Platform subsystem vendor.

• Internal Services

An Internal Services component provides an optional set of services commonly bound to the
Microkernel. These services are accessible to the Client via a set of interfaces. An Internal
Services subsystem may provide a number of different interfaces. It is common to have multiple
different Internal Services subsystems providing different sets of optional services. Internal
Services are typically provided by the Platform vendor.

• Microkernel

The Microkernel component provides the core or minimum set of services provided by the
subsystem. It is accessible to the Client and the optional subsystems via a set of interfaces. The
Microkernel subsystem may provide a number of different interfaces. Both internal and external
service subsystems typically use the services of the Microkernel.

• Platform

The Platform is the reusable subsystem constructed of the various components and providing a
set of interfaces through its API.

4.3.5 Consequences

The Microkernel Architecture Pattern provides a scalable system in which optional sets of services may be
added to the system during system builds. This allows the subsystem to be configured optimally for the
specific application environment. There is nothing in this pattern that specifically prohibits the run-time
addition of components, but the Component Architecture pattern is more commonly used for this.

4.3.6 Implementation Strategies

The Microkernel provides the core services of the subsystem, on which the more elaborate services
provided by the other components are based. In an RTOS application, this will include memory allocation,
task scheduling, and a means for hooking in device drivers. The performance of the Microkernel
component is usually the most critical, and for this reason, it is common that at least some of this
component is implemented in assembly language (at least in the RTOS application domain). The other
components are all implemented in a higher-level language such as C or C++. Thus, porting the
subsystem to another processor is usually just a matter of rewriting the core services in the new
processor's native assembly language and recompiling the other components.

Internal components contain a cohesive set of services that use the more primitive Microkernel services.
The set of services provided within an internal or external component are determined by trading off the
richness of the set of services with the fidelity of control desired for the complexity and size of the
Platform subsystem. If a component contains a smaller set of services, but there are more of them, then

125

a greater granularity is provided to the system builder. On the other hand, providing too many adds to
the complexity of system builds and increases the depth of understanding required on the part of the
system builder.

For example, it is common to provide an internal component for an RTOS, which provides basic file
system services, such as directory maintenance, and the ability to create and destroy files. Without the
ability to write and read files, however, such a component is, by itself, useless. So it makes sense to
include some basic file I/O services as well within the same component. On the other hand, not all
applications that need a file system may need random access file I/O. Sequential I/O may be adequate
for their needs. In this case, the RTOS designer may well opt to create an enhanced file I/O component
that uses the basic file I/O services but adds random access, as well as move, copy and append services.

4.3.7 Related Patterns

The Component-Based Architecture Pattern is a more general pattern that permits the addition of
components at run-time. It is also less structured than the Microkernel Architecture Pattern.

The Layered Pattern is more general still, since it provides little more than a structuring strategy.

4.3.8 Sample Model

The model illustrating the Microkernel Architecture Pattern is shown in Figure 4-8. Not all dependencies
are shown. It is assumed, for example, that the internal and external services all access the Microkernel
for memory, tasking, and hardware abstraction as necessary.

Figure 4-8. nanoOS Model

126

In this model, three core Microkernel service components are provided. The Task Management
Component provides task creation, deletion, and scheduling services. The Memory Management Compo-
nent provides services such as a dynamic-sized heap and a set of fixed-sized heaps, including memory
allocation, deallocation, and possibly garbage collection. The Hardware Abstraction Component provides
hooks for linking in device drivers.

The set of three internal components use the facilities of the Microkernel. The File Services component
provides services such as file creation, deletion, reading, and writing. The TCP/IP Component provides a
communications protocol to organize messages among networked nodes. The Network Services uses the
TCP/IP Component as a high-level protocol on top of the services that it provides (perhaps a low-level
Ethernet CSMA/CD protocol) to provide a more abstract protocol for easier network communication. The
Network Component itself offers the ability to send messages among network nodes and uses the File
Services Component to provide remote file manipulation.

Two external components are shown in Figure 4-8. A File Compression Component provides services for
lossy and non-lossy compression. Such services allow efficient use of finite resources such as
communications bandwidth, memory, or disk space. The Event Logging Component monitors and logs
system activity, such as might be required to debug run-time failures in the field. It uses the services of
the File System Component to provide persistent storage.

4.4 Channel Architecture Pattern
The Channel Architecture Pattern is useful in two different circumstances. First, it is useful when data
within a data stream is sequentially transformed in a series of steps. Second, at the large scale, the

127

Channel Architecture Pattern offers architectural redundancy for high-reliability and safety-critical
applications.

4.4.1 Abstract

A channel can be thought of as a pipe [1] that sequentially transforms data from an input value to an
output value. The internal elements of the channel work on the data stream in a kind of factory
automation process. Each of the internal elements performs a relatively simple operation of the data: a
single operational step in a larger sequential algorithm. It is common for multiple elements of the data
stream to be in different parts of the channel at the same time. It is also common to increase throughput
capacity to the system by adding multiple homogeneous (identical) channels. In high-reliability systems,
multiple channels can operate in a variety of ways to achieve fault tolerance. Similarly, in safety-critical
systems, multiple channels can improve safety by adding fault identification and safety measures. The
details of the various reliability and safety subpatterns are discussed later in Chapter 9.

[1] In fact, this pattern is sometimes called the "pipe and filter" pattern, as it is in [4].

4.4.2 Problem

Many algorithms process data streams, applying the same set of operational transformations to each
datum in turn, such as waveform scaling or application of a moving average digital filter. We would like
an architectural structure that improves throughput capacity with the replication of architectural units
allowing efficient processing of multiple data in different stages of processing. We also would like an
architecture that improves reliability and safety through the simple addition of redundant processing.

4.4.3 Pattern Structure

Figure 4-9 shows the basic structure of the Channel Architecture Pattern. The data flows in a sequential
manner from the Input Source actor, through the Input Filtering stage, through multiple Transformational
Processing stages, through the Output Filtering stage, and finally to the Output Sink actor. Each of the
stages represents an object with a set of services and internal attributes.

Figure 4-9. Channel Architecture Pattern Structure

128

The datum itself is an object that undergoes a change of state at each transformation. It starts in the
"Raw" state and is gradually roasted over time (not to stretch the metaphor too far, of course), resulting
in the datum in its "cooked" state. The figure uses the UML "Object in State" notation, in which the state
of the object is shown in square brackets.

The basic idea is that the datum is passed from object to object, undergoing some relatively small
transformation at each step. The transformational object may work on a single datum from start to end
before handling the next, but in high-performance systems it is common for multiple data objects to be
"in the pipe" at different stages simultaneously.

4.4.4 Collaboration Roles

• Abstract Transformation

The Abstract Transformation class provides a common interface and operations within the
channel pattern.

• Channel

The Channel is an architectural subsystem. It includes (via composition relations) the other
elements of the pattern. The advantage of using the Channel as a large composite object allows
us to treat it as a single entity and replicate it to provide redundant processing or improved
throughput.

• Concrete Transformation

The Concrete Transformation class is a concrete (instantiable) subclass of the Abstract
Transformation class. Its transform operation is specialized for the particular stage in the
algorithm.

• Datum

The Datum is the information undergoing transformation. It is normally a behaviorally simple
object with get and set operations. In the behavioral classification scheme of [1], it may be
simple (its behavior is not dependent on its history), reactive (its behavior depends on a finite set
of states), or continuous (its behavior depends on its history but in a continuous way).

• Input Filter

The Input Filter class provides data acquisition and initial filtering of data from the sensor or input
device.

• Output Filter

The Output Filter class provides the means to send the data to the Output Sink in the proper
format. It normally provides final filtering, data formatting, and output operations.

4.4.5 Consequences

129

The Channel Architecture Pattern is well suited to the sequential transformation of data from one state or
form to another. It simplifies algorithms that can easily be decomposed into a series of steps operating
on isolate elements from a data stream. Instances of channel subsystems can be added to improve
throughput. The architecture is easily adaptable to handle multiple elements of the data stream in
parallel, even when they are at different stages of processing.

4.4.6 Implementation Strategies

In the simple case, processing of a data stream takes place one datum at a time. It is acquired and
preprocessed by the Input Filter, sent along the transformation chain, until it is emitted out of the Output
Filter to the Output Sink. Then the next piece of information is processed, and so on.

This approach works well for non-real-time processing of data. However, it is often necessary to applying
operational transformations to data streams in real-time, such as in such real-time applica-tions as online
autocorrelators, data trend analysis, imaging systems (such as SONAR and PET scanners), and waveform
display systems. In these systems, a more time-efficient approach must be taken, and the transformation
stages must keep up with the rate of incoming data. Such rates can be quite high—sometimes thousands
or millions of data per second.

When there are real-time constraints that must be met, a common implementation approach is to allow
all transformation steps to operate in parallel, albeit on different elements of the data stream. The
handoffs can be either synchronous (normally when a single thread is used) or asynchronous (when each
transformation stage executes in a different thread).

Further improvement in data throughput can be achieved by adding multiple channels, especially when
the channels can execute on redundant hardware. To improve the throughput handling of a single
channel, a channel multiplexer object is put in front of the set of channels—whose responsibility it is to
feed the Input Filter of each channel in a fair way. A channel demultiplexer is put at the other end of the
set of channels to take the data coming from the set of channels and send out a single processed data
stream in the correct sequence to the Output Sink.

4.4.7 Related Patterns

There are a variety of variants of this pattern relevant to reliability and safety, provided in Chapter 9. For
example, the Triple Modular Redundancy Pattern provides a three-channel system in which a comparator
provides a winner-take-all approach to improving reliability. The Monitor-Actuator Pattern improves
safety in the presence of faults by separating the actuation (data transformation) channel from a
separate channel whose job it is to monitor the first channel.

4.4.8 Sample Model

Figure 4-10 shows an ECG monitor system structured using the Channel Architecture Pattern. This
system processes an incoming data stream, from the ECG acquisition module. The top channel is
concerned with processing the waveform into an intermediate form (indicated by the waveform data
object in the reduced state), as well as scaling of that waveform in time and height for display. After the
initial processing, another channel also uses the waveform data stream in its reduced state and scans it,
looking for specific artifacts that indicate QRS complexes (the heart beat), preventricular contractions
(PVCs), and the elevation above baseline of the segment between the QRS complex and the T wave (the
ST segment height).

130

Figure 4-10. ECG Monitor Channel Pattern Example

The low pass filter transformation object attempts to remove high-frequency artifacts that are outside of
the range of interest to the cardiologist. The next stage performs a data reduction from an incoming rate
of perhaps 500 Hz to a more compressed stream at 125 Hz. This compression is done without loss of
information because artifacts within the proper frequency range are carried over by the reduction
algorithm. The display scaler object takes this reduced waveform and scales it to pixels, according to the
current display sweep speed (common sweep speeds are 12.5, 25, and 50 mm/sec) and display
resolution along both the x- and y-axes. Finally, the waveform view displays this displayable waveform in
the proper window on the screen, erasing old data and drawing in the new data.

This waveform processing is time-critical because it is unacceptable to the user if the waveform is either
jerky or if the delay between the occurrence and the display of cardiac information (normally less than
200 ms delay is perfectly fine for display purposes). It is likely, then, that a more detailed design of this
model would break the waveform processing channel into three threads: one that runs at the rate of data
acquisition (say, 500 Hz), one that runs at the display update rate (50 Hertz), and a third that is running
when the other two are not, where most of the filtering occurs. No doubt FIFO queues would be used to
buffer the timing between the threads, but if the queues are relatively small, then the processing delay
will not be too large.

The Heart Numerics Channel begins work once the data is in the reduced state. Three different parsers
scan over the reduced waveform, looking for different information. The QRS Recognizer looks for a
specific wave shape that indicates a ventricular contraction (and delivery of blood to the arteries). The
PVC Analyzer looks for extra ventricular contractions where they are not expected. The ST Segment
Analyzer looks at the elevation of the electrical signal between certain aspects (specifically, the S and T

131

waves) of the waveform. Heart parameters are updated on a regular basis, and every so often, this
information is displayed on the screen. The numerics analyzers incorporate some form of digital filter so
that the value they are monitoring is smoothed and does not change too rapidly.

4.5 Recursive Containment Pattern
The Recursive Containment Pattern is a valuable pattern for very complex systems that realize thousands
of requirements.

4.5.1 Abstract

The basic concept of the Recursive Containment Pattern is that the way to construct a very complex
system is to think of it as a set of interrelated parts at a number of levels of successive detail, something
like a microscope with multiple levels of magnification. At a given level of abstraction, an object provides
opaque interfaces to its peers and collaborates with them to provide behavior larger than itself. This
object internally implements its own behavior (invisibly to its peers) by delegation to smaller "part"
objects that the object owns via composition relations. Each part object then implements its own opaque
interface in terms of even smaller parts. This approach is applied recursively, creating smaller and
smaller parts until each (leaf) part achieves a focused and simple responsibility that is easy to code.

4.5.2 Problem

A strategy is needed to decompose very large and complex systems in a manner that is straightforward
but scalable and allows mapping of large abstract use cases in a way that is verifiable at each stage in
the decomposition process.

4.5.3 Pattern Structure

Figure 4-11 shows the simple structure of the Recursive Containment Pattern. The system may be
thought of as a (very) large object that contains (via composition relations) part objects. These part
objects may be subsystems that are themselves composed of even smaller objects, and so on. This
decomposition continues until the leaf objects have simple structures and provide simple services. The
figure simply shows the pattern as a single object role with two association roles: a Container association
role and a Subordinate association role.

Figure 4-11. Recursive Containment Pattern Structure

132

4.5.4 Collaboration Roles

• Element

The Element in the pattern has two basic features. First, it provides a set of services through one
or more opaque interfaces. Second, internally, it provides these services largely by delegation
and coordination of smaller parts.

4.5.5 Consequences

The significance of this simple pattern lies in the fact that collaborations may be viewed at multiple levels
of abstraction. For very large and complex systems, this means that the system behavior may be viewed
at several different levels of detail. At each detail, the Element can provide a number of use cases.

4.5.6 Implementation Strategies

Implementation of this pattern involves the repeated application of the simple containment pattern. Two
opposite work flows are often used to create instances of this pattern. The top-down workflow starts at
the system level and identifies structural objects that provide the services required to realize the
collaboration. In real-time and embedded systems, many times there is a standard way of organizing the
system into subsystems. This standard organization, even if previous systems were not object-oriented,
may be incorporated using this approach. This can take advantage of the specialized skills often found in
the subsystem specialists.

An additional advantage of this approach is ease of ensuring that as the developer moves down levels of
abstraction, they are continuing to realize the use cases (that is, meet the system requirements). By
creating scenarios at the highest level, one identifies the required system-actor interactions. By replacing
the system object with its pieces, we can then test to ensure that we can still meet the same scenarios.
These pieces can then be replaced by their pieces and the scenario reexecuted. This allows the developer
to ensure that at every step of decomposition he or she is doing the right thing.

The other approach is to concentrate on domain construction— identifying the key classes and relations
within the domains. Because of extensive previous experience, it may be possible to identify cross-
domain collaborations that have worked well in the past and construct these into relatively larger building

133

block objects. This can proceed until we get to the subsystem level. This approach is a natural one for
many developers who specialize in one or a small set of domains, but it can be problematic because it
isn't clear that the right parts are being built until enough of the building blocks are constructed to realize
a known use case.

On a more detailed note, the composition relations used in the objects may be implemented via pointers
in C and C++ (most common), so-called "automatic" classes, or references (when the part must always
exist when the parent exists). When there are collections of parts, the Container Pattern is typically used
to provide appropriate containers that can be iterated over. The container pattern is discussed in more
detail in [2].

4.5.7 Related Patterns

This pattern is similar to the Composite Pattern of [2] and the Whole-Part Pattern of [3]. The Composite
Pattern provides behavior only in the smallest level of decomposition (the "Leaf" objects). The Whole-Part
Pattern provides services at every layer of decomposition, but it does not apply this structure at the
highest levels of the architecture as we do here. Further, since these works predate the release of the
UML, they do not integrate the concept of use cases and their realization in their discussions.

As noted above, [2] discusses the Container Pattern, which can be applied when the multiplicity of parts
objects is potentially greater than one.

4.5.8 Sample Model

At the highest level, the use cases will be behavior-provided by the system as a whole rather than by
individual pieces. A spacecraft might provide a use case such as "Take a picture of a surface feature on a
planet." This use case is shown in Figure 4-12.

Figure 4-12. High Level Use Case

We can then decompose the spacecraft into subsystems that collaborate together to realize this system-
level use case, as shown in Figure 4-13.

134

Figure 4-13. Spacecraft Subsystem Model

These subsystems are large objects (strictly speaking, subsystems in UML are both classifiers and
packages, and as classifiers, they may have instances) that will realize their behavior via the many
smaller objects they themselves contain. Nevertheless, the system-level use case will be realized by
these subsystems collaborating together. This can be shown by elaborating the scenarios of the use case
to include the subsystem level of detail.

The system level use case can be further decomposed into smaller use cases via the «includes» and
«extends» use case relations, as shown in Figure 4-14. These use cases are normally decomposed down
to the point where they are realized by a single object in the next layer down in the object model—in this
case, the subsystems. The mapping of these use cases onto the subsystems is shown in Figure 4-15.

Figure 4-14. Decomposed Use Cases

135

Figure 4-15. Mapping Decomposed Use Cases to Subsystems

The subsystems in Figure 4-15 are themselves composite objects composed of smaller pieces. For
example, the Science Subsystem will no doubt contain one or more cameras, lenses, filters, and so on.
These objects will collaborate to realize the Take Image use case of that subsystem. Similarly, the Power
Subsystem will contain things like batteries, solar cells, switches, relays, power budgets, and so on. The
Navigation Subsystem will contain flight plans (consisting of smaller parts, such as waypoints and
trajectories), a multidimensional map of the solar system, thrusters, and so on. Figure 4-16 shows some
details of the subsystems. The take-home point here is that this approach can be recursively applied to
provide as many levels of abstraction as necessary to detail with the system complexity.

Figure 4-16. Spacecraft Subsystem Details

136

4.6 Hierarchical Control Pattern
The Hierarchical Control Pattern is a specialized form of the Recursive Containment Pattern that
distributes complex control algorithms among its various pieces.

4.6.1 Abstract

The Hierarchical Control Pattern uses two types of interfaces: control interfaces that monitor and control
how the behaviors are achieved and functional interfaces, which provide the services controlled by the
other set of interfaces. The control interfaces set the quality of service, such as fidelity, accuracy, and so
on, as well as select policies that govern how the execution proceeds. The functional interfaces execute
the desired behavior using the quality of service and policies set via the control interface.

Although there are many ways that the control interfaces can work, it is common to use a statechart to
realize the control interfaces as well as coordinate the subordinate parts. Also, at each level, the class is
typically reactive—using a statechart to control and manipulate the subordinate part objects.

Finally, similar to the Recursive Containment Pattern, the part objects are aggregated to the controller
object via composition, and they may themselves be controllers at a more detailed level of abstraction,
themselves containing even smaller objects, and so on.

4.6.2 Problem

A solution is needed for when it is desired to use a Recursive Containment Pattern but the objects must
be configurable or their quality of service or execution policies must be controllable. Further, it is often
desirable to separate the interfaces for this level of control and the actual functionality provided by the
object.

4.6.3 Pattern Structure

137

Like the Recursive Containment Pattern, the Hierarchical Control Pattern is organized into hierarchies
based on composition relations, as shown in Figure 4-17. The Controller orchestrates the implementation
of its services via delegation and control of its subordinate parts. Subordinate parts may be either Leaf
Elements or Controllers. Leaf Elements break the hierarchy and have no subordinate parts themselves
(although they may have associations and participate in generalization taxonomies). Controllers, on the
other hand have subordinate parts and provide two different kinds of interfaces (shown via shading in
Figure 4-17): control interfaces and functional interfaces.

Figure 4-17. Hierarchical Control Pattern Structure

Control interfaces, as mentioned previously, are used to control and configure the implementation of
services but not provide the application-level services themselves. The functional interfaces merely
request that the application-level services be performed.

4.6.4 Collaboration Roles

• Control Interface

The Control Interface provides services to manage how the functional services are performed—for
example, switching to a different algorithm or providing a different quality of service. These
services are not typically invoked by the same clients as the functional services.

• Controller

The Controller role provides two kinds of opaque interfaces to its clients: control interface and
functional interfaces. It implements these interfaces through delegation to its subordinate parts,
which may be either Controllers or Leaf Elements.

• Functional Interface

The Functional Interface provides the normal semantic services of the Controller. These services
are delivered using the policies, algorithms, and qualities of service specified in using the Control
Interface.

138

• Leaf Element

A Leaf Element is a class of any kind other than a Controller. Typically, Leaf Elements are
primitive and do not have composition relations with still more primitive classes. However, they
may have normal (and, less often, aggregation) relations with other classes and may participate
in generalization taxonomies.

4.6.5 Consequences

Similar to the Recursive Containment Pattern, the primary advantage of this pattern is that it allows
complex systems to be viewed at many levels of abstraction. In addition to that advantage, though, the
use of separate control and functional interfaces provides a simple, scalable approach that can be used
when the system must be highly configurable.

Since the Leaf Elements do most of the "real work" (for this reason, they are often called semantic
classes), the job of the Controller is to coordinate and delegate pieces of service requests to the
appropriate Leaf Elements. If the control is modal, which is a common application of this pattern, then
the Controller will have a statechart that represents the configuration states of the subordinate parts.
This is usually implemented as one peer and-state per Leaf Element in the statechart of the controller.
Such a representation is very useful, particularly when the states of the various subordinate parts are not
completely independent. The use of and-states makes it much easier to ensure that the subordinate parts
are always in mutually compatible states. When the control or configuration behavior of the subordinate
parts is not modal, then other means must be employed to track the behavior of the subordinate parts.

4.6.6 Implementation Strategies

This pattern is often implemented bottom-up. A set of Leaf Elements in a tightly coupled collaboration are
found to be jointly configurable (their control states are not entirely independent), and it seems useful to
have a superordinate controller manipulate them as a unit, so a Controller is added. As the modal control
or configuration states of the Leaf Elements are discovered, a representation of these modal states, and
their relations to the modal states of its peer Leaf Elements is added to the statechart of the Controller.

When a top-down approach is used, the pattern often starts as a more general Recursive Containment
Pattern, using a composition-based decomposition of highly abstract elements into less abstract (more
primitive) elements. Along the way, it becomes apparent that the collaboration of peer elements must be
manipulated via a control interface (besides the opaque functional interface that was already available
from the Recursive Containment Pattern), and so it is added. Then, a statechart for the control of the
implementation of the interfaces is added to ensure that they remain compatible.

Regardless of which general implementation approach is used, the key implementation issues are the
representation of the interfaces, the statechart for the Controller, and the use of the composition relation
to glue together the levels of abstraction. Interfaces may be defined directly in source-level languages,
such as Java, that directly support interfaces. In object-oriented languages that do not, such as C++,
interface classes may be used. Interface classes are classes that do no real work, but they adapt a class
with one set of operations to look like it has a different set. This is why it is sometimes called the Adapter
Pattern. Interface classes may contain attributes and methods, whereas interfaces do not, so interface
classes are somewhat more flexible than interfaces.

139

Because the Controller must coordinate the configuration and control states of the subordinate parts, it is
important to ensure that the set of subordinate elements remains in consistent states. This is easy to do
with a statechart for the Controller, especially if and-states are employed.

Finally, composition relations are most commonly implemented via pointers, although references and
nested class instantiations can be used as well. With composition, the superordinate element has the
explicit responsibility for both the creation and the destruction of the subordinate elements. If the
subordinate has a fixed multiplicity, then the creation of those elements is normally done in the
constructor. If it is a variable multiplicity, then the subordinate elements will be created (and destroyed)
as needed.

4.6.7 Related Patterns

This pattern is a specialized form of the Recursive Containment Pattern discussed earlier. That pattern, in
turn, is based on the Composite Pattern of [2] and the Whole-Part Pattern of [3].

As noted above, [2] also has a discussion of the Container Pattern, which can be applied when the
multiplicity of parts objects is potentially greater than one.

4.6.8 Sample Model

Figure 4-18 shows an example of the Hierarchical Control Pattern. The functional services for the
Guidance Controller object might be to ComputeTrajectory(), makeCourseCorrection(), scheduleCourse-
Correction(), and so on. These functions could be performed using different algorithms if the spacecraft is
currently launching, achieving orbital insertion, currently in orbit, or cruising between planets. They
might differ, too, depending on whether the software is executing on a lander versus an orbiter versus a
launch vehicle. They may change while the spacecraft loses mass (such as during launch separation or
due to the consumption of fuel). The separate control interface allows the algorithm and quality of service
of these functional services to be changed on the fly while the system is running.

Figure 4-18. Hierarchical Control Pattern Structure

140

4.7 Virtual Machine Pattern
The Virtual Machine Pattern optimizes application portability at the expense of run-time efficiency. In
applications where absolute raw performance is not a significant issue but being able to run the
application on many different platforms is, or when many applications must run on many different
platforms, the Virtual Machine Pattern is a good choice.

4.7.1 Abstract

Applications written to use a virtual machine are written to execute on an abstract machine. In fact, this
abstract machine normally doesn't exist in hardware, so a virtual machine, written in software, interprets
the instructions of the abstract machine by execution of instructions of a machine that does exist. Thus, a
set of applications can be written for this virtual machine—possibly hundreds of applications—and this set
of applications will run on all physical machines for which there is an appropriate virtual machine. This
simplifies the porting of suites of applications to novel environments, since the applications themselves
don't need to be rewritten. Only a single program (the virtual machine) must be developed for the actual
target platform. [2]

[2] I use the term platform because it may include not only the target CPU and physical
devices but also device drivers for those devices and an operating system that
orchestrates the use and collaboration of those devices.

141

This approach has been used successfully for a variety of programming languages, such as UCSD Pascal,
BASIC, and Java. Typically, these applications execute much more slowly than natively compiled
applications (often as much as 1/20 or 1/40 the speed of compiled C or C++, for example), but if the
applications are not time-or performance-critical, this loss in performance may be more than
compensated for by the ease of porting.

4.7.2 Problem

The problem addressed by the Virtual Machine Pattern is to construct an infrastructure for application
execution that is highly portable for a large class of applications.

4.7.3 Pattern Structure

Figure 4-19. Virtual Machine Pattern Structure

4.7.4 Collaboration Roles

• Abstract Instruction

An Abstract Instruction is an abstract base class of Concrete Instruction. Each Abstract
Instruction may have zero or more Parameters associated with it. The use of the Abstract
Instruction ensures that the various different Concrete Instructions have a common interface.

142

• Application

An Application consists (that is, contains via composition) a set of Concrete Instructions that it
passes to the Virtual Machine to execute.

• Application Control Block

There is one Application Control Block per executing application. The Application Control Block is
basically an Iterator (see the Container-Iterator Pattern) for the Sequencer. It provides the
information for the Virtual Machine to execute each Application.

• Concrete Instruction

A Concrete Instruction is an instantiable class that represents the design language primitives. The
instructions may be hand-generated by the programmer or automatically translated from another
design language into a corresponding set of Concrete Instructions. Often this is done via a
compiler so that a human readable form (either text, such as Java, or graphics, such as the UML)
is translated into a more compact, portable compiled form.

• Instruction Engine

The Instruction Engine translates the Application, one Concrete Instruction at a time, into
instructions native to the target platform. This is most often done by calling subroutines (or
functions or methods) that represent each Concrete Instruction and passing the relevant
parameters. These subroutines then execute native target instructions to implement the Concrete
Instruction in the design language.

• Parameter

A Parameter is a class that consists primarily of a type-value pair, although it may have
additional information, such as valid range and encoding format. Each Concrete Instruction has
zero or more parameters that represent the values necessary for the Concrete Instruction to
execute. In most languages, Concrete Instructions will have a fixed number of Parameters, but in
other languages, the number of Parameters may be allowed to vary at run-time.

• Real Machine

The Real Machine is not a software object but in fact represents the hardware CPU on which the
Virtual Machine executes. Thus, it is shown as a node rather than an object (although it is also
acceptable to show the Real Machine as an actor that associates with the Instruction Engine). The
Real Machine executes not only the Virtual Machine but also the translated Concrete Instructions.

• Sequencer

The Sequencer (aka the Scheduler) has a number of related responsibilities. It often loads (and in
some cases, such as Java, compiles) the Application and initializes the Virtual Machine for
execution. It also determines when to get the next Concrete Instruction, gets the next Concrete
Instruction, and then passes it off to the Instruction Engine for execution. If the design language
supports concurrency, then the Sequencer also manages that concurrency.

143

• Virtual Machine

The Virtual Machine is a large-scale component that contains, via composition, both the
Sequencer and the Instruction Engine as well as one Application Control Block for each
Application executing. It manages the loading, unloading, and execution of the Applications.

4.7.5 Consequences

The advantages of this pattern are twofold. First, porting a particular application or a suite of applications
to a novel hardware platform is greatly simplified, since it is sufficient to rewrite (or recompile) only the
virtual machine. In addition, it greatly eases porting a suite of applications to a set of different hardware
platforms. Furthermore, once the virtual machine for a particular platform exists, each application written
for the virtual machine will now immediately execute on all platforms. This accounts for much of the
success of the Java language. A Java application can be written once, and it will execute immediately on
any Java virtual machine.

Another advantage of the Virtual Machine Pattern is that applications, which are stored in a tokenized
format, are often very tiny compared to the sizes of natively compiled applications. This is because
compiled applications normally each have their own set of libraries for I/O, user interface, mathematical
calculations, and so on. In the Virtual Machine Pattern, these libraries are often contained within the
virtual machine itself and so do not need to be replicated. Further, a single tokenized instruction may
result in the execution of many hundreds of CPU instructions, and so the tokenized Concrete Instruction
tends to be much more compact than the corresponding native assembly language.

These benefits come at a price, and performance is the most obvious and crucial one. A virtual machine
is also typically fairly large. The Java virtual machine, for example, has about a 1.5-MB footprint. For
smaller applications on memory-constrained devices, the resources may not exist for the virtual machine.
When this is the case, the Microkernel Architecture Pattern may be preferable. Additionally, the creation
of a virtual machine can be a great deal of work and may outweigh the benefits of the pattern if only a
few applications or platforms need to be supported. Or the virtual machine approach can be implemented
using a Microkernel Architecture Pattern so that it is scalable to run with selectable capability on different
platforms. Notice, however, that in situations where the platform will run multiple applications at the
same time, the Virtual Machine Pattern can reduce memory usage because the virtual machine itself
provides much of the infrastructure of the applications and when using this pattern, this infrastructure is
stored in memory in only once.

4.7.6 Implementation Strategies

Implementing virtual machines is a sizable task. In some sense, the virtual machine is an interpreter,
executing one language by dynamically translating it to another during execution. However, a virtual
machine is more than this because it provides a coherent (if nonexistent) target platform for a set of
applications. Interpretation of the application is one aspect, certainly, but the virtual machine must also
provide an abstraction of the underlying resource abstractions.

4.7.6.1 Reusability of the Virtual Machine

The whole point of the virtual machine is the ability of an application to run on the virtual machine
regardless of the underlying platform. To achieve this goal, the virtual machine itself must be easily
portable to a variety of underlying platforms. To be successful, the applications must be able to represent

144

everything they can do in an abstract way that can be appropriately translated on all target plat-forms. If
the application must constantly "go around" the virtual machine to implement some behavior directly on
the target platform, then the goal of the virtual machine is at best compromised and, at worst, totally
unrealized.

These are the keys to the successful reusable implementation of a virtual machine.

• Using a portable language to write the virtual machine

Virtual machines are virtually always [3] themselves recompiled for the native environment on
which they execute. This means that good compilers must exist for all of the target platforms (or
they must be themselves written). For this reason, common languages, such as C or C++, are
used to implement the virtual machine.

[3] Pun intended.

• Encapsulation of the target platform idiosyncrasies

To easily port the virtual machine to a novel platform, most of the virtual machine should use
platform-independent abstractions (much as the applications do). This means that the target
platform idiosyncrasies are localized within small components or layers, and the rest of the virtual
machine goes through those components when it must manipulate the underlying platform.

• Use a Layered or Microkernel Architecture Pattern to organize the virtual machine

The encapsulation of the target platform leads naturally to a layered architecture of the virtual
machine. Thus, to move to a novel environment, only the lowest platform-specific layer must be
rewritten.

• Extensible architecture

Layering is often not enough. Thought must be put into what aspects of the target platform are
free to vary. These may be any of the following.

o CPU instruction set
o Support facilities (e.g., timers, special purpose hardware)
o Operating system
o Scheduling policies
o Resource management policies (e.g., dynamic vs. fixed-sized heaps)
o Communication media and protocols
o Middleware (e.g., Object Request Brokers)

4.7.6.2 Interacting with the Underlying Platform

For the most part, the applications should interact with the platform via the abstractions provided in the
virtual machine. That means that the applications must be expressed in a language sufficiently rich to
express these abstractions and their variants. The job of the virtual machine is, after all, to translate
these abstract instructions in terms of concrete instructions on the CPU that utilize the features of the
platform.

145

There will be circumstances (typically to achieve performance or other quality of service goals) in which
the virtual machine mechanisms must be eschewed in favor of direct target platform invocation. Escape
hatches are common in languages, such as the ability to insert assembly language statements directly in
a C or C++ program. This makes the applications less portable, of course, but all of life is a compromise.
The virtual machine must provide such an out, such as Java's so-called "native methods."

The virtual machine must provide a means for managing the resources of the target platform. These
resources may be threads, memory, communications channels, or any other object that has a finite
capacity to be shared.

4.7.6.3 Representing the Application

Most of the time, the application is precompiled to some intermediate form before being executed by the
virtual machine. This has a number of advantages for the execution of the application. First, the
application is represented in a format that is optimized for execution rather than optimized for human
readability. Second, these compiled or, as they are sometimes called, tokenized applications require
much less memory space for storage. Applications are often compiled from multiple sources, and this
means that the virtual machine must only manipulate a single monolithic entity during execution. Since
almost all virtual machines ultimately execute on a compiled form, precompilation removes the
compilation time from the time necessary to load and execute the application. And finally, if the
compilation is done elsewhere, the virtual machine itself can be smaller and simpler.

Another approach is called Just-In-Time (JIT) compilation. In this case, the JIT is actually a part of (or is
invoked by) the virtual machine. This approach is used when the target environments are not memory or
time constrained because the JIT compiler is invoked whenever the application is loaded. An advantage of
the JIT compiler is that the application can be debugged on the executing platform by humans because it
has retained its human-readable form. Clearly, such an approach is most useful when the target
platforms interact directly with people and is least useful for deeply embedded, performance or memory
size-critical environments.

4.7.6.4 Scheduling Applications

Some virtual machines abstract the scheduling policies of the underlying operating system. Some virtual
machines do their own scheduling and run as a single task on the target system's OS. Still others expose
the native OS's scheduling policies and require the application to be customized for the target.

Most virtual machines offer a particular set of scheduling policies (such as static priority preemption), but
it is also common to have the ability to add user-defined scheduling policies as a plug-in to the virtual
machine. Most commonly, though, a virtual machine provides a single scheduling policy and applications
must be written to use it.

The simplest way to do that is to provide the scheduling abstractions commonly provided by the
underlying OSes in the target domain. If the target domain is real-time and embedded systems, then the
static priority-based preemption is the most common scheduling approach. However, most OSes also
provide facilities to specify interrupt handlers (usually by providing parameterless function callbacks).

In terms of implementation of these facilities, the virtual machine commonly has an internal lightweight
OS abstraction layer that knows how to create and destroy threads, get semaphores, manipulate event
queues, get and release dynamic memory, and so on.

146

4.7.6.5 Debugging the Testing Facilities

Because the virtual machine provides an abstract execution environment, it is possible (and generally a
really good idea) to build in symbolic debugging information into the application and debugging/ testing
facilities. The compiler, whether it is offline or JIT, constructs the necessary symbol dereferencing
information so that memory addresses can be mapped back to user symbols in the source language.
"Source language" is the language in which the user entered the application, whether it is a text-based
language, such as Java, or a graphical language, such as the UML class diagrams or Statecharts.

Typical facilities include execution control (run, stop, single step, set/remove breakpoint, and so on) and
variable/attribute manipulation (monitor and set value). To implement this, the compiled application
must have execution points at which debugging instructions can be inserted by the virtual machine.

4.7.7 Related Patterns

The virtual machine itself is often implemented using the layered or microkernel pattern.

4.8 Component-Based Architecture
A component, in the UML, is a run-time artifact that forms the basic replaceable unit of software.
Although not explicitly represented as such in the UML metamodel, it is convenient to think of a
component as a large-scale object that contains, via composition, objects that implement the
component's interface. Components always have strong encapsulation (as you might expect, since they
are meant to be replaceable) and well-defined, source-level language independent interfaces to which the
components must conform. Examples of such components include static libraries, dynamic linkable
libraries (DLLs), and OCX and ActiveX components. [4]

[4] The difference between components and subsystems in the UML is subtle and
ambiguous. Subsystems can be components and vice versa. Subsystems usually are the
largest-scale pieces inside the system, typically containing multiple components.
Components are the second-tier architectural pieces and may contain multiple
subcomponents as well as use the services of other components. Components may also
contain multiple threads by containing «active» objects. Each primitive object in a
component typically executes in exactly one thread or is shared between threads within a
component. A more rigorous (and hopefully useful) definition of components and
subsystems is slated for UML 2.0, which is under development as of this writing.

A component-based system uses these large-scale objects as basic architectural units with the intent that
the system can be managed by replacing the components piecemeal, as new revisions of the components
become available or components optimized to different design criteria or using different algorithms
become available.

Component-based systems have proven themselves to be very stable in the sense that (1) the
architectural structure tends to remain the same over time as the system is maintained and modified,
and (2) defects tend to be isolated to individual components, and so fixing the defects tends to have only
local effects. The Component-Based Architecture Pattern is one way to organize a component-based
system.

4.8.1 Abstract

147

Component-based systems offer some compelling advantages: ease of maintenance, isolation of defects,
source-level language independence, ease of development, and ease of reusability. These advantages
arise because of the nature of components: They are strongly encapsulated objects that provide
language-independent, opaque interfaces. They do not differ greatly from the UML concept of a
subsystem. Components are normally large-scale objects whose behavior is implemented in terms of
smaller objects that the component owns via composition. The organizational principle of deciding which
objects go into which components is also the same as subsystems: common run-time behavioral
purpose. For example, components to add a specific GUI will contain typically many objects, but their
run-time purpose—in this case, provide a consistent GUI—is the same.

Components differ from other objects in both the nature of the interface that they present—one that is
source-language independent—and the nature of the applications into which they fit. Components provide
strongly opaque interfaces and often provide both functional and configuration services. Because the
whole idea of a component is replaceability, the component interface must be especially well
documented. This includes not only the signature of the calling interface but also the pre- and
postconditional invariants of the component, such as the performance properties of the component.

The structure of component-based applications is different from other types of applications. Much of the
flexibility and maintainability of component-based systems comes from the fact that such systems are
composed of high-level replaceable pieces. This is similar to the construction of modern computer
systems in which the knowledge of the layout or internal transistor and bus layout of chips is totally
hidden from the client chips that communicate with the chip via its well-defined interface. Indeed,
component-based systems are often said to have pluggable architectures into which components can be
freely replaced, sometimes even while the system is running.

This means that each application can be structured from a relatively common set of components, much
like a computer system is constructed from a set of well-understood chips and chip sets.

4.8.2 Problem

The Component-Based Architecture Pattern addresses the need for an architecture that is robust in the
presence of maintenance and is highly reusable in a variety of circumstances.

4.8.3 Pattern Structure

Figure 4-20. Component-Based Architecture Pattern Structure

148

4.8.4 Collaboration Roles

• Client Interface

The Client Interface of the component provides the services offered by the component. These
may include just the signature of the operation, but in general the interface should specify a
contract between the client of the Component and the Component itself. This contract includes, in
addition to the signature of the operations, preconditions and postconditions of each service and
any exceptions thrown. These can be modeled as a statechart for the interface. The interface
should be opaque—that is, it should not reveal anything about the internal implementation. This
is crucial for substitutability of other Components that realize the same interface.

• Collaboration

A Collaboration in this case refers to the collaboration of a set of semantic objects (objects
defined in domains but instantiated in the component) that realize the use cases of the
Component.

• Component

A Component is a composite object that contains one or more Collaborations. That is, the
Component is a container that provides an interface for the set of semantics objects within each
collaboration contained within.

• Component Framework

The Component Framework is a composition of the Component Loader, Component Manager, and
Component Repository. It is responsible for the loading and management of the Components.

• Component Loader

149

The Component Loader loads the Components in response to requests from the Component
Manager and may be omitted if static linking is used.

• Component Manager

The Component Manager manages the set of Components at run-time. A Component Manager is
only required when dynamic linking of components is required. If Components are statically
linked, then this object may be omitted. A Component Manager allows the swapping, loading, and
unloading of Components as necessary, including chained Components (Components that depend
on other Components).

• Component Repository

All active Components register with the Component Repository. This allows the Component
Loader to load the Components wherever it sees fit. When a Component or Client Module later
wants to invoke a service on a loaded Component, it first checks the Component Repository to
find out where it is. The Component Repository then returns a reference, handle, or pointer
(implementation specific) to the desired Component. The type of reference returned is a defining
property of the Component pattern instantiation. The Component Repository may also maintain a
reference count for each Component, counting the number of clients registered to a given
Component. When a new client registers for the Component, this count is augmented; when a
client deregisters, the reference count is decremented. When the reference count is decremented
to zero, the Component may be unloaded.

• Management Interface

The Management Interface is an interface used by the Component Framework. The actual
services provided by this interface will vary depending on the exact realization of the Component-
Based Architecture Pattern. Typically, this will include the name and revision of the Component
and a list of Components on which this Component depends (so they can be loaded as well).

4.8.5 Consequences

There are several consequences of using the Component-Based Architecture Pattern. The main advantage
is that systems (and subsystems) may be constructed via assembly of a mixture of previously defined
and newly developed components. This is similar to how hardware engineers typically construct digital
electronics systems. The use of opaque, source-level language-independent interfaces greatly enhances
reusability. There are many vendors providing reusable components today in a variety of domains: user
interface, communications, distributed object middleware, and math libraries being the most common.

The primary disadvantage is potential inefficiency due to the use of opaque interfaces. The fact that an
interface is opaque means that the client of a component is simply not allowed to rely on internal
implementation detail of the component, disallowing some potential optimizations. Additionally, because
functionality is packaged into relatively large-scale components, additional resources (such as CPU cycles
or memory) may be required when only a few services from a component are actually used in the target
system. The entire component (along with any other components required by the first) must be included
in the system, even if only a few of the services of the component are invoked in the running system.

4.8.6 Implementation Strategies

150

Component-based design (CBD) is a very popular approach to constructing large complex systems
quickly. In fact, I am one of three rotating authors writing a column on CBD for Software Development
magazine (along with Bertrand Meyer and Clement Serpinski). [5] CBD is often implemented inside a
framework in which components have a well-defined role. For example, Microsoft's Component Object
Model (COM) and its variants COM+ and DCOM (Distributed COM) provide a common way of building and
sharing components in monolithic and distributed systems on Microsoft operating system environments.
CORBA (Common Object Request Broker Architecture—a standard owned by the Object Management
Group) also provides a component model that is widely used on Microsoft, Unix, and other platforms. JINI
is a plug-and-play standard for connecting Java-based devices into a network. Enterprise Java Beans
(EJB) is another component standard for Java-based systems.

[5] The column is called Beyond Objects. See www.sdmagazine.com.

There are a great many variants of the Component-Based Architecture Pattern. We have represented one
here that allows dynamic loading and unloading of components. Components may be static (statically
linked, so that they are present in the load image of the application) or dynamic (loaded when necessary,
such as load-on demand). Components themselves may be mostly data (such as configuration tables and
databases), mostly behavioral (such as math libraries), or a combination of the two (such as GUI
components, such as windows widgets). Some of the advantages of components are further realized
through the use of COTS (commercial off-the-shelf) components versus custom-developed components.
Such COTS components are typically constructed for a specific component architectural model (such as
COM+ or EJB). If your system uses an already standardized component architecture, then there will be a
wealth of potentially usable components available. New components must then be written with the
commercial component architectural model in mind. There still may be advantages in creating your own
component architecture, but if you can model or imitate one of the existing architectures, you'll be ahead
of the game.

If you write components in any of these CBD environments, you must adhere to their standards for
providing interfaces and services. If you're writing your own CBD environment, then you're free to
construct your own. In any case, you must provide for these basic things.

• A standard way to invoke services provided by a component
• A standard way to query to identify the presence of a component and load-on demand, if

necessary
• A source-language-independent means for specifying the interface to a component
• A way to identify the revision number for a component
• A way to identify the components on which a given component depends
• An infrastructure for loading and unloading components as necessary

Since components should have a program-language-independent means for specifying and using
interfaces, some of the component architectures provide an Interface Description Language (IDL) for
specifying interfaces. Different IDL compilers map the IDL description of the interface into the target
programming language used by the components authors (on the server side) or users (on the client
side).

In larger-scale CBD systems, it is common to classify the components based on the kinds of services they
offer. The manner in which this is done leads us to the application of other patterns with the components.
For example, it is very common to mix component patterns with a layered architecture pattern and
realize different tiers of an n-tier layered architecture with components.

http://www.sdmagazine.com/

151

4.8.7 Related Patterns

Since the current revision of UML does not draw a strong distinction between subsystems and
components (or, for that matter, between either of these and objects), components may be used in
conjunction with any of the other structural architectural patterns. And the bene-fits of components are
sufficiently compelling that one can in fact find examples of components used in conjunction with all of
the other patterns in this chapter. For example, it is very common to mix the Component-Based
Architecture Pattern and the Layered Pattern.

4.8.8 Sample Model

Figure 4-21 shows a simple example of a componentized application called Control System.exe. The
system consists of three subsystems— Display, Data Acquisition, and Data Management—plus an
infrastructure component framework. Each subsystem contains one or more components. The Display
Subsystem contains two display objects relevant to the discussion here: the Waveform View and the
Histogram View objects. These use the facilities of the Vector Graphics component to draw the data. This
component could be a dynamically loaded component. The Vector Graphics component depends on the
Math Library component for some functional capability, such as coordinate transformations. Both these
components provide client interfaces; for the Math Library, the only direct client is the Vector Graphics
component, whereas the semantic application objects are clients of the Vector Graphics component.

Figure 4-21. Control System Sample Model

152

The Data Acquisition subsystem has a device driver component for the sensor hardware that in turn
depends on the Sensor Configuration Table (which might be stored in ROM in our embedded application).

The Data Management component provides standard database management for the acquired sensor
data. One would imagine that the Data Acquisition subsystem would link to the data management
component to store incoming data. Similarly, the graphical view objects would link to the Data
Management component to retrieve the data for display.

The Component Framework contains the Component Loader and Component Repository. When the
Control System.exe application begins, it autoloads the Control Framework and then commands the
Subsystems to initialize. The Waveform::Display Subsystem identifies its need for the SQL Database
Component. It asks the Component Framework where it is. Since that component is not listed in the
Component Repository, the Component Loader loads the component and notifies the Waveform object
where it is.

The Waveform object also needs to use the Vector Graphics component. Again, it asks the Component
Framework. The Component Framework cannot find it, so it loads the requested component. During its
initialization, the Vector Graphics component discovers that it needs the Math Library component. So it
then requests the location of the Math Library. Again, since it's not found, the Component Loader loads
and installs the requested component, and the Vector Graphics component can complete its initialization.

When the Histogram object is initialized, it needs the same components as well. Since the components
are already loaded, the Component Framework need not reload them—it merely notifies the requesting
object of the component locations. This initialization sequence is shown in Figure 4-22.

Figure 4-22. Initialization of Display Objects Sequence Diagram

153

4.9 ROOM Pattern
ROOM (Real-Time Object-Oriented Methodology) [4] is an older methodology that predates the UML by
several years. As pointed out by Jim Rumbaugh and Bran Selic, the UML is sufficiently general to model
just about ANY other methodology, including ROOM [5]. These authors have, in fact, authored a paper
defining a proprietary methodology, somewhat misleadingly called UML-RT. [6] UML-RT is basically
nothing more than ROOM recast with window dressing. This is not to say that ROOM is bad or
inapplicable in certain circumstances. It is really nothing more nor less than one of many architectural
design patterns. As with all design patterns, it has both strengths and weaknesses, areas of good
application and areas in which it is a poor pattern to use.

[6] I say misleadingly because although the methodology is called UML-RT, time actually
appears nowhere in its specification!

The ROOM Pattern identifies special object roles for bidirectional interfaces called ports [7] and rules
governing the behavior of this interface, reified into classes called protocol classes. This provides strong
encapsulation of interfaces and mediation and control of bidirectional associations among classes.

[7] UML 2.0 will likely have Ports as a first-order concept to facilitate the use of the ROOM
pattern, although it appears (as of this writing) that the other roles will not be provided

154

as first-order UML concepts. Generic classes may be used to create objects for these
pattern roles as necessary.

4.9.1 Abstract

The ROOM Pattern itself is a relatively heavyweight pattern, providing a well-structured interface and
strong interface protection. All behavior in the ROOM Pattern is provided via statecharts [8] execution.

[8] ROOM itself uses only a subset of the UML Statechart model called ROOMCharts
(which, for example, don't use and-states or multiple branch points from conditional
pseudostates), but there is no reason inherent in the pattern why statechart semantics
can't be used.

The ROOM Pattern is appropriate when the interaction of some large-scale objects is complex and
requires special means to mediate and control. These objects may be within the same address space or
distributed across address spaces.

The interfaces are reified into Port classes, and the complex interaction among the objects is reified into
Protocol classes that mediate how the ports interact. One special feature of the Port and Protocol classes
is that unlike normal UML interfaces, these represent bidirectional interfaces.

The large-scale objects are called Capsules, which implement behavior specified by statecharts. [9]
Capsules may contain subcapsules. Where appropriate, messages can be passed on from an outer
Capsule port to an inner Capsule via a Relay Port. This has the advantage of consistency at different
levels of abstraction (note the similarity with the Recursive Containment Pattern discussed earlier in this
chapter) and the disadvantage of adding complexity over a simple UML association.

[9] See previous footnote.

4.9.2 Problem

The ROOM Pattern addresses the needs of systems composed of a number of large-scale objects with
opaque interfaces in which the large-scale objects have complex interactions. These large-scale objects
may be distributed or not.

4.9.3 Pattern Structure

Figure 4-23. ROOM Pattern Structure

155

4.9.4 Collaboration Roles

• Capsule

A large-scale class that provides a well-encapsulated behavior, accessible via Port classes.

• Connector

A Connector connects two ports actively involved in message exchange. This is a reification of a
UML link (an instance of an association).

• End Port

An End Port indicates that a message stops at the specified capsule and invokes a signal on that
capsule's statechart. In fact, all signals in this pattern either originate or terminate on End Ports.

• Port

A Port represents an interface for a Capsule in a somewhat more relaxed manner than a UML
interface. UML interfaces are named collections of operations that cannot have attributes. Ports
can have attributes and structure. Ports relate tightly with Protocols. Ports are subclassed into
End Ports and Relay Ports.

• Protocol

A Protocol is a specification of desired or allowable sequences of message flow between two Ports
sharing a Connection. Most Protocols are binary, meaning that they connect exactly two ports. In
this case, the Protocol connected to one Port must be the inverse of the Protocol connected to the
other. This is called the Protocol Conjugate.

• Relay Port

156

A Relay Port is a port that passes messages on to an internal subcapsule. In a sense, they break
the encapsulation boundary because they make the interface of an internal capsule visible from
the outside of its containing capsule.

4.9.5 Consequences

ROOM, or as it is also known, UML-RT, is a proprietary methodology and as such is supported natively
only by a single vendor. However, there is no reason at all why the ROOM pattern cannot be used with a
standard UML tool. It is a relatively heavyweight pattern, but it does provide benefits as well. One benefit
is that it models both sides of an interface, both the client and the server. UML itself only provides native
modeling for the server side of the interface—that is, the object providing the services via the interface.

The use of port, connector, and protocol classes allows very good definition of complex interfaces.
Protocol (and their protocol conjugate) classes are typically modeled using statecharts, which is a good
way to model pre- and postconditions of the services (provided via the operations of the port and port
conjugate classes). UML interfaces are essentially stateless-named collections of operations defined on a
class. By abstracting these into separate port and protocol classes (rather than interfaces per se), they
can have attributes and states, which makes them more powerful. Port classes are an elaboration of the
Adapter or Interface Pattern, whereas protocol classes are a form of the Strategy or Policy Pattern.

The downside of this pattern is that all associations between the semantic classes (the capsules in this
pattern) are mediated through an entire set of other classes. This greatly complicates otherwise simple
relationships among classes with a heavyweight structure. Therefore, it is recommended that even when
applied, the pattern is applied selectively to only large-scale semantic classes and used only when the
interface between semantic classes is particularly complex or rich, especially in terms of pre- and
postconditions.

In summary, users may find this pattern overly restrictive if over-applied or strictly applied (such as only
allowing state-based behavior), but when applied in moderation to specific aspects of a system, it can be
helpful in controlling certain interfaces when a heavyweight approach is called for.

4.9.6 Implementation Strategies

A port class is nothing more than an interface Adapter with a Protocol (same as the Policy or Strategy
Pattern) class added to control the invocation of operations. The Capsule itself provides the
implementation method for the operations of the ports. Relay port classes allow the Capsule to delegate
the called operation to internal subcapsules, while End Port classes insert events into the Capsule's
statechart to cause behavior. However, it is likely to be useful to implement End Port operations as calls
to primitive operations when the invoked behavior is not stateful, as in either primitive or continuous
behaviors [1] or when such behavior is delegated to the collaboration of objects owned by the Capsule
via composition (as per the Recursive Containment or Hierarchical Control Patterns).

4.9.7 Related Patterns

The Adapter (aka Interface) Pattern separates out an interface from an implementation. Port classes are
adapters that implement that adaptation in a particular fashion.

The Policy (aka Strategy) Pattern separates a cohesive set of logic rules from the behavior that uses
those rules. Protocol classes provide interface rules for Ports and so are clearly Policy classes.

157

The ROOM pattern is similar to the Recursive Containment Pattern discussed earlier in this chapter. Both
patterns use self-similar decomposition and strong interfaces to provide multiple layers of abstraction.
The Recursive Containment Pattern is somewhat more general than the ROOM pattern.

4.9.8 Sample Model

Figure 4-24 shows a simple example of two objects communicating via ports and protocols. The Master is
the sender in this case, while the Slave is the receiver. Each of these capsules [10] strongly aggregates a
port (iSender and iReceiver, respectively), and each of these ports implements a protocol role. The HiRel
Protocol class defines a "reliable communications protocol" between the sender and the receiver. The
roles played by the sender and the receiver are, naturally enough, different. The Socket class serves the
pattern role of connecting the two ports so that communications can take place.

[10] Note that the pattern roles are used as stereotype names on the class diagram. This
is a fairly common idiom when instantiating patterns.

Figure 4-24. ROOM Pattern Example Class Model

Figure 4-25 shows just the port and connector classes, with their state behavior identified. Before a
message can be sent, a connection must be formed. This connection is managed by the Socket class.
Once a connection is requested of the Socket class, it notifies the other end of the communications link to
connect. Once connected, both sides send events every 1000 ms to indicate the "liveness" of the con-
nection. If the liveness at either end goes away for 1500 ms, then connection is considered broken, and
both objects are notified of a disconnection.

Figure 4-25. ROOM Pattern Example Statechart Model

158

Once the connection is established, the iSender class sends the message (in the Transmitting state).
Once complete, it enters a state where it waits for an explicit acknowledgement from the receiver. If it
gets an acknowledgement in less than 10 seconds, the iSender class goes back to its Ready state, the
connection still active. If it doesn't receive an acknowledgement within 10 seconds of transmission, then
the iSender class resends the message. To limit the number of retransmissions of the same message, an
attribute of the iSender class, tCount, tracks the number of times the same message has been
retransmitted. If it exceeds a preset limit, then an error is noted, and the iSender class goes back to its
Ready state.

Note that if the roles can be reversed (that is, the Slave can initiate transmission and the Master can
receive unsolicited communications), then both capsules will aggregate both protocol roles (they will both
aggregate an iSender and an iReceiver class). Such a protocol is said to be symmetric.

159

References
[1] Douglass, Bruce Powel. Doing Hard Time: Developing Real-Time Systems with UML, Objects,
Frameworks and Patterns, Reading, MA: Addison-Wesley, 1999.

[2] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software, Reading, MA: Addison-Wesley, 1995.

[3] Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. A System of Patterns: Pattern-
Oriented Software Architecture, New York: Wiley & Sons, 1996 .

[4] Selic, B., G. Gullekson, and P. Ward. Real-Time Object-Oriented Software, New York: Wiley & Sons,
1994.

[5] Selic, B., and J. Rumbaugh. Using UML to Model Complex Real-Time Systems Rational Corporation
white paper, www.rational.com March, 1998.

[6] Sickle, Ted. Reusable Software Components, Upper Saddle River, NJ: Prentice Hall, 1997.

[7] Herzum, P., and O. Sims. Business Component Factory, New York: Wiley & Sons, 2000.

[8] Brown, Alan. Large-Scale Component-Based Development, Upper Saddle River, NJ: Prentice Hall,
2000.

[9] Szyperski, Clemens. Component Software: Beyond Object-Oriented Programming, Reading, MA:
Addison-Wesley, 1998.

http://www.rational.com/

160

Chapter 5. Concurrency Patterns
The following patterns are presented in this chapter.

• Message Queuing Pattern: Robust asynchronous task rendezvous
• Interrupt Pattern: Fast short event handling
• Guarded Call Pattern: Robust synchronous task rendezvous
• Rendezvous Pattern: Generalized task rendezvous
• Cyclic Executive Pattern: Simple task scheduling
• Round Robin Pattern: Fairness in task scheduling
• Static Priority Pattern: Preemptive multitasking for schedulable systems
• Dynamic Priority Pattern: Preemptive multitasking for complex systems

5.1 Introduction
This chapter focuses on the next aspect of architecture: concurrency. The concurrency architecture
includes the control and scheduling of the architectural elements. This includes the management of
resources that must be protected from simultaneous access.

5.2 Concurrency Pattern
In the UML, the basic unit of concurrency is the thread. Threads are associated with a stereotype of
objects, called «active» objects; that is, an «active» object is special in the sense that it is the root of a
thread of control.

The recommended way of adding concurrency into an object model is to identify the desired threads
through the application of task identification strategies (see [7] for a list of several such strategies). Once
a set of threads is identified, the developer creates an «active» object for each. The "passive" objects are
then added to the «active» objects via the composition (strong aggregation) relation. The role of the
«active» object is to run when appropriate and call or delegate actions to the passive objects that it
owns. The passive objects execute in the thread of their «active» owner.

For example, in Figure 5-1a, we see a collaboration of objects. In architectural design, we add «active»
objects to place these in different threads. The active objects accept messages (see the Message Queue
Pattern following) and delegate them to the internally contained application objects for processing. All of
the objects contained within the active object share the same thread and are invoked asynchronously by
other application objects sending them messages or synchronously by directly calling their operations. If
the callers are within the same thread, then they will use the active object's call stack and thread of
control. If the caller is outside the active object, then the object will execute in its caller's thread of
control. This can be a source of difficulty, as discussed in the Guarded Call Pattern later in this chapter.
Figure 5-1b shows the resulting structure once the active objects are added. Note that notationally,
active objects are shown using a standard class box with a heavy border line (although it is also common
to use the guillemet notation "«active»"). There are many strategies to identify a good, perhaps even
optimal thread set. Some of these strategies are discussed in [7].

Figure 5-1. Using «active» Objects

161

The issues around concurrency management are quite varied. In the simplest case, the executing threads
are completely independent. In such cases, it is sufficient to identify the properties of the threads such as
the following.

• Arrival pattern: periodic or aperiodic task execution?
• If periodic:

o Period— the time between invocations of the thread
o Jitter— the variation in the period

• If aperiodic
o Minimum interarrival time— the minimum time between successive runs of the thread, or
o Maximum burst length— the largest number of a string of arbitrarily close thread

invocations, or
o Probability distribution of thread invocations

• Execution time
o Worst-case execution time (per thread invocation)
o Average case execution time
o Probability distribution of execution times

Of course, life is seldom that simple. The hard part of the concurrency model is that the threads are
usually not really independent. They must coordinate, synchronize, and share information, and shared

162

resources must be managed carefully to avoid corruption and erroneous computation. The concurrency
patterns provided here provide some solutions to these commonly occurring problems.

It should be noted that the UML does not really distinguish between threads, tasks, and processes. These
are all variations of the very same thing, but they differ in some aspects of their detailed properties (such
as the task switch time and whether low-cost pointers can be used across the concurrency boundary). As
the design progresses, the choices among the different thread weights will be made, but it is usually not
crucial to do so early. The choices will be made to optimize thread safety and thread efficiency and should
be deferred until the optimal set of threads is identified and modeled.

5.3 Message Queuing Pattern
The Message Queuing Pattern provides a simple means for threads to communicate information among
one another. Although the communication is a fairly heavyweight approach to sharing information, it is
the most common one because it is readily supported by operating systems and because it is the easiest
to prove correct. This is because it does not share data resources that must be protected from mutual
exclusion problems.

The mutual exclusion problem is illustrated in Figure 5-2. The upper part of the figure shows the
structural object model, and the lower half shows a timing diagram. The «active» objects are shown with
the heavy border (the standard UML icon for «active» objects). Both Thread 1 and Thread 2 share a
common object, Resource. Let us assume that Thread 1 runs periodically and requires three time cycles
to write to it (as shown in the timing diagram). Thread 2 runs at some point and requires three time
cycles to read it.

Figure 5-2. The Mutual Exclusion Problem

163

The timing diagram shown in Figure 5-2 [1] shows the state of the objects along the y-axis and time along
the x-axis. Thread 1 runs for a little while and then enters the state of Writing as it modifies Resource.
While Resource is being written to, it is in the state of Partially Updated until the writing is complete; then
it is back into the state of Correct. Here are the events of interest on the timing diagram.

[1] It is anticipated that timing diagrams, such as the one in this figure, may be added in
UML 2.0. I have written some preliminary specifications for timing diagrams for this
purpose.

A. Resource is Correct; Thread 1 starts to write to Resource, so it enters its state of Partially
Updated.

B. Thread 1 completes writing and returns to its Working state; Resource reenters its Correct state.
C. Thread 1 starts writing to Resource again. Resource reenters its Partially Updated state.
D. Thread 2 now runs and preempts Thread 1. Resource is in a Partially Updated state—that is, it is

invalid. Thread 2 reads the invalid value and processes it, possibly with catastrophic
consequences.

With mutual exclusion protection in place, at point D, Thread 2 would not be allowed to read the value in
Resource. It would be blocked from execution until Thread 1 had completed its use of Resource (that is, it
was back in its Correct state). If, however, Thread 1 copies Resource and gives the copy to Thread 2,
then there is no possibility of reading it when Resource is in an invalid condition.

5.3.1 Abstract

164

The Message Queuing Pattern uses asynchronous communications, implemented via queued messages,
to synchronize and share infor-mation among tasks. This approach has the advantage of simplicity and
does not display mutual exclusion problems because no resource is shared by reference. Any information
shared among threads is passed by value to the separate thread. While this limits the complexity of the
collaboration among the threads, this approach in its pure form is immune to the standard resource
corruption problems that plague concurrent systems that share information passed by reference. In
passed by value sharing, a copy of the information is made and sent to the receiving thread for
processing. The receiving thread fully owns the data it receives and so may modify it freely without
concern for corrupting data due to multiple writers or due to sharing it among a writer and multiple
readers.

5.3.2 Problem

In most multithreaded systems, threads must synchronize and share information with others. Two
primary things must be accomplished. First, the tasks must synchronize to permit sharing of the
information. Second, the information must be shared in such a way that there is no chance of corruption
or race conditions. [2]

[2] A race condition is a condition in which a result depends on the order of execution, but
the order of execution cannot be predicted.

5.3.3 Pattern Structure

The structure for the pattern is shown in Figure 5-3. The «active» object has the pattern role name
Thread. Each Thread owns a message Queue that stores messages sent asynchronously to the Thread.
When the Thread is active, it reads messages from the Queue and processes them, usually by
dispatching them to internal object composing the Thread (not shown). Each Queue is protected by a
mutual exclusion semaphore (Mutex). Since the Queue itself is a shared resource (shared between the
owning Thread and the Thread objects that want to send it messages), it must be protected from
simultaneous access. This is the job of the Mutex.

Figure 5-3. Message Queuing Pattern

The Mutuex has a lock() and a release() operation. When lock() is called, and the Mutex is currently not
locked, it locks the Mutex and allows the caller thread to continue. [3] If the Mutex is currently locked, the
caller thread is suspended until the Mutex is unlocked in the future. This allows the original Thread to
finish its use of the Queue unimpeded and makes sure the data in the Queue is not corrupted. Once the
Mutex is released() by the original caller, the previously blocked Thread is now free to continue.

165

[3] Note that the lock() operation has a non-interruptible portion so that between the
checking for the locked state and locking the Mutex (going into the locked state), it
cannot be interrupted by a preempting thread.

5.3.4 Collaboration Roles

• Thread

The Thread object is «active»—that is, it is the root of an operating system thread, task, or
process. It can both create messages to send to other Threads and receive and process messages
when it runs. The scheduling policy for deciding when to execute the threads is not a part of this
pattern—any reasonable scheduling policy will work.

• Queue

The Queue is a container that can hold a number of messages. The Queue stores the messages
waiting for its owner Thread until that Thread is ready to run. The Queue itself runs in the thread
of its caller—in other words, if it is called by its owner, it runs in that thread, but if called by a
different thread—for example, to insert a message—then it executes that caller's thread. This
makes the Queue a shared resource that requires protection. This is provided by the Mutex. The
Queue provides insert() and remove() operations at minimum.

• Mutex

The Mutex is a mutual exclusion semaphore. It provides a noninterruptible lock() operation and a
release() operation. The Mutex provides protection from multiple access to the Queue contents. A
single Mutex protects all Queue operations because they might return erroneous results
otherwise. If a caller attempts to lock() the Queue (such as by calling Queue::insert() or
Queue::remove()), and the Queue is unlocked, then the Mutex becomes locked until a
subsequent call is made to Mutex::release(). If such an attempt is made when the Queue is
already locked, then the caller thread immediately suspends, allowing the original thread to
continue. An eventual call to Mutex::release() unlocks the Mutex and also unblocks the
suspended thread, allowing it to run.

5.3.5 Consequences

This pattern has a number of advantages. It is such a common pattern that it is supported by virtually all
real-time operating systems (see [8] for an example) and multitasking languages [4]. It is conceptually
very simple and reasonably bulletproof. The primary disadvantages are that it is a relatively heavyweight
approach to information passing among threads, it does not necessarily allow for highly efficient
information sharing (since it is asynchronous, the receiving thread doesn't process the incoming message
until it becomes ready to run), and information must be shared by value instead of by reference. This
limits the complexity of the information sharing possible and doesn't allow for efficient use of large data
structures.

5.3.6 Implementation Strategies

If the application uses an underlying operating system, the implementation of this pattern is very simple.
Most real-time operating systems support this concurrency pattern easily and well.

166

5.3.7 Related Patterns

It is common to use this as the primary thread synchronization mechanism, but in special cases
(involving high responsiveness) other patterns, such as the Interrupt Pattern or Guarded Call Pattern, are
added for certain of the rendezvous.

Much of the time, the information to be shared cannot conveniently be passed by value. This may be due
to the sheer size or amount of data, or it may be due to the use of the data as a single shared resource.
When this is true, the Rendezvous Pattern works well to share data among several clients. This pattern
can also be mixed with the Message Queuing Pattern.

5.3.8 Sample Model

Figure 5-4a shows a simple example of two active objects: Sender and Receiver. Constraints associated
with the active object indicate their relative priority (to be used in the scenario in Figure 5-4b). Each
strongly aggregates its own message queue. The Sender class issues messages to the Receiver class by
posting a message to the Receiver's queue (rQueue). This is most likely to be done via native OS
message calls. Each message queue is a protected resource (again, most likely protected by the
underlying OS) with an associated semaphore. When the Sender class sends a message to the rQueue
class, the semaphore protects the resource from readers or writers until the message is successfully
enqueued.

Figure 5-4. Message Queuing Pattern Example

167

The scenario in Figure 5-4b illustrates how these classes collaborate. In this scenario, the Sender thread
runs in response to an evRun event. The Sender class called the rQueue::insert() operation, which, in
turn, locks the semaphore. While in the middle of the rQueue::store() operation, the thread is interrupted
by the higher-priority Receiver thread.

Upon awakening, the Receiver attempts to check for incoming messages in its queue. It calls
rQueue::read(), which, in turn, attempts to lock the semaphore. This fails, and the Receiver is
automatically suspended or blocked, since the semaphore is already locked to the Sender thread. This
allows the Sender thread to continue and complete the store() operation. Once complete, the rQueue
releases its semaphore. This unblocks the Receiver thread, which now successfully locks the semaphore,
reads the message now waiting in its queue, unlocks the semaphore, and processes the incoming
message. The states of the semaphore itself are shown using the standard UML state-on-instance line
notation in Figure 5-4b.

5.4 Interrupt Pattern

168

Interrupts have much to recommend them. They occur when the event of interest occurs, they execute
very quickly and with little overhead, and they can provide a means for timely response to urgent needs.
This accounts for their widespread use in real-time and embedded systems. Nevertheless, they are not a
panacea for timely response to aperiodic phenomena. There are circumstances in which they are highly
effective, but there are other circumstances when their use can lead to system failure. This pattern
explores those issues.

5.4.1 Abstract

In many real-time and embedded applications, certain events must be responded to quickly and
efficiently, almost regardless of when they occur or what the system is currently doing. When those
responses are relatively short and can be made atomic (noninterruptible), then the Interrupt Pattern can
be an excellent design selection for handling those events.

5.4.2 Problem

In a system in which certain events are highly urgent, such as those that can occur at high frequencies or
those in which the response must be as fast as possible, a means is needed to quickly identify and
respond to those events. This can occur in many different kinds of systems from simple to complex.

5.4.3 Pattern Structure

Figure 5-5 shows the basic Interrupt Pattern structure. The machine itself (or operating system) provides
an Interrupt Vector Table, which is nothing more than a linear array of address vectors (the size of which
depends highly on the CPU). It is useful to model this as a class with Set and Get operations. The
Abstract Interrupt Handler is a class that contains machinery to link into this Interrupt Vector Table as
well as an operation to handle the interrupt when it occurs.

Figure 5-5. Interrupt Pattern

The behavior of the operations in the Abstract Interrupt Handler is very straightforward, as shown in the
activity diagrams in Figure 5-6. Setting the interrupt handler to point to the handleInterrupts(void)
method is nothing more than writing the function pointer to the right Interrupt Vector in the Interrupt
Vector Table.

Figure 5-6. Interrupt Handling Methods

169

Sometimes the installation of a new interrupt handler does not remove the need to invoke the old handler
as well. This is commonly called "chaining" of interrupt handlers. This done by calling the old handler,
which is stored in the Old Vector attribute of Interrupt Handler.

Care must be taken that the interrupt routines are short so that other interrupts that may occur are not
missed. If the processing of the interrupt handling must be long, the most common approach is to
separate the interrupt handling into two phases: the handling of the event per se and the computational
response. The event handling is done very quickly, and the event and any relevant information is
enqueued to be handled by another thread at some time in the future. This allows the interrupt handler
to reenable interrupts as quickly as possible while still permitting complex computation to take place as a
result of the interrupt.

5.4.4 Collaboration Roles

• Abstract Interrupt Handler

The Abstract Interrupt Handler defines the operations necessary to link up with the interrupt
vector table as well as to sever that link. It provides a virtual operation handleInterrupt(void)
that does that actual processing of the interrupt when it occurs. The actual method to implement
this operation is provided by the Concrete Interrupt Handler subclass.

• Concrete Interrupt Handler

170

The Concrete Interrupt Handler is a subclass of Abstract Interrupt Handler. It inherits all the
machinery necessary to link and delink with the interrupt vector table. It additionally provides the
method to do the actual work for handling the interrupt when it occurs. If necessary, it will chain
(call) the previous interrupt handler. Care must be taken that interrupts are disabled during the
interrupt handling itself and reenabled upon completion. Because the system may be doing
anything when interrupted, all registers must be saved and restored as well so as not to corrupt
other concurrent behaviors.

• Interrupt Vector

The Interrupt Vector class is a simple abstract data type, representing a single function pointer.
During boot, the Vector Table class initializes all interrupt handlers (typically to null interrupt
handler that simply returns).

• Interrupt Vector Table

The Interrupt Vector Table is little more than a simple array of Interrupt Vectors. It also includes,
however, operations to initialize the vectors and set/get the vectors. (Although in practice it is
more common for the set/get operations to be provided by the interrupt handler itself, some
operating systems provide methods to do this. These methods are logically part of the Interrupt
Vector Table.)

5.4.5 Consequences

These methods are most often used to queue responses for later (asynchronous processing). They are
rarely used as the only concurrency strategy, but they can be used as such when the system is mostly
idle and its functionality consists of a set of simple, short responses to events. Most often, these methods
are used as an adjunct to another (primary) concurrency policy, providing highly efficient responses to
extremely urgent events. However, care must be taken to ensure that the responses to the interrupts are
short, since they typically must be atomic (noninterruptible).

When the responses to the interrupts can be made short, this pattern provides very fast, timely
responses. When a longer response is required, but it can be partitioned into a fast response part and a
longer, but allowably slower part, then it is common to use the interrupt handler to just receive and then
queue the event for later, asynchronous processing by another task either running in the background or
scheduled using another policy, such as priority-based preemption.

The downside of this pattern is that it is often used where inappropriate: when the responses are too long
or when the system is so active that interrupting events are missed because the system has not
completed its response to previous events.

Another difficulty is that it is relatively difficult to share information with other interrupt handlers. This is
because such information must be protected from simultaneous access, but if the resource is currently
being used, the interrupt handler cannot block (since it must be short or interrupts may be lost).

5.4.6 Implementation Strategies

Implementation of this pattern is only a little tricky. Most RTOSs provide an operation for the installation
of an interrupt handler. It is important that the interrupt handler operation is parameterless and does not

171

return a value. In most languages, parameters and return values are passed on the call stack. Since the
return address is also on the call stack, listing parameters or a return value will mess up the call stack
and not return the application to what it was doing before the interrupt handler was invoked.

It is also important to save all the CPU registers before your routine does anything else and restore them
just prior to completing. Also, the routine must typically exit with a special Return From Interrupt (RTI)
instruction rather than a normal Return (RET) instruction. This is often done by inserting assembly
language instructions directly, prior to any executable statements in the interrupt handler and just after
all executable statements in the routine. Some compilers offer the ability to mark class methods (using a
nonstandard keyword such as interrupt) as interrupt handlers and automatically save and restore
registers, terminate with an RTI instruction, and even pass CPU registers in pseudoparameters to make
their contents available to the internals of the register. This is useful because one way to pass
information to an interrupt routine is to load some specific CPU register(s) with the value(s) and then
invoke the interrupt.

The ConcreteInterruptHandler class must be able to install, chain, and deinstall the interrupt handler
method. By install, it is meant that the interrupt vector is replaced with a function pointer (the address of
the method that will be receiving the interrupt). This is a little subtle in C++ because all methods (aka
member functions) in C++ have an invisible (to the programmer) parameter passed call the this pointer.
It is a pointer that points to the specific instance of the class in memory (which is, after all, only
represented once for every class, but each instance has separate data). So even if you have a
parameterless method in C++, there really is still a parameter passed on the stack.

The solution to this in C++ is to declare the method static, which means that it is the same for all
instances of the class and can access only static data. Therefore, it doesn't need (or receive) the this
pointer parameter.

In Figure 5-6 the ConcreteInterruptHandler class is shown inheriting from the AbstractInterruptHandler
class. This clearly cannot work that way because static methods have classwide scope including
subclasses. That is why it is annotated with a constraint indicating that we want to think about them as
subclasses (since their structure is the same) but cannot implement them exactly that way due to C++
language characteristics. The simplest way to manage this is to simply write a set of
ConcreteInterruptHandlers that all implement the same interface.

5.4.7 Related Patterns

It is possible to extend this pattern to coexist with other concurrency patterns, such as the Message
Queuing Pattern in this chapter. Care must be taken to ensure a balking rendezvous is used when shared
resources are activated. A balking rendezvous implements non-blocking semantics around resource
sharing. Specifically, if the required resource is locked, the interrupt handler cannot block. It can do
several things if it cannot pass on the information. For example, it can simply discard it. Another
approach is for the client (but not the interrupt handler) to simply turn off interrupts when it is about to
use the shared resource. Then the interrupt handler cannot be invoked, and the client is guaranteed to
use the resource safely. When the client is done with the resource, it reenables interrupts. Of course, it is
possible that interrupts may be lost. In most hardware, the system will retain a single interrupt if it
occurs when interrupt handling is disabled. This means that if two interrupts occur during this time, one
of them will be missed. Another strategy is for the interrupt handler to store the data locally and send it
later when the interrupt handler is invoked again. Finally, the interrupt handler and client can agree on

172

alternating two resources (commonly called "ping-pong" buffers), where the two resources are shared
with the guarantee that the client will, at most, lock only one at a time.

5.4.8 Sample Model

Figure 5-7 illustrates the Interrupt Pattern with a simple example. Every 500ms, the temperature of the
reactor core must be checked. If the temperature is less than or equal to some predetermined value,
then life is good; the routine can terminate. If, however, the temperature is above that value, then the
EmergencyAlert() operation of the SafetyExecutive object must be called. This operation is written in
such a way that it is reentrant (in other words, always safe to call even if that or another operation of the
SafetyExecutive object is called).

Figure 5-7. Interrupt Pattern Example

The object structure is shown in Figure 5-7a. The Timer and the Thermometer are shown as actors, since
they represent actual hardware. The Timer is designed in hardware to invoke the Timer Int Vector when
it fires. Figure 5-7b shows an example scenario. The Timer fires, invoking the Timer Int Vector, which
invokes the handleInterrupt() operation of the TempChecker object. This interrupt handler then calls
Thermometer::getValue() to get the current temperature. It then does a compare with its stored upper
limit. The first time this occurs in the scenario, the test passes, so the interrupt handler simple does a

173

return from interrupt. The second time, however, it fails. The operation then invokes
SafetyExecutive::EmergencyAlert(), passing a parameter that indicates which failure occurred. This is a
short (and, as mentioned previously, reentrant) routine that takes some corrective action, and eventually
the handleInterrupt() operation returns.

5.5 Guarded Call Pattern
Sometimes asynchronous communication schemes, such as the Message Queuing Pattern, do not provide
timely responses across a thread boundary. An alternative is to synchronously invoke a method of an
object, nominally running in another thread. This is the Guarded Call Pattern (see Figure 5-8). It is a
simple pattern, although care must be taken to ensure data integrity and to avoid synchronization and
deadlock problems.

Figure 5-8. Guarded Call Pattern

5.5.1 Abstract

The Message Queuing Pattern enforces an asynchronous rendezvous between two threads, modeled as
«active» objects. In general, this approach works very well, but it means a rather slow exchange of
information because the receiving thread does not process the information immediately. The receiving
thread will process it the next time the thread executes. This can be problematic when the
synchronization between the threads is urgent (when there are tight time constraints). An obvious
solution is to simply call the method of the appropriate object in the other thread, but this can lead to
mutual exclusion problems if the called object is currently active doing something else. The Guarded Call
Pattern handles this case through the use of a mutual exclusion semaphore.

5.5.2 Problem

The problem this pattern addresses is the need for a timely synchronization or data exchange between
threads. In such cases, it may not be possible to wait for an asynchronous rendezvous. A synchronous
rendezvous can be made more timely, but this must be done carefully to avoid data corruption and
erroneous computation.

5.5.3 Pattern Structure

The Guarded Call Pattern solves this problem by guarding the access to the resource via the operation
called across the thread boundary with a semaphore. If another thread attempts to access the resource
while it is locked, the latter thread is blocked and must allow the previous thread to complete its
execution of the operation. This simple solution is to guard all the relevant operations ("relevant" as
defined to be accessing the resource) with a single mutual exclusion semaphore.

5.5.4 Collaboration Roles

174

• Server Thread

This «active» object contains the Server objects that share the Shared Resource and protect
them with the Mutex.

• Client Thread

This «active» object contains (via the composition relation) the Client object that synchronously
invokes the method, ultimately, on the Server objects. The Client runs in the thread of the Client
Thread.

• Boundary Object

The Boundary Object provides the protected interface to the Server objects; that is, it presents
the operations the servers wish to provide across the thread boundary for a guarded call
rendezvous. The boundary object combines all the operations together (because they may all
affect the Shared Resource). If multiple different shared resources are to be protected, then the
Server Thread can provide multiple Boundary Objects. The important concept is that the Mutex
associated with the Shared Resource blocks any operation that attempts to use the Shared
Resource.

• Mutex

The Mutex is a mutual exclusion semaphore object that permits only a single caller through at a
time. It can be explicitly locked and unlocked by the caller, but it is safer if the operations of the
Shared Resource invoke it whenever a relevant service is called, locking it prior to starting the
service and unlocking it once the service is complete. Client Threads that attempt to invoke a
service when the services are already locked become blocked until the Mutex is in its unlocked
state.

• Server

Each Server object (and there may be many) has two relevant properties. First, it uses the
Shared Resource object, and second, it may provide a service useable to a Client across the
thread boundary that may use the Shared Resource.

• Shared Resource

The Shared Resource object is any object that provides data or a service that is shared among
multiple Servers in such a way that its integrity must be protected by the serialization of access.
For objects that protect data in this way, it means that the Servers may write to or in some way
affect its value. For service objects, it often means that they provide an interface to some
physical device or process that is changed by execution of the process, often in a nonreversible
way.

5.5.5 Consequences

The Guarded Call Pattern provides a means by which a set of services may be safely provided across a
thread boundary. This is done in such a way that even if several internal objects within the called thread

175

share a common resource, that resource remains protected from corruption due to mutual exclusion
problems. This is a synchronous rendezvous, providing a timely response, unless the services are
currently locked. If the services are currently locked, then the resource is protected, but timely response
cannot be guaranteed unless analysis is done to show that the service is schedulable (see [1] for a
detailed description of such analytical techniques and [4], [5], and [6] for further description of those
techniques).

The situation may be even simpler than required for this pattern. If the Server objects don't interact
among each other with respect to the Shared Resource, then the Shared Resource itself may be
contained directly within the Server object. In this case, the server objects themselves can be the
boundary objects or the boundary objects can participate in a Façade Pattern (aka Interface Pattern).
Then there is simply a Mutex object per Server object. This is a simpler case of this more general pattern.

5.5.6 Implementation Strategies

Both the Client Thread and Server Thread are «active» objects. It is typical to create an OS thread in
which they run in their constructors and destroy that thread in their destructors. They both contain
objects via the composition relationship. For the most part, this means that the «active» objects execute
an event or message loop, looking for events or messages that have been queued for later asynchronous
processing. Once an event or message is dequeued, it is dispatched to objects contained within it via
composition, calling the appropriate operations on those objects to handle the event or message.

For the synchronous rendezvous, the «active» object allows other objects visibility to the Boundary
objects (i.e., they are in its public interface) and their public operations.

5.5.7 Related Patterns

The rendezvous patterns presented in this chapter, Message Queuing, Interrupt, Guarded Call, and (the
yet to come) Rendezvous Pattern may all be mixed, of course, albeit carefully. It is always easiest to
have a single pattern for synchronization and data sharing among tasks, but there are valid reasons for
mixing them as well. Care must be taken that race conditions are handled when accessing a Server
object with more than one concurrency pattern. The religious use of a Mutex will solve most of these
issues, provided that the system can block if the resource is currently locked. However, this is a really
terrible idea if the blocking call is an interrupt handler.

If the Server is stateful (if its behavior is governed by a statechart), then the use of both asynchronous
and synchronous event handling can lead to all sorts of "interesting" behavior. It is particularly important
to remember that the semantics of event processing in statecharts is run-to-completion. That is, if a
Server object is currently handling an incoming asynchronous event and executes state exit, transition,
and state entry actions, this object cannot process other incoming events, whether they are synchronous
or not, until that entire chain of actions completes. This is usually handled by protecting the event
acceptor operation with a Mutex and executing the chain of actions under the auspices of that single
operation. It can also be done by adding a monitor (similar to a Mutex) that locks the Server object until
the event handler explicitly unlocks the Server once the action list is completely executed.

5.5.8 Sample Model

Figure 5-9a shows the model structure for the example. Three active objects encapsulate the semantic
objects in this system. The View Thread object contains a view of the reactor temperature on the user

176

interface. The Alarming Thread manages alarms in a different thread. And the Processing Thread
manages the acquisition and filtering of the data itself. Stereotypes indicate the pattern roles.

Figure 5-9. Guarded Call Pattern Example

Figure 5-9b walks through a scenario. Note that the messages use a thread prefix ("A:" or "B:") and the
activation lines on the sequence diagram are coded with different fill patterns to indicate in which thread
they belong. Points of interest are annotated with circled letters.

The scenario shows how the collision of two threads is managed in a thread-safe fashion. The first thread
(A) starts up to get the value of the reactor temperature for display on the user interface. While
processing that thread, the higher-priority thread (B) to acquire the data begins. However, it finds the
Reactor Temp object locked, and so it is suspended from execution until the Mutex is released. Once the
Mutex is released, the higher-priority thread can now continue: The lock() operation succeeds, and the B
thread continues until completion. Once thread B has completed, thread A can now continue, returning
the (old) value to the Temp View object for display. Here are the points of interest for the scenario in
Figure 5-9.

177

A. Thread A starts in View Thread to get the reactor temperature for display.
B. Thread B starts in Processing Thread to acquire and set a new value for the reactor temperature.
C. Since Mutex is already locked, thread B suspends and thread A continues.
D. Now that the Mutex is released, the higher-priority thread B can continue.
E. Thread B has completed, and now thread A can complete and return the (old) value for display.
F. Thread A is now complete.

5.6 Rendezvous Pattern
The Rendezvous Pattern (see Figure 5-10) is a simplified form of the Guarded Call pattern used to either
synchronize a set of threads or permit data sharing among a set of threads. It reifies the synchronization
of multiple threads as an object itself. There are many subtle variants of this pattern. The Rendezvous
object may contain data to be shared as the threads synchronize, or it may simply provide a means for
synchronizing an arbitrary number of threads at a synchronization point with some synchronization policy
or precondition before allowing them all to continue independently. The simplest of these preconditions is
that a certain number of threads have registered at their synchronization points. This special case is
called the Thread Barrier Pattern.

Figure 5-10. Rendezvous Pattern

5.6.1 Abstract

A precondition is something that is specified to be true prior to an action or activity. Preconditions are a
type of constraint that is usually generative—that is, it can be used to generate code either to force the
precondition to be true or to check that a precondition is true. In fact, the most common way to ensure
preconditions in UML or virtually any design language is through the use of state machines. A state is a
precondition for the transitions exiting it.

The Rendezvous Pattern is concerned with modeling the preconditions for synchronization or rendezvous
of threads. It is a general pattern and easy to apply to ensure that arbitrarily complex sets of
preconditions can be met at run-time. The basic behavioral model is that as each thread becomes ready
to rendezvous, it registers with the Rendezvous class and then blocks until the Rendezvous class releases
it to run. Once the set of preconditions is met, then the registered tasks are released to run using
whatever scheduling policy is currently in force.

5.6.2 Problem

178

The problem addressed by this pattern is to codify a collaboration structure that allows any arbitrary set
of preconditional invariants to be met for thread synchronization, independent of task phasings,
scheduling policies, and priorities.

5.6.3 Pattern Structure

The basic behavioral model is that as each thread becomes ready to rendezvous, it registers with the
Rendezvous class and then blocks until the Rendezvous class releases it to run. Once the set of
preconditions is met, then the registered tasks are released to run, using whatever scheduling policy is
currently in force. The rendezvous itself is abstracted into a class, as is the set of preconditions. This
approach provides a great deal of flexibility in modeling arbitrarily complex preconditional invariants.

5.6.4 Collaboration Roles

• Callback

The Callback object holds the address of the Client Thread. This is so the Rendezvous object can
notify all the threads that have registered when the preconditions are met. This callback may be
an object address, a URL, or any other means that enables the Rendezvous object to
unambiguously signal the Client Thread when the preconditions are met. Some RTOSs provide
named events on which target threads may pend(); when that named event is posted(), all
threads waiting on it are released.

• Client Thread

There are at least two Client Threads. When they reach their synchronization point, they register
with the Rendezvous object and pass their callback. The notify() operation is called by
dereferencing the callback; this signals the Client Thread that the preconditions have been met
and it is now free to continue.

• Rendezvous

The Rendezvous object manages the Thread Synchronization. It has a register(callback:address)
operation that the Client Threads invoke to indicate that they have reached their synchronization
point.

• Synch Policy

The Synch Policy reifies the set of preconditions into a single concept. The simplest Synch Policy
is nothing more than the registration count reaching some predetermined, expected value; that
is, it counts the threads that have registered, and when the registration count reaches a set
value, the precondition is met. This is called the Thread Boundary Pattern. For more complex
synchronization policies, the Synch Policy object may employ a statechart to capture the richness
of the required policy.

5.6.5 Consequences

This is a simple pattern that can be widely applied for various policies for thread synchronization. It
scales up well to arbitrary numbers of threads and to arbitrarily complex synchronization policies.

179

5.6.6 Implementation Strategies

The Synch Policy and Rendezvous classes are stateful and most likely to be implemented as statecharts.
In the case of the Thread Barrier Pattern specialization, it is enough to simply implement a counting
machine. Figure 5-11 shows a simple counting machine statechart that counts. It begins to synch
(process evSynch events) in its Counting state. After each event, it increments its Count attribute. If it
equals or exceeds the expected number of threads waiting to rendezvous, then the else clause is taken,
and the Synch Policy object sends an evReleaseAll event to the Rendezvous object.

Figure 5-11. Thread Barrier Synch Policy Statechart

The Rendezvous class accepts register messages from the associating Client Thread objects; when it
receives a register message, it sends an evSynch event to the Synch Policy object. When the Rendezvous
object receives an evReleaseAll event, it iterates over the list of Callback objects, sending each a notify
message, informing it that the synchronization is complete and the thread is free to continue.

The Callback class is little more than the storage of an address of some kind. In some cases, it will
literally be the address of the notify operation, to be called directly, or in a thread-safe way, using the
Guarded Call Pattern. In other cases, the notify message will be sent to that thread's event queue to be
processed when the thread is scheduled to run by the operating system. In still other cases, such as
when using a component infrastructure, such as COM or CORBA, the callback will contain the object ID,
which the component infrastructure will dereference to locate the proper object.

5.6.7 Related Patterns

This pattern can be mixed with the other thread management patterns, such as the Message Queue and
Guarded Call patterns, as well as the other nonconcurrency model architectural patterns, such as the
Component and Layered Patterns.

5.6.8 Sample Model

Figure 5-12a shows an example with three threads, each of which controls a different aspect of a robot
arm: two joints and a manipulator. When each of the three threads is ready, they are all allowed to
proceed. Figure 5-12b shows the flow of a scenario. Note how each thread (other than the last) is
blocked until the Rendezvous object releases them all. Then they will be scheduled by the OS according
to its scheduling policy.

180

Figure 5-12. Rendezvous Pattern Example

5.7 Cyclic Executive Pattern
For very small systems, or for systems in which execution predictability is crucial, the Cyclic Executive
Pattern is a commonly used approach. It is used a lot in both small systems and in avionic flight systems
for both aircraft and spacecraft applications environments. Although not without difficulties, its ease-of-
implementation makes this an attractive choice when the dynamic properties of the system are stable
and well understood.

5.7.1 Abstract

A Cyclic Executive Pattern has the advantage of almost mindless simplicity coupled with extremely
predictable behavior. This results in a number of desirable properties for such systems. First, imple-
mentation of this pattern is so easy it is hard to get it wrong, at least in any gross way. Also, it can be
written to run in highly memory-constrained systems where a full RTOS may not be an option.

5.7.2 Problem

181

In many very small applications, not only is a full RTOS not required, it may not even be feasible due to
memory constraints. Often, the only RTOS support that is really required is the ability to run a set of
more or less independent tasks. The simplest way to accomplish this is to run what is called an "event
loop" or Cyclic Executive that simply executes the tasks in turn, from the first to the last, and then starts
over again. Each task runs if it has something to do, and it relinquishes control immediately if not.

Another issue occurs when the execution time for a set of tasks is constant and it is desirable to have a
highly predictable system. "Highly predictable" means you can predict the assembly language instruction
that will be executing at any point in the future, based solely on the time.

5.7.3 Pattern Structure

You can see from Figure 5-13 just how simple this pattern is. The set of threads is maintained as an
ordered list (indicated by the constraint on the association end attached to the Abstract Thread class).
The Cyclic Executive merely executes the threads in turn and then restarts at the beginning when done.
When the Scheduler starts, it must instantiate all the tasks before cycling through them.

Figure 5-13. Cyclic Executive Pattern

5.7.4 Collaboration Roles

Because of the simplicity of this pattern, it is often used in the absence of a real operating system. Thus,
it is common to directly implement all the classes in the pattern even though they would be provided by
an operating system if one were used.

• Abstract Thread

The Abstract Thread class is an abstract (noninstantiable) superclass for Concrete Thread.
Abstract Thread associates with the Scheduler. Since Concrete Thread is a subclass, it has the
same interface to the Scheduler as the Abstract Thread. This enforces interface compliance.

• Concrete Thread

The Concrete Thread is an «active» object most typically constructed to contain passive
"semantic" objects that do the real work of the system. The Concrete Thread object provides a
straightforward means of attaching these semantic objects into the concurrency architecture.
Concrete Thread is an instantiable subclass of Abstract Thread.

• Scheduler

182

This object initializes the system by loading the entire set of tasks and then running each of them
in turn in perpetuity. It is generally up to the tasks themselves to relinquish control of the CPU to
the Scheduler when they are finished.

5.7.5 Consequences

The best applications of the Cyclic Executive Patterns have a number of properties in common.

• The number of tasks is constant throughout the run-time of the system.
• The amount of time a given task tasks each cycle is either unimportant or consistent from cycle

to cycle.
• The tasks are mostly independent.
• Usage of resources shared among the tasks can be guaranteed to be complete when each task

relinquishes control to the Scheduler.
• There exists a sequential ordering of tasks that is known to be adequate for all situations.

When any of these properties is seriously violated, it is likely that another solution may be preferable to
the Cyclic Executive Pattern.

The primary advantage of this pattern is its simplicity. Its primary disadvantages are its lack of flexibility,
instability to violations of its assumptions, and nonoptimality. Tasks cannot be added or removed during
run-time, so its applicability is limited to systems with a small number of tasks that run iteratively for the
lifetime of the system. Computation of schedulability is a straightforward matter: the time of the cycle is
equal to the time for each task completion (worst case or average case may be used, depending on the
nature of the task deadlines). If the deadline for each task is less than the total cycle time, then the
system will be schedulable.

However, response to incoming events is far from optimal. When an event comes in regardless of which
task is currently executing, it must wait until the appropriate task is running before it is handled.
Therefore, all events must have a deadline greater than or equal to the cycle time. The Cyclic Executive
Pattern is likewise unstable: It cannot usually be predicted which tasks will fail in an overload situation
because it depends on which task is executing when the event occurs. There is no notion of criticality or
urgency in the Cyclic Executive—all tasks are equally important. There have been case studies, such as
the BSY-1 Trainer [14], that were not schedulable using a Cyclic Executive Pattern but became easily
schedulable when a Static or Dynamic Priority Pattern was used.

When the system is sensitive to time, then the cycle must frequently be tuned each time a task is added
or modified. This tuning is a manual process involving reordering of tasks, decomposition of tasks into
smaller tasks, grouping of tasks together (composition), adding or removing NOP (no-op) CPU
instructions, and so on—normally proceeding by trial-and-error. Another issue with the application of this
pattern is that a single misbehaving task can halt the entire system by not returning control to the
Scheduler.

5.7.6 Implementation Strategies

The implementation of this pattern is very straightforward and should present no difficulties to the
implementer. Because the Concrete Threads are run-to-completion, there is no need for more than a
single stack. Shared resources may be implemented as global variables. The common assumption is that
each task releases all its used resources before relinquishing control. If this is not true, and resources are

183

to be shared across tasks, then some mechanism must be put in place, such as semaphores, to ensure
the integrity of the resource.

5.7.7 Related Patterns

There are a couple of variants of the Cyclic Executive Pattern (see Figure 5-14) that are employed with
great success. One of these is to use a time-trigger for the start of the cycle for the Cyclic Executive. This
"Triggered Cyclic Executive Pattern" is useful when the start of the execution of the task set must occur
at a specific time, such as when highly regular and tightly controlled polling must occur. This variant is
similar to the primary Cyclic Executive Pattern, except that a system timeout occurs to start each cycle.
When the Cyclic Executive Pattern is inappropriate, then one of the other scheduling patterns may be
used instead.

Figure 5-14. Cyclic Executive Pattern Example

5.8 Round Robin Pattern

184

The Round Robin Pattern employs a "fairness" scheduling doctrine that may be appropriate for systems in
which it is more important for all tasks to progress than it is for specific deadlines to be met. The Round
Robin Pattern is similar to the Cyclic Executive Pattern except that the former does employ preemption
based on time.

5.8.1 Abstract

Most of the literature of real-time systems has focused on hard real-time systems (primarily because of
its computation tractability). Hard real-time systems have tasks that are either time-driven (periodic) or
event-driven (aperiodic with well-defined deadlines, after which the tasks are late). Such systems are
inherently "unfair" because in an overload situation, low-priority tasks are selectively starved. There are
other systems where individual deadlines are not as crucial as overall progress of the system. For such
systems, a priority-based preemption approach may not be preferred.

5.8.2 Problem

The Round Robin Pattern addresses the issue of moving an entire set of tasks forward at more or less
equal rates, particularly tasks that do not complete within a single scheduling cycle.

5.8.3 Pattern Structure

The Round Robin Pattern is a simple variation of the Cyclic Executive Pattern. The difference is that the
Scheduler has the ability to preempt running tasks and does so when it receives a tick message from its
associated Timer. Two forms of the Round Robin Pattern are shown in Figure 5-15. The complete form
(Figure 5-15a) shows the infrastructure classes Task Control Block and Stack. The simplified form (Figure
5-15b) omits these classes.

Figure 5-15. Round Robin Pattern

185

5.8.4 Collaboration Roles

• Abstract Thread

The Abstract Thread class is an abstract (noninstantiable) superclass for Concrete Thread.
Abstract Thread associates with the Scheduler. Since Concrete Thread is a subclass, it has the
same interface to the Scheduler as the Abstract Thread. This enforces interface compliance.

• Concrete Thread

The Concrete Thread is an «active» object most typically constructed to contain passive
"semantic" objects that do the real work of the system. The Concrete Thread object provides a
straightforward means of attaching these semantic objects into the concurrency architecture.
Concrete Thread is an instantiable subclass of Abstract Thread.

• Scheduler

This object initializes the system by loading the entire set of tasks and then running each of them
in turn in perpetuity. The tasks may voluntarily relinquish control to the Scheduler, or they may
be preempted when the Scheduler receives a Tick message from the Timer.

186

• Stack

The Stack is a control-and-data stack as used in standard programming languages to store
"automatic" variables, function return values, and return addresses. The Round Robin Pattern
needs a stack per Thread because each Thread may be interrupted in the middle of arbitrary
operation execution and will need to resume where it leaves off when the task is restarted.

• Task Control Block

The Task Control Block object stores information about each task for the Scheduler. This includes
the initial starting address (stored in the attribute StartAddr) and the entry point after
preemption (stored in the RentryPoint attribute). There is a matching Task Control Block for
every Concrete Thread object in the system, indicated by the {mapped} constraint.

• Timer

This object sends periodic ticks to the Scheduler to tell it when to switch the task with the active
focus. In most cases, this is implemented as a front-end to a hardware-based timer. The
Scheduler typically configures the Timer prior to system execution by defining the time slice
period. The Timer event is caught by an interrupt, which causes the Scheduler to execute the
switchTask() operation.

5.8.5 Consequences

The Round Robin Pattern is, like the Cyclic Executive Pattern, fair, in that all the tasks get a chance to
run. Unless the tasks use critical sections (and turn off interrupts and task switching), the Round Robin
Pattern has an advantage over the Cyclic Executive Pattern in that a misbehaving task won't stop the
entire system from running because the Timer will interrupt each task when it is time to perform a task
switch. Also, like the Cyclic Executive Pattern, the Round Robin Pattern is suboptimal in terms of
response to incoming events and unstable in the sense that you can't predict which task will fail in an
overload situation. This pattern does scale up better than the Cyclic Executive pattern to larger numbers
of tasks but not as well as priority-based preemption patterns. As the number of threads grows, the
relative time each task gets for a time slice shrinks. This results in thrashing when the number of tasks
grows too large, and the system will spend an increasing percentage of its time switching tasks. Note
that even if a task has nothing to do, it still gets a time slice, and this can result in even more thrashing.
Since data-sharing mechanisms are rudimentary, complex models may be difficult to implement with this
pattern.

5.8.6 Implementation Strategies

This pattern is easily implemented as a Cyclic Executive Pattern with a hardware timer-driven interrupt
and a few more simple parts. The Concrete Thread can prevent preemption during a critical section by
temporarily disabling interrupts. Care must be taken, however, that interrupts don't get permanently
disabled and stop task switching from ever occurring. This pattern does not assume run-to-completion
semantics, so in general, each task will need a separate Stack for automatic variables, return values, and
return addresses as well as a Task Control Block to store the reentry address for the preempted task.

5.8.7 Related Patterns

187

The Round Robin Pattern is a bit more complex than the Cyclic Executive Pattern, but it is not as complex
as the priority-based preemption patterns, such as Static Priority Pattern and Dynamic Priority Pattern,
discussed next in this chapter.

5.8.8 Sample Model

Figure 5-16 shows a simple two-task model implemented with the Round Robin Pattern. In this simple
case, when the Scheduler is run, it configures the Timer with the proper period and then executes each
task in turn for the time slice. Initially, it uses the default run() operation on the tasks; subsequently, it
will merely jump directly to where that task left off. Prior to executing the task, the relevant task's stack
is set active, and the stack pointer is set with the current top of stack.

Figure 5-16. Round Robin Pattern Example

5.9 Static Priority Pattern

188

The static priority pattern is the most common approach to scheduling in a real-time system. It has the
advantages of being simple and scaling fairly well to large numbers of tasks. It is also simple to analyze
for schedulability, using standard rate monotonic analysis methods (see [1], [6], and [7] for details on
the analytic methods themselves).

5.9.1 Abstract

Two important concepts in the design of real-time systems are urgency and criticality. Urgency refers to
the nearness of a deadline, while criticality refers to how important the meeting of that deadline is in
terms of system functionality or correctness. It is clear that these are distinctly different concepts, yet
what operating systems typically provide to deal with both of these issues is a single concept: priority.
The operating system uses the priority of a task to determine which tasks should run preferentially when
more than one task is ready to run. That is, the operating system always runs the highest-priority task of
all the tasks currently ready to run.

The most common approach to assigning priorities in a real-time system is to define the priority of each
task during design. This priority is called static because it is assigned during design and never changed
during the execution of the system. This approach has the advantages of (1) simplicity, (2) stability, and,
(3) if good policies are used in the selection of the tasks and their priorities, optimality.

By stability, we mean that in an overloaded situation, we can predict which tasks will fail to meet their
deadlines (that is, the lower-priority ones). By optimality, we mean that if the task set can be scheduled
using other approaches, then it can also be scheduled using static priority assignment. We will discuss a
common optimal approach to priority assignment later in this section.

5.9.2 Problem

When we say "real-time" we mean that predictably timely execution of behavior is essential to
correctness. This constraint can arise from any number of real-world problems, such as the length of time
a safety-critical system can tolerate a fault before an "incident" occurs or the stability characteristics of a
PID control loop. [4] By far, the most common way to model time for such systems is to assign a time
interval, beginning with an incoming event or the start of the thread execution and ending with the
completion of the task invocation. This is called a deadline. It is a common simplification that is used
because systems can be easily analyzed for schedulability, given the periodicity, [5] the worst-case
execution time, and deadline for all tasks in the system, as long as the priority of the tasks is also known.

[4] Proportional integral-differential. This is a very common means for controlling systems
that do not display reactive (i.e., stateful) behavior but instead must be dynamically
controlled through a continuous range of values. PID controllers tend to be very sensitive
to the timely execution of corrective measures to deviations from set values; if the
execution is delayed, this can put the system in what is called an "unstable" condition,
leading to complete systems failure.
[5] Or the minimum interarrival time for nonperiodic tasks.

5.9.3 Pattern Structure

Figure 5-17 shows the basic structure of the pattern. Each «active» object (called Concrete Thread in the
figure) registers with the Scheduler object in the operating system by calling createThread operation and
passing to it, the address of a method defined. Each Concrete Thread executes until it completes (which
it signals to the OS by calling Scheduler::return()), it is preempted by a higher-priority task being

189

inserted into the Ready Queue, or it is blocked in an attempt to access a Shared Resource that has a
locked Mutex semaphore.

Figure 5-17. Static Priority Pattern

The upper part of the figure shows the complete pattern. In most cases, the details of the scheduler and
its associations are not of interest to the modeler (because they are being provided by a COTS [6]
operating system). When the infrastructure is not of interest, then this leads to the simplified form of the
pattern shown in the lower half of the figure.

[6] Commercial Off-The-Shelf.

5.9.4 Collaboration Roles

Note that this discussion includes objects typically provided by the operating system: Scheduler, Mutex,
Ready Queue, and Blocked Queue. If you are using a particular OS, then the interface may differ from
what is shown here. Nevertheless, the gist of the operation remains the same for the vast majority of

190

operation systems. For embedded systems in which you are writing the scheduler, this pattern can be
used as is.

• Abstract Thread

The Abstract Thread class is an abstract (noninstantiable) superclass for Concrete Thread.
Abstract Thread associates with the Scheduler. Since Concrete Thread is a subclass, it has the
same interface to the Scheduler as the Abstract Thread. This enforces interface compliance.

• Blocked Queue

The Blocked Queue is a priority queue of Task Control Block (TCB) references. When a task is
blocked (that is, prohibited from execution until a required resource is available), a reference to it
is put into this queue. When the task is unblocked (the required resource becomes available), it is
removed from the Blocked Queue and put into the Ready Queue.

• Concrete Thread

The Concrete Thread is an «active» object most typically constructed to contain passive
"semantic" objects that do the real work of the system. The Concrete Thread object provides a
straightforward means of attaching these semantic objects into the concurrency architecture.
Concrete Thread is an instantiable subclass of Abstract Thread.

• Mutex

The Mutex is a mutual exclusion semaphore object that permits only a single caller through at a
time. The operations of the Shared Resource invoke it whenever a relevant service is called,
locking it prior to starting the service and unlocking it once the service is complete. Threads that
attempt to invoke a service when the services are already locked become blocked until the Mutex
is in its unlocked state. This is done by the Mutex semaphore signaling the Scheduler that a call
attempt was made by the currently active thread, the Mutex ID (necessary to unlock it later when
the Mutex is released), and the entry point—the place at which to continue execution of the
Thread.

• Ready Queue

The Ready Queue holds references to TCBs for tasks that are currently ready to run. Whenever
the highest-priority task in the Ready Queue is a higher priority than the currently running task
(or when the currently running task terminates), then that task's TCB reference is removed from
the Ready Queue and the referenced task executes. If a Thread is executing and a higher priority
Thread is placed in the Ready Queue, then the currently executing Thread is preempted—that is,
it stops executing and is put back into the Ready Queue, and the higher-priority Thread executes
preferentially.

• Scheduler

This object orchestrates the execution of multiple threads based on their priority according to a
simple rule: Always run the ready thread with the highest priority. Some schedulers may be more
complex than this, but this is the basic rule. When the «active» Thread object is created, it (or its

191

creator) calls the createThread operation to create a thread for the «active» object. Whenever
this thread is executed by the Scheduler, it calls the StartAddr:address (except when the thread
has been blocked or preempted, in which case it calls the EntryPoint address).

• Shared Resource

A resource is an object shared by one or more Threads. For the system to operate properly in all
cases, all shared resources must either be reentrant (meaning that corruption from simultaneous
access cannot occur) or they must be protected. Protection via mutual exclusion semaphores is
discussed in the Guarded Call Pattern. In the case of a protected resource, when a Thread
attempts to use the resource, the associated Mutex semaphore is checked, and if locked, the
calling task is placed into the Blocked Queue. The task is terminated with its reentry point noted
in the TCB.

• Stack

Each Abstract Thread has a Stack for return addresses and passed parameters. This is normally
explicit at the assembly language level within the application thread, but it is an important part of
the scheduling infrastructure.

• Task Control Block (TCB)

The TCB contains the scheduling information for its corresponding Thread object. This includes
the priority of the thread, the default start address, and the current entry address, if it was
preempted or blocked prior to completion. The Scheduler maintains a TCB object for each existing
Thread. Note that TCB typically also has a reference off to a call and parameter stack for its
Thread, but that level of detail is not shown in Figure 5-17.

5.9.5 Consequences

This pattern represents a common approach for task threads to interface with a scheduler. UML uses the
notion of «active» objects to model threads. This pattern may be adjusted to use various different
scheduling approaches, such as priority-based preemption or round robin policies.

In this pattern, priorities are allocated at design time. This means that the running system cannot
dynamically reallocate priorities in response to changing conditions. For most systems, this is adequate
because care is taken to ensure that the system is scheduled under worst-case conditions. However, this
does limit the scalability of the approach. Static priorities may be applied to all sizes of systems where
the environment and desired system response is highly predictable.

The most common policy for the selection of priorities is rate monotonic scheduling or RMS. The
fundamental assumptions of RMS are that tasks are periodic and infinitely preemptable and that task
deadlines occur at the end of the period.

When these are true, RMS assigns the priorities of the tasks based on their period—the shorter the
period, the higher the priority. This scheduling approach is demonstrably optimal and stable. It is optimal
in the sense that if the task set can be scheduled using another policy, then it can also be scheduled
using RMS. It is stable in the sense that in the presence of an overload situation, which tasks will fail is
predictable: The lower-priority tasks will fail.

192

When the first assumption is violated—that is, some of the tasks are not periodic but are instead event-
driven—then the most common approach is to determine the minimum interarrival time for the event-
driven threads and use that as if that were the period. While this is useful, it most often results in
overdesigned systems that could be designed using less expensive parts if other approaches were used.
For a description of the various approaches, see [1], [6], and [7].

When the second assumption is violated (deadlines are not necessarily at the end of the period), then a
simple adaptation of RMS is used, called Deadline Monotonic Scheduling, or DMS. In this case, priorities
are set based on the length of the deadline rather than the period of the task.

5.9.6 Implementation Strategies

This is the typical application of this pattern.

• Identify the objects in one or more collaborations.
• Apply some thread identification policies.
• Add the "passive" objects from the realizing collaborations into the «active» objects via

composition relations.
• Adjust the associations across «active» object boundaries as necessary to ensure thread safety

such as by applying the Rendezvous Patterns discussed previously in this chapter.

Most of the infrastructure of this pattern is provided by a real-time operating system: Blocked Queue,
Ready Queue, Scheduler, Mutex, and Task Control Block. As an implementer of the pattern on top of an
existing operating system, you only need be concerned with Abstract Thread, Concrete Thread, and
Shared Resource. Of course, if you're writing your own Scheduler, then you will have to construct the OS
objects as well.

5.9.7 Related Patterns

Although this pattern is used frequently, additional patterns are typically added to address other issues in
the management of multiple concurrent threads. Specifically, additional patterns should be applied to
manage synchronization and the sharing of information (Message Queuing Pattern, Guarded Call Pattern,
Rendezvous Pattern) and concurrent resource management (Static Allocation Pattern, Fixed Sized Buffer
Pattern, Priority Inheritance Pattern). Also the Dynamic Priority Pattern (next) is an alternative to this
pattern in terms of a scheduling policy.

In the general (and common) case, resources must be shared among the threads. In order to ensure the
integrity of the shared resource, it is very common to implement a blocking policy; that is when a higher-
priority task needs a resource currently owned by a lower-priority task, the higher-priority task is blocked
until the resource is released. Doing this in a naïve way can result in unschedulable systems due to a
well-known problem called unbounded priority inversion. The resource-sharing patterns Priority
Inheritance, Highest Locker, and Priority Ceiling Protocol specifically address this issue.

5.9.8 Sample Model

Figure 5-18 uses the simplified pattern form from Figure 5-17b. In this case, three threads are spawned
(in other words, the active objects are created, and in each the constructor creates a thread from the OS
in which to execute). The active objects (shown with the standard UML notation, a heavy border) share
passive objects. Passive objects are objects that execute in the thread of their caller. In this case, both

193

the DataAcqThread and the FilteringThread share the RawData resource, while the FilteringThread and
the DisplayThread share the CookedData resource. Both resources use a mutex semaphore to serialize
their access to avoid information corruption.

Figure 5-18. Static Priority Pattern Example

The threads run at different (static) priorities: the DataAcqThread runs at the highest priority, the
DisplayThread at the next highest, and the FilteringThread runs at the lowest priority. The Scheduler tells
each task when to run. Figure 5-18b shows a typical execution of this model.

A. The Scheduler runs the DisplayThread. The DisplayThread gets data from the CookedData
resource.

B. DisplayThread completes.

194

C. The Scheduler runs the FilteringThread. It plans to get some raw data, filter it, and then store the
results as cooked data. However, it gets preempted by the higher-priority task DataAcqThread
during its use of the RawData resource.

D. The Scheduler runs the DataAcqThread. Since this is a higher priority than the FilteringThread,
the latter is preempted. The former tries to write data to the RawData resource.

E. The Mutex on RawData (not shown) blocks the DataAcqThread as it attempts to write the data to
the RawData resource. This is necessary to preserve the integrity of the resource.

F. The FilteringThread is allowed to run (because the higher-priority task is blocked) until it releases
the resource. Once the RawData resource is released, the DataAcqThread is unblocked and
immediately preempts the FilteringThread. Once the DataAcqThread completes, the
FilteringThread is allowed to continue. It updates the CookedData Resource and then terminates.

5.10 Dynamic Priority Pattern
The Dynamic Priority Pattern is similar to the Static Priority Pattern except that the former automatically
updates the priority of tasks as they run to reflect changing conditions. There are a large number of
possibly strategies to change the task priority dynamically. The most common is called Earliest Deadline
First, in which the highest-priority task is the one with the nearest deadline. The Dynamic Priority Pattern
explicitly emphasizes urgency over criticality.

5.10.1 Abstract

As mentioned in the previous section, the two most important concepts around schedulability are urgency
and criticality, but what operating systems typically provide to manage both is a single value: priority. In
the Static Priority Pattern, priorities are set at design time, usually reflecting a combination of the
urgency and criticality of the two. In the Dynamic Priority Pattern, the priority of a task is set at run-time
based solely on the urgency of the task.

The Dynamic Priority Pattern sets the priority of each task as a function of the time remaining until its
deadline—the closer the deadline, the higher the priority. Another common name for such a scheduling
policy is Earliest Deadline First, or EDF. Such a strategy is demonstrably optimal. This means that if the
task set can be scheduled by any approach, then it can also be scheduled by this one. However, the
Dynamic Priority Pattern isn't stable; this means that it is impossible to predict at design time which tasks
will fail in an overload situation.

The Dynamic Priority Pattern is best suited for task sets that are at least of approximately equal criticality
so that urgency is the overriding concern. It is also well suited for highly complex situations in which it
may be impossible to predict the set of tasks that will be running simultaneously. In such complex
situations, it is difficult or impossible to construct optimal static priorities for the tasks.

5.10.2 Problem

For small real-time systems, the permutations of tasks that will be running are known, and the tasks
themselves are stable: Their deadlines are consistent from task invocation to task invocation, and their
execution time is roughly the same as well. This simplifies the analysis well enough to permit each
computation of the schedulability of the system in absolute terms. In a complex system, such as fully
symmetric multitasking systems, in which the assignment of a task to a processor isn't known until
execution time, such analysis is difficult or impossible. Furthermore, even if the analysis can be done, it is
complicated work that must be completely redone to add even a single task to the analysis.

195

5.10.3 Pattern Structure

The pattern structure is shown in Figure 5-19. It structurally the same as the Static Priority Pattern, but
the Abstract Thread class also contains an attribute called Deadline. This is normally the duration of time
from the invocation of the task until the point in time at which the task becomes late. It is specified as a
duration, but the Scheduler will compute an absolute deadline from this (in the task's Task Control Block)
and then order the task execution based on a policy of nearest deadline first. When a new task becomes
ready to run, it is inserted in the ready queue based on its next deadline.

Figure 5-19. Dynamic Priority Pattern

5.10.4 Collaboration Roles

As in the previous pattern, note that this discussion includes objects typically provided by the operating
system: Scheduler, Mutex, Ready Queue, and Blocked Queue. If you are using a particular OS, then the
interface may differ from what is shown here. Nevertheless, the gist of the operation remains the same
for the vast majority of operation systems. For embedded systems in which you are writing the
scheduler, this pattern can be used as is.

• Abstract Thread

The Abstract Thread class is an abstract (noninstantiable) superclass for Concrete Thread.
Abstract Thread associates with the Scheduler. Since Concrete Thread is a subclass, it has the
same interface to the Scheduler as the Abstract Thread. This enforces interface compliance. The
Abstract Thread class has a Deadline attribute that is of type Duration. This is the length of time
after the invocation of the task that the execution of the task must be complete. The Scheduler
will use this value to compute the task's next deadline (stored in the Task Control Block's
AbsoluteDeadline attribute) to determine the task's current priority.

• Blocked Queue

196

The Blocked Queue is a priority queue of Task Control Block (TCB) references. When a task is
blocked (prohibited from execution until a required resource is available) a reference to it is put
into this queue. When the task is unblocked (the required resource becomes available), it is
removed from the Blocked Queue and put into the Ready Queue.

• Concrete Thread

The Concrete Thread is an «active» object most typically constructed to contain passive
"semantic" objects that do the real work of the system. The Concrete Thread object provides a
straightforward means of attaching these semantic objects into the concurrency architecture.
Concrete Thread is an instantiable subclass of Abstract Thread.

• Mutex

The Mutex is a mutual exclusion semaphore object that permits only a single caller through at a
time. The operations of the Shared Resource invoke it whenever a relevant service is called,
locking it prior to starting the service, and unlocking it once the service is complete. Threads that
attempt to invoke a service when the services are already locked become blocked until the Mutex
is in its unlocked state. This is done by the Mutex semaphore signaling the Scheduler that a call
attempt was made by the currently active thread, the Mutex ID (necessary to unlock it later when
the Mutex is released), and the entry point—the place at which to continue execution of the
Thread.

• Ready Queue

The Ready Queue holds references to TCBs for tasks that are currently ready to run. Whenever
the highest-priority task in the Ready Queue is a higher priority than the currently running task
(or when the currently running task terminates), then that task's TCB reference is removed from
the Ready Queue, and the referenced task executes. If a Thread is executing and a high-priority
Thread is placed in the Ready Queue, then the currently executing Thread is preempted—that is,
it stops executing and is put back into the Ready Queue, and the higher-priority Thread executes
preferentially.

• Scheduler

This Scheduler is very similar to the Scheduler in the Static Priority Pattern. It still orchestrates
the execution of multiple threads based on their priority. The difference is that this Scheduler
computes priority dynamically as function of the nearness of task deadlines. This is a
straightforward computation of the Abstract Thread's deadline attribute. When the task becomes
ready to run, the next deadline is calculated (and stored in the TCB) and the tasks are scheduled
based on the nearness of the next deadline for the task.

• Shared Resource

A resource is an object shared by one or more Threads. For the system to operate properly in all
cases, all shared resources must either be reentrant (meaning that corruption from simultaneous
access cannot occur) or they must be protected. Protection via mutual exclusion semaphores is
discussed in the Guarded Call Pattern. In the case of a protected resource, when a Thread
attempts to use the resource, the associated Mutex semaphore is checked, and if locked, the

197

calling task is placed into the Blocked Queue. The task is terminated with its reentry point noted
in the TCB.

• Stack

Each Abstract Thread has a Stack for return addresses and passed parameters. This is normally
explicit at the assembly language level within the application thread but is an important part of
the scheduling infrastructure.

• Task Control Block (TCB)

The TCB contains the scheduling information for its corresponding Thread object. This includes
the priority of the thread, the default start address and the current entry address, if it was
preempted or blocked prior to completion. The Scheduler maintains a TCB object for each existing
Thread. Note that TCB typically also has a reference off to a call and parameter stack for its
Thread, but that level of detail is not shown in Figure 5-19. The TCB has the attribute
AbsoluteDeadline that holds the next deadline for that task.

5.10.5 Consequences

Dynamic priority scheduling is optimal but not stable. By "optimal" it is meant that if the tasks can be
scheduled by any algorithm, they can also be scheduled by this algorithm. By "unstable" it is meant that
it cannot be predicted a priori which tasks will fail in an overload situation.

The Dynamic Priority Pattern scales well to large numbers of threads under conditions that defy static
analysis. The Static Priority Patterns work well for less dynamic situations in which the worst case can be
known and planned for. In highly complex system, particularly with fully symmetric multitasking
architectures, this may not be the case.

5.10.6 Implementation Strategies

The implementation of this pattern is only slightly more complex to implement than the Static Priority
Pattern. In the Static Priority Pattern, the Concrete Thread must contain the priority as a constant value.
The Scheduler then uses this static priority to arrange the priority queue of TCBs. With the dynamic
priority pattern, the Concrete Thread must contain instead the deadline of the task relative to the start of
the task (this is shown as the Deadline attribute). When the Concrete Thread becomes ready to run, the
Scheduler must compute the next AbsoluteDeadline from that and store this value in the TCB. This
attribute is used as the sorting criterion for the Scheduler's priority queue.

5.10.7 Related Patterns

This pattern is less common than the related Static Priority Pattern. And like the Static Priority Pattern,
this pattern is typically mixed with any number of other patterns as well, such as resource management
patterns. As with the Static Scheduling Pattern, the hard part of scheduling occurs when resources must
be shared. The resource sharing patterns Priority Inheritance, Highest Locker, and Priority Ceiling
Protocol specifically address the problems that can occur with unbounded priority inversion.

5.10.8 Sample Model

198

Figure 5-20 is the same model as used for the Static Priority Pattern in the previous section. The Deadline
attributes are shown with their specific deadline values that result in equivalent but not necessarily
identical scheduling for the tasks. For example, if the DataAcqThread becomes ready to run, under the
Static Priority Pattern, it will preempt either of the two threads regardless of how near their deadlines
are. With the Dynamic Priority Pattern, however, the DataAcqThread will only preempt currently running
threads if its next deadline is, in fact, closer to their deadlines. Both approaches are schedulable in this
case. In the Static Priority Pattern, in an overload situation, it is predictable which thread will be late: the
lowest-priority thread (FilteringThread). Which thread will be late in an overload situation cannot,
however, be predicted if the Dynamic Priority Pattern is used.

Figure 5-20. Dynamic Priority Pattern Example

References
[1] Klein, M., T. Ralya, B. Pollak, R. Obenza, and M. Harbour. A Practitioner's Handbook for Real-Time
Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems, Norwell, MA: Kluwer Academic Press,
1993.

199

[2] Pinedo, Michael. Scheduling: Theory, Algorithms, and Systems, Englewood Cliffs, NJ: Prentice Hall,
1995.

[3] Gomma, Hassan. Software Design Methods for Concurrent and Real-Time Systems, Reading, MA:
Addison-Wesley, 1993.

[4] Oaks, S. and H. Wong. Java Threads, Sebastopol, CA: O'Reilly Press, 1997.

[5] Stankovic, J., M. Spuri, K. Ramamritham, and G. Buttazzo. Deadline Scheduling for Real-Time
Systems, Norwell, MA: Kluwer Academic Press, 1998.

[6] Briand, L., and D. Roy. Meeting Deadlines in Hard Real-Time Systems, Los Alamitos, CA: IEEE
Computer Society, 1999.

[7] Douglass, Bruce Powel. Doing Hard Time: Developing Real-Time Systems with UML, Objects,
Frameworks, and Patterns, Reading, MA: Addison-Wesley, 1999 .

[8] Gallmeister, B. POSIX.4, Sebastopol, CA: O'Reilly Press, 1995.

[9] Pope, Alan. The CORBA Reference Guide: Understanding the Common Object Request Broker
Architecture, Reading, MA: Addison-Wesley, 1998.

[10] Aklecha, Vishwajit. Object-Oriented Frameworks Using C++ and CORBA Gold Book, Scottsdale, AZ:
Coriolis Press, 1999.

[11] Rubin, W., and M. Brain. Understanding DCOM, Upper Saddle River, NJ: Prentice Hall, 1999.

[12] Mowbry, T., and R. Malveau. CORBA Design Patterns, New York: Wiley & Sons, 1997.

[13] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software, Reading, MA: Addison-Wesley, 1995.

[14] Ralya, T. E. "IBM BSY-1 Trainer" in An Analytical Approach to Real-Time Systems Design in Ada,
Tutorial for Trai-Ada'89, Conference held at David L. Lawrence Convention Center, Pittsburgh, PA, Oct.
23–26, 1989.

[15] Noble, J., and C. Weir. Small Memory Software: Patterns for Systems with Limited Memory, Boston,
MA: Addison-Wesley, 2001.

200

Chapter 6. Memory Patterns
The following patterns are presented in this chapter.

• Static Allocation Pattern: Allocates memory up front
• Pool Allocation Pattern: Preallocates pools of needed objects
• Fixed Sized Buffer Pattern: Allocates memory in same-sized blocks
• Smart Pointer Pattern: Makes pointers reliable
• Garbage Collection Pattern: Automatically reclaims lost memory
• Garbage Compactor Pattern: Automatically defragments and reclaims memory

6.1 Memory Management Patterns
Much of the difficulty in building complex real-time and embedded system centers around managing
shared resources in ways that are simultaneously efficient and robust. The patterns in this chapter focus
on efficient management of memory as a resource and the robust sharing of general software resources
(modeled as objects) to ensure schedulability of the overall system.

6.2 Static Allocation Pattern
The Static Allocation Pattern applies only to simple systems with highly predictable and consistent loads.
However, where it does apply, the application of this pattern results in systems that are easy to design
and maintain.

6.2.1 Abstract

Dynamic memory allocation has two primary problems that are particularly poignant for real-time and
embedded systems: nondeterministic timing of memory allocation and deallocation and memory
fragmentation. This pattern takes a very simple approach to solving both these problems: disallow
dynamic memory allocation. The application of this pattern means that all objects are allocated during
system initialization. Provided that the memory loading can be known at design time and the worst-case
loading can be allocated entirely in memory, the system will take a bit longer to initialize, but it will
operate well during execution.

6.2.2 Problem

Dynamic memory allocation is very common in both structured and object design implementations. C++,
for example, uses new and delete, whereas C uses malloc and free to allocate and deallocate mem-ory,
respectively. In both these languages, the programmer must explicitly perform these operations, but it is
difficult to imagine any sizable program in either of these languages that doesn't use pointers to allocated
memory. The Java language is even worse: All objects are allocated in dynamic memory, so all object
creation implicitly uses dynamic memory allocation. Further, Java invisibly deallocates memory once it is
no longer used, but when and where that occurs is not under programmer control. [1]

[1] This is not true in the two competing real-time Java specifications but is true for
generic Java.

As common as it is, dynamic memory allocation is somewhat of an anathema to real-time systems
because it has two primary difficulties. First, allocation and deallocation are nondeterministic with respect

201

to time because generally they require searching data structures to find free memory to allocate. Second,
deallocation is not without problems either. There are two strategies for deallocation: explicit and implicit.
Explicit deallocation can be deterministic in terms of time (since the system has a pointer to its exact
location), and the programmer must keep track of all conditions under which the memory must be
released and explicitly release it. Failure to do so correctly is called a memory leak, since not all memory
allocated is ultimately reclaimed, so the amount of allocable storage decreases over time until system
failure. Implicit deallocation is done by means of a Garbage Collector—an object that either continuously
or periodically scans memory looking for lost memory and reclaiming it. Garbage collectors can be used,
but they are more nondeterministic than allocation strategies, require a fair amount of processing in and
of themselves, and may require more memory in some cases (for example, if memory is to be
compacted). Garbage collectors do, on the other hand, solve the most common severe defects in
software systems.

The third issue around dynamic memory is fragmentation. As memory is allocated in blocks of various
sizes, the deallocation order is usually unrelated to the allocation order. This means that what was once a
contiguous block of free memory ends up as a hodgepodge of free and used blocks of memory. The
fragmentation increases the longer the system runs until eventually a request for a block of memory
cannot be fulfilled because there is no single block large enough to fulfill the request, even though there
may be more than enough total memory free. This is a serious problem for all real-time and embedded
systems that use dynamic memory allocation— not just for those that must run for longer periods of time
between reboots.

6.2.3 Pattern Structure

Figure 6-1 shows the basic structure for this pattern. It is structurally very simple but can handle systems
of arbitrary size via nesting levels of abstraction. The System Object starts the initialization process and
creates the highest-level Composite Objects. They have composition relations to other Composite Objects
or to Primitive Objects. The latter are defined to be objects that do not create other objects dynamically.
Composition relations are used because they clearly identify the creation/deletion responsibilities.

Figure 6-1. Static Allocation Pattern

202

6.2.4 Collaboration Roles

• Allocation Plan

The Allocation Plan, if present, identifies the order in which the largest system composite objects
should be allocated. If not present, then the system can allocate objects in any order desired.

• Composite Object

A Composite Object, by definition within this pattern, is an object that has composition relations
to other objects. These other objects may either be composites or primitive objects. A Composite
Object is responsible for the creation of all objects that it owns via composition. There is a
constraint on this object (and the System Object as well) that memory cannot be deallocated.
Composites may be composed of other composites, but, as stated in the UML specification, each
object owned via a composition relation may only belong to one such relation. This means that
the creation responsibility for every object in the system is clearly identified in the pattern.

• Part Object

This is a superclass of Composite Object and Primitive Object. This allows both System Object
and Composite Object to contain, via composition, both Composite Objects and Primitive Objects.

• Primitive Object

A Primitive Object is one that does not allocate any other objects. All Primitive Objects are
created by composites.

• System Object

203

The System Object is structurally the same as a Composite Object, except that it may own an
Allocation Plan and is the highest abstraction possible in the system. Its responsibility is to "kick-
start" the system by creating and initializing the primary pieces of the system (the highest level
Composite Objects), which in turn create their pieces, and so on. Once the objects all are
created, the System Object then begins system execution by running the begin operation.

6.2.5 Consequences

The Static Allocation Pattern is useful when the memory map can be allocated for worst case at run-time.
This means that (1) the worst case is known and well understood, and (2) there is enough system
memory to handle the worst case. Systems that work well with this pattern typically don't have much
difference between worst and average case; that is, they have a consistent memory load for all execution
profiles. System behavior is likewise relatively simple and straightforward. This means that the systems
using this pattern will usually be small. The need to allocate the memory for all possible objects means
that it can easily happen that more memory will be required than if dynamic allocation was used.
Therefore, the system must be relatively immune to the cost of memory. When the cost of memory is
very small with respect to overall cost, this pattern may be applicable.

There are a number of consequences of the Static Allocation Pattern. First of all, because creation of all
objects takes place at startup, the execution of the system after initialization is generally faster than
when dynamic allocation is used, sometimes much faster. Run-time execution is usually more predictable
as well because of the removal of one of the primary sources for system nondeterminism. Further, since
no deallocation is done, there is no memory fragmentation whatsoever.

Since all allocation is done at start time, there may be a noticeable delay from the initiation of startup
until the system becomes available for use. In some systems that must have a very short startup time,
this may not be acceptable. An ideal system run-time profile is that the system can handle a long start
time but must provide minimum response time once operation has begun.

6.2.6 Implementation Strategies

This pattern is very easy to implement. In many cases, a separate initialize method may not be
required—and the constructor of each of the composites may be used.

6.2.7 Related Patterns

Other patterns in this chapter address these same issues but provide somewhat different benefits and
consequences. See, for example, Pool Allocation, Fixed Sized Buffer, Garbage Collector, and Garbage
Compactor Patterns.

6.2.8 Sample Model

Figure 6-2 shows a simple example using instances of a fully constructed system. Figure 6-2a shows the
instance structure with an object diagram, and Figure 6-2b shows how the Static Allocation Pattern works
on startup. You can see how the creation process is delegated to the composite objects of decreasing
abstraction until the primitive objects are constructed.

Figure 6-2. Static Allocation Pattern Example

204

6.3 Pool Allocation Pattern
The Static Allocation Pattern only works well for systems that are, well, static in nature. Sometimes you
need sets of objects for different purposes at different times during execution. When this is the case, the
Pool Allocation Pattern works well by creating pools of objects, created at startup, available to clients
upon request. This pattern doesn't address needs for dynamic memory but still provides for the creation
of more complex programs than the Static Allocation Pattern.

6.3.1 Abstract

In many applications, objects may be required by a large number of clients. For example, many clients
may need to create data objects or message objects as the system operates in a complex, changing
environment. The need for these objects may come and go, and it may not be possible to predict an
optimal dispersement of the objects even if it is possible to bound the total number of objects needed. In
this case, it makes sense to have pools of these objects—created but not necessarily initialized and
available upon request. Clients can request them as necessary and release them back to the pool when
they're done with them.

6.3.2 Problem

205

The prototypical candidate system for the Pooled Allocation Pattern is a system that cannot deal with the
issues of dynamic memory allocation, but it is too complex to permit a static allocation of all objects.
Typically, a number of similar, typically small, objects, such as events, messages, or data objects, may
need to be created and destroyed but are not needed a priori by any particular clients for the entire run-
time of the system.

6.3.3 Pattern Structure

Figure 6-3 shows the Pooled Allocation Pattern. The parameterized class Generic Pool Manager is
instantiated to create the specific Pooled-Class required. The instantiated class is shown as Resource Pool
Manager. Typically, there will be a number of such instantiated pools in the system, although only one for
any specific PooledClass type. Each pool creates and then manages its set of objects, allocating them
(and returning a pointer, reference, or handle to the allocated object to the client) and releasing them
(putting the released object back into the freeObject list) upon request. Usually, the entire set of pools is
created at system startup and never deleted. This removes the problems associated with dynamic
memory allocation but preserves many of the benefits.

Figure 6-3. Pooled Allocation Pattern

6.3.4 Collaboration Roles

• Client

The Client is any object in the system that has a need to use one or more objects of class
resourceClass. To request an object, they call ResourcePool::allocate() and give the object back
to the pool by calling ResourcePool::release(). As we will see later in the Implementation
Strategies section, in C++, the new() and delete() operators may be overridden to call the
allocate() and release() operations to hide the infrastructure from the client.

• Generic Pool Manager

Generic Pool Manager is a parameterized (template) class that uses the formal parameters
pooledClass and BufferSize to specify the class of the objects pooled and the number of them to
create, respectively. The operations of Generic Pool Manager are written to work in terms of
these formal parameters.

• PooledClass

206

PooledClass is a formal parameter to the Generic Pool Manager parameterized class. Practically, it
may be realized with just about any object desired, but most often, they are simple, small classes
used by a variety of clients.

• Resource Pool Manager

The Resource Pool Manager class is the instantiated Generic Pool Manager, in which a specific
class (ResourceClass) and a specific number of objects (size) are passed as actual parameters.
There may be any number of such instantiations in the system but only one per Resource Class.

6.3.5 Consequences

The Pooled Allocation Pattern has a number of advantages over the Static Allocation Pattern. Since
memory is allocated at startup and never deleted, there is no problem with the nondeterministic timing of
dynamic memory allocation during run-time or memory fragmentation. The system, however, can handle
nondeterministic allocation of certain classes of objects. Thus, the pattern scales to more complex
systems than does the Static Allocation Pattern. It is especially applicable to systems where a number of
common objects may be needed by many different clients, but it cannot be determined at design time
how to distribute these objects. This pattern allows the objects to be distributed on an as-needed basis
during the execution of the system. Because all pooled objects are created at system startup, the
decision about the optimal number of different kinds of objects must be made at design time. For
example, it might be decided that as a worst case, 1000 message objects, 5000 data sample objects, and
so forth, may be required. If this turns out to be an erroneous decision, the system may fail at startup or
later during execution. Further, the system cannot grow to meet new system demands, so the pattern is
best applied to systems that are well understood and relatively predictable in their demands on system
resources.

A note for Java programmers: This pattern is particularly helpful for Java applications because memory is
never released. This pattern avoids fragmentation and the run-time overhead for object allocation, but
the garbage collector will still take up some time even though it won't find objects to delete.

6.3.6 Implementation Strategies

This common pattern is fairly easy to implement. To make the pattern easier to use in C++, it is common
to rewrite new and delete operators to use the pool manager for the various pooledClass types. That way,
the issue of dynamic versus pooled allocation can be hidden from the application programmer.

Code Segment 6-1: C++ Pooled Allocation Implementation Strategy

#include <list>
using namespace std;

class PoolEmpty {
}; // exception type to be thrown

// note: list is a container from the C++ STL
template <class Resource, int nElements>
class GenericPool {
 list<Resource* > freeList;
public:
 GenericPool(void) {
 for (int j=0; j<nElements; j++) {

207

freeList.push_back(new Resource);
 };
 };

Resource* allocate(void) {
 Resource* R;
 if (freeList.size() > 0) {
 R = freeList.begin();
 // get the first one.
 freeList.pop_front();
 // remove it from the free list
 return R
 // and pass it back to the client
 } else {
 throw new PoolEmpty;
 };
 };

void release(Resource* R) {
 freeList.push_back(R);
 };
};

class BusMessage {
 string s;
};
int main(void)
{

GenericPool<BusMessage, 1000> busMessagePool;
 return 0;
}

Additionally, this pattern can be mixed with the Factory Pattern of [1] to create the correct subtypes, if
desired.

Java has no parameterized types, but it does have collections (arrays) plus some methods for
manipulating arrays (in java.util) that are modeled after the Standard Template Library of C++. There
are many implementation solutions available. A very simple one was used in Code Segment 6-2. In this
example, the LinkedList class from java.util was used to hold the created BusMessage objects. When a
client allocates it, the object is removed from the list and passed back to the client. When the client
wishes to return the object to the pool, it merely calls BusMessagePool.release(), and the object is
reinserted into the pool.

Code Segment 6-2: Java Implementation Strategy for Pools

import java.util.*;

class BusMessage {
 private String s;
 };

class PoolEmpty extends Exception {
};

public class BusMessagePool{
 private LinkedList freeList = new LinkedList();

public BusMessagePool() {

208

for (int j=0; j<1000; j++)

freeList.addLast(new BusMessage());

};

//
 // allocate() gives the client a reference to a
 // BusMessage object and removes it from the free list
 public BusMessage allocate() throws PoolEmpty {
 BusMessage B;
 if (freeList.size() > 0) {
 B = (BusMessage) freeList.getFirst();
 // get the first one.
 freeList.removeFirst(); // remove it from the
 // free list and pass
 return B; // it back to the
 // client
 } else {
 throw new PoolEmpty();
 };
 };
 // release() returns the passed BusMessage object back
into the pool
 public void release(BusMessage Carcass) {
 freeList.addFirst(Carcass);
 };
}

Whatever the underlying basis for the pools, there must be a separate Resource Pool Manager for each
kind of pooledClass. In C++, this is simply a matter of binding a different class to the formal parameter
list of the ResourcePool template. In Java, this can be done by creating different lists using the LinkedList
containers.

6.3.7 Related Patterns

The Pooled Allocation Pattern is but one of many approaches to managing memory allocation. The Static
Allocation Pattern can be used for systems that are simpler, and the Dynamic Allocation Pattern and its
variants can be used for more complex needs. The Abstract Factory Pattern [1] can be used with this
pattern to provide a means for Pooled Allocation for different environments.

6.3.8 Sample Model

Figure 6-4a shows the object model for a system running a class model derived from the pattern shown
in Figure 6-3. Figure 6-4b shows a scenario of the objects as they run. The first message shows the
creation of the TempDataPool object, which in turn creates the 1000 TempData objects that it will
manage. The other part of the object model shows three clients of the TempDataPool.

Figure 6-4. Pooled Allocation Pattern Example

209

• TempSensor This is a thermometer that records the temperature every ½ second and in doing so,
allocates a TempData object to store the information. This object reports the temperature (by
passing a reference to the allocated TempData object), first to the TempView, a GUI view object,
and then to TempHistory, which manages the history of Temperature over the last several
seconds.

• TempView This is a GUI object that displays the temperature to a user on a display. Once it has
displayed the value, it releases the TempData object that was passed back to the pool

• TempHistory This maintains a history of the last ten seconds of temperature data. Thus, for the
first 20 samples, it does not delete the TempData objects passed to it, but subsequently, it
releases the oldest TempData object it owns when it receives a new one.

6.4 Fixed Sized Buffer Pattern
Many real-time and embedded systems are complex enough to be unpredictable in the order in which
memory must be allocated and too complex to allocate enough memory for all possible worst cases. Such
systems would be relatively simple to design using dynamic memory allocation. However, many such
systems in the real-time and embedded world must function reliably for long periods of time—often years
or even decades—between reboots. That means that while they are complex enough to require dynamic
random allocation of memory, they cannot tolerate one of the major problems associated with dynamic

210

allocation: fragmentation. For such systems, the Fixed Sized Buffer Pattern offers a viable solution:
fragmentation-free dynamic memory allocation at the cost of some loss of memory usage optimality.

6.4.1 Abstract

The Fixed Sized Buffer Pattern provides an approach for true dynamic memory allocation that does not
suffer from one of the major problems that affect most such systems: memory fragmentation. It is a
pattern supported by most real-time operating systems directly. Although it requires static memory
analysis to minimize nonoptimal memory usage, it is a simple and easy to implement approach.

6.4.2 Problem

One of the key problems with dynamic memory allocation is memory fragmentation. Memory
fragmentation is the random inter-mixing of free and allocated memory in the heap. For memory
fragmentation to occur, the following conditions must be met.

• The order of memory allocation is unrelated to the order in which it is released.
• Memory is allocated in various sizes from the heap.

When these preconditions are met, then memory fragmentation will inevitably occur if the system runs
long enough. Note that this is not a problem solely related to object-oriented systems, functionally
decomposed systems written in C are just as affected as those written in C++. [2] The problem is severe
enough that it will usually lead to system failure if the system runs long enough. The failure occurs even
when analysis has demonstrated that there is adequate memory because if the memory is highly
fragmented, there may be more than enough memory to satisfy a request, but it may not be in a
contiguous block of adequate size. When this occurs, the memory allocation request fails even though
there is enough total memory to satisfy the request.

[2] Although it should be noted that the problem is potentially even worse with Java
because all objects in Java are allocated on the heap, whereas "automatic variable"
objects are allocated on the stack in C++.

6.4.3 Pattern Structure

There are two ways to fix dynamic allocation so that it does not lead to fragmentation: (1) correlate the
order of allocation and deallocation, or (2) do not allow memory to be allocated in any but a few specific
block sizes. The basic concept of the Fixed Sized Buffer Pattern is to not allow memory to be allocated in
any random block size but to limit the allocation to a set of specific block sizes.

Imagine a system in which you can determine the worst case of the total number of objects needed
(similar to computing the worst-case memory allocation) as well as the largest object size needed. If the
entire heap was divided into blocks equal to the largest block ever needed, then you could guarantee that
if there is any memory available, then the memory request could be fulfilled.

The cost of such an approach is the inefficient use of available memory. Even if only a single byte of
memory were needed, a worst-case block would be allocated, wasting most of the space within the block.
If the object sizes were randomly distributed between 1 byte and the worst case, then overall, ½ of the
heap memory would be wasted when the heap was fully allocated. Clearly, this is wasteful, but the
advantage of this approach is compelling: There will never be failure due to the fragmentation of
memory.

211

To minimize this waste, the Fixed Sized Buffer Pattern provides a finite set of fixed-sized heaps, each of
which offers blocks of a single size. Static analysis of the system can usually reveal a reasonable
allocation of memory to the various-sized heaps. Memory is then allocated from the smallest block-sized
heap that can fulfill the request. This compromise requires more analysis at design time but allows the
designer to "tune" the available heap memory to minimize waste. Figure 6-5 shows the basic Fixed Sized
Buffer Pattern.

Figure 6-5. Fixed Sized Buffer Pattern

6.4.4 Collaboration Roles

• Client

The Client is the user of the objects allocated from the fixed sized heaps. It does this by creating
new objects as needed. In C++ this can be done by overwriting the global new and delete
operators. In other languages, it may be necessary to explicitly call Object-Factory.new() and
ObjectFactory.delete().

• Free Block List

This is a list of the unallocated blocks of memory within a single Memory Segment.

• Heap Manager

This manages the sized heaps. When a request is made for a block of memory for an object, it
determines the appropriate Sized Heap from which to request it. When memory is released, the
Heap Manager can check the address for the memory block to determine which memory segment
(and hence which free list) it should be added back into.

• Memory Segment

A Memory Segment is a block of memory divided into equal-sized blocks, which may be allocated
or unallocated. Only the free blocks must be listed, though. When memory is released, it is added
back into the free list. The Memory Segment has attributes that provide the size of the blocks it
holds and the starting and ending addresses for the Memory Segment.

212

• Object Factory

The Object Factory takes over the job of allocation of memory on the heap. It does this by
allocating an appropriately sized block of memory from one of the Sized Heaps and mapping the
newly created object's data members into it and then calling the newly created object's
constructor. Deleting an object reverses this procedure: The destructor of the object is called,
and then the memory used is returned to the appropriate Free Block List.

• Sized Heap

A Sized Heap manages the free and allocated blocks from a single Memory Segment. It returns a
reference to the memory block when allocated, moves the block to the allocated list, and accepts
a reference to an allocated block to free it. Then it moves that block to the free list so that
subsequent requests can use it.

6.4.5 Consequences

The use of this pattern eliminates memory fragmentation. However, the pattern is suboptimal in terms of
total allocated memory because more memory is allocated than is actually used. Assuming a random
probability of memory size needs, on the average, half of the allocated memory is wasted. The use of
Sized Heaps with appropriately sized blocks can alleviate some of this waste but cannot eliminate it.
Many RTOSs support fixed sized block allocation out-of-the-box, simplifying the implementation.

6.4.6 Implementation Strategies

If you use an RTOS, then most of the pattern is provided for you by the underlying RTOS. In that case,
you need to perform an analysis to determine the best allocation of your free memory into various-sized
block heaps. If you rewrite global new and delete operators so that they use the Object Factory object
rather than the default operators, then the use of sized heaps can be totally hidden from the clients.

6.4.7 Related Patterns

This pattern allows true dynamic allocation but without the problems of memory fragmentation. The
issues of nondeterministic time are minimized but still present. However, there is no protection against
memory leaks (clients neglecting to release inaccessible memory), inappropriate access to released
memory, and the potentially critical issue of wasted memory. In simpler cases, the pooled allocation, or
even static allocations patterns, may be adequate. If time predictability is not a major issue, then the
Garbage Collector pattern may be a better choice, since it does protect against memory leaks.

6.4.8 Sample Model

Figure 6-6a shows a structural example of an instance of this pattern. In this case, there are three block-
sized heaps: 128-byte blocks, 256-byte blocks, and 1024-byte blocks. Figure 6-6b presents a scenario in
which a small object is allocated, followed by a larger object. After this, the smaller object is deleted.

Figure 6-6. Fixed Sized Buffer Pattern Example

213

6.5 Smart Pointer Pattern
In my experience over the last couple of decades leading and managing development projects
implemented in C and C++, pointer problems are by far the most common defects and the hardest to
identify. They are common because the pointer metaphor is very low level and requires precise
management, but it is easy to forget about when dealing with all possible execution paths. Inevitably,
somewhere a pointer is destroyed (or goes out of scope), but the memory is not properly freed (a
memory leak), memory is released but nevertheless accessed (dangling pointer), or memory is accessed
but not properly allocated (uninitialized pointer). These problems are notoriously difficult to identify using
standard means of testing and peer reviews. Tools such as Purify and LINT can identify "questionable
practices," but sometimes they flag so many things it is virtually impossible to use the results. The Smart
Pointer Pattern is an approach that is mechanistic (medium scope) rather than architectural (large scope)
but has produced excellent results.

6.5.1 Abstract

Pointers are by far the most common way to realize an association between objects. The most common
implementation of a navigable association is to use a pointer. This pointer attribute is dereferenced to
send messages to the target object. The problem with pointers per se is that they are not objects; they
are just data. Because they are not objects, the primitive operations you can perform on them are not

214

checked for validity. Thus, we are free to access a pointer that has never been initialized or after the
memory to which it points has been freed. We are also free to destroy the pointer without releasing the
memory, resulting in the loss of the now no-longer-referenceable memory to the system.

The Smart Pointer Pattern solves these problems by making the pointer itself an object. Because a Smart
Pointer is an object, it can have constructors and destructors and operations that can ensure that its
preconditional invariants ("rules of proper usage") are maintained.

6.5.2 Problem

In many ways, pointers are the bane of the programmer's existence. If they weren't so incredibly useful,
we would have discarded them a long time ago. Because they allow us to dynamically allocate,
deallocate, and reference memory dynamically, they form an important part of the programmer's toolkit.
However, their use commonly results in a number of different kinds of defects.

• Memory leaks— destroying a pointer before the memory they reference is released. This means
that the memory block is never put back in the heap free store, so its loss is permanent, at least
until the system is rebooted. Over time, the available memory in the heap free store (that is,
memory that can now be allocated by request) shrinks, and eventually the system fails because it
cannot satisfy memory requests.

• Uninitialized pointer— using a pointer as if it was pointing to a valid object (or memory block) but
neglecting to properly allocate the memory. This can also occur if the memory request is made
but refused.

• Dangling pointer— using a pointer as if it was pointing to a valid object (or memory block) but
after the memory to which it points has been freed.

• Pointer arithmetic defects— using a pointer as an iterator over an array of values but
inappropriately. This can be because the pointer goes beyond the bounds of the array (in either
direction), possibly stepping on memory allocated to other objects, or becoming misaligned,
pointing into the middle of a value rather than at its beginning.

These problems arise because pointers are inherently stupid. They are only data values (addresses), and
the operations defined on them are primitive and without checks on their correct use. If only they were
objects, their operations could be extended to include validity checks and they could identify or prevent
inappropriate use.

6.5.3 Pattern Structure

The basic solution of the Smart Pointer Pattern is to reify the pointer into an object. Once a pointer
comes smart, or potentially smart, its operations can ensure that the preconditions of the pointer (it
points to valid memory) are met. Figure 6-7a shows the simple structure of this pattern, and Figure 6-7b
shows a common variant.

Figure 6-7. Smart Pointer Pattern

215

6.5.4 Collaboration Roles

• Client

The Client is the object that at the analysis level simply has an association to the Target object. If
this is a bidirectional association, then both these objects have smart pointers to the other.

• Smart Pointer

The Smart Pointer is an object that contains the actual pointer (rawPtr) as an attribute, as well as
constructor, destructor, and access operations. The access operations will usually be realized by
overriding pointer dereference operators ([] and) in C++, to hide the fact that a smart
pointer is being used. The Target:: referenceCount attribute keeps track of the number of smart
pointers that are referring to the specific target object. It's important to know this so you can
determine when to destroy the dynamically created Target.

The Smart Pointer has two constructors. The default constructor creates a corresponding Target
and sets referenceCount to the value 1. The second constructor initializes the rawPtr attribute to
the value of the address passed in and increments the Target:: referenceCount. The destructor
decrements the Target::reference-Count; if it decrements to 0; then the Target is destroyed. In
principle, the Target::referenceCount must be referred to by all Smart Pointers that point to the
same object.

• Target

216

The Target is the object providing the services that the Client wishes to access. In the basic form
of the pattern (Figure 6-7a), Target also has a reference count attribute that tracks the number
of Smart Pointers currently referencing it.

• Target Wrapper

In the Smart Pointer Pattern variant in Figure 6-7b, the Target object is not at all aware of Smart
Pointers or reference counts. The Target Wrapper object contains via composition, the Target
object, and it owns the referenceCount attribute.

6.5.5 Consequences

This is a mechanistic-level design pattern; that means it optimizes individual collaborations. The main
advantage of applying this pattern is that it is a simple means to ensure that objects are destroyed when
they are no longer accessible—that is, when all references to them have been (or are being) destroyed.
This requires some discipline on the part of the programmers. If the Target object is being referenced by
both smart and raw pointers, then this pattern will break with potential catastrophic consequences. On
the other hand, using the pattern can be codified into an easily checked rule: Use no raw pointers; that
is, validate during code reviews.

To ensure robustness in the presence of multithreaded access to an object (Smart Pointers exist in
multiple threads that reference the same Target), then care must be taken in the creation of constructors
and destructors. The simplest way to handle them is to make them atomic (prevent task switching during
the construction or destruction of a Smart Pointer). You can do this easily by making the first operation in
the constructor a call to the OS to prevent task switching (just don't forget to turn it back on when you're
done!). The destructor must be similarly protected. Otherwise, there is a possibility that the object may
be destroyed after you checked that it was valid and a Smart Pointer is now pointing to a Target that no
longer exists.

Finally, there is one situation in which Smart Pointers may be correctly implemented but still may result
in memory leakage. The Smart Pointer logic ensures that whenever there is no Smart Pointer pointing to
a Target, the Target will be deleted. However, it is possible to define small cycles of objects that contain
Smart Pointers, but the entire cycle cannot be accessed by the rest of the application. In other words, it
is still possible to get a memory leak if the collaboration of objects has cycles in it. Figure 6-8 shows how
this can happen.

Figure 6-8. Smart Pointer Cycles

217

Object Obj3 and Obj5 form a cycle. If Obj2 and Obj4 are destroyed, the reference counts associated with
Obj3 and Obj5 decrement down to 1 rather than 0, and these two objects are unable to be referenced by
the remainder of the application. Since their reference counts are greater than 1, they cannot be
destroyed, but neither can the application invoke services of these objects because there are no
references to these objects outside the cycle itself.

The easiest way to handle the problem is to ensure that no Target itself references another object that
could ever reference the original. This can usually be deduced from drawing class diagrams of the
collaborations and some object diagrams resulting from the execution of the class diagram. If cycles
cannot be avoid, then it might be better to avoid using the Smart Pointer Pattern for those cycles
specifically.

6.5.6 Implementation Strategies

This pattern is simple and straightforward to implement and should create no problems. If you desire a
Smart Pointer Pattern that can handle cyclic object structures, then this can be solved at the cost of
increased complexity and processing resource usage. A good discussion of these methods is provided in
[2].

6.5.7 Related Patterns

There are more elaborate forms of the Smart Pointer in [2], although they are expressed as algorithms
defined on the Smart Pointer rather than patterns per se, as it is here. When cycles are present but the
benefits of the Smart Pointer Pattern (protection against pointer defects) are strongly desired, the
Garbage Collector or Compacting Garbage Collector Patterns may be indicated.

6.5.8 Sample Model

Figure 6-9 shows a simple application of this pattern. Two clients of the HR Sensor object exist: one
object that displays the values and another that tracks values to do trending analysis. When the HR
Display object runs, it creates an HR Sensor object via a Wrapped Sensor object. The HR Display object
also notifies the HR Trend object to begin tracking the heart rate information (via the Wrapped Sensor
object).

218

Figure 6-9. Smart Pointer Pattern Example

Later, the HR Display is destroyed. It calls the delete operation on the Wrapped Sensor class. The
Wrapped Sensor decrements its reference count but does not delete the HR Sensor because the reference
count is greater than zero (the HR Trend DB still has a valid reference to it). Later on, when the HR Trend
DB removes the last pointer to the HR Sensor object, the HR Sensor object is finally deleted.

6.6 Garbage Collection Pattern
Memory defects are among the most common and yet most difficult to identify errors. They are common
because the programming languages provide very low access to memory but do not provide the means to
identify when the memory is being accessed properly. This can lead to memory leaks and dangling
pointers. The insidious aspect of these defects is that they tend to have global, rather than local, impact,
so while they can crash the entire system, they leave no trace as to where the defect may occur. The
Garbage Collection Pattern addresses memory access defects in a clean and simple way as far as the
application programmer is concerned. The standard implementation of this pattern does not address
memory fragmentation (see the Garbage Compactor Pattern to get that benefit), but it does allow the
system to operate properly in the face of poorly managed memory.

219

6.6.1 Abstract

The Garbage Collection Pattern can eliminate memory leaks in programs that must use dynamic memory
allocation. Memory leaks occur because programmers make mistakes about when and how memory
should be deallocated. The solution offered by the Garbage Collection Pattern removes the defects by
taking the programmer out of the loop—the programmer no longer explicitly deallocates memory. By
removing the programmer, that source of defects is effectively removed. The costs of this pattern are
run-time overhead to identify and remove inaccessible memory and a loss of execution predictability
because it cannot be determined at design time when it may be necessary to reclaim freed memory.

6.6.2 Problem

The Garbage Collection Pattern addresses the problem of how we can make sure we won't have any
memory leaks. Many high-availability or high-reliabilty systems must function for long periods of time
without being periodically shut down. Since memory leaks lead to unstable behavior, it may be necessary
to completely avoid them in such systems. Furthermore, reference counting Smart Pointers (see Smart
Pointer Pattern, earlier in this chapter) have the disadvantages that they require programmer discipline
to use correctly and cannot be used when there are cyclic object references.

6.6.3 Pattern Structure

Figure 6-10 shows the pattern for what is called Mark and Sweep garbage collection. In Mark and Sweep,
garbage collection takes place in two phases: a marking phase, followed by a reclamation phase. When
objects are created, they are marked as live objects. The marking phase is begun in response to a low
memory or an explicit request to perform garbage collection. In the marking phase, each of the root
objects is searched to find all live objects. Objects that cannot be reached in this way are marked as
dead. In the subsequent sweep phase, all the objects marked as dead are reclaimed. The garbage
collector must stop normal processing before performing its duties, reducing the predictability of real-
time systems.

Figure 6-10. Garbage Collection Pattern (Mark and Sweep)

220

6.6.4 Collaboration Roles

• Client

The Client is the user-defined object that allocates memory (generally, although not necessarily,
in the form of objects). It is a subclass of Collectable and contains pointers to derived objects,
allowing the garbage collector to search from the so-called root objects to all derived objects.
When created, the object is marked as live with is isLive attribute, inherited from Collectable. On
the second pass, all objects not marked as live are removed—that is, added back to the heap free
memory.

• Collectable

This is the base class for Client, and it provides the isLive Boolean attribute used during the
garbage collection process.

• Free Block List

A list of free blocks from which requests for dynamic memory are fulfilled.

• Garbage Collector

The Garbage Collector manages the reclamation of memory by searching the object space
starting with the root objects, looking at all blocks to ensure their liveness, and removing all
those that are no longer live—in other words, those that cannot be reached in some fashion from
a root or derived object.

• Heap

The Heap is the owner of all the Memory Blocks and the Free Block List.

• Memory Block

The Memory Block is just like it sounds: a block (normally of arbitrary size, in which case it
contains a size parameter) of memory, usually, although not necessarily, associated with an
object. Memory Blocks may be pointed to by the Free Block List, in which case they are not
currently being pointed to by a Client or may be pointed to by a Client, in which case they are not
pointed to by the Free Block List. Hence, the {exclusive} constraint on the relations to those
classes.

6.6.5 Consequences

This architectural pattern removes the vast majority of memory-related problems by effectively
eliminating memory leaks and dan-gling pointers. It is still possible to do bad pointer arithmetic, but they
account for a relatively small number of defects compared to the first two memory-management defects.
Further, there is much less need to do pointer arithmetic when memory is collected and managed for
you. The use of this pattern removes these user defects by eliminating reliance on the user to correctly
deallocate memory. The garbage collector runs episodically when a "low-memory" condition is detected
and deallocates all inaccessible memory. Following garbage collection, all non-NULL pointers and

221

references are valid, and all unreferenced memory is freed. The pattern correctly identifies and handles
circular references, unlike the Smart Pointer Pattern.

Since this pattern uses a two-pass mark-and-sweep algorithm, it takes a nontrivial amount of time to do
a complete memory cleanup. This has two negative consequences. First, considerable processing time
and effort may be required to perform the memory reclamation, and it cannot, in general, be predicted
how much time and effort will be required. Second, because it is done in response to a low-memory
condition (such as a request for memory that cannot be fulfilled), when it occurs is likewise
unpredictable. This means that while the approach scales up to large-scale system well in terms of
managing complexity, it may not work well in systems with hard real-time constraints.

Another difficulty with this approach is that it does not affect fragmentation, a key problem in systems
that must run for long periods of time. Memory will be reclaimed properly, but it will result in fragmented
free space. This means that although enough memory may be free to fulfill a request for memory, there
may not be a single contiguous block available to fulfill the request. In fact, with this pattern (and most
other memory management patterns) fragmentation increases monotonically the longer the system runs.
The Garbage Compactor Pattern, described in the next section, addresses this need.

6.6.6 Implementation Strategies

As with all such patterns, the simplest way to use this pattern is to buy it. Some languages, such as Java,
provide memory management systems that use garbage collection out of the box. Where such languages
are not available, the implementation of such a memory management schema can be done easily in the
naïve case and with more difficulty in the more optimized case.

A common optimization is to allow the application objects to explicitly request a garbage collection pass
when it is convenient for the application, such as when the application is quiescent. For example, if the
concurrency model is managed by a cyclic executive (see the Cyclic Executive Pattern), then at the end
of the cycle, if there is sufficient time, a memory cleanup may be performed. If it cannot be guaranteed
that the garbage collection will complete before the next cycle occurs, the garbage collector may be
preemptable, so that it is stopped prior to completion, allowing the application to run and meet its
deadlines. When using such a strategy, be careful that you do not assume that the object marked as live
on the previous pass has remained live.

6.6.7 Related Patterns

When the inherent unpredictability of the system cannot be tolerated, another approach, such as the
Smart Pointer Pattern or Fixed Size Allocation Pattern, should be used. To eliminate memory
fragmentation, the Garbage Compactor Pattern works well. The Static Allocation Pattern does not have
fragmentation, and the Fixed Sized Allocation Pattern does its best to minimize fragmentation. The Smart
Pointer Pattern cannot handle circular references, but the Garbage Collection and Garbage Compactor
Patterns do.

6.6.8 Sample Model

Figures 6-11a, 6-11, and 6-11 show instance snapshots of allocated memory. In the figures, Ob1 and
Ob2 are root objects, known to the Garbage Collector. These might be, for example, initial instances
created in the main() of the application. Objects Ob1a, Ob1b, and Ob1c are derived objects that can be
found by traversing the links from Ob1 and Ob2 in Figure 6-11a. In Figure 6-11b, the link from Ob1 to
Ob1a is broken. This means that Ob1a and Ob1b are no longer accessible to the system, since they

222

cannot be found through a traversal of links from root objects. Note that Ob1c remains accessible via the
link through the root object Ob2. In Figure 6-11c, we see that the memory used by Ob1a and Ob1b is
reclaimed, and only accessible objects remain.

Figure 6-11. Garbage Collection Pattern

Figure 6-12 shows how the garbage collector proceeds. First, every object in the heap is marked as dead.
Subsequently, each root object is searched. As objects are found, they are marked as live by setting the
isLive attribute to TRUE. In the second pass, the garbage collector does a linear search through all the
allocated memory blocks, removing those that are still marked dead. This is done by first calling the
object's destructor (if one exists) and then adding the object to be deleted to the Free Block List.

223

Figure 6-12. Garbage Collection Pattern Example Scenario

6.7 Garbage Compactor Pattern
6.7.1 Abstract

The Garbage Compactor Pattern is a variant of the Garbage Collection Pattern that also removes memory
fragmentation. It accomplishes this goal by maintaining two memory segments in the heap. During
garbage collection, live objects are moved from one segment to the next, so in the target segment, the
objects are juxtapositioned adjacent to each other. The free memory in the segment then starts out as a
contiguous block.

6.7.2 Problem

The Garbage Collection Pattern solves the problem of programmers forgetting to release memory by
every so often finding inaccessible objects and removing them. The pattern has a couple of problems,
including maintaining the timeliness of the application and fragmentation. Fragmentation means that the
free memory is broken up into noncontiguous blocks. If the application is allowed to allocate blocks in
whatever size they may be needed, most applications that dynamically allocate and release blocks will
eventually get into the situation where although there is enough total memory to meet the allocation
request, there isn't a single contiguous block large enough. At this point, the application fails. Garbage
collection per se does not solve this problem just because it finds and removes dead objects. To compact
memory, the allocated blocks must be moved around periodically to leave the free memory as a single,
large contiguous block.

224

6.7.3 Pattern Structure

Figure 6-13 shows the structural pattern for copying garbage collection. A copying garbage collector
works in a single phase. It is initiated in the same way as a mark and sweep garbage collector. As it
searches the object space from the root objects, it copies all the live objects it finds to another memory
space. It is more efficient than mark and sweep because a single phase is all that is necessary, and it
also eliminates memory fragmentation because it compacts memory as it moves the referenced objects.
The copying garbage collector must update object references as it moves objects. This pattern requires
twice as much memory as the mark and sweep pattern because it must always maintain both a from
space and a to space (although they will reverse roles on subsequent invocations of the garbage
collector). In addition, a copying garbage collector requires that user objects reference heap objects via
double buffering—that is, their pointers must point to pointers owned by the heap. This allows the
garbage collector to update its internal pointer references to the actual location of the heap object as it
moves around. Either that, or the garbage collector must have references to the user objects and modify
their pointers in vivo when the referenced heap object is relocated.

Figure 6-13. Garbage Compactor Pattern

6.7.4 Collaboration Roles

• Buffered Ptr

The Buffered Ptr is an intermediary between one object's reference to the object being
referenced. This is required because the Garbage Compactor must update the references to the
objects as it moves them. This is far simpler if the actual references to the memory location are
under its control rather than the object's clients.

• Client

225

The Client is the user-defined object that allocates memory (generally, although not necessarily,
in the form of objects). During the collection process, root objects are searched, and objects
found during the search are moved as they are found.

• Free Block List

A list of free blocks from which requests for dynamic memory are fulfilled.

• Garbage Compactor

The Garbage Compactor manages the reclamation of memory by searching the object space
starting with the root objects and copying the found objects from the current memory segment to
the target memory segment. Dead objects are not copied and are thus automatically reclaimed.

• Heap

The Heap is the owner of all the Segments and Buffered Ptrs. The heap fills all memory requests
from the currently active segment and ignores the inactive segment. The roles the two segments
play swap each time the Garbage Compactor performs the garbage compaction process.

• Memory Block

The Memory Block is just like it sounds: a block (normally of arbitrary size, in which case it
contains a size parameter) of memory usually, although not necessarily, associated with an
object. Memory Blocks may be pointed to by the Free Block List—in which case they are not
currently being pointed to by a Client—or may be pointed to by a Client (via a Buffered Ptr)—in
which case they are not pointed to by the Free Block List.

• Segment

The heap maintains two segments that are alternatively swapped in terms of use. The one in use
is called the active segment, and the other is called the inactive segment. From the Garbage
Compactor's point of view, which is taken during the compaction process, one is the from
segment and the other is the target segment. The Active Segment is used to fill all requests for
dynamic memory allocation. During compaction, all live objects are copied from the from
segment to the target segment, and then the target segment is set to be the Heap's active
segment.

6.7.5 Consequences

The most noticeable consequence of using the Garbage Compactor Pattern is that the programmers don't
need to deallocate their objects (the Garbage Compactor does it for them) and that fragmentation does
not monotonically increase the longer the system runs. Fragmentation increases for a while but is
reduced to zero when the Garbage Compactor runs. Since the Garbage Compactor runs when a request
for memory cannot be satisfied, this means that if there is enough total memory to meet a request, the
request will always be satisfied.

Another highly noticeable consequence of this pattern, at least in terms of memory requirements, is that
the pattern requires twice as much memory as the Garbage Collection Pattern. Assuming that each

226

Segment is large enough to hold the worst-case memory needs at any moment in time, the pattern
requires two such segments. This makes this approach inappropriate when there are tight memory size
requirements.

Doing pointer arithmetic with the Garbage Compactor Pattern is a chancy thing for a number of reasons.
However, since the main reason for doing pointer arithmetic is to manage memory, this should not cause
many difficulties.

Of course, the length of time necessary to run the compactor is an issue for any application in which
timeliness is a concern. There is a small amount of overhead for the double buffering of the pointers, but
the major timeliness impact comes from the time and cycles necessary to identify the live objects and
copy them to the target memory segment. This pattern requires more CPU cycles to run than the
Garbage Collection Pattern because of the overhead of copying objects, but with care, it may be possible
to run the garbage collector piecemeal to implement an incremental garbage compactor at the cost of
recomputing which objects in the From segment are still live.

Because the reclaimed objects are not destroyed per se, their destructors are not called. If there are
finalizing behaviors required of the objects (other than the normal release of memory), then the
programmer must still manually ensure these behaviors are invoked before removing their references to
the objects.

6.7.6 Implementation Strategies

There are a number of small details to be managed by the memory management system in this pattern.
The use of Buffered Ptrs allows the Garbage Compactor to move the objects and then update the location
in a single place. If the source language is interpreted, such as Java, then the virtual machine can easily
manage the double pointer referencing required of the client objects (in other words, their pointers are to
Buffered Ptrs, which ultimately point to the actual memory used). If the source language produces native
code, then the new operator must be rewritten to not only allocate the Memory Block per se but also
create a Buffered Pts as well.

6.7.7 Related Patterns

As with the Garbage Collection Pattern, this pattern can seriously impact the predictability of timeliness of
systems using it. When timeliness is a primary concern, the Static Allocation, Fixed Sized Buffer, or
Smart Pointer Patterns may be better. The Garbage Collection Pattern has the benefit of removing
memory leaks, and it requires less memory than the Garbage Compactor Pattern, but it doesn't address
memory fragmentation. The Static Allocation and Fixed Sized Allocation Patterns remove or reduce
fragmentation but are not immune to memory leaks.

6.7.8 Sample Model

The example shown in Figure 6-14 is the same as for the previous pattern. Figure 6-15 shows a scenario
of the system as it collects the garbage. We see that when the Garbage Collector is started, it first
requests Segment 2 (the target segment) to initialize itself so that it is ready to begin copying memory
into itself. Because it always starts empty, there is no fragmentation within the segment as memory
blocks are allocated one after another in a contiguous fashion.

Figure 6-14. Garbage Compactor Pattern

227

Figure 6-15. Garbage Compactor Pattern Example Scenario

228

Then the garbage collector searches the root objects. As it finds a root object, it asks if it has any valid
links. First, in the case of Ob1, it finds two valid links, so the Garbage Collector can pass the object Ob1
off to the AddObject operation of the target segment (Segment 2). The segment, in turn, gets the
location of the buffer pointer for the memory, allocates a new memory block to store Ob1's data, and
then copies the object from the original segment. Finally it updates Obj1's buffered pointer to point to its
data's new location.

References
[1] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software, Reading, MA: Addison-Wesley, 1995.

[2] Jones, R., and R. Lins. Garbage Collection: Algorithms for Automatic Dynamic Memory Management,
West Sussex, England: John Wiley & Sons, 1996.

[3] Noble, J., C. Weir. Small Memory Software: Patterns for Systems with Limited Memory, Reading, MA:
Addison-Wesley, 2001.

http://safari.informit.com/JVXSL.asp?x=1&mode=section&sortKey=title&sortOrder=asc&view=&xmlid=0-201-69956-7/?xmlid=0-201-69956-7/23981533

229

Chapter 7. Resource Patterns
The following patterns are presented in this chapter.

• Critical Section Pattern: Uses resources run-to-completion
• Priority Inheritance Pattern: Limits priority inversion
• Highest Locker Pattern: Limits priority inversion
• Priority Ceiling Pattern: Limits priority inversion and prevents deadlock
• Simultaneous Locking Pattern: Prevents deadlock
• Ordered Locking Pattern: Prevents deadlock

7.1 Introduction
One of the distinguishing characteristics of real-time and embedded systems is the concern over
management of finite resources. This chapter provides a number of patterns to help organize, manage,
use, and share such resources. There is some overlap of concerns with the patterns in this and other
chapters. For example, the Smart Pointer Pattern provides a robust access to resources of a certain type:
those that are dynamically allocated. However, that pattern has already been discussed in Chapter 6.
Similarly, the synchronization of concurrent threads may be thought of as resource management, but it is
dealt with using the Rendezvous Pattern from Chapter 5. This chapter focuses on patterns that deal with
the sharing and management of resources themselves and not the memory they use. To this end, we'll
examine a number of ways to manage resources among different, possibly concurrent, clients.

A resource, as used here, is a thing (an object) that provides services to clients that have finite
properties or characteristics. This definition is consistent with the so-called Real-Time UML Profile [1],
where a resource is defined as follows.

An element that has resource services whose effectiveness is represented by one or more
Quality of Service (QoS) characteristics.

The QoS properties are the quantitative properties of the resource, such as its capacity, execution speed,
reliability, and so on. In real-time and embedded systems, it is this quantifiable finiteness that must be
managed. For instance, it is common for a resource to provide services in an atomic fashion; this means
that the client somehow "locks" the resource while it needs it, preventing other clients from accessing
that resource until the original client is done. This accomplishes the more general purpose of serialization
of resource usage, crucial to the correct operation in systems with concurrent threads. This is often
accomplished with a mutex semaphore (see the Guarded Call Pattern in Chapter 5) or may be done by
serializing the requests themselves (see the Message Queuing Pattern, also in Chapter 5).

The management of resources with potentially many clients is one of the more thorny aspects of system
design, and a number of patterns have evolved or been designed over time to deal specifically with just
that.

The first few patterns (Priority Inheritance, Highest Locker, Priority Ceiling) address the schedulability of
resources in a priority-based pre-emptive multitasking environment, which can be a major concern for
real-time systems design. In static priority scheduling approaches (see, for example, the Static Priority
Pattern in Chapter 5), the priorities of the tasks are known at design time. The priority of the task

230

determines which tasks will run preferentially when multiple tasks are ready to run—the highest-priority
task that is ready. This makes the timing analysis of such systems very easy to compute, as long as
certain assumptions are not violated too badly. These assumptions are the following.

• Tasks are periodic with the deadlines coming at the end of the periods.
• Infinite preemptibility—a lower-priority task can be preempted immediately when a higher-

priority task becomes ready to run.
• Independence—tasks are independent from each other.

When these conditions are true, then the following standard rate monotonic analysis formula may be
applied.

Note that it is "2 raised to the power of (1/n)", where Cj is the worst-case amount of time required for
task j to execute, Tj is its period, and n is the number of tasks. [2], [3] If the inequality is true, then the
system is schedulable—that is, the system will always meet its deadlines. Aperiodic tasks are generally
handled by assuming they are periodic and using the minimum arrival time between task invocations as
the period, often resulting in an overly strong but sufficient condition. The assumption of infinite pre-
emptibility is usually not a problem if the task has very short critical sections during which it cannot be
preempted—short with respect to the execution and period times. The problem of independence is,
however, much stickier.

If resources are sharable (in the sense that they can permit simultaneous access by multiple clients),
then no problem exists. However many, if not most, resources cannot be shared. The common solution to
this problem was addressed in the Guarded Call Pattern of Chapter 5 using a mutual-exclusion
semaphore to serialize access to the resource. This means that if a low-priority task locks a resource and
then a higher-priority task that needs the resource becomes ready to run, it must block and allow the
low-priority task to run until it can release the resource so that the higher-priority task can run. A simple
example of this is shown in the timing diagram in Figure 7-1.

Figure 7-1. Task Blocking [1]

231

[1] A note about notation. These are timing diagrams. They show linear time along the X-
axis and "state" or "condition," a discrete value, along the Y-axis. For more information,
see [4].

In the figure, Task 1 is the higher-priority task. Since Task 2 runs first and locks the resource, when Task
1 is ready to run, it cannot because the needed resource is unavailable. It therefore must block and allow
Task 2 to complete its use of the resource. During the period of time between marks C and D, Task 1 is
said to be blocked. A task is blocked when it is prevented from running by a lower-priority task. This can
only occur when resources are shared via mutual exclusion.

The problem with blocking is that the analysis of the timeliness becomes more difficult. When Task 1 is
blocked, the system is said to be in a state of priority inversion because a lower-priority task has the
thread focus even though a higher-priority task is ready to run. One can imagine third and fourth tasks of
intermediate priority that don't share the resource (and are therefore able to preempt Task 2) running
and preempting Task 2, thereby lengthening the amount of time before Task 2 releases the resource and
allowing Task 1 to run. Because an arbitrary number of tasks can be fit in the priority scheme between
Task 1 and Task 2, this problem is called unbounded priority inversion and is a serious problem for the
schedulability of tasks. Figure 7-2 illustrates this problem by adding intermediate-priority Tasks X and Y
to the system. Note that for some period of time, Task 1, the highest-priority task in the system, is
blocked by all three remaining tasks.

Figure 7-2. Unbounded Task Blocking

232

To compute the schedulability for task sets with blocking, the modified RMA inequality is used.

where Bj is the blocking time for task j—that is, the worst-case time that the task can be prevented from
execution by a lower-priority task owning a needed resource. The problem is clear from the inequality—
unbounded blocking means unbounded blocking time, and nothing useful can be said about the ability of
such a system to meet its deadlines.

Unbounded priority inversion is a problem that is addressed by the first three patterns in this chapter.
Note that priority inversion is a necessary consequence of resource sharing with mutual exclusion locking,
but it can be bounded using these patterns.

233

These first three patterns solve, or at least address, the problem of resource sharing for schedulability
purposes, but for the most part they don't deal with the issue of deadlock. A deadlock is a condition in
which clients of resources are waiting for conditions to arise that cannot in principle ever occur. An
example of deadlock is shown in Figure 7-3.

Figure 7-3. Deadlock

In Figure 7-3, there are two tasks, Task 1 and Task 2, that share two resources, R1 and R2. Task 1 plans
to lock R2 and then lock R1 and release them in the opposite order. Task 2 plans to lock R1 and then R2
and release them in the reverse order. The problem arises when Task 1 preempts Task 2 when it has a
single resource (R1) locked. Task 1 is a higher priority, so it can preempt Task 1, and it doesn't need a
currently locked resource, so things are fine. It goes ahead and locks R2. Now it decides that it needs the
other resource, R1, which, unfortunately is locked by the blocked task, Task 2. So Task 1 cannot move
forward and must block in order to allow Task 2 to run until it can release the now needed resource (R1).

234

So Task 2 runs but finds that it now needs the other resource (R2) owned by the blocked Task 1. At this
point, each task is waiting for a condition that can never be satisfied, and the system stops.

In principle, a deadlock needs the following four conditions to occur.

1. Mutual exclusion (locking) of resources
2. Resources are held (locked) while others are waited for
3. Preemption while holding resources is permitted
4. A circular wait condition exists (for example, P1 waits on P2, which waits on P3, which waits on

P1)

The patterns for addressing deadlock try to ensure that at least one of the four necessary conditions for
deadlock cannot occur. The Simultaneous Locking Pattern breaks condition 2, while the Ordered Locking
Pattern breaks condition 4. The Priority Ceiling Pattern is a pattern that solves both the scheduling
problem and the deadlock problem.

7.2 Critical Section Pattern
The Critical Section Pattern is the simplest pattern to share resources that cannot be shared
simultaneously. It is lightweight and easy to implement, but it may prevent high priority tasks, even ones
that don't use any resources, from meeting their deadlines if the critical section lasts too long.

7.2.1 Abstract

This pattern has been long used in the design of real-time and embedded systems whenever a resource
must have at most a single owner at any given time. The basic idea is to lock the Scheduler whenever a
resource is accessed to prevent another task from simul-taneously accessing it. The primary advantage
of this pattern is its simplicity, both in terms of understandability and in terms of implementation. It
becomes less applicable when the resource access may take a long time because it means that higher-
priority tasks may be blocked from execution for a long period of time.

7.2.2 Problem

The main problem addressed by the Critical Section Pattern is how to robustly share resources that may
have, at most, a single owner at any given time.

7.2.3 Pattern Structure

Figure 7-4 shows the basic structural elements in the Critical Section Pattern.

Figure 7-4. Critical Section Pattern

235

7.2.4 Collaboration Roles

• Abstract Thread

The Abstract Thread class is an abstract (noninstantiable) superclass for Concrete Thread.
Abstract Thread associates with the Scheduler. Since Concrete Thread is a subclass, it has the
same interface to the Scheduler as the Abstract Thread. This enforces interface compliance. The
Abstract Thread is an «active» object, meaning that when it is created, it creates an OS thread in
which to run. It contains (that is, it has composition relations with) more primitive application
objects that execute in the thread of the composite «active» object.

• Concrete Thread

The Concrete Thread is an «active» object most typically constructed to contain passive
"semantic" objects (via the composition relation) that do the real work of the system. The
Concrete Thread object provides a straightforward means of attaching these semantic objects
into the concurrency architecture. Concrete Thread is an instantiable subclass of Abstract Thread.

• Scheduler

This object orchestrates the execution of multiple threads based on some scheme requiring
preemption. When the «active» Thread object is created, it (or its creator) calls the createThread
operation to create a thread for the «active» object. Whenever this thread is executed by the
Scheduler, it calls the StartAddr address (except when the thread has been blocked or
preempted—in which case it calls the EntryPoint address).

In this pattern, the Scheduler has a Boolean attribute called taskSwitchingEnabled and two
operations, startCriticalSection() and endCriticalSection(), which manipulate this attribute. When
FALSE, it means that the Scheduler will not perform any task switching; when TRUE, tasks will be
switched according to the task scheduling policies in force.

236

• Shared Resource

A resource is an object shared by one or more Threads but cannot be reliably accessed by more
than one client at any given time. All operations defined on this resource that access any part of
the resource that is not simultaneously sharable (its nonreentrant parts) should call
Scheduler.startCriticalSection() before they manipulate the internal values of the resource and
should call Scheduler.endCriticalSection() when they are done.

• Task Control Block

The TCB contains the scheduling information for its corresponding Thread object. This includes
the priority of the thread, the default start address, and the current entry address if it was
preempted or blocked prior to completion. The Scheduler maintains a TCB object for each existing
Thread. Note that TCB typically also has a reference off to a call and parameter stack for its
Thread, but that level of detail is not shown in Figure 7-4.

7.2.5 Consequences

The designers and programmers must show good discipline in ensuring that every resource access locks
the resource before performing any manipulation of the source. This pattern works by effectively making
the current task the highest-priority task in the system. While quite successful at preventing resource
corruption due to simultaneous access, it locks out all higher-priority tasks from executing during the
critical section, even if they don't require the use of the resource. Many systems find this blocking delay
unacceptable and must use more elaborate means for resource sharing. Further, if the initial task that
locks the resource neglects to deescalate its priority, then all other tasks are permanently prevented from
running. Calculation of the worst-case blocking for each task is trivial with this pattern: It is simply the
longest critical section of any single task of lesser priority.

It is perhaps obvious, but should nevertheless be stated, that when using this pattern a task should
never suspend itself while owning a resource because task switching is disabled so that in a situation like
that no tasks are permitted to run at all. This pattern has the advantage in that it avoids deadlock by
breaking the second condition (holding resources while waiting for others) as long as the task releases
the resource (and reenables task switching) before it suspends itself.

7.2.6 Implementation Strategies

All commercial RTOSs have a means for beginning and ending a critical section. Invoking this Scheduler
operation prevents all task switching from occurring during the critical section. If you write your own
RTOS, the most common way to do this is to set the Disable Interrupts bit on your processor's flags
register. The precise details of this vary, naturally, depending on the specific processor.

7.2.7 Related Patterns

As mentioned, this is the simplest pattern that addresses the issue of sharing nonreentrant resources.
Other resource sharing approaches, such as Priority Inheritance, Highest Locker, and Priority Ceiling
Patterns, solve this problem as well with less impact on the schedulability of the overall system but at the
cost of increased complexity. This pattern can be mixed with all of the concurrency patterns from Chapter
5, except the Cyclic Executive Pattern, for which resource sharing is a nonissue.

7.2.8 Sample Model

237

An example of the use of this pattern is shown in Figure 7-5. This example contains three tasks: Device
Test (highest priority), Motor Control (medium priority), and Data Processing (lowest priority). Device
Test and Data Processing share a resource called Sensor, whereas Motor Control has its own resource
called Motor.

Figure 7-5. Critical Section Pattern Example

The scenario starts off with the lowest-priority task, Data Processing, accessing the resource that starts
up a critical section. During this critical section both the Motor Control task and the Device Test task

238

become ready to run but cannot because task switching is disabled. When the call to the resource is
almost done, the Sensor.gimme() operation makes a call to the scheduler to end the critical section. The
scenario shows three critical sections, one for each of the running tasks. Finally, at the end, the lowest-
priority task is allowed to complete its work and then returns to its Idle state.

7.3 Priority Inheritance Pattern
The Priority Inheritance Pattern reduces priority inversion by manipulating the executing priorities of
tasks that lock resources. While not an ideal solution, it significantly reduces priority inversion at a
relatively low run-time overhead cost.

7.3.1 Abstract

The problem of unbounded priority inversion is a very real one and has accounted for many difficult-to-
identify system failures. In systems running many tasks, such problems may not be at all obvious, and
typically the only symptom is that occasionally the system fails to meet one or more deadlines. The
Priority Inheritance Pattern is a simple, low-overhead solution for limiting the priority inversion to at most
a single level—that is, at most, a task will only be blocked by a single, lower-priority task owning a
needed resource.

7.3.2 Problem

The unbounded priority inversion problem is discussed in the chapter introduction in some detail. The
problem addressed by this pattern is to bound the maximum amount of priority inversion.

7.3.3 Pattern Structure

Figure 7-6 shows the structure of the pattern. The basic elements of this pattern are familiar: Scheduler,
Abstract Task, Task Control Block, and so on. This can be thought of as an elaborated subset of the Static
Priority Pattern, presented in Chapter 5. Note the use of the «frozen» constraint applied to the Task
Control Block's nominalPriority attribute. This means the attribute is unchangeable once the object is
created.

Figure 7-6. Priority Inheritance Pattern

239

7.3.4 Collaboration Roles

• Abstract Thread

The Abstract Thread class is an abstract (noninstantiable) superclass for Concrete Thread.
Abstract Thread associates with the Scheduler. Since Concrete Thread is a subclass, it has the
same interface to the Scheduler as the Abstract Thread. This enforces interface compliance. The
Abstract Thread is an «active» object, meaning that when it is created, it creates an OS thread in
which to run. It contains (that is, it has composition relations with) more primitive application
objects that execute in the thread of the composite «active» object.

• Concrete Thread

The Concrete Thread is an «active» object most typically constructed to contain passive
"semantic" objects (via the composition relation) that do the real work of the system. The
Concrete Thread object provides a straightforward means of attaching these semantic objects
into the concurrency architecture. Concrete Thread is an instantiable subclass of Abstract Thread.

• Mutex

The Mutex is a mutual exclusion semaphore object that permits only a single caller through at a
time. The operations of the Shared Resource invoke it whenever a relevant service is called,
locking it prior to starting the service and unlocking it once the service is complete. Threads that
attempt to invoke a service when the services are already locked become blocked until the Mutex
is in its unlocked state. This is done by the Mutex semaphore signaling the Scheduler that a call
attempt was made by the currently active thread, the Mutex ID (necessary to unlock it later when
the Mutex is released), and the entry point—the place at which to continue execution of the
Thread.

• Scheduler

240

This object orchestrates the execution of multiple threads based on their priority according to a
simple rule: Always run the ready thread with the highest priority. When the «active» Thread
object is created, it (or its creator) calls the createThread operation to create a thread for the
«active» object. Whenever this thread is executed by the Scheduler, it calls the StartAddr
address (except when the thread has been blocked or preempted, in which case it calls the
EntryPoint address).

In this pattern, the Scheduler has some special duties when the Mutex signals an attempt to
access a locked resource: Specifically, it must block the requesting task (done by stopping that
task and placing a reference to it in the Blocked Queue (not shown—for details of the Blocked
Queue, see Static Priority Pattern in Chapter 5), and it must elevate the priority of the task
owning the resource to that of the highest priority Thread being blocked. This is easy to
determine since the Blocked Queue is a priority FIFO—the highest-priority blocked task is the first
one in that queue. Similarly, when the Thread releases the resource, the Scheduler must lower its
priority back to its nominal priority.

• Shared Resource

A Shared Resource is an object shared by one or more Threads. For the system to operate
properly in all cases, all shared resources must either be reentrant (meaning that corruption from
simultaneous access cannot occur) or they must be protected. In the case of a protected
resource, when a Thread attempts to use the resource, the associated Mutex semaphore is
checked, and if locked, the calling task is placed into the Blocked Queue. The task is terminated
with its reentry point noted in the TCB.

• Task Control Block

The TCB contains the scheduling information for its corresponding Thread object. This includes
the priority of the thread, the default start address and the current entry address, if it was
preempted or blocked prior to completion. The Scheduler maintains a TCB object for each existing
Thread. Note that TCB typically also has a reference off to a call and parameter stack for its
Thread, but that level of detail is not shown in Figure 7-6. The TCB tracks both the current
priority of the thread (which may have been elevated due to resource access and blocking) and
its nominal priority.

7.3.5 Consequences

The Priority Inheritance Pattern handles well the problem of priority inversion when at most a single
resource is locked at any given time and prevents unbounded priority inversion in this case. This is
illustrated in Figure 7-7. With naïve priority management, Task 1, the highest-priority task in the system,
is delayed from execution until Task 2 has completed. Using the Priority Inheritance Pattern, Task 1
completes as early as possible.

Figure 7-7. Priority Inheritance Pattern

241

When there are multiple resources that may be locked at any time, this pattern exhibits behavior called
chain blocking. That is, one task may block another, which blocks another, and so on. This is illustrated in
the only slightly more complex example in Figure 7-8. The timing diagram in Figure 7-8b shows that Task
1 is blocked by Task 2 and Task 3 at Point G.

Figure 7-8. Priority Inheritance Pattern

242

In general, the Priority Inheritance Pattern greatly reduces unbounded blocking. In fact, though, the
number of blocked tasks at any given time is bounded only by the lesser of the number of tasks and the
number of currently locked resources. There is a small amount of overhead to pay when tasks are
blocked or unblocked to manage the elevation or depression of the priority of the tasks involved.
Computation of a single task's worst-case blocking time involves computation of the worst-case chain
blocking of all tasks of lesser priority.

This pattern does not address deadlock issues at all, so it is still possible to construct task models using
this pattern that have deadlock.

243

Another consequence of the use of the priority inheritance patterns (Priority Inheritance Pattern, Highest
Locker Pattern, and Priority Ceiling Pattern) is the overhead. The use of semaphores and blocking
involves task switching whenever a locked mutex is requested and another task switch whenever a
waited-for mutex is released. In addition, the acts of blocking and unblocking tasks during those task
context switches involves the manipulation of priority queues. Further, the use of priority inheritance
means that there is some overhead in the escalation and deescalation of priorities. If blocking occurs
infrequently, then this overhead will be slight, but if there is a great deal of contention for resources,
then the overhead can be severe.

7.3.6 Implementation Strategies

Some RTOS directly support the notion of priority inheritance, and so it is very little work to use this
pattern with such an RTOS. If you are using an RTOS that does not support it, or if you are writing your
own RTOS, then you must extend the RTOS (many RTOSs have API for just this purpose) to call your
own function when the mutex blocks a task on a resource. The Scheduler must be able to identify the
priority of the thread being blocked (a simple matter because it is in the Task Control Block for the task)
in order to elevate the priority of the task currently owning the resource.

It is possible to build in the nominal priority as a constant attribute of the Concrete Thread. When the
Concrete Thread always runs at a given priority, then the constructor of the «active» object should do
exactly that. Otherwise, the creator of that active object should specify the priority at which that task
should run.

In virtually all other ways, the implementation is very similar to the implementation of standard
concurrency patterns, such as the Static Priority Pattern presented in Chapter 5.

7.3.7 Related Patterns

The Priority Inheritance Pattern exists to help solve a particular problem peculiar to priority-based
preemption multitasking, so all of the concurrency patterns having to do with that style of multitasking
can be mixed with this pattern.

While this pattern is lightweight, it greatly reduces priority inversion in multitasking systems. However,
there are other approaches that can reduce it further, such as Priority Ceiling Pattern and Highest Locker
Pattern. In addition, Priority Ceiling Pattern also removes the possibility of deadlock.

7.3.8 Sample Model

Figure 7-9 provides an example to illustrate how the Priority Inheritance Pattern works. States of the
objects are shown using standard UML—that is, as state marks on the instance lifelines. Some of the
returns are shown, again using standard UML dashed lines. Showing that a call cannot complete is
indicated with a large X on the call—not standard UML, but clear as to its interpretation.

Figure 7-9. Priority Inheritance Pattern

244

The flow of the scenario in Figure 7-9b is straightforward. All tasks begin the scenario in the Idle state.
Then, at point A, the FilteringThread task becomes ready to run. It runs at its nominal priority, which is
LOW (the priority of the thread is shown inside square brackets in the Running state mark—again, not
quite standard UML, but parsimonious). It then calls the resource SensorData that then enters the Locked
state.

At point B, the ValveMonitor task becomes ready to run. It preempts the FilteringThread because the
former is of higher priority. The ValveMonitor task runs for a while, but at point C, task DataAcqThread
becomes ready to run. Since it is the highest priority, it preempts the ValveMonitor thread.
DataAcqThread object then tries to access the SensorData object and finds that it cannot because the
latter is locked with a Mutex semaphore (not shown in the scenario). The Scheduler then blocks the

245

DataAcqThread thread and runs the FilteringThread at the same priority as DataAcqThread because the
FilteringThread inherits the priority from the highest blocking task— in this case the DataAcqThread task.
Note at this point, the medium-priority task, ValveMonitor, is in the state Waiting. Without priority
inheritance, if DataAcqThread is blocked, the ValveMonitor would run because it has the next highest
priority.

At point D, FilteringThread's use of the resource is complete, and it releases the resource (done at the
end of the SensorData.gimme operation). As it returns, the Mutex signals the Scheduler that it is now
available, so the Scheduler deescalates FilteringThread's priority to its nominal value (LOW) and unblocks
the highest-priority task, DataAcqThread. This task now runs to completion and returns. The Scheduler
then runs the next highest-priority waiting task, ValveMonitor, which runs until it is done and returns.
Finally, the lowest-priority task, FilteringThread, gets to complete.

The worst-case blocking time for the DataAcqThread task is then the amount of time that FilteringThread
locks the SensorData resource. Without the Priority Inheritance Pattern, the worst-case blocking for
DataAcqThread task would be the amount of time FilteringThread locks the SensorData resource plus the
amount of time that ValveMonitor executes.

7.4 Highest Locker Pattern
The Highest Locker Pattern defines a priority ceiling with each resource. The basic idea is that the task
owning the resource runs at the highest-priority ceiling of all the resources that it currently owns,
provided that it is blocking one or more higher-priority tasks. This limits priority inversion to at most one
level.

7.4.1 Abstract

The Highest Locker Pattern is another solution to the unbounded blocking/unbounded priority inversion
problem. It is perhaps a minor elaboration from the Priority Inheritance Pattern, but it is different enough
to have some different properties with respects to schedulability. The Highest Locker Pattern limits
priority inversion to a single level as long as a task does not suspend itself while owning a resource. In
this case, you may get chained blocking similar to the Priority Inheritance Pattern. Unlike the Priority
Inheritance Pattern, however, you cannot get chained blocking if a task is preempted while owning a
resource.

7.4.2 Problem

The unbounded priority inversion problem is discussed in the chapter introduction in some detail. The
problem addressed by this pattern is to limit the maximum amount of priority inversion to a single level—
that is, there is at most a single lower-priority task blocking a higher-priority task from executing.

7.4.3 Pattern Structure

The Highest Locker Pattern is shown in Figure 7-10. The structural elements of the pattern are the same
as for the Priority Inheritance Pattern, with the addition of an attribute priorityCeiling for the
SharedResource.

Figure 7-10. Highest Locker Pattern

246

The pattern works by defining each lockable resource with a priority ceiling. The priority ceiling is just
greater than the priority of the highest-priority client of the resource—this is known at design time in a
static priority scheme. When the resource is locked, the priority of the locking task is augmented to the
priority ceiling of the resource.

7.4.4 Collaboration Roles

• Abstract Thread

The Abstract Thread class is an abstract (noninstantiable) superclass for Concrete Thread.
Abstract Thread associates with the Scheduler. Since Concrete Thread is a subclass, it has the
same interface to the Scheduler as the Abstract Thread. This enforces interface compliance. The
Abstract Thread is an «active» object, meaning that when it is created, it creates an OS thread in
which to run. It contains (that is, it has composition relations with) more primitive application
objects that execute in the thread of the composite «active» object.

• Concrete Thread

The Concrete Thread is an «active» object most typically constructed to contain passive
"semantic" objects (via the composition relation) that do the real work of the system. The
Concrete Thread object provides a straightforward means of attaching these semantic objects
into the concurrency architecture. Concrete Thread is an instantiable subclass of Abstract Thread.

• Mutex

247

The Mutex is a mutual exclusion semaphore object that permits only a single caller through at a
time. The operations of the Shared Resource invoke it whenever a relevant service is called,
locking it prior to starting the service and unlocking it once the service is complete. Threads that
attempt to invoke a service when the services are already locked become blocked until the Mutex
is in its unlocked state. This is done by the Mutex semaphore signaling the Scheduler that a call
attempt was made by the currently active thread, the Mutex ID (necessary to unlock it later when
the mutex is released), and the entry point—the place at which to continue execution of the
Thread.

• Scheduler

This object orchestrates the execution of multiple threads based on their priority according to a
simple rule: Always run the ready thread with the highest priority. When the «active» Thread
object is created, it (or its creator) calls the createThread operation to create a thread for the
«active» object. Whenever this thread is executed by the Scheduler, it calls the StartAddr
address (except when the thread has been blocked or preempted—in which case it calls the
EntryPoint address).

In this pattern, the Scheduler has some special duties when the Mutex signals an attempt to
access a locked resource. Specifically, it must block the requesting task (done by stopping that
task and placing a reference to it in the Blocked Queue (not shown—for details of the Blocked
Queue, see the Static Priority Pattern in Chapter 5), and it must elevate the priority of the task
owning the resource to the Shared Resource's priorityCeiling.

• Shared Resource

A resource is an object shared by one or more Threads. For the system to operate properly in all
cases, all Shared Resources must either be reentrant (meaning that corruption from simultaneous
access cannot occur), or they must be protected. In the case of a protected resource, when a
Thread attempts to use the resource, the associated Mutex semaphore is checked, and if locked,
the calling task is placed into the Blocked Queue. The task is terminated with its reentry point
noted in the TCB.

The SharedResource has a constant attribute (note the «frozen» constraint in Figure 7-10), called
priorityCeiling. This is set during design to just greater than the priority of the highest-priority
task that can ever access it. In some RTOSs, this means that the priority will be one more (when
a larger number indicates a higher priority), and in some it will be one less (when a lower number
indicates a higher priority). This ensures that when the resource is locked, no other task using
that resource can preempt it.

• Task Control Block

The TCB contains the scheduling information for its corresponding Thread object. This includes
the priority of the thread, the default start address, and the current entry address if it was
preempted or blocked prior to completion. The Scheduler maintains a TCB object for each existing
Thread. Note that TCB typically also has a reference off to a call and parameter stack for its
Thread, but that level of detail is not shown in Figure 7-10. The TCB tracks both the current
priority of the thread (which may have been elevated due to resource access and blocking) and
its nominal priority.

248

7.4.5 Consequences

The Highest Locker Pattern has even better priority inversion-bounding properties than the Priority
Inheritance Pattern. It allows higher-priority tasks to run, but only if they have a priority higher than the
priority ceiling of the resource. The priority ceiling can be determined at design time for each resource by
examining the clients of a given resource and identifying to which active object they belong and selecting
the highest from among those. The priority ceiling is this value augmented by one. Computation of worst-
case blocking is the length of the longest critical section (that is, resource locking time) of any task of
lesser priority as long as a task never suspends itself while owning a resource.

The pattern has the disadvantage that while it bounds priority inversion to a single level, that level
happens more frequently than with some other approaches. For example, if the lowest-priority task locks
a resource with the highest-priority ceiling, and during that time an intermediate priority task becomes
ready to run, then it is blocked even though in this case one would prefer that the normal priority rules
apply. One way to handle that is to elevate the priority of the task owning the resource only when
another task attempts to lock it; until then, the locking tasks runs at its nominal priority.

In this pattern, care must be taken to ensure that a task never suspends itself while owning a resource.
It is fine if it is preempted, but voluntary preemption while owning a resource can lead to chain blocking,
a problem previously identified with the Priority Inheritance Pattern in the previous section. If the system
allows tasks to suspend themselves while owning a resource, then the computation of worst-case
blocking is computed in the same way as with the Priority Inheritance Pattern—the longest case of chain
blocked must be traversed.

This pattern avoids deadlock as long as no task suspends itself while owning a resource because no other
task is permitted to wait on the resource (condition 4). This is because the locking task runs at a priority
higher than any of the other clients of the resource. As previously noted, there is also a consequence of
computational overhead associated with the Highest Locker Pattern.

7.4.6 Implementation Strategies

Fewer RTOSs support the Highest Locker Pattern more than the basic Priority Inheritance Pattern.
Implementation of this pattern in your own RTOS is fairly straightforward, with the addition of priority
ceiling attributes in the Shared Resource. When the mutex is locked, it must notify the Scheduler to
elevate the priority of the locking task to that resource's priority ceiling.

7.4.7 Related Patterns

The Highest Locker Pattern exists to help solve a particular problem peculiar to priority-based preemption
multitasking, so all of the concurrency patterns having to do with that style of multitasking can be mixed
with this pattern.

7.4.8 Sample Model

In the example shown in Figure 7-11, there are four tasks with their priorities shown using constraints,
two of which, Waveform Draw and Message Display, share a common resource, Display. The tasks,
represented as active objects in order of their priority, are Message Display (priority Low), Switch Monitor
(priority Medium Low), Waveform Draw (priority Medium High), and Safety Monitor (priority Very High),
leaving priority High unused at the outset. Message Display and Waveform Draw share Display, so the
priority ceiling of Display is just above Waveform Draw (that is, High).

249

Figure 7-11. Highest Locker Pattern

The scenario runs as follows: First, the lowest-priority task, Message Display, runs, calling the operation
Display.displayMsg(). Because the Display has a mutex semaphore, this locks the resource, and the
Scheduler (not shown in Figure 7-11) escalates the priority of the locking task, Message Display, to the
priority ceiling of the resource—that is, the value High.

While this operation executes, first the Switch Monitor and then the Waveform Draw tasks both become
ready to run but cannot because the Message Display task is running at a higher priority than either of
them. The Safety Monitor task becomes ready to run. Because it runs at a priority Very High, it can, and
does, preempt the Message Display task.

250

After the Safety Monitor task returns control to the Scheduler, the Scheduler continues the execution of
the Message Display task. Once it releases the resource, the mutex signals the Scheduler, and the latter
deescalates the priority of the Message Display task to its nominal priority level of Low. At this point,
there are two tasks of a higher priority waiting to run, so the higher-priority waiting task (Waveform
Draw) runs, and when it completes, the remaining higher-priority task (Switch Monitor) runs. When this
last task completes, the Message Display task can finally resume its work and complete.

7.5 Priority Ceiling Pattern
The Priority Ceiling Pattern, or Priority Ceiling Protocol (PCP) as it is sometimes called, addresses both
issues of bounding priority inversion (and hence bounding blocking time) and removal of deadlock. It is a
relatively sophisticated approach, more complex than the previous methods. It is not as widely supported
by commercial RTOSs, however, and so its implementation often requires writing extensions to the RTOS.

7.5.1 Abstract

The Priority Ceiling Pattern is used to ensure bounded priority inversion and task blocking times and also
to ensure that deadlocks due to resource contention cannot occur. It has somewhat more overhead than
the Highest Locker Pattern. It is used in highly reliable multitasking systems.

7.5.2 Problem

The unbounded priority inversion problem is discussed in the chapter introduction in some detail. The
Priority Ceiling Pattern exists to limit the maximum amount of priority inversion to a single level and to
completely prevent resource-based deadlock.

7.5.3 Pattern Structure

Figure 7-12 shows the Priority Ceiling Pattern structure. The primary structural difference between the
Priority Ceiling Pattern and the Highest Locker Pattern is the addition of a System Priority Ceiling attribute
for the Scheduler. Behaviorally, there are some differences as well. The algorithm for starting and ending
a critical section is shown in Figure 7-13.

Figure 7-12. Priority Ceiling Pattern

251

Figure 7-13. Priority Ceiling Pattern Resource Algorithm

252

7.5.4 Collaboration Roles

• Abstract Thread

The Abstract Thread class is an abstract (noninstantiable) superclass for Concrete Thread.
Abstract Thread associates with the Scheduler. Since Concrete Thread is a subclass, it has the
same interface to the Scheduler as the Abstract Thread. This enforces interface compliance. The
Abstract Thread is an «active» object, meaning that when it is created, it creates an OS thread in
which to run. It contains (that is, it has composition relations with) more primitive application
objects that execute in the thread of the composite «active» object.

• Concrete Thread

253

The Concrete Thread is an «active» object most typically constructed to contain passive
"semantic" objects (via the composition relation) that do the real work of the system. The
Concrete Thread object provides a straightforward means of attaching these semantic objects
into the concurrency architecture. Concrete Thread is an instantiable subclass of Abstract Thread.

• Mutex

The Mutex is a mutual exclusion semaphore object that permits only a single caller through at a
time. The operations of the Shared Resource invoke it whenever a relevant service is called,
locking it prior to starting the service and unlocking it once the service is complete. Threads that
attempt to invoke a service when the services are already locked become blocked until the Mutex
is in its unlocked state. This is done by the Mutex semaphore signaling the Scheduler that a call
attempt was made by the currently active thread, the Mutex ID (necessary to unblock the correct
Thread later when the Mutex is released), and the entry point—the place at which to continue
execution of the Thread. See Figure 7-13 for the algorithms that control locking, blocking, and
releasing the Mutex.

• Scheduler

This object orchestrates the execution of multiple threads based on their priority according to a
simple rule: Always run the ready thread with the highest priority. When the «active» Thread
object is created, it (or its creator) calls the createThread operation to create a thread for the
«active» object. Whenever this thread is executed by the Scheduler, it calls the StartAddr
address (except when the thread has been blocked or preempted—in which case it calls the
EntryPoint address).

In this pattern, the Scheduler has some special duties when the Mutex signals an attempt to
access a locked resource. Specifically, under some conditions, it must block the requesting task
(done by stopping that task and placing a reference to it in the Blocked Queue (not shown—for
details of the Blocked Queue, see the Static Priority Pattern in Chapter 5), and it must elevate the
priority of the highest-priority blocked Thread being blocked. This is easy to determine, since the
Blocked Queue is a priority FIFO—the highest-priority blocked task is the first one in that queue.
Similarly, when the Thread releases the resource, the Scheduler must lower its priority back to its
nominal priority. The Scheduler maintains the value of the highest-priority ceiling of all currently
locked resources in its attribute systemPriorityCeiling.

• Shared Resource

A resource is an object shared by one or more Threads. For the system to operate properly in all
cases, all Shared Resources must either be reentrant (meaning that corruption from simultaneous
access cannot occur), or they must be protected. In the case of a protected resource, when a
Thread attempts to use the resource, the associated mutex semaphore is checked, and if locked,
the calling task is placed into the Blocked Queue. The task is terminated with its reentry point
noted in the TCB.

The SharedResource has a constant attribute (note the «frozen» constraint in Figure 7-12), called
priorityCeiling. This is set during design to just greater than the priority of the highest priority
task that can ever access it. In some RTOSs, this means that the priority will be one more (when
a larger number indicates a higher priority), and in some it will be one less (when a lower number

254

indicates a higher priority). This ensures that when the resource is locked, no other task using
that resource can preempt it.

• Task Control Block

The TCB contains the scheduling information for its corresponding Thread object. This includes
the priority of the thread, the default start address and the current entry address if it was
preempted or blocked prior to completion. The Scheduler maintains a TCB object for each existing
Thread. Note that TCB typically also has a reference off to a call and parameter stack for its
Thread, but that level of detail is not shown here. The TCB tracks both the current priority of the
Thread (which may have been elevated due to resource access and blocking) and its nominal
priority.

7.5.5 Consequences

This pattern effectively enforces the desirable property that a high-priority task can at most be blocked
from execution by a single critical section of a lower-priority task owning a required resource.

It can happen in the Priority Ceiling Pattern that a running task may not be able to access a resource
even though it is not currently locked. This will occur if that resource's priority ceiling is less than the
current system resource ceiling.

Deadlock is prevented by this pattern because condition 4 (circular wait) is prevented. Any condition that
could potentially lead to circular waiting is prohibited. This does mean that a task may be prevented from
accessing a resource even though it is currently unlocked.

There is also a consequence of computational overhead associated with the Priority Ceiling Pattern. This
pattern is the most sophisticated of the resource management patterns presented in this chapter and has
the highest computational overhead.

7.5.6 Implementation Strategies

Rather few RTOSs support the Priority Ceiling Pattern, but it can be added if the RTOS permits extension,
particularly when a mutex is locked or released. If not, you can create your own Mutex and System
Resource Ceiling classes that intervene with the priority management prior to handing off control to the
internal RTOS scheduler. If you are writing your own scheduler, then the implementation should be a
relatively straightforward extension of the Highest Locker Pattern.

7.5.7 Related Patterns

Because this pattern is the most sophisticated, it also has the most computational overhead. Therefore,
under some circumstances, it may be desirable to use a less computational, if less capable, approach,
such as the Highest Locker Pattern, the Priority Inheritance Pattern, or even the Critical Section Pattern.

7.5.8 Sample Model

A robotic control system is given as an example in Figure 7-14a. There are three tasks. The lowest-
priority task, Command Processor, inserts commands into a shared resource, the Command Queue. The
middle-priority task, Safety Monitor, performs periodic safety monitoring, accessing the shared resource
Robot Arm. The highest-priority task, Robotic Planner, accepts commands (and hence must access the

255

Command Queue) and also moves the arm (and therefore must access Robot Arm). Note that the
resource ceiling of both resources must be the priority of the highest-priority task in this case because it
accesses both of these resources.

Figure 7-14. Priority Ceiling Pattern

256

Figure 7-14b shows a scenario for the example. At point A, the Command Processor runs, putting set of
commands into the Command Queue. The call to the Command Processor locks the resource successfully
because at this point, there are no locked resources. While this is happening, the Safety Monitor starts to

257

run at point B. This preempts the Command Processor because it is a higher priority, so Command
Processor goes into a waiting state because it's ready to run but cannot because a higher-priority task is
running. Now the Safety Monitor attempts to access the second resource, Robot Arm. Because a resource
is currently already locked with same priority ceiling (found by the Scheduler examining its
systemPriorityCeiling attribute), that call is blocked. Note that the Safety Monitor is prevented from
running even though it is trying to access a resource that is not currently locked but could start a circular
waiting condition, potentially leading to deadlock. Thus, the access is prevented.

When the resource access to Safety Monitor is prevented, the priority of the Command Processor is
elevated to Medium, the same level as the highest-blocked task. At point C, Robot Planner runs,
preempting the Command Processor task. The Robot Planner invokes Command Queue.Get() to retrieve
any waiting commands but finds that this resource is locked. Therefore, its access is blocked, and it is put
on the blocked queue, and the Command Processor task resumes but at priority High.

When the call to Command Queue.put() finally completes, the priority of the Command Processor task is
deescalated back to its nominal priority—Low (point D). At this point in time, there are two tasks of
higher priority waiting to run. The higher priority of them, Robot Planning runs at its normal High priority.
It accesses first the Command Queue resource and then the Robot Arm resource. When it completes, the
next highest task ready to run is Safety Monitor. It runs, accessing the Robot Arm resource. When it
completes, the lowest-priority task, Command Processor is allowed to complete its work and return
control to the OS.

7.6 Simultaneous Locking Pattern
The Simultaneous Locking Pattern is a pattern solely concerned with deadlock avoidance. It achieves this
by breaking condition 2 (holding resources while waiting for others). The pattern works in an all-or-none
fashion. Either all resources needed are locked at once or none are.

7.6.1 Abstract

Deadlock can be solved by breaking any of the four conditions required for its existence. This pattern
prevents the condition of holding some resources by requesting others by allocating them all at once.
This is similar to the Critical Section Pattern. However, it has the additional benefit of allowing higher-
priority tasks to run if they don't need any of the locked resources.

7.6.2 Problem

The problem of deadlock is such a serious one in highly reliable computing that many systems design in
specific mechanisms to detect it or avoid it. As previously discussed, deadlock occurs when a task is
waiting on a condition that can never, in principle, be satisfied. There are four conditions that must be
true for deadlock to occur, and it is sufficient to deny the existence of any one of these. The
Simultaneous Locking Pattern breaks condition 2, not allowing any task to lock resources while waiting
for other resources to be free.

7.6.3 Pattern Structure

Figure 7-15 shows the structure of the Simultaneous Locking Pattern. The special structural aspect of this
pattern is the collaboration role MultiResource. Each MultiResource has a single mutex semaphore that

258

locks only when the entire set of aggregated Shared Resources is available to be locked. Similarly, when
the semaphore is released, all the aggregated Shared Resources are released.

Figure 7-15. Simultaneous Locking Pattern

7.6.4 Collaboration Roles

• MultiResource

This object aggregates an entire set of resources needed (or possibly needed) by a Resource
Client. MultiResource explicitly locks and unlocks the set of resources. This locking and unlocking
action should be a noninterruptible critical section. If any of the aggregated Shared Resources is
not available during the locking process, then the MultiResource must release all of the Shared
Resources it successfully locked. MultiResource must define operations startCriticalSection() and
endCriticalSection to prevent task switching from occurring during the locking or unlocking
process. Also, areAnyLockedParts() returns TRUE if any of the Shared Resources aggregated by
the MultiResource are still locked. For walking through the Shared Resources, the MultiResource
also has the operations getFirstResource() and getNextResource(), both of which return a pointer
to a Shared Resource (or NULL if at the end of the list) and isLocked(*Shared Resource), which
returns TRUE only if the referenced Shared Resource is currently locked by the MultiResource. If
either unlocked or not aggregated by the MultiResource, then it returns FALSE. Two more
operations, lockNow() and unlockNow(), simply set the isLocked attribute of the MultiResource
without checking the status of the aggregated parts.

• Mutex

259

The Mutex is a mutual exclusion semaphore object that associates with MultiResource. In this
pattern the shared resources are locked for a longer duration than with the priority inheritance-
based patterns. This is because Resource Client needs to own all the resources for the entire
critical section so that the Resource Client never owns a resource while trying to lock another.
The policy is that the Mutex is only locked if all of the required Share-Resource PartLocks are
successfully locked. Mutex is an OS-level mutex and signals the Scheduler to take care of
blocking tasks that attempt to lock the SharedResource.

• PartLock

The PartLock is a special mutual exclusion semaphore that associates to Shared Resource. This
Mutex is queryable as to its lock status, using the getIsLocked() operation. This semaphore does
not signal the Scheduler unlike the Mutex, because there is no need; the OS-level locking is done
by the Mutex and not by the PartLock. Nevertheless, the MultiResource needs to be able to
ascertain the locking status of all the resources before attempting to lock any of them.

• Resource Client

The Resource Client is a user of Shared Resource objects. It locks potentially multiple Shared
Resources via the MultiResource. The policy enforced in this pattern is that all resources used in a
criti-cal section must be locked at the same time, or the entire lock will fail. The Resource Client
is specifically prohibited from locking one resource and later, while still owning that lock,
attempting to lock another. Put another way, an attempt to lock a set of resources is only
permitted if the Resource Client currently owns no locks at all, and if any of the requested
resources are unavailable, the entire lock will fail and the Resource Client must wait and block on
the set of resources (that is, it blocks on the mutex owned by its associated MultiResource).

• ResourceMaster

The ResourceMaster orchestrates the locking and unlocking of Mutexes associated with
MultiResources. Whenever a MultiResource locks a Mutex, the ResourceMaster searches its list of
all MultiResources and locks any that share one of the SharedResources. That way, if a Thread
tries to lock its MultiResource and another one owns a needed SharedResource, the Thread can
block on the Mutex of its associated MultiResource. Conversely, when a MultiResource releases all
of its Shared Resources, that MultiResource notifies the ResourceMaster and it tracks down all of
the other MultiResources and sees if it can unlock them as well (it may not be able to if another
MultiResource has locked a SharedResource unused by the first).

• Shared Resource

A resource is a part object owned by the MultiResource object. In this pattern, a Shared Resource
does not connect to a Mutex because it is not locked individually. As implied by its name, the
same Shared Resource object may be an aggregated part of different MultiResource objects. The
pattern policy is that no resource that is aggregated by one MultiResource is allowed to be
directly locked by a Thread, although it may be accessed by a Thread to perform services. The
Shared Resource contains operations to explicitly lock, unlock, and to query its locked status, and
these simply invoke services in the associated PartLock.

7.6.5 Consequences

260

The Simultaneous Locking Pattern prevents deadlock by breaking condition 2, required for deadlock to
occur—namely locking some resources while waiting for others to become available. It does this by
locking all resources needed at once and releasing them all at once. This resource management pattern
can easily be used in most scheduling patterns, such as the Static Priority Pattern.

There are two primary negatives to the use of this pattern. First, priority inversion is not bounded. A
higher-priority task is free to preempt and run as long as it doesn't use any currently locked resource.
This pattern could be mixed in with the priority inheritance pattern to address that problem.

The second issue is that this pattern invokes some computational overhead, which may become severe in
situations in which there are many shared resources. Each time a request to lock a resource is made,
each of the Shared Resources must be locked and all of the other MultiResources must be checked to see
if they aggregate any of these locked Shared Resources. Any MultiResource that shares one of the just-
locked Shared Resources must itself be locked. On release of a lock on a particular MultiResource, all of
its Shared Resources must be unlocked, and then each of the other MultiResources must be examined
using the areAnyLockedParts() operation. If it returns TRUE, then that MultiResource must remain
locked; otherwise is must be unlocked.

Another issue is that programmer/designer discipline is required not to access the Shared Resources
without first obtaining a lock by going through the MultiResource mechanism. Because Shared Resources
don't use standard OS mutexes for locking (since we don't want Threads blocking on them rather then
the MultiResources), it is possible to directly access the Shared Resource, bypassing the locking
mechanisms. This is a Bad Idea. One possible solution to enforce the locking is to propagate all of the
operations from the resources to the MultiResource, make the operations public in the MultiResource and
private in the Shared Resource, and making the MultiResource a friend of the Shared Resource. This adds
some additional computational overhead, but in some languages the propagated operations could be
made inline to minimize this. Alternatively, each Shared Resource could be told, during the locking
process, who its owner is. Then on each service call, the owner would have to pass an owner ID to prove
it had rights to request the service.

7.6.6 Implementation Strategies

Care must be taken that the locking of all the resources in MultiResource.lock() and
MultiResource.unlock() must be done in a critical sec-tion to prevent deadlock condition 2 from occurring.
Other than that, the implementation of this pattern is straightforward.

7.6.7 Related Patterns

This pattern removes deadlock by breaking condition 2 required for deadlock. There are other approaches
to avoiding deadlock. One of this is presented in the Ceiling Priority Pattern and another in the Ordered
Locking Pattern, both presented in this chapter. This pattern is normally mixed with a concurrency
management policy, such as the Static Priority Pattern, but other patterns can be used as well. If it is
desirable to limit priority inversion, then this pattern can be mixed with the Priority Inheritance Pattern.

7.6.8 Sample Model

Figure 7-16a shows a simple example of the application of this pattern. Tw o Concrete Threads, Machine
1 and Machine 2, share three resources: MsgQueue 1 (Machine 1 only), Command Queue (both), and
MsgQueue 2 (Machine 2 only). To avoid the possibility of a deadlock occurring, the Simultaneous Locking
Pattern is used. Two MultiResources (Multi 1 and Multi 2) are created as composite parts of an instance of

261

ResourceMaster. Figure 7-16b shows the behavior when Machine 1 locks its resources, does some work
(moving messages from the Command Queue to MsgQueue 1), and then unlocks the resources.

Figure 7-16. Simultaneous Locking Pattern

262

263

What is not shown is what happens if Machine 2 runs during the execution of the get() and put()
operations, but it is clear that as soon as Machine 2 attempts to lock its MultiResource, it will be blocked.

7.7 Ordered Locking Pattern
The Ordered Locking Pattern is another way to ensure that deadlock cannot occur—this time by
preventing condition 4 (circular waiting) from occurring. It does this by ordering the resources and
requiring that they always be accessed by any client in that specified order. If this is religiously enforced,
then no circular waiting condition can ever occur.

7.7.1 Abstract

The Ordered Locking Pattern eliminates deadlock by ordering resources and enforcing a policy in which
resources must be allocated only in a specific order. Unlike "normal" resource access, but similar to the
Simultaneous Locking Pattern, the client must explicitly lock and release the resources, rather than doing
it implicitly by merely invoking a service on a resource. This means that the potential for neglecting to
unlock the resource exists.

7.7.2 Problem

The Ordered Locking Pattern solely addresses the problem of deadlock elimination, as does the previous
Simultaneous Locking Pattern.

7.7.3 Pattern Structure

Figure 7-17a shows the structural part of the Ordered Locking Pattern. Each Resource Client aggregates a
Resource List, which contains an ordered list of Resource IDs currently locked by the Thread.

Figure 7-17. Ordered Locking Pattern

264

Figure 7-17b uses UML activity charts to show the algorithms for locking and unlocking the resource. The
basic policy of resource locking is that each resource in the entire system has a unique integer-valued
identifier, and a Thread may only lock a resource whose ID is greater than that of the highest resource it
currently owns. An attempt to lock a resource with a lower-valued ID than the highest-valued resource
you currently own causes the Resource List to throw a PoorlyOrderedAccess exception, indicating a
violation of this policy. Sometimes a Resource Client may block on a resource that it needs because it is
locked, and that is perfectly fine. But it can never happen that a circular waiting condition can occur
(required for deadlock) because it would require that at least one Resource Client would have to block
waiting for the release of a resource whose ID is lower than its highest-owned resource. [2]

[2] The proof is left as an exercise for the reader.

7.7.4 Collaboration Roles

• Mutex

265

The Mutex is a mutual exclusion semaphore object that associates with Shared Resource. If a
Shared Resource is currently locked when requested by a Resource Client (via its Resource List),
then the Resource Client blocks on that resource.

• Resource Client

A Resource Client is an object (which may be «active») that owns and locks resources. It
aggregates a Resource List to manage the locking and unlocking of those resources.

• Resource ID

The Resource ID is a simple part objected aggregated by Resource List. It merely contains the ID
of a corresponding Shared Resource currently locked by the Thread. When the Shared Resource
is unlocked by the Resource List, its ID is removed from the list.

• Resource List

The Resource List manages the locking and unlocking of Shared Resources according to the
algorithm shown in Figure 7-17b. When a Resource Client wants to lock a resource, it makes the
request of the Resource List. If the ID of the required resource is greater than any currently
owned resource, and then if it is unlocked, the Resource List locks it and adds it to the list. If it is
locked, then the Thread blocks on the resource.

• Shared Resource

A resource is an object shared by one or more Resource Client. In this pattern, each Shared
Resource has a unique integer-valued identifier. This identifier is used to control the order in
which Shared Resources may be locked. If a Shared Resource itself uses other Shared Resources,
then it may only do so if the called Shared Resource identifiers are of higher value than its own.

7.7.5 Consequences

This pattern effectively removes the possibility of resource-based deadlocks by removing the possibility of
condition 4—circular waiting. For the algorithm to work any ordering of Shared Resources will do provided
that this ordering is global. However, some orderings are better than others and will result is less
blocking overall. This may take some analysis at design time to identify the best ordering of the Shared
Resources. As mentioned above, if Shared Resources are themselves Resource Clients (a reasonable
possibility), then they should only invoke services of Shared Resources that have higher-valued IDs than
they do. If they invoke a lower-valued Shared Resource, then they are in effect violating the ordered
locking protocol by the transitive property of locking (if A locks B and then B locks C, then A is in effect
locking C).

While draconian, one solution to the potential problem of transitive violation of the ordering policy is to
enforce the rule that a Shared Resource may never invoke services or lock other Shared Resources. If
your system design does allow such transitive locking, then each transitive path must be examined to
ensure that the ordering policy is not violated. The Ordered Locking Pattern does not address the issue of
bounding priority inversion as do some other patterns here.

7.7.6 Implementation Strategies

266

One memory-efficient implementation for Resource List is to use an array of integers to hold the
Resource IDs. The array only needs to be as large as the maximum number of resources held at any one
time. For an even more memory-efficient implementation (but at the cost of some computational
complexity), a bit set can be used. The bit set must have the same number of bits as maximum Resource
ID value. Setting and unsetting the bit is computationally lightweight, but checking to see if there is a
greater bit set is a little more computationally intensive.

7.7.7 Related Patterns

There are two other patterns here that prevent deadlock. The Simultaneous Locking Pattern locks all the
needed resources in a single critical section; other Resource Clients that need to run can do so as long as
they don't request any of the same Shared Resources. If a small subset of the resources need to be
locked at any given time or if the sets needed for different Resource Clients overlap only slightly, then
the Simultaneous Locking Pattern works well.

The Priority Ceiling Pattern solves the deadlock problem as well, although the algorithm is significantly
more complex. For that added sophistication, the Priority Ceiling Pattern also bounds priority inversion to
a single level.

7.7.8 Sample Model

The example shown in Figure 7-18a provides a simple illustration of how the pattern works. Client 1 uses
three Shared Resources: SR1 (ID=0), SR3 (ID=2), and SR4 (ID=3). Client 2 uses three Shared
Resources: SR2 (ID=1), SR3 (ID=2), and SR4 (ID=3). They both, therefore, share SR2, SR3, and SR4.

Figure 7-18. Ordered Locking Pattern

267

268

Note that in the absence of some scheme to prevent deadlock (such as the use of the Ordered Locking
Pattern), deadlock is easily possible in this configuration. Suppose Client 1 ran and locked SR2, and when
it was just about to lock SR3, Client 2 (running in a higher-priority thread) preempts Client 1. Client 2
now locks SR3 and tries to lock SR2. It cannot, of course, because it is already locked (by Client 1), and
so it must block and allow Client 1 to run until it releases the resource. However, now Client 1 cannot
successfully run because it needs SR3, and it is locked by Client 2. A classic deadlock situation. This
particular scenario is not allowed with the Ordered Locking Pattern. Figure 7-18b shows what happens
when this scenario is attempted.

References
[1] Response to the OMG RFP for Schedulability, Performance, and Time, Revised Submission, Boston,
MA: Object Management Group OMG Document Number: ad/2001-06-14, 2001.

[2] Klein, M., T. Ralya, B. Pollak, R. Obenza, and M. Harbour. A Practitioner's Handbook for Real-Time
Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems, Norwell, MA: Kluwer Academic Press,
1993.

[3] Douglass, Bruce Powel. Doing Hard Time: Developing Real-Time Systems with UML, Objects,
Frameworks and Patterns, Reading, MA: Addison-Wesley, 1999.

[4] Douglass, Bruce Powel. Real-Time UML 2nd Edition: Developing Efficient Objects for Embedded
Systems, Boston, MA: Addison-Wesley, 2000.

269

Chapter 8. Distribution Patterns
The following patterns are presented in this chapter.

• Shared Memory Pattern: Using multiported memory to share global data and send messages
• Remote Method Call Pattern: Synchronous message passing across processor boundaries
• Observer Pattern: Efficient invocation of services with multiple clients
• Data Bus Pattern: Providing a common virtual medium for sharing data
• Proxy Pattern: Using the Observer Pattern between processors
• Broker Pattern: Sharing services when object location is unknown at design time

8.1 Introduction
Distribution is an important aspect of architecture. It defines the policies, procedures, and structure for
systems that may, at least potentially, exist on multiple address spaces simultaneously. Distribution
comes in two primary forms: asymmetric and symmetric. Asymmetric distribution architectures are those
in which the binding of the objects to the address spaces is known at design time. Most real-time and
embedded systems are of this kind because it is simpler and requires less overhead. Symmetric
distribution architectures are dynamic in the sense that which address space in which an object will
execute isn't known until run-time. While this is more complex, it is also a great deal more flexible and
allows dynamic load balancing.

For both asymmetric and symmetric architectures, distribution architecture also exists at multiple levels
of abstraction. The application level of abstraction simply maps the objects to the address space and
worries about the application protocol—the rules by which these application-level objects share
information and control. These application protocols are abstract and are implemented on top of a wide
variety of deployment bus and network architectures. This latter aspect includes the communication
protocol, and it deals with the more concrete means by which the application protocols are implemented.

The ISO communications model is one that identifies seven different layers in what is called the protocol
stack, each having a virtual protocol with a corresponding layer in the other address space. This is a
common view but by no means the only one. It is common for many of these layers to be skipped and
the application objects that need to communicate to take care of these things, such as reliable delivery
and ensuring the data format is correct. There are a great many ways that communications protocols
have been successfully deployed in real-time and embedded systems.

In this chapter, we deal with distribution architectures at the application level, which we refer to as
collaboration architecture. At the application level, the collaboration architecture focuses on how the
objects find and communicate with each other without specific regard to the details of how the
communication actually takes place. Distribution can also be discussed at the level of the underlying
communication transport protocol. At the communications protocol level, the protocol architecture deals
with the primary strategies for managing the timely, reliable exchange of information.

The underlying transportation protocol moves the data from processor to processor, sometimes under the
direct control of the application objects, sometimes in a manner that is transparent to the application
objects. Different communications protocols have different performance, schedulability, and predictability
characteristics. The communications protocol should be chosen with the desired properties to support the
required qualities of service of the overall system.

270

For example, CDMA (collision detect multiple access) protocols allow for multimastering of the
communications bus. When different network nodes attempt to send a message at the same time, a
collision arises; in this case, both nodes stop attempting to transmit and try again at random times. The
consequence of this design decision is that above about 30 percent bus utilization, virtually all the time is
spent managing collisions and very little time is spent actually transmitting information.

TDMA (time division multiple access) protocols give nodes a slice of the overall communication cycle into
which they may transmit. This gives predictable response times but may not scale up to large numbers of
nodes.

Other protocols are based on priorities; CAN bus protocol and SCSI are two examples of priority-based
systems. In such protocols, some of the bandwidth is spent arbitrating who has control over the bus.
Both of these priority schemes are based in what is called a bit domance protocol. A sender not only puts
out bits onto the bus but also listens to see if what was written is what actually appears. If it sends a
nondominant bit but hears a dominant bit, then it assumes it has lost the arbitration and drops off. The
CAN bus uses bits in the message that are used to specify the transmission priority, and so different
nodes may send messages of various priorities. In the SCSI protocol, the priority is tied to the node
address. In high-utilization environments, such protocols can be highly efficient.

Besides deciding which messages may be transmitted, protocols are also concerned with reliability of
transfer. The communication media used by the protocols is inherently unreliable, so protocols may layer
additional logic on top of the basic transmission-reception scheme to add reliability. UDP, part of the
TCP/IP protocol suite, is an unreliable means for communication in that if a message is lost or becomes
corrupted, there is no mechanism for retransmission. TCP, on the other hand, is referred to as a reliable
communications protocol because the sender will retry for a fixed number of times if it does not receive a
message acknowledging the reception of the transmission. Many protocols also include redundancy on
the message contents, often in the form of checksums or cyclic redundancy checks (CRCs) to identify if a
message gets corrupted in transit.

Another issue with the communication infrastructure has to do with the interpretation and representation
of information. A distributed system is often composed of a heterogeneous assortment of processors with
different representations of data types. For example, the primitive int data type might be 8-bits, 16-bits,
32-bits, or 64 bits, as well as stored in "big endian" or "little endian" forms. In order to construct truly
interoperative systems, the knowledge of the data representations should be hidden from the client and
server processors. This is usually done by the Presentation Layer in an OSI-compliant communications
protocol or by calling explicit data filters to convert from local storage format to a special transmission
format called network format.

When sending a message, the sender takes a message and marshals it— that is, constructs a datagram
or message in a form that can be sent across the communications protocol, which includes such things as
the sender and receiver addresses, message size, error-checking codes, and, of course, the information
itself. Part of this process is taking the information stored in the local format of the sending machine and
recasting it into a universal format called network format. Once received, the message is demarshalled,
the error codes are checked, the bits and fields used for the transmission are discarded, and the
information is reformatted into the local format of the receiver. In this case, the sender and the receiver
do not need to have knowledge of how each other stores information locally.

8.2 Shared Memory Pattern

271

The Shared Memory Pattern uses a common memory area addressable by multiple processors as a
means to send messages and share data. This is normally accomplished with the addition of special
hardware—specifically, multiported RAM chips.

8.2.1 Abstract

The Shared Memory Pattern is a simple solution when data must be shared among more than one
processor, but timely responses to messages and events between the processors are not required. The
pat-tern almost always involves a combined hardware/software solution. Hardware support for single
CPU-cycle semaphore and memory access can avoid memory conflicts and data corruption, but usually
some software support to assist the low-level hardware features is required for robust access. If the data
to be shared is read-only, as for code that is to be executed on multiple processors, then such
concurrency protection mechanisms may not be required.

8.2.2 Problem

Many systems have to share data between multiple processors—this is the essence of distribution, after
all. In some cases, the access to the data may persist for a long period of time, and the amount of data
shared may be large. In such cases, sending messages may be an inefficient method for sharing such
information. Multiple computers may need to update this "global" data, such as in a shared database, or
they may need to only read it, as is the case with executable code that may run on many processors or
configuration tables. A means by which such data may be effectively shared is needed.

8.2.3 Pattern Structure

The Shared Data Pattern addresses these concerns by using a shared memory device to store the
information to be shared. The pattern shown in Figure 8-1 actually shows two patterns of usage: singular
global data and shared message queues. A particular instance may be either or both of these
subpatterns. The physical devices are shown using their standard UML notation—three-dimensional
boxes—whereas the software classes are shown using their standard rectangular forms.

Figure 8-1. Shared Memory Pattern

272

8.2.4 Collaboration Roles

• Data Client

The Data Client instance exists on a single processor and accesses the Global Data object. There
are generally Data Client objects accessing the same Global Data object on at least two different
processors. In addition, a Data Client may be the recipient of Message objects from a Receiver.

• Data Source

The Data Source instance exists on a single processor and inserts Messages to a Message Queue
object in Shared Memory.

• Global Data

The Global Data object is shared among at least two, but possibly many more, Data Clients
running on different processors. It associates with a Hardware Semaphore to ensure data
integrity.

• Hardware Semaphore

This is a hardware-supported semaphore that can be locked or unlocked within a single memory
cycle. The semaphore does not usually physically prevent the memory from being accessed but
provides a readable flag as to its logical accessibility. The Hardware Semaphore is physically a
part of the Shared Memory device. The Shared Memory device typically provides multiple
Hardware Semaphores that may be used to logically protect different objects existing in the RAM.

273

• Message

A Message object encapsulates a UML logical message that is to be sent to a Receiver. This may
be a request for a service to be performed or a request for information.

• Message Queue

A Message Queue manages a set of Message objects from possibly many Senders to a single
Receiver. It is common to have as many Message Queue objects are there are Processors; each
Message Queue normally queues Messages only for a single Receiver. Access to the queue is
protected via a Hardware Semaphore.

• Processor

This is a physical CPU executing the code. There are at least two Processors in this pattern.
Objects shown within the Processor node are executing in the local memory of that Processor.

• Receiver

Most commonly, each Processor has only a single Receiver. The Receiver's task is to check
whether there are Messages waiting for it in its corresponding Message Queue and, if there are,
to remove them and dispatch them to the appropriate Data Client objects.

• Sender

Each Processor usually has a single Sender object. The Sender must identify which Message
Queue in which to insert messages it is given to send. In the most common case, each Message
Queue stores Messages for a single recipient Processor.

• Shared Memory

This is a physical RAM device that is shared among the processors.

8.2.5 Consequences

This solution requires the use of specialized memory, so it is mostly used for applications in systems in
which hardware and software are being codesigned. It is generally not a COTS (Commercial Off The
Shelf) solution. The hardware solution may limit the number of separately lockable blocks (because of the
fixed limit on the hardware semaphores). The RAM chips used for this purpose usually allow only a single
Processor to have access at a given time, but the hardware semaphores must be explicitly set and unset
by the software to indicate availability. Because of potential race conditions, after a semaphore is locked,
it must subsequently be read to ensure that the write succeeded.

The patterns works well when there is a relatively large store of data that must be persistently available
to multiple processors. Since the data is stored in a globally accessible space, it can be read and written
as often as necessary with low overhead. Because the clients poll the shared memory to see when there
is new data for them, this pattern may not result in a timely delivery of messages.

8.2.6 Implementation Strategies

274

The most common implementation of this pattern has exactly two processor nodes sharing a single
shared memory device, but other deployment (physical) architectures with more processors are possible.
This memory device provides multiple hardware semaphores that the designer is free to use as desired.
The hardware selection must take into account the power, memory, and heating requirements. A typical
choice is the Cypress CY7C037/38, a 64K x 19bit dual-port static RAM chip [1].

For the semaphores, the software must use a firm policy of ensuring accessibility before reading or
writing the memory. This is done by checking the semaphore. The CY7C037/38 chip works when the
Processor, wanting to lock the shared memory object, writes a "0" to the appropriate semaphore and
then reads its status. If it reads back a "0," then it succeeded; if it reads a "1," then it failed (because the
semaphore was already locked). If there are more distinct memory objects to lock than there are
hardware semaphores, then additional software semaphores may be created, and one of the hardware
semaphores may be used to protect access to the block of software semaphores. The software
semaphores must only be examined after successfully locking the semaphore block.

8.2.7 Related Patterns

When a timely response is required, a Remote Method Call Pattern may be used to push through a
message. When there are potentially many clients for a datum, an Observer pattern may be more
appropriate.

8.2.8 Sample Model

The structural model of the example is shown in Figure 8-2a. There are two processors: a User Controller
processor that takes inputs from a switch and a Knob and sends to them to the Motor object on the
Actuation Processor. This is done, of course, via the Shared Memory device that contains a Message
Queue for storing such messages until the Receiver is ready to read them.

Figure 8-2. Shared Memory Pattern

275

Figure 8-2b shows a simple scenario of usage. In this case, there is no contention to be mediated. The
Switch sends an OnMsg by invoking the send() operation on the Sender. This in turn results in it being
stored in the queue. Note that the Sender explicitly manipulates the hardware semaphore to ensure that
it can write to the queue safely. It does this by attempting to lock the semaphore and then explicitly
checking to see if it succeeded (and in this scenario, it did). Then the Knob sends a TurnRightMsg in the
same fashion.

Eventually, the Receiver checks the Message Queue for messages. First, it locks the semaphore in the
same fashion as the Sender. Once that succeeds, it then discovers two messages are waiting. Each is
dequeued and passed on to the ultimate receiver.

8.3 Remote Method Call Pattern

276

Remote Procedure Calls (RPCs) are a common method for invoking services synchronously between
processors. The object-oriented equivalent, Remove Method Calls, work in the same way. This approach
requires underlying OS support, but it works much the same way that local method calls work: The client
invokes a service on the server and waits in a blocked condition until the called operation completes.

8.3.1 Abstract

RPCs are provided by Unix-based [2] and other operating systems such as VxWorks [3] as a more
abstract and usable form of Inter-process Communications (IPC). RPCs allow the invocation of services
across a network in a way very similar to how a local service would be invoked. In the object-oriented
world, we refer to RMCs (Remote Method Calls), but the concept is the same: provide a means to invoke
services across a network in a manner as similar as possible to how they are invoked locally.

8.3.2 Problem

The programming model used to invoke services locally is very well understood: dereference an
association (most commonly implemented as a pointer or reference) and invoke the service. This is done
in a synchronous fashion—the caller blocking until the server completes the request and returns whatever
values were requested. What is needed is a means to do the same thing even when the client and server
are not colocated.

8.3.3 Pattern Structure

Figure 8-3 shows the basic structure for the Remote Method Call Pattern. Ultimately, the Client wants to
invoke a service on the Server. It does so by invoking a Client Stub that knows how to marshal the
service request in terms of the underlying transport protocol and the network data representation format.
The Server Stub listens for service requests (usually by registering with the server-side OS with a specific
port number), demarshals the request, and invokes the specified method on the server. When it
completes, the Server Stub then issues a return() to the Client Stub, returning any requested values via
the underlying transport protocol, which are ultimately returned to the waiting client. From the client's
point of view, it is very much like calling a local method except that a few special operations must be
invoked first to set up the logical connection between the Client Stub and Server Stub.

Figure 8-3. Remote Method Call Pattern

277

Note that if the underlying operating system already supports RPCs, then the application developer really
only needs to be concerned with the Client and Server classes and how to invoke the remote procedure
call mechanism from the OS. If the underlying OS does not support RPCs natively, then the application
developer must explicitly construct all the classes in the pattern.

8.3.4 Collaboration Roles

• Client

The Client is the object wanting to invoke the method. The Client invokes the service
synchronously—that is, it blocks, remaining suspended, until the service on the remote
processors has completed and the Client had been notified of that completion.

The Client associates with as many Client Stubs as remote methods that it wants to invoke, one
Client Stub per remote method. How the service is invoked is OS specific, but commonly special
OS calls are provided for this purpose. The Client and Server must agree on the service number
of the method, since this is how the requested service will be identified. The format of the service
number is specific to the RPC implementation, but commonly it includes three distinct values: a
server program number, a server program version number, and a procedure number.

• Client Stub

The Client Stub contains knowledge of how to invoke the remote service, mapping from the
simple request from the Client into a series of messages sent over the network. For this to
function, the Client Stub must know the port number of the service. During setup, the Client Stub
will query the Port Mapper for the port number of the service, also represented as a value called
the service number. The service number may include the program number, the program version
number, and the procedure number.

278

A Client Stub is most often created through a protocol compiler, compiling a specification of the
requested service into a stub that performs the marshalling of the request and the demarshalling
of the response. It may also be written by hand. The Client Stub waits for the response from the
Server Stub via OS calls or by running as a daemon.

• Formatter

The Formatter takes the local representation of the data in the parameter list and changes the
format into network format (for messages to be transmitted) or from network format into local
format (for received messages). If RPCs are directly supported in your OS, then a set of
formatters will be provided for the standard primitive types. For more complex data and object
types, you must provide your own.

• Port Mapper

The Port Mapper binds ports to addresses and returns a port number (address) for a specified
service request. A port is a logical communications channel, and it is usually identified with a
number. A server specifies a service number and registers it with the Port Mapper, who allocates
a port for it and returns it to the Server. If the OS supports RPCs, then it will provide a built-in
Port Mapper for the Servers to use.

• Server

The Server provides the method to be invoked by the remote Client. In order to publish this
service, the Server must register the service with the Port Mapper, who allocates a port number
for it. The Server Stub monitors this port number (via OS services) waiting for requests.

• Server Stub

The Server Stub monitors its specified port number for requests. This is generally done via OS
calls (or by running as a daemon), waiting for a network message with a matching port number.
When a request is received, the message is demarshalled with the help of the Formatter, and the
request is passed on to the Server for processing. When the invoked method completes, the
Server Stub issues a response message back to the Client Stub, which then notifies the waiting
Client. Return values coming from the Server are put into network format (with the aid of the
Formatter) and back into client-side local format (with the aid of the client-side Formatter) for
consumption of the Client.

8.3.5 Consequences

RMCs simplify the process of client-server communication over a network. The writing of the Clients and
Servers is greatly simplified and, although the stubs are protocol specific, they tend to be simplified as
well over IPC programming, especially when protocol compilers are used. Of course, timing is delayed
over local calls because of the necessity to translate into network data format and back and because of
network delays. Further, more elaborate error handling may be required because networking
infrastructure is inherently less reliable than local calls. If timeliness or reliability of service completion is
important, then the underlying transport protocol should be selected with those requirements in mind.
ONC RPC, for example, is implemented with UDP, an "unreliable" protocol. TCP can be used instead, but
the application developer must use lower-level calls to achieve this.

279

8.3.6 Implementation Strategies

As mentioned, many OSs support RPCs "out of the box" and provide programming library support for
RPCs, including protocol compilers. The interested reader is referred to references [2] and [3] for
programming on specific platforms.

The Client and Server must agree on the service number because this identifies the method to be
invoked. As an example, with ONC RPC, the server registers with a call to

int registerrpc(u_long prognum, u_long versnum, u_long
procnum, char *(*procname)(), xdrproc_t inproc,
xdrproc_t outproc)

where

• prognum is the number of the server program providing the procedure to be invoked.
• versnum is the version number of the program.
• procnum is the number of the procedure to be published.
• procname is the procedure to be invoked when a request is made.
• inproc is the data formatting filter to be invoked to convert incoming parameters to local format.
• outproc is the data formatting filter to be invoked to convert outgoing responses to network

format.

In this case, the service number is represented as three distinct u_long values, prognum, versnum, and
procnum.

To wait for requests, a server in an ONC RPC system makes a call to svc_run() to go to sleep and wait for
requests. On the client side, the Client must make a request that results in the transmission of a network
message. In ONC RPC, it does this by invoking the callrpc().

int callrpc(char *host, u_long prognum, u_long versnum,
u_long procnum, char *(*procname)(), xdrproc_t inproc,
char *in, xdrproc_t outproc, char *out)

where

• host is the name of the server machine.
• in points to the parameter list for the requested service (in ONC RPC, this is a single parameter).
• out points to the return value.

The other parameters are equivalent to their counterparts in the registerrpc() call.

When the selected OS does not support RPCs, then the infrastructure may be added, including the Port
Manager, Client Stub, and Server Stub.

8.3.7 Related Patterns

The RMC pattern provides similar capabilities as the Shared Memory Pattern, but it does so at a higher
level of abstraction. Further, it doesn't require specialized hardware support (other than a network or
bus), but it is most commonly provided in Unix and related operating systems. It requires the Client and

280

Server to use identical numbering conventions for the program, version, and procedures (commonly
achieved by using shared include files).

The RMC pattern makes no attempt to optimize network traffic and is a call-on-demand or pull approach;
that is, the Server merely responds to a request from the Client. The Observer pattern provides a push
approach in which the Clients registers with the Server for notification when data-of-interest has
changed. The RMC pattern is preferred when it is not data that is being shared but rather invocation of a
service that just happens to be remotely located.

8.3.8 Sample Model

The simple three-processor model shown in Figure 8-4 illustrates the pattern. If the example is deployed
on Unix operating systems that support RPCs, then the application developer is really only concerned
with three of the classes: Alarm Manager, Sensor Control, and Motion Sensor. The rest are created and
managed invisibly for him or her by the operating systems. The operating system-created classes are
shown with a dashed-line border. If you are realizing the pattern without operating system support, then
you will implement these classes as well.

Figure 8-4. Remote Method Call Example

The scenario in Figure 8-5 shows a typical application of this pattern using the model structure shown in
Figure 8-4. To differentiate between the messages visible to the application-level classes and those
visible only to the infrastructure classes, the application-level messages are shown in bold, and the
messages among the infrastructure are shown lightfaced. In addition, the thick line at the left of the
sequence diagram (called a "collaboration boundary") represents all objects other than those explicitly
shown. In this case, it represents the underlying OS and networking structures that are not explicitly
shown on the diagram.

Figure 8-5. Remote Method Call Scenario

281

We can see that the Motion Sensor object acts as a server. It registers with the OS via registerrpc()
operation for both methods (get() and configure()) it wants to publish. Then it goes to sleep, waiting for
the client requests via the svc_run() operation call.

The Sensor Control client calls the Motion Sensor::configure() operation via the RPC mechanism. The
infrastructure takes care of the details, including the creation of the Configure Client Stub, which queries
the Host Port Mapper to identify the logical port and then invokes the Configure Client Stub. This object
in turn calls the desired operation and returns the value OK.

Later, the Alarm Manager receives a timeout event, and it goes to get the sensor value. It does this,
naturally, via the RPC mechanism in a way very similar to the previous case. From the application
viewpoint, very little must be done to invoke the methods on the remove server object.

8.4 Observer Pattern
The Observer Pattern is perhaps arguably more of a mechanistic design than architectural design pattern.
However, it will serve as the basis for other distribution collaboration architecture patterns, and so it is
included here.

8.4.1 Abstract

282

The Observer Pattern (aka "Publish-Subscribe") addresses the specific issue of how to notify a set of
clients in a timely way that a value that they care about has changed, especially when the notification
process is to be repeated for a relatively long period of time. The basic solution offered by the Observer
Pattern is to have the clients "subscribe" to the server to be notified about the value in question
according to some policy. This policy can be "when the value changes," "at least every so often," "at
most every so often," etc. This minimizes computational effort for notification of clients and across a
communications bus and minimizes the bus bandwidth required for notification of the appropriate clients.

8.4.2 Problem

The problem addressed by the Observer Pattern is how to notify some number of clients in a timely
fashion of a data value according to some abstract policy, such as "when it changes," "every so often,"
"at most every so often," and "at least every so often." One approach is for every client to query the data
value but this can be computationally wasteful, especially when a client wants to be notified only when
the data value changes. Another solution is for the server of this information to be designed knowing its
clients. However, we don't want to "break" the classic client-server model by giving the server knowledge
about its clients. That makes the addition of new clients a design change, making it more difficult to do
dynamically at run-time.

8.4.3 Pattern Structure

Figure 8-6 shows the structure of the Observer Pattern. The structure is very simple, expressing a very
simple idea; that the solution is to dynamically couple the client to the server with a subscription policy.
The server contains that data of interest, and clients register or deregister for it. When a client registers,
it supplies a way to send that information to the client. Classically, this is a callback (method address),
but it can also be an object ID or some other means to pass the value back to the client. When the policy
indicates the data should be sent to the clients, the server looks up all the registered clients and sends it
to the clients

Figure 8-6. Observer Pattern

283

This pattern is what is classically deemed a "mechanistic" design pattern because the scope of the
application of the pattern is "collab-orationwide" rather than "systemwide." However, it is used as a basis
for more elaborate patterns that employ its principle across distributed architectures, and so it is included
here.

8.4.4 Collaboration Roles

• Abstract Client

The Abstract Client associates with the Abstract Subject so that it can invoke subscribe() and
unsubscribe() as necessary. It contains an accept() operation called to accept the information
required via the subscription, the address (as a Notification Handle) of which is passed to the
Abstract Subject instance to which it connects. There are many different ways to specify how to
notify the client when new or updated information is available, but callbacks (pointers to an
accept() operation of the client) are the most common.

• Abstract Subject

The Abstract Subject acts as a server of information desired by the Abstract Clients. It accepts
subscribe and unsubscribe requests from its clients. When the policy dictates that the Abstract
Subject must notify its clients, it walks the client list to notify each. As noted in the
Implementation Strategies sections, a number of implementation means may be used to notify
the subscribed clients.

• Notification Handle

284

The Notification Handle stores information for each client so that the Abstract Subject can notify
the Abstract Client of the value stored in the Data class. The most common implementation
strategy for object communication is to use a pointer (or a reference) to the Abstract
Client::accept() operation. However, there are other means to implement Notification Handles,
such as local object identifiers, protocol-specific remote object IDs, network node port numbers,
or even URLs.

• Concrete Client

The Concrete Client is an application-specific subclass of the Abstract Client. The pattern is
applied by subclassing the Abstract Client and adding application-specific semantics into the new
subclass.

• Concrete Subject

The Concrete Subject is an application-specific subclass of the Abstract Subject class. The pattern
is applied by subclassing the Abstract Subject and adding application-specific semantics to the
subclass.

• Data

The Data class contains the information that the Abstract Subject knows and the Abstract Client
wants to know. The Data object containing the appropriate value may be shared with the clients
either "by reference" (such as passing a pointer to the single instance of the Data object) or "by
value" (copying the Data object for each of the subscribing clients).

8.4.5 Consequences

The Observer Pattern simplifies the process of managing the sharing of values among a single server with
possibly many clients. The simplification occurs in a number of ways. First, the Observer Pattern has run-
time flexibility. It is easy at run-time to change the number of subscribers as well as the identity of the
subscribers because the Abstract Subject does not need to have any information about its clients prior to
their subscription. Further, all this information that the Abstract Subject needs can be provided by the
clients during the subscription process. Second, a single policy to the timely or efficient updating of the
clients can be centralized in the server and not replicated in the potentially many clients. This means that
the code that implements the notification policy needs to be running in only a single place (the server)
rather than many places (the individual clients).

8.4.6 Implementation Strategies

The primary points of variation in implementation of the Observer Pattern are in the formulation of the
notification Handle, the implementation of the notification policy, and the type of data sharing.

The most common means for implementing object associations is a pointer (in C or C++) or a reference
(in C++ or Java). A callback is a virtualized association and may use the same implementation. In this
case, the one-to-many composition relation between the Abstract Subject and the Notification Handle
classes is implemented using an array or list of function pointers. When the server and the clients are not
in the same address space, we use a Proxy Pattern, which is discussed later in the chapter.

285

The notification policy may be built in to the Abstract Subject and potentially overridden in the Concrete
Subject subclasses, or the Strategy Pattern may be employed. To use the Strategy Pattern, the
notification policy is reified as a separate class that instructs the Abstract Subject when it is appropriate
to notify the registered clients. The following are the most common notification policies.

• When the relevant data (Data.value) changes
• Periodically
• Both at the time of change and periodically

The last primary implementation issue is how to pass the information around. The two primary
approaches are by reference and by value. When passed by reference, the most common implementation
is to pass a pointer or reference to the single Data object owned by the server. In this pattern it is
important to ensure that the clients only read the information; it should only be modified by the Abstract
Subject. Further, if the data is to be shared among clients that may reside in different threads, then care
must be taken to protect the data from corruption due to mutual exclusion problems. The resource
management patterns from Chapter 5, such as the Guarded Call Pattern, can be used to ensure the
resource's integrity is maintained. When the data is shared by value, then a copy of the Data object is
made for each subscriber—who then has the explicit responsibility to destroy that object when it is no
longer needed. This approach has the advantage that data protect issues go away but the disadvantage
that more memory is needed and, the issues around dynamic allocation, such as lack of timeliness
predictability and memory fragmentation, must be dealt with.

8.4.7 Related Patterns

The Observer Pattern is a simple approach that may be elaborated to address sharing of information
between a single server and a set of clients. It serves as the founding concept for the Data Bus, Proxy,
and Broker Patterns, for example.

8.4.8 Sample Model

Figure 8-7 shows a straightforward example of this simple pattern. Figure 8-7a shows the class structure
of the model. Central to that structure is the Wheel Sensor, which acts as the «concrete subject», and
the Cruise Control, Speedometer, and the Antispin Controller act as «concrete clients».

Figure 8-7. Observer Pattern Example

286

Figure 8-7b shows an example scenario of the execution of the structure shown in Figure 8-7a. In this
scenario, each of the clients registers with the server by calling its subscribe operation. Later, when an
evGetData event is sent to the server, it walks the Callback List to find all the registered clients and
sends them the data. This is done by calling the Callbacklist::getFirst and CallbackList::getNext()
operations; these return a pointer to a client, which may then be dereferenced and the target object's
accept() function called. When the CallbackList::getNext() operation returns NULL, then the walk through
the list is complete. At the end of the scenario, the Antispin Controller is sent an evDisable event, and so
it unsubscribes from the server.

8.5 Data Bus Pattern

287

The Data Bus Pattern further abstracts the Observer Pattern by providing a common (logical) bus to
which multiple servers post their information and where multiple clients come to get various events and
data posted to the bus. This pattern is useful when a large number of servers and clients must share data
and events and is easily supported by some hardware bus structures that broadcast messages, such as
the CAN (Control Area Network) bus architectures.

8.5.1 Abstract

The Data Bus Pattern provides a single locale (the "Data Bus") for the location of information to be
shared across multiple processors. Clients desiring information have a common location for pulling
information as desired or subscribing for pushed data. The Data Bus Pattern is basically a Proxy Pattern
with a centralized store into which various data objects may be plugged.

8.5.2 Problem

Many systems need to share many different data among a mixture of servers and clients, some of whom
might not be known when the client or data is designed. This pattern solves the problem by providing a
central storage facility into which data that is to be shared may be plugged along with metadata that
describes its contents.

8.5.3 Pattern Structure

The pattern comes in both "push" and "pull" varieties. In the pull version, the client objects check the
Data Bus for new data of concern. To get new or updated information, the Concrete Client number
queries the Data Bus for the information again. Figure 8-8 shows the structure of the pull version of the
Data Bus Pattern. In the push version, shown in Figure 8-9, the Listener objects register with the Data
Bus, just as the client objects subscribe with the server in the Observer Pattern. The Listener objects are
subsequently notified according to some policy, just as when that datum is updated to the Data Bus.

Figure 8-8. Data Bus Pattern (Pull Version)

288

Figure 8-9. Data Bus Pattern (Push Version)

289

The pattern also contains metadata—that is, information about the data. The metadata in this pattern are
the data types, ID types, and units of the data objects stored. The metadata is useful because it allows
data to be identified and properly used, even when it is published in a different type of unit from how its
clients wish to manipulate it. The metadata serves to further decouple the client implementation from the
server's.

8.5.4 Collaboration Roles

• Abstract Data

The Abstract Data class specifies the basic structure of all data objects that may be plugged into
the Data Bus. The important attributes are the following.

Data ID: ID Type

290

The Data ID identifies which datum this is as an enumerated value. For example, the Data ID
Type might be {Wheelspeed=0, EngineSpeed=2, EngineTemperature=3, OilTemperature=4,
OilPressure=5}.

Data Name: String

The Data Name provides an alternative means to identify the datum of concern. The advantage of
using this approach is that this is an inherently extensible data type at the expense of
computational effort to parse and search strings.

Info Type: Data Type

The Info Type is the primitive type of the information, as opposed to its name, which is provided
by the first two attributes. This is an enumerated type of the primitive types available. For
example, it might be {SHORT, INT, LONG, FLOAT, DOUBLE, STRING}.

Data Units

This attribute identifies the application units for the datum in question, also stored as an
enumerated type. For example, if the data represents a weight, then units might be one of
{GRAM, KILOGRAM, OUNCE, POUND, TON}.

• Abstract Client

In the pull version, the Abstract Client requests specified Data from the Data Bus when it wants
to check for new or updated data. In the push version, the Listener subscribes to the Data Bus
and notifies its associated Abstract Client when it has new data. The Listener specifies the Data
ID (or the Data Name) to which it wishes to subscribe.

• Abstract Subject

The Abstract Subject provides the Data that plug into the Data Bus. There are typically many
different Abstract Subjects, and each Abstract Subject may, in fact, provide multiple different
Data objects. Each Data object is distinguished on the basis of its Data ID and/or its Data Name
attribute. Most commonly, a Data object with a specific Data ID is only provided by a single
Abstract Subject instance.

• Concrete Data

This is the specific Data subclass that defines a systemwide unique datum. It will have a unique
Data ID and Data Name. The subclass includes the typed attribute value.

• Concrete Client

This is the specific subclass of the Abstract Client that uses the Data objects it gets from one or
more Abstract Subjects via the Data Bus.

• Concrete Subject

291

The Concrete Subject is an instantiable subclass of Abstract Subject.

• Data Bus

The Data Bus provides the centralized locale for the Data objects to be shared. The Data Bus
does not know the specific subclasses of the Data class that will be plugged into it or even how
many different Data objects will be held.

In the push version of the pattern, the Data Bus object strongly aggregates a set of Notification
Lists—one for each different unique Data ID or Data Name. This is shown in Figure 8-9 with the
{mapped} constraint, meaning that there is a Notification List for every different Data object
aggregated by the Data Bus.

The Data Bus object provides a number of important operations.

get(DataID: ID Type): Concrete Data

In the pull version, the get operation finds the specified data by the Data ID and returns it to the
calling Abstract Client.

get(DataName: String): Concrete Data

In the pull version, the get operation finds the specified data by the Data Name attribute and
returns it to the calling Abstract Client.

Subscribe(DataID: ID Type; Handle: Notification Handle)

In the push version, the Listener subscribes or unsubscribes to the requested data. This can be
done by calling this operation and passing in the Data ID.

Subscribe(DataName: String; Handle: Notification Handle)

This operation works the same as the other Subscribe operation except that it uses the Data
Name rather than the Data ID.

Unsubscribe(DataID: ID Type; Handle: Notification Handle)

This operation allows a Listener to unsubscribe to a specific Datum. The Data ID specifies which
Datum, and the Handle specifies which client.

Unsubscribe(DataName: String; Handle: Notification Handle)

This operation serves the same purpose as the previous unsubscribe operation but uses the Data
Name to identify the Datum of interest.

update(d: Concrete Data)

The operation update() replaces the existing Data object with the same Data ID (or Data Name)
if one exists. If not, then the Data object is added to the list of available Data objects.

292

• Data Type

This is an enumeration of primitive data types used to represent the values in the Concrete Data
objects, such as int, long, float, double, string, and so on. This metadata allows subscribers to
deal with the data in different formats.

• ID Type

The ID Type identifies the logical name of the Concrete Data in the system. There may be many
objects with type int, but the Data Type allows the specific information carried by the Data
objects to be known. This is an enumeration type—for example, {Wheelspeed=0,
EngineSpeed=2, EngineTemperature=3, OilTemperature=4, OilPressure=5}.

• Listener

The Listener object monitors the Data Bus via periodic polling for new Data objects with a specific
Data ID or Data Name. The Listener only appears in the push version of the pattern.

• Notification List

In the push version of the pattern, the Data Bus must maintain a list of subscribers for each Data
object with a unique Data ID or Data Name. Each Notification List manages a list of subscribers,
and each subscriber has a unique Notification Handle to identify how the data may be pushed to
it when appropriate.

• Notification Handle

This object serves the same function as in the Observer Pattern: provides a means for the Data
Bus to send the data to the Abstract Client when it must. In this case, the Notification Handles
must be implemented in such a way as to cross address space boundaries, such as an Object ID
with a processor address known to the underlying communications protocol.

• Unit Type

The Unit Type is an enumerated type of units appropriate for the data, such as {OUNCES,
POUNDS, GRAMS, KILOGRAMS, INCHES, FEET, YARDS, MILES, CENTIMETERS, METERS,
KILOMETERS, DEGREES_F, DEGREES_C } or whatever may be appropriate for the application.

8.5.5 Consequences

The Data Bus pattern has an advantage in that there is always a single location for clients to go and
acquire required data and for servers to publish their data. The Data Bus doesn't understand the
semantics of the data that it serves to the clients, but it can manage an arbitrarily large set of different
data objects and types. The Data Bus is very extensible, and new data object types may be added even
at run-time without modification of the Data Bus and its closely related classes. All that is required is
creating the appropriate Concrete Subject and Concrete Client and adding the enumerated Data ID to the
ID Type and possibly adding additional unit values to the Unit Type.

293

The Data Bus location, or at least knowledge of how to send it messages, must be known at design time.
The location of the Data Bus must be rich enough to store all the instances of the subclasses of the
Abstract Data class. The traffic required to manage the serving of all the information contained by the
Data Bus may limit that node's capacity to do other work. The push version of the pattern is a bit more
complicated but minimizes traffic over the underlying communications media because data is only sent
out to the subscribed clients and only when it is appropriate to do so. The pull version, while a bit
simpler, may result in more overall bus traffic to do repeated queries for data that may not have
changed.

This pattern is useful for symmetric architectures, especially when the servers are located on
"unconvenient" processors, such as those with low capacity to manage the required communications
traffic or those that may be relatively inaccessible to the clients.

8.5.6 Implementation Strategies

The Data Bus may be implemented on top of a regular data base server if desired, but many embedded
systems lack the resources for that approach. Because the Data Bus is potentially remote, the Abstract
Subject, Abstract Client, and Listener class must know how to marshal messages to communicate with
the Data Bus. That infrastructure is protocol-specific and is not represented in the pattern.

8.5.7 Related Patterns

The Observer Pattern offers capabilities similar to the push version of the Data Bus Pattern but only
locally—that is, within the same address space. The Proxy Pattern may be thought of as a distributed
version of the Observer Pattern and offers capabilities similar to the Data Bus Pattern. In both of these
alternatives, the servers and clients ultimately link directly with each other, requiring the clients to know
a priori how to contact the servers. Thus, these latter patterns are more appropriate for asymmetric
distribution architectures wherein the location of the objects is known at design time. The Data Bus
Pattern provides these capabilities for a symmetric architecture, which permits dynamic load balancing to
occur as the system runs.

8.5.8 Sample Model

Figure 8-10 shows the four-processor system as an example of the pull version of the pattern. The
system controls a motor, monitors its output speed, and provides a user interface. The fourth processor
manages the repository: the Data Bus and its aggregated Data objects.

Figure 8-10. Data Bus Pattern Example Structure

294

The User Control Processor contains an instance of class Motor Controller that takes the input from a
Knob and uses it to set the output speed of the Motor. Motor Controller acts as a concrete server for the
SetMValue (set motor value) information. The Motor Controller updates this information to the Data Bus
object on the Repository processor. The Motor object running on the Motor Control Processor is a client
for this information and uses it as the commanded speed of the motor. It gets that information from the
Data Bus.

The Monitoring Processor contains the instance of the Motor Sensor class. This class monitors the true
output speed of the motor and acts as a server for ActualMValue (actual motor value). It writes this value
out to the Data Bus where it is pulled by the Motor View object running on the User Control Processor.

The Motor View is a client for both the SetMValue and the ActualMValue data objects. This object displays
the commanded (SetMValue) and the true (ActualMValue) speeds for the motor on the user display. It
gets this information from the Data Bus in the normal (pull) way.

295

Note that the Data objects SetMValuex and ActualMValuex are all instances of the class Motor Speed. For
clarity reasons, the object names differ on the different processors (because they are, after all, different
objects even if they have identical values). For example, SetMValue0 is the instance owned by the Data
Bus, while SetMValue1 is owned by the server (Motor Controller), SetMValue2 is owned by the Motor
client, and SetMValue3 is owned by the Motor View client. The Motor Speed class depends on the Units,
IDs, and Data Type classes, all enumerated types, as shown in the figure.

Figure 8-11 shows a scenario of the structural model shown in Figure 8-10. The scenario begins with the
Motor Controller receiving a set value from the Knob. It creates a local instance of Motor Speed called
SetMValue1. It then invokes DataBus.update(). The Data Bus object searches for the presence of the
specified DataID (which it doesn't find), and then it creates a local copy of it called SetMValue0. Later,
when the Motor queries the Data Bus for the set value, the Data Bus finds the requested data object and
returns it.

Figure 8-11. Data Bus Pattern Example Scenario

296

The Motor Sensor receives a timeout (shown as a tm(ACQUIRE_ TIME) message in the scenario), and it
then acquires the data, creates the ActualMValue1 instance, and updates the Data Bus in a very similar
fashion to the previous example.

Later, the Motor View object requests both the set value and the actual value for display. The Data Bus
has both values and returns them, in turn, to the Motor View. Finally, the Motor Controller receives
another set value, and the Data Bus object updates the existing value of the SetMValue0 instance on the
Repository Processor.

8.6 Proxy Pattern
The Proxy Pattern abstracts the true server from the client by means of a "stand-in" or surrogate class
providing a separation of a client and a server, allowing the hiding of specified properties of the server
from the clients.

8.6.1 Abstract

The Proxy Pattern abstracts the true server from the client by means of a "stand-in" or surrogate class.
There are a number of reasons why this may be useful, such as to hide some particular implementation
properties from the clients and thus allow them to vary transparently to the client. For our purposes here,
the primary reason to use the Proxy Pattern is to hide the fact that a server may be actually located in
another address space from its client. This allows the server to be located in any accessible location, and
the clients need not concern themselves with how to contact the true server to access required
information or services.

8.6.2 Problem

The design of modern embedded systems must often be deployed across multiple address spaces, such
as different processors. Often such details are subject to change during the design process or, even
worse, during the implementation of the system. It is problematic to "hard-code" the knowledge that a
server may be remote because this may change many times as the design progresses. Further, the
clients and servers may be redeployed in other physical architectures and using different communications
media. If the clients are intimately aware of these design details, then porting the clients to the new
platforms is more difficult.

The two primary problems addressed by the Proxy Pattern are the transparency of the potential
remoteness of the servers and the hiding and encapsulation of the means by which to contact such
remote servers.

8.6.3 Pattern Structure

The Proxy Pattern, shown in Figure 8-12, clearly shows its lineage from the Observer Pattern. Indeed, the
Proxy Pattern differs primarily in that it adds a proxy between the Abstract Client and the Abstract
Subject.

Figure 8-12. Proxy Pattern

297

The pattern has two sides. In the first side, the Client-side Proxies subscribe to the Server-side Proxies,
which publish the data under the command of the Concrete Servers. When the Concrete Servers call the
send() operation, all the remote Client-side Proxies are notified of the new data.

On the other side, the Concrete Clients subscribe in turn to the Client-side Proxies, just as in the
Observer Pattern, where Concrete Clients subscribe to Concrete Servers. When these Client-side Proxies
are notified of new data, they walk their notification lists to send the data to all their local subscribers.

Although the structure of the pattern emphasizes the exchange of Data objects, this is only one kind of
service that can be performed via the Proxy Pattern. In fact, any service may be published by the server
and accessed via the proxy classes, even if no data is actually exchanged.

8.6.4 Collaboration Roles

• Abstract Client

The Abstract Client associates with the Client-side Proxy so that it can invoke the latter's
subscribe() and unsubscribe() operations as necessary. It contains an accept() operation called to
accept the information required via the subscription, the address (as a Notification Handle) of
which is passed to the Client-side Proxy instance to which it connects.

• Abstract Proxy

The Abstract Proxy provides the general mechanisms to handle client subscriptions and data
delivery. It aggregates, via composition, zero-to-many Notification Handle objects (to notify the
instances of its clients) and Data object. It has two subclasses: one to service the application
clients and one to service the application server. On the client-side, the proxy acts in the same

298

fashion as the Abstract Subject class in the Observer Pattern: Clients subscribe to receive the
data that is subsequently "pushed" to them. On the server-side, the Client-side Proxy subclass
acts as a (remote) client to the Server-side Proxy subclass.

• Abstract Server

The Abstract Server acts as a server of information desired by the Abstract Clients. When
appropriate, it pushes the data object to the Server-side Proxy by calling the latter's send()
operation. There is only a single Server-side Proxy object for each Abstract Server. The Abstract
Server is subclassed into Concrete Server for the specific application classes.

• Client-side Proxy

The Client-side Proxy is a specialized proxy that serves as the local "stand-in" for the remote
server. Its clients are local, so it uses localized Notification Handles so that when it receives
updated information from its associated Server-side Proxy, it can notify its local clients. It must
unmarshal the data messages and reformat the Data Object into local format from network
format. It subscribes to the Server-side Proxy that ultimately provides the marshalled data from
the Abstract Server.

The Client-side Proxy usually subscribes to the Server-side Proxy immediately upon its creation or
as soon as its first client subscribes.

• Concrete Client

The Concrete Client is an application-specific subclass of the Abstract Client. The pattern is
applied by subclassing the Abstract Client and adding application-specific semantics into the new
subclass.

• Concrete Server

The Concrete Subject is an application-specific subclass of the Abstract Server class. The pattern
is applied by subclassing the Abstract Server and adding application-specific semantics to the
subclass.

• Data

The Data class contains the information that the Abstract Server knows and the Abstract Client
wants to know. The Data object containing the appropriate value may be shared with the clients
by value, since it must be at least potentially delivered to different address spaces.

• Local Notification Handle

This subclass of the Notification Handle class is used by the Client-side Proxy class. Most
commonly, callbacks (pointers to the accept() method of the Client-side Proxy class) are used for
the Local Notification.

• Notification Handle

299

The Notification Handle stores information for each client so that the Abstract Proxy can notify its
clients of the value stored in the Data class.

• Remote Notification Handle

This subclass of the Notification Handle class is used by the Server-side Proxy class to store the
required information to contact its remote clients, instances of the Client-side Proxy class.

• Server-side Proxy

The Server-side Proxy provides encapsulation of the Abstract Server from the communications
media and protocols. It manages remote subscriptions from Client-side Proxy objects and notifies
them when data is "pushed" to it by the Abstract Server. It is responsible for marshalling the
information into a network or bus message and converting the data values into network format.
The Server-side Proxy usually subscribes to the Abstract Subject immediately upon its creation.

8.6.5 Consequences

The Proxy Pattern does a good job of isolating the subject from knowledge that the server may be
remote. The advantage is that the clients are simplified, not having to deal differently with remote and
local clients. The Proxy Pattern also encapsulates the knowledge of how to contact the servers into the
proxy classes so that should the communications media change, fewer classes must be updated.

Because there are usually many fewer client-proxy instances (one per data type per address space) than
client instances, the traffic on the communications media is minimized. One message is sent across the
bus or network for each proxy, rather than one per client. This reduces bus traffic, a common bottleneck
in embedded and real-time systems. Bus traffic is reduced even further because of the use of a
subscription policy, resulting in transmission of the data only when necessary, as opposed to polling for
the data.

8.6.6 Implementation Strategies

On the local (client-proxy) side, the same implementation strategies used for the Observer Pattern apply
here. The Abstract Client objects subscribe to the Client-side Proxies in the same way as in the Observer
Pattern. For the remote (server) side, the implementation is generally highly protocol-specific. The
Server-side Proxy marshals the messages from the Abstract Server and invokes the communications
system to transmit them to its clients, the remote Client-side Proxy objects. The Server-side Proxy can
do this because the Client-side Proxy objects subscribe to the Server-side Proxy.

Note that in this case, the Client-side Proxy objects must know a priori how to contact the Server-side
Proxy for the desired information. Thus, this pattern is especially useful on asymmetric distribution
architectures—that is, architectures in which the locations of objects are known at design-time.

Note also that both the Client-side Proxy and the Server-side Proxy classes aggregate Notification Handle
objects via composition. This latter class will typically be subclassed into "local" and "remote" flavors as
an optimization. Local Notification Handles may be simple function pointers to the accept() method of the
Concrete Client class. Remote Notification Handles must rely on the underlying transport protocol for
message delivery.

300

8.6.7 Related Patterns

This pattern is an extension of the Observer Pattern to deal with situations in which the servers are in a
different address space from their clients. In the special case in which the server and its clients are
known to be in the same address space, the Observer Pattern would be a preferable choice because of its
simplicity.

The Proxy Pattern here requires a priori knowledge as to the location of the server, although not on the
part of the clients. This means that the client proxies know how to subscribe to the server proxy. This is
the case in asymmetric distribution architectures in which the address spaces where objects will run is
known at design-time. The objects then use this design-time knowledge to simplify their task.

For symmetric distribution architectures, in which the locations of the servers are not known at design
time, the Data Bus Pattern centralizes the shared information. The Broker Pattern, described next, allows
the clients to dynamically locate the desired servers after locating them through the object request
broker.

8.6.8 Sample Model

The example for the Proxy Pattern is shown in Figures 8-13 and 8-14. Figure 8-13 shows the structure of
the collaboration and the mapping of the objects onto the physical architecture. Figure 8-14 shows how
such a system behaves.

Figure 8-13. Proxy Pattern Example Structure

301

Figure 8-14. Proxy Pattern Example Scenario

Figure 8-13 shows four nodes: the Gas Mixer, Safety, Medical Delivery, and User Control processors. The
Gas Mixer contains the server, an object of class O2 Flow Sensor. This connects with a server-side proxy
class O2 Flow Server Proxy. This proxy aggregates Object IDs to use as addresses on the bus connecting
the nodes running a custom communications protocol. This bus (shown as the heavy lines connecting the
nodes) provides the physical means to deliver the messages among the objects running on different
processors.

The Gas Mixer Processor contains the O2 Flow Sensor, which acts as a server for the data. The O2 Flow
Sensor invokes O2 Server Proxy::send() to send the data to all the registered clients. This is done by
walking the notification handle list (which holds Object IDs that the lower-level communications protocol
uses for message delivery) and sending a message to each registered client (the O2 Flow Client Proxies).

There are four clients of the O2 Flow data object: the Safety Monitor running on the Safety Processor, the
Inspiration Controller and the Vaporizer running on the Medical Deliver Processor, and Histogram View
running on the User Control Processor. Each processor that contains at least one client also has a single
O2 Flow Client Proxy instance to obtain the value from the O2 Flow Server Proxy.

The scenario shown in Figure 8-14 shows the clients subscribing to their client proxies and the client
proxies subscribing to the server proxy. Later, when the O2 Flow Sensor receives an update, it invokes
the O2 Flow Server Proxy::send() operation, which walks the Notification Handle list (not shown to save

302

space), and for each registered client proxy, it sends the data. In turn, the receiving client proxy walks its
client list for the ultimate delivery of the data.

Note: Although the send() operation walks the list of subscribers (Remote Notification Handles) in a serial
fashion, the delivery of the messages is generally asynchronous, and you cannot determine the arrival
order of the messages from the sending order. This is because the objects in different addresses usually
operate in different threads, so relative order cannot be determined. That is why in the second update a
different deliver order is shown with respect to the delivery of the data to the concrete clients.

8.7 Broker Pattern
The Broker Pattern may be thought of as a symmetric version of the Proxy Pattern—that is, it provides a
Proxy Pattern in situations where the location of the clients and servers are not known at design time.

8.7.1 Abstract

The Broker Pattern extends the Proxy Pattern through the inclusion of the Broker—an "object reference
repository" globally visible to both the clients and the servers. This broker facilitates the location of the
servers for the clients so that their respective locations need not be known at design time. This means
that more complex systems that can use a symmetric deployment architecture, such as is required for
dynamic load balancing, can be employed.

8.7.2 Problem

In addition to the problems addressed by the Proxy Pattern (such as communication infrastructure
transparency), a limitation of most of the distribution patterns is that they require a priori knowledge of
the location of the servers. This limits their use to asymmetric distribution architectures. Ideally, the
solution should provide a means that can locate and then invoke services at the request of the client,
including subscription to published data.

8.7.3 Pattern Structure

Figure 8-15a shows the basic structure for the Broker Pattern, containing only the key elements—the
Broker, Client, Client-side Proxy, Server, and Server-side Proxy. Figure 8-15b shows the complete
structure, including the Notification Handles and Data objects. Similar to the Remote Method Call Pattern,
the easiest implementation from the application developer's point of view is to use a commercial
middleware product, such as a CORBA Object Request Broker (ORB). However, sometimes it is desirable
to implement a lightweight Broker pattern, and in this case, the infrastructure classes may themselves be
implemented by the application developer.

Figure 8-15. Broker Pattern

303

The pattern comes in two flavors: the dynamic and static dispatch versions. In the dynamic dispatch
version, the Broker mediates all service requests so that there is never a direct linkage between the
Client (or the Client-side Proxy) and the Server (or the Server-side Proxy). In the static version, the
Broker serves up a reference address for the Server, and then the Client-side Proxy uses this information
to connect directly with the Server-side Proxy for the duration of the session. The Broker is only
recontacted if the connect link between the proxies breaks.

Note also that just as with the Proxy Pattern, sharing Data objects is just one kind of service invocation.
It is also possible to invoke services as a one-time request that causes some action to occur on the
server-side without transmission of information.

8.7.4 Collaboration Roles

• Abstract Client

304

The Abstract Client associates with the Client-side Proxy so that it can invoke the latter's
subscribe() and unsubscribe() operations as necessary. It contains an accept() operation called to
accept the information required via the subscription, the address (as a Notification Handle) of
which is passed to the Client-side Proxy instance to which it connects.

• Abstract Proxy

The Abstract Proxy provides the general mechanisms to handle client subscriptions and data
delivery. It aggregates, via composition, zero-to-many Notification Handle objects (to notify the
instances of its clients) and the Data object. It has two subclasses: one to service the application
clients and one to service the application server. On the client-side, the proxy acts in the same
fashion as the Abstract Subject class in the Observer Pattern—clients subscribe to receive the
data that is subsequently "pushed" to them. On the server-side, the Client-side Proxy subclass
acts as a client to the Server-side Proxy subclass.

• Abstract Server

The Abstract Server acts as a server of information desired by the Abstract Clients. When
appropriate, it pushes the data object to the Server-side Proxy by calling the latter's accept()
operation. There is only a single Server-side Proxy object for each Abstract Server. The Abstract
Server is subclassed into Concrete Server for the specific application classes.

• Broker

Concrete Servers (which register with the aid of the Server-side Proxy) use the Broker to
advertise their services. Concrete Clients (via their Client-side Proxy objects) either request the
services directly from the Broker (which dispatches them) or request the address and then
contact the Server-side Proxy directly, depending on the type of Broker employed.

• Client-side Proxy

The Client-side Proxy is a specialized proxy that serves as the local "stand-in" for the remote
server. Its clients are local, so it uses localized Notification Handles so that when it receives
updated information from its associated Server-side Proxy, it can notify its local clients. It
subscribes to the Server-side Proxy that ultimately provides the marshalled data from the
Abstract Server. The Client-side Proxy must unmarshal the messages, extract the Data object,
and format it into client local format.

In the Broker Pattern, the Client-side Proxy either queries the Broker for the address of the
Server-side Proxy and then subscribes directly to the Server-side Proxy (static linkage model) or
subscribes via the Broker, which sends the request on to the Server-side Proxy at the behest of
the Client-side Proxy.

• Concrete Client

The Concrete Client is an application-specific subclass of the Abstract Client. The pattern is
applied by subclassing the Abstract Client and adding application-specific semantics into the new
subclass.

305

• Concrete Server

The Concrete Subject is an application-specific subclass of the Abstract Server class. The pattern
is applied by subclassing the Abstract Server and adding application-specific semantics to the
subclass.

• Data

The Data class contains the information that the Abstract Server knows and the Abstract Client
wants to know. The Data object containing the appropriate value may be shared with the clients
by value since it must be at least potentially delivered to different address spaces.

• Local Notification Handle

This subclass of the Notification Handle class is used by the Client-side Proxy class. Most
commonly, callbacks (pointers to the accept() method of the Client-side Proxy class) are used for
the Local Notification.

• Notification Handle

The Notification Handle stores information for each client so that the Abstract Proxy can notify its
clients of the value stored in the Data class.

• Remote Notification Handle

This subclass of the Notification Handle class is used by the Server-side Proxy class to store the
required information to contact its remote clients, instances of the Client-side Proxy class. The
Broker stores the Remote Notification Handles of the registered Servers so that these addresses
can either be used by the Client-side Proxies or be used at their request.

• Server-side Proxy

The Server-side Proxy provides encapsulation of the Abstract Server from the communications
media and protocols. It manages remote subscriptions from Client-side Proxy objects and notifies
them when data is "pushed" to it by the Abstract Server. The Client-side Proxy classes register
with the Broker so that Clients can find them. The Server-side Proxy must take the Data object
passed to it from the Concrete Server, reformat it into network format, and marshal a message
to send to the Client-side Proxy.

8.7.5 Consequences

The Broker Pattern is a very effective means for hiding the remoteness of clients and servers. While not
completely successful in hiding all the details, it nevertheless greatly simplifies the creation of systems
with symmetric distribution architectures. There are a number of middleware products that supply ORBs
(Object Request Brokers), which give good, and even real-time, performance. In addition, systems
constructed with this distribution architecture are highly scalable and hide the underlying details of the
processors, their locations, and the communications media. There is good software support for the
creation of models using commercial middleware ORBs.

306

Commercial ORBs do require a minimum amount of resources that may exceed those available in smaller
systems. For these cases, it may be possible to use smaller, less capable ORBs or write one from scratch
that includes only the desired capabilities.

8.7.6 Implementation Strategies

As with the Remote Method Call (RMC) Pattern, protocol compilers greatly facilitate the creation of the
proxies. In the Broker Pattern, protocols between clients and servers are written in Interface Description
Languages (IDLs). Commercial ORBs, such as those based on CORBA, provide IDL compilers that
generate the necessary source-level language statements to implement the model elements.

It is also possible to work at a level above IDL. Some commercial UML tools can use stereotypes on the
model classes to identify the interface classes (proxies) and automatically generate the IDL and then run
the appropriate IDL compilers as a part of generating the distributed application.

Figure 8-16 shows a very simple example captured in the Rhapsody UML tool. [1] In this simple model, a
class called Server_Interface contains an attribute a (of type int) that we want to share with remote
clients. We indicate this sharing by stereotyping the class as a «CORBAInterface». The tool then
generates the CORBA IDL necessary to publish this data via a CORBA ORB. The class Client_Interface
contains an operation getA() that wants to read the data. By stereotyping that class as well, the tool can
generate the necessary IDL and even automatically invoke the IDL compiler.

[1] Rhapsody is a complete UML design automation tool targeted primarily at real-time
and embedded application development, available from I-Logix. See www.ilogix.com.

Figure 8-16. Simple CORBA Example Model

8.7.7 Related Patterns

http://www.ilogix.com/

307

The Broker Pattern may be thought of as an elaborate Proxy Pattern. The Proxy Pattern is an asymmetric
pattern in that the clients require knowledge of the locations of the servers, whereas in the Broker
Pattern, the clients may dynamically discover the relations. This makes the Broker Pattern more scalable
than the Proxy Pattern but also somewhat more heavyweight.

The Remote Method Call Pattern is similar to the Proxy Pattern as well, although it uses a different
underlying infrastructure. The RMC Pattern is likewise asymmetric because the clients and server must
agree on the names of the services and their locations in the system.

8.7.8 Sample Model

Figure 8-17 shows a very simple example with two servers (Thermometer and Furnace) and a single
client (Temperature Controller), along with their associated proxies. In this case, the dynamic broker ORB
handles and dispatches the requests to the registered servers. Note that the servers and clients have no
knowledge as to the locations of each other—it is entirely managed by the broker.

Figure 8-17. Broker Pattern

308

References
[1] www.cypress.com

[2] Bloomer, John. Power Programming with RPC, Sebastopol, CA: O'Reilly and Associates, 1992.

[3] VxWorks Programmer's Guide, Version 5.3.1, Alameda, CA: Wind River Systems, 1997.

[4] Gamma, E., R. Helm, name>R. Johnson, and J. Vlissides. Design Patterns: Elements ofReusable
Object-Oriented Software, Reading, MA: Addison-Wesley, 1995.

http://www.cypress.com/

309

[5] Pope, Alan. The CORBA Reference Guide: Understanding the Common Object Request Broker
Architecture, Reading, MA: Addison-Wesley, 1998.

[6] Mowbray, T., and R. Malveau. CORBA Design Patterns, New York: John Wiley & Sons, 1997.

310

Chapter 9. Safety and Reliability Patterns
The following patterns are presented in this chapter.

• Protected Single Channel Pattern: Safety without heavyweight redundancy
• Homogeneous Redundancy: Protection against random faults
• Triple Modular Redundancy: Protection against random fault with continuation of functionality
• Heterogeneous Redundancy Pattern: Protection against random and systematic faults without a

fail-safe state
• Monitor-Actuator Pattern: Protection against random and systematic faults with a fail-safe state
• Sanity Check Pattern: Lightweight protection against random and systematic faults with a fail-

safe state
• Watchdog Pattern: Very lightweight protections and timebase fault and detection of deadlock with

a fail-safe state
• Safety Executive Pattern: Safety for complex systems with complex mechanisms to achieve fail-

safe states

9.1 Introduction
Safety may be defined as freedom from accident or losses [1], whereas reliability refers to the probability
that a system will continue to function for a specified period of time. A safe system may fail frequently as
long as it does not cause accidents, while the reliability of a system does not refer at all to the
consequences of failure if it should occur. The differences between these two concepts escape many
working in the development of real-time and embedded systems, but they can be illustrated with a
simple example. A handgun is considered a very reliable device, but it is still dangerous and prone to
accidents. On the other hand, my 1972 Plymouth station wagon is not very reliable (since it doesn't even
run), but it is very safe as it sits in my garage. [1]

[1] I suppose it could cause an accident if you fell on it.

However, safety and reliability have one important aspect in common: their handling requires redundancy
of some kind in the design of systems. This redundancy is necessary to both identify the dangerous
condition or fault and to take corrective action. To this end, there are a number of common approaches—
patterns—that are used to manage both safety and reliability. This redundancy may be used to enhance
safety or reliability, or sometimes both, depending on the management policy. This chapter identifies and
illustrates a number of these patterns in common use in the development of real-time and embedded
systems.

Faults come in two flavors: systematic and random. Systematic faults (known as "errors" or "design
faults" [2]) are mistakes made at either design or build time. Random faults (known as "failures") occur
because something that at one time worked is now broken. Mechanical and electronic hardware exhibit
both kinds of faults, while software only exhibits systematic faults. The patterns in this chapter use
redundancies in different ways to address safety or reliability.

[2] Although some software companies insist on calling them "features," we will not follow
that trend.

311

Many, but not all, safety-critical systems have a condition of existence known to be safe—a so-called fail-
safe state. For example, the fail-safe state for an automobile cruise control system is OFF; the fail-safe
state for a drill press is OFF. A fail-safe state is usually "off" or depowered, although it may provide
reduced, nonsafety-related monitoring. Not all systems have a fail-safe state. It may be inappropriate to
turn off or depower a jet engine during flight, for example.

When a system has a fail-safe state, safety and reliability are at odds, since the safest thing for the
system to do is enter the fail-safe state. If there is no fail-safe state, then enhancing reliability may (and
typically will) improve safety as well. This results in a number of different patterns that may be used in
different application systems for different reasons. The overlap between safety and reliability is illustrated
in Figure 9-1.

Figure 9-1. Safety Versus Reliability

Given that similar means are used to ensure both safety and reliability, what are the differences? First of
all, safety measures are aimed at improving safety via the detection of unsafe conditions and taking
appropriate actions. To this end, in safety-critical systems, the monitoring is usually of the physical
environment and not so much of the system per se. Further, safety actions are aimed at improving
safety. If the system has a fail-safe state and the system detects a potential hazard, then the correct
thing to do is to invoke the fail-safe state. If the system does not have a fail-safe state, then standard
reliability mechanisms are used.

Reliable systems generally focus on ensuring that they are executing properly: They have, by definition,
high availability. To accomplish that, reliable systems rely on system self-tests, either on power up
(called Power On Self Test, or POST) or during execution (called Built In Test, or BIT) or, most
commonly, both. When a fault is detected, the system limps along as best it can. This may mean
switching to a backup channel or reducing functionality. In many systems both safety and reliability are
important, so compromises are reached, combining both approaches to improve reliability and safety.

Notice that I haven't used the term software safety. Safety is a system issue and can be addressed
through software, hardware, or more usually, a combination of the two. Although safety and reliability
always require some level of redundancy, care must be taken in how the redundancy is applied.
Redundancy is of no use if the portion of the system at fault is shared in the redundant copies—this is

312

called a common mode fault. It is important that a fault in one channel does not affect the functioning of
the alternative channels if safety and reliability are to be improved.

9.1.1 Handling Faults

Faults are ultimately identified in these patterns using redundancy built into the pattern, and they are
usually handled in one of these ways.

• Retrying an operation (feedback fault correction)
• Using information redundancy built into the data itself to correct the fault (feedforward error

correction)
• Going to a fail-safe state
• Alerting monitoring personnel
• Restarting the system

Feedback error correction systems protect only against random, transient faults unless coupled with
another mechanism. The fault can be identified in a number of ways. First, the data may itself contain
information to detect the errors, such as by storing a cyclic redundancy check with the data that detects
when the data is corrupted or by storing multiple copies of the information (often in one's-complement
format) and comparing these copies prior to the use of the data. Most commonly, however, in safety-
critical systems, the error is detected through independent monitoring of the actuation or resulting output
of the system. Once the fault is detected, the data may be reacquired or recomputed, or the computation
process can restart.

Feedforward error correction uses the properties or structure of the data to correct and possibly to
identify the fault. This may be done with an odd number of channels and a voting policy (see the Triple
Modular Redundancy Pattern) or using codes with sufficient Hamming distance to identify single- or dual-
bit errors. Armed with this information, the system may be able to compute not only that the data was
corrupted but what the original uncorrupted value was. Then the system can correct the corrupted data
and continue with the computation at hand.

Some systems have a fail-safe state—that is, a condition known to always be safe and given the
detection of a safety-related fault or a safety hazard transition to that state. Often such a state is OFF or
depowered, although it may be one with limited functionality (such as monitoring only). For example, a
failure in an automotive cruise control results in the system being turned off, or a failure in a patient
ventilator may result in notifying the attending physician and only providing monitoring, not therapy.

If there are monitoring personnel and the fault tolerance time for the specific identified fault is within the
expected reaction time of the monitoring personnel, then alarming can be used to raise awareness of the
fault or hazardous condition. For example, a breathing circuit failure for a patient ventilator has a fault
tolerance time of about five minutes (more if the patient is breathing pure oxygen), so notifying the
attending physician can be an effective way of dealing with that condition. However, an overpressure
situation can only be tolerated for about 250 milliseconds, so alarming would be inappropriate for that
fault.

Finally, a common strategy is to restart the entire system in the hope that the fault was a transient one.
For this strategy to be appropriate, the system must be able to tolerate a reboot both in terms of the
length of time it takes for the system to come back on line but also any potential hazards induced
through the immediate loss of system functionality.

313

9.2 Protected Single Channel Pattern
Complete redundancy is costly. Sometimes it is costly in terms of recurring cost (cost per shipped
system) because hardware is replicated. Sometimes it is costly also in development cost (due to diverse,
or n-way, redundancy). Not all safety-critical and high-reliability systems need the heavy weight and
expensive redundancy required by some safety and reliability patterns. The Protected Single Channel
Pattern is a lightweight means to get some safety and reliability by adding additional checks and actions
(and possibly some level of redundant hardware as well).

9.2.1 Abstract

The Protected Single Channel Pattern uses a single channel to handle sensing and actuation. Safety and
reliability are enhanced through the addition of checks at key points in the channel, which may require
some additional hardware. The Protected Single Channel Pattern will not be able to continue to function
in the presence of persistent faults, but it detects and may be able to handle transient faults.

9.2.2 Problem

Since redundancy is expensive in recurring cost, and the safety and reliability requirements of some
systems may not be as high as with others, a means is needed to improve safety and reliability in an
inexpensive manner even if the improvements in safety and reliability are not as great as with some
other approaches.

9.2.3 Pattern Structure

Figure 9-2a shows the open loop version of the pattern, and Figure 9-2b shows the closed-loop version of
the pattern. The largest-scale structure is the «channel», which is of the same size and scope of a typical
subsystem. It is internally composed of components that handle input and output processing, internal
data transformation, and data integrity checks (and, in the case of the closed-loop control, actuation
monitoring). Safety and reliability policies are distributed within the Data Transformation component(s).

Figure 9-2. Protected Single Channel Pattern

314

9.2.4 Collaboration Roles

• Actuator (Actor)

The Actuator is the actual hardware actuator that performs the actions of the channel. This might
be a heater, motor, switch, relay, fan, hydraulic press, anesthetic vaporizer, or any other device
that carries out the will of the system to perform a safety or reliability-relevant function. There
may be multiple actuators being controlled by a single channel.

• Channel

The channel is an "end-to-end" subsystem that goes all the way from the acquisition of relevant
data to the performance of the actuation based on that data. Normally it transforms data serially,
possibly by combining it with other data. If one datum flows through the entire channel before
the next is acquired, it is called a serial channel. If the channel typically contains many data, each
of which may be in different stages of transformation at any given time, it is called a parallel
channel.

• Data Transformation

The Data Transformation component (which may also be a simple object) does a single
transformation step on the data in the execution of a possible complex algorithm to compute the
appropriate control signals sent to the Actuator. The channel may contain multiple Data
Transformation components; if so, they are arranged in series and work on the data passed from
predecessor to successor. The last Data Transformation component does not have an association
to a successor but instead associates with the Output Processing component.

• Data Validation

315

This component (which may in some cases be a simple object or set of objects) performs checks
on the system and its information during the execution of the channel's behavior. These checks
may be performed internally on the system hardware (RAM tests, for example) or on the data
itself (such as range checks, CRC checks, data inversion checks).

• Input Processing

The Input Processing component (which may be a single object or a set of objects) is where the
raw data is acquired from the Input Sensor and possibly grouped or initially massaged before
being transformed by the Data Transformation component(s).

• Input Sensor (Actor)

This actor is the source of information used to (ultimately) control the actuator. It might be a
thermometer, pressure sensor, photodetector, switch, or any other kind of sensor that is used to
monitor either the actual environment or the proper functioning of the system. This is typically
not monitoring the actuator per se, although it may be monitoring the effect of the actuator. To
avoid a common mode fault condition, the input sensor should not be within the actuator or be
used by the actuator. There may be multiple Input Sensors.

• Output Processing

The Output Processing component (which may be a simple object or set of objects) does the last
stage of the data transformation, taking the computed outputs and translating them into service
requests on the actuator itself. The Output Processing component may be thought of as a device
driver for the Actuator.

9.2.5 Consequences

The Protected Single Channel Pattern (PSCP) is a lightweight means of providing some level of safety and
reliability in the presence of either systematic or random faults. Typically, the PSCP can only continue to
provide services in the presence of transient faults—that is, faults that are due to singular events (such
as electromagnetic corruption of data inside the system or corrupted data) that do not permanently affect
the system. The approach is inexpensive in both recurring cost (because only portions of the channel are
redundant) and in development cost.

This pattern is appropriate for systems with a fail-safe or that do not need to continue to function in the
presence of a persistent fault or when the system is cost-sensitive. Because the Protected Single Channel
Pattern has many points at which a single fault can cause the loss of the entire system, it is not
applicable to all safety-relevant systems.

9.2.6 Implementation Strategies

The implementation issues center around identifying the faults that can lead to system dysfunction or to
a hazard and mitigating them with redundancy-in-the-small. This can be done in several ways. The data
itself may be stored redundantly, for example. When the data is written, a CRC may be computed. When
the data is read, the CRC is checked before the data is used. Or the data itself may be stored multiple
times. One common approach is to store a copy of the data in inverted format (one's complement)
because stuck-at RAM faults can be detected in this way, whereas an identical second copy might not

316

detect it. Semantic knowledge of the data can be used to detect faulty data as well, such as with range
checking. A drug delivery system that computes dosage based on patient weight should look askance at a
patient weight of 500 Kg. Data inversion is yet another approach to detect invalid data. This approach
applies a second algorithm to the end of a computational stream to recompute the original value; if they
don't match, then the data or computation must be corrupt. Other approaches use monitoring of the
output results to detect faults.

9.2.7 Related Patterns

If the system must be able to operate in the presence of permanent faults (whether random or
systematic), then one of the heavier-weight patterns, such as Homogeneous Redundancy or
Heterogeneous Redundancy Patterns, should be used. If it is only necessary to protect against random
faults, then the Homogeneous Redundancy Pattern may be used. If protection is needed from both
random and systematic faults, then the Heterogeneous Redundancy Pattern gives better coverage.

9.2.8 Sample Model

Figure 9-3 shows an example of the Protected Single Channel Pattern, putting in place "redundancy-in-
the-small" at a couple of points in the channel. Two safety-related superclasses appear:
ProtectedOnesComp and ProtectedCRC. The former protects its safety-relevant attributes by storing the
value twice—once in normal form and once in one's-complement form—during a set operation. A get
operation reads the one's-complement form, bit-inverts it, and then compares it to the original value. If
the comparison works, then the value is presumed to be okay. The ProtectedCRC class uses a cyclic
redundancy check over its attribute values to identify in vivo corruption. This is useful when the attribute
is large or when several attributes are protected at once. The concrete classes subclass these abstract
superclasses, and the get and set operations should work without change. Note that the
TemperatureController is a composite class containing two parts, each of which is a subclass of
ProtectedOnesComp. That way, it can detect corruption of both the shutdown and measured
temperatures.

Figure 9-3. Protected Single Channel Pattern Example

317

The Safety Speed Monitor class examines the input from the Speed Sensor actor, and when it exceeds a
threshold, it calls the emergencyStop operation on the Motor class. You can see that adding these small
classes provides the ability to detect certain kinds of errors— those that result in detectable data
corruption. Other errors are not detected, however, illustrating the weakness of this pattern. For
example, a problem in the ROM or the CPU will disable both the actuation and the safety monitoring. This
is called a common mode fault, as discussed earlier.

9.3 Homogeneous Redundancy Pattern
The Homogeneous Redundancy Pattern is primarily a pattern to improve reliability by offering multiple
channels. These channels can operate in sequence, as in the Switch To Backup Pattern (another name for
this pattern), or in parallel, as in the Triple Modular Redundancy Pattern, described later. The pattern
improves reliability by addressing random faults (failures). Since the redundancy is homogeneous, by
definition any systematic fault in one copy of the system is replicated in its clones, so it provides no
protection against systematic faults (errors).

9.3.1 Abstract

An obvious approach to solving the problem of things breaking is to provide multiple copies of that thing.
In safety and reliability architectures, the fundamental unit is called a channel. A channel is a kind of
subsystem, or run-time organizational unit, which is end-to-end in its scope, from the monitoring of real-
world signals to the control of actuators that do the work of the system. The Homogeneous Redundancy
Pattern replicates channels with a switch-to-backup policy in the case of an error.

318

9.3.2 Problem

The problem addressed by the Homogenous Redundancy Pattern is to provide protection against random
faults—that is, failures—in the system execution and to be able to continue to provide functionality in the
presence of a failure. The primary channel should continue to run as long as there are no problems. In
the case of failure within the channel, the system must be able to detect the fault and switch to the
backup channel.

9.3.3 Pattern Structure

The pattern structure is shown in Figure 9-4. We see that the two channels are identical in structure
(hence the pattern name). The checking components implement a switch-to-backup policy by invoking
the other channel when an error is detected in the currently operating channel.

Figure 9-4. Homogeneous Redundancy Pattern

9.3.4 Collaboration Roles

• Actuation Validation

The purpose of this component is to compare the output to the commanded output and
determine when some application-specific fault condition has occurred: If it has, switch to the
other channel. The Actuation Validation component may be a simple data comparison, but in
general, actuation lags commanded validation, and the gain on the actuation is not infinite, so
the Actuation Validation component must consider time lag, inertia, and accuracy limits when
deciding whether the actuation is in error.

• Primary Actuator

319

The Actuator actor is the actual device performing the actuation.

• Data Transformation

This component is the same as in the Protected Single Channel Pattern: It performs a single
transformation step on the input data.

• Data Validation

This component is the same as in the Protected Single Channel Pattern: It validates that the data
is correct or reasonable, except that it stops the processing on the current channel and begins it
on the second channel when a fault is detected.

• Input Processing

This component is the same as in the Protected Single Channel Pattern. It acquires and possibly
performs initial processing on the raw data.

• Input Sensor

This is the source of information used to (ultimately) control the actuator, just as it is in the
Protected Single Channel Pattern.

• Output Processing

This component does the last stage of data transformation and controls the Actuator itself.

• Primary Actuation Channel

This is one of two replicated channels, the one used as a default. It is normally self-tested on
startup, at reset, or every 24 hours, whichever comes first.

• Primary Actuator

The Actuator actor is the actual device performing the actuation. The Primary Actuator is the one
used by default.

• Primary Input Sensor

This is the source of information used to (ultimately) control the actuator, just as it is in the
Protected Single Channel Pattern. This is the primary, or default, Input Sensor.

• Secondary Actuation Channel

This is one of two replicated channels, the one used as the backup. It is normally self-tested on
startup, at reset, or every 24 hours, whichever comes first.

• Secondary Actuator

320

The Actuator actor is the actual device performing the actuation. This is the backup of the first
Actuator.

• Secondary Input Sensor

This is the source of information used to (ultimately) control the actuator, just as it is in the
Protected Single Channel Pattern. This is the backup Input Sensor.

9.3.5 Consequences

The Homogenous Redundancy Pattern has a number of advantages. It is conceptually simple and easy to
design. It provides good coverage for random (that is, hardware and transient) faults, although only if
the hardware is itself replicated. It is usually a simple matter to get good isolation of faults and to
eliminate common mode faults. The pattern applies when random faults occur at a significantly higher
rate than systematic faults, such as in rough or arduous physical envi-ronments. It also is useful for
safety-critical or high-reliability systems that must continue to operate in the presence of faults.

The disadvantages of the pattern are primarily the higher recurring cost and a lack of coverage for
systematic faults. Because the electronic and mechanical hardware must be duplicated for maximal
coverage, each shipping system must bear the cost of additional hardware components. Furthermore,
since the channels are clones, any systematic fault in one channel must, by definition, appear in the
other. The pattern runs a single channel and switches over to a backup channel only when a fault is
detected. This means that the computation step is lost when a fault is detected and either the data is lost
or recovery time to redo the computation must be taken into account in time-critical situations.

9.3.6 Implementation Strategies

The implementation of this pattern is only a bit more work than the implementation of a nonredundant
system. To remove common fault modes, the computing hardware (CPU, memory, etc.) as well as
mechanical systems should be replicated. The only special work is the logic to identify the faults and
switch to the alternative channel when a fault is detected.

9.3.7 Related Patterns

To eliminate much of the recurring cost of this pattern, you can use the Protected Single Channel Pattern.
To add coverage of systematic faults as well, one of the heterogeneous redundancy patterns can be used.
The Triple Modular Redundancy Pattern (TMR) also provides reliability in the presence of random faults,
just like the Homogeneous Redundancy Pattern, but TMR does not have to restart a computation when a
failure is detected. However, TMR is a more expensive design pattern to apply.

9.3.8 Sample Model

The model shown in Figure 9-5 is a simple system that provides closed-loop control of gas flow, such as
for a respirator, based on sensed O2 concentration and gas flow rate. The sensor drivers get the
information from the sensors themselves. The next component in line, the O2 Flow Rate component,
computes the O2 flow rate from this information. This information is fed into the Gas Flow Controller,
which oversees the delivery of sufficient gas to respirate the patient and then commands the Gas Flow
Driver to set the gas flow on the Gas Mixer.

Figure 9-5. Homogeneous Redundancy Pattern Example

321

Faults and hazards are detected by two components: the O2 Monitor and the Gas Flow Monitor. If either
the O2 concentration or delivered gas flow is too low, then the backup channel is activated. The two
channels—Main Flow Controller Channel and Backup Flow Controller Channel—are identical. If one detects
a fault or hazardous condition, the alternative channel is activated. Remember that the channel itself has
logic to initiate, do power on self test and built-in tests, and shut down.

Note that the flow rate received from the Gas Mixer actor comes from a different source than the Flow
Sensor. This independence means that if one is broken (and if we assume a single point fault), then it will
be detected.

9.4 Triple Modular Redundancy Pattern
The Triple Modular Redundancy Pattern (TMR, for short) is a pattern used to enhance reliability and
safety in situations where there is no fail-safe state. The TMR pattern offers an odd number of channels
(three) operating in parallel, each in effect checking the results of all the others. The computational
results or resulting actuation signals are compared, and if there is a disagreement, then a two-out-of-
three majority wins policy is invoked.

9.4.1 Abstract

The TMR pattern is a variation of the Homogeneous Redundancy Pattern that operates three channels in
parallel rather than operating a single channel and switching over to an alternative when a fault is

322

detected. By operating the channels in parallel, the TMR pattern detects random faults as outliers
(assuming a single point failure and common mode fault independence of the channels) that are
discarded as erroneous automatically. The TMR pattern runs the channels in parallel and at the end
compares the results of the computational channels together. As long as two channels agree on the
output, then any deviating computation of the third channel is discarded. This allows the system to
operate in the presence of a fault and continue to provide functionality.

9.4.2 Problem

The problem addressed by the Triple Modular Redundancy Pattern is the same as the Homogeneous
Redundancy Pattern—that is, to provide protection against random faults (failures) with the additional
constraint that when a fault is detected, the input data should not be lost, nor should additional time be
required to provide a correct output response.

9.4.3 Pattern Structure

Figure 9-6 shows the replicated structure of the Triple Modular Redundancy Pattern. Similar to the
Homogeneous Redundancy Pattern, the channel contains a set of objects that process incoming data in a
series of transformational steps. What's different about the TMR pattern is that the channels typically do
not cross-check each other at strategic points. Rather, the set of three channels operate completely in
parallel, and only the final resulting outputs are compared. If the system contains a single point failure
and the channels have success-fully achieved independence of common mode faults, then a failure will
result in at most a single channel producing an incorrect result. The other two channels, unaffected by
the fault, will continue to produce the correct result. The comparator implements a winner-take-all policy
so that the two channels producing the correct results will win.

Figure 9-6. Triple Modular Redundancy Pattern

9.4.4 Collaboration Roles

• Actuation Channel 1, 2, 3

323

The three channels are all replicated homogeneous structures. They all process the same input
data and perform identical operations, all the channels executing in parallel. Because the pattern
provides only single point failure protection, each channel is normally self-tested on startup, at
reset, or every 24 hours, whichever comes first.

• Actuator

The Actuator actor is the actual device performing the actuation.

• Comparator

The Comparator takes the three outputs (one per channel) and implements a majority-wins
policy, discarding data from one channel if it deviates significantly from the other two. The
Comparator just takes into account computational and time-lag jitter when it compares the
values and decides which differences are significant and which are not.

• Data Transformation

This component is the same as in the Protected Single Channel Pattern: It performs a single
transformation step on the input data.

• Input Processing

This component is the same as in the Protected Single Channel Pattern. It acquires and possibly
performs initial processing on the raw data.

• Input Sensor

This is the source of information used to (ultimately) control the actuator, just as it is in the
Protected Single Channel Pattern.

• Output Processing

This component does the last stage of data transformation and controls the Actuator itself.

9.4.5 Consequences

Similar to the Homogeneous Redundancy Pattern, the Triple Modular Redundancy Pattern can only detect
random faults. Since the channels are homogeneous, then by definition any systematic fault in one
channel must be present in both of the others. This can be addressed by having heterogeneous channels,
if desired. The sensors and actuators can also be replicated, if desired, to provide even stronger fault
tolerance. The comparator may be triple-replicated as well, but it is perhaps more common to use a
single, highly reliable comparator.

Because the channels execute in parallel, the source data is also replicated in each channel. In the case
of an error, only the erroneous channel's output is discarded; the other channels' output is used, so the
failure does not result in the loss of data, nor does it necessitate the recomputation of the output. This
makes the TMR pattern time efficient in the presence of faults.

324

TMR has a rather high recurring cost because the hardware and software in the channels must be
replicated. The development cost is not very high because the channels are homogeneous. The TMR
pattern is a common one in applications where reliability needs are very high and worth the additional
cost to replicate the channels. In many applications, the systems are safety-critical without a fail-safe
state, so enhancing reliability also enhances safety.

9.4.6 Implementation Strategies

The development of the TMR pattern is not much more difficult than a nonredundant channel. It is
common to replicate the hardware and software in toto to avoid common mode faults so that each
channel uses its own memory, CPU, crystal, and so on.

9.4.7 Related Patterns

Because there are three replicated channels, this pattern has one of the highest recurrent costs. The
Protected Single Channel Pattern is much less expensive, but it does not provide functionality in the
presence of a fault. A Homogeneous Redundancy Pattern can be used if the data can be lost when a
failure occurs or when it is okay to reexecute the failed computational step. If protection against system-
atic faults is desired, then this pattern can use heterogeneous redundancy (independent designs for each
channel, each meeting the same functional and quality-of-service requirements), but, of course, this
triples the development effort. One of the other heterogeneous redundancy patterns can be used as well
if it gives adequate fault and safety protection.

9.4.8 Sample Model

Figure 9-7 shows a typical example of a TMR system: the Speed Computation Subsystem (SCS) for a
locomotive train. Clearly, this is has a high safety level, since trains pack an incredible amount of kinetic
energy. The Engine Control system uses the speed information to compute engine speed to calculate
whether it is in the right place at the right time. In this application, there is a fail-safe state (stopped)
that the Engine Controller can switch to if the entire SCS fails, although it is very expensive to do so if
unnecessary. In this example, the SCS has three replicated channels, each of which processes an optical
wheel speed sensor, stores a queue of raw data values, and then uses this history with a Kahlman filter
to calculate the position of the train when the Engine Controller receives the computed speed (this is
important in high-speed train systems, since they can rapidly change speed). In this case, the TMR
pattern uses homogeneous redundancy so that the SCS can easily detect failures in one channel. If
protection against systematic faults is also desired, one can easily imagine one channel processing optical
wheel sensor data while another uses a Doppler radar (using surface reflection from the track to compute
velocity), and yet another uses Balise sensors embedded in the track, with each channel having
independently written filters to compute predicted speed.

Figure 9-7. Triple Modular Redundancy Example

325

9.5 Heterogeneous Redundancy Pattern
The Heterogeneous Redundancy Pattern [3] improves detection of faults over homogeneous redundancy
by also detecting systematic faults. This is achieved by using multiple channels that have independent
designs and/or implementations. This is the most expensive kind of redundancy because not only is the
recurring cost increased (similar to the Homogeneous Redundancy Pattern) but development cost is
increased as well due to the doubled or tripled design effort required.

[3] Also known as Diverse Redundancy and N-way Programming.

9.5.1 Abstract

For high-safety and reliability systems, it is common to provide redundant channels to enable the system
to identify faults and to continue safe and reliable operation in the presence of faults. Similar to its
homogeneous cousin, the Heterogeneous Redundancy Pattern provides redundant channels as an
architectural means to improve safety and reliability. What sets the Heterogeneous Redundancy Pattern
apart is that the channels are not mere replicas but are constructed from independent designs. This
means that identical design errors are unlikely to appear in multiple channels. The primary downside of
this pattern is its high design development cost that comes on top of the high recurring cost typical of
heavyweight redundant channels.

There are a number of useful variants of the Heterogeneous Redundancy Pattern that provide the
detection of both kinds of faults but are lower cost and may not provide continued operation in the
presence of faults. See, for example, the Monitor-Actuator and Sanity Check Patterns.

9.5.2 Problem

326

The Heterogeneous Redundancy Pattern provides protection against both kinds of faults—systematic
errors as well as random failures. Assuming that the design includes independence of faults, the pattern
provides single fault safety in the same way as the Homogeneous Redundancy Pattern—that is, when the
primary channel detects a fault, the secondary channel takes over.

9.5.3 Pattern Structure

The reader will no doubt notice the close resemblance between Figure 9-8 and Figure 9-4. Indeed, the
pattern is almost identical, with the primary difference being that the components of the two channels
are the result of independent design efforts. The independent design effort may use the same algorithm
with different teams or— even better—different algorithms with different teams.

Figure 9-8. Heterogeneous Redundancy Pattern

9.5.4 Collaboration Roles

• (Primary or Secondary) Actuation Validation

The purpose of this component is to compare the output to the commanded output and
determine when some application-specific fault condition has occurred. If it has, switch to the
other channel. The Actuation Validation component may be a simple data comparison, but in
general, actuation lags commanded validation, and the gain on the actuation is not infinite, so
the Actuation Validation component must consider time lag, inertia, and accuracy limits when
deciding whether the actuation is in error.

Since each entity in the pattern appears in both channels (although independently designed and
implemented), the corresponding entities are discussed in the same bullet. However, the primary

327

entity is the one that works if the primary channel is active, and the secondary entity is the one
working if the secondary channel is active.

• (Primary or Secondary) Actuator

The Actuator actor is the actual device performing the actuation.

• (Primary or Secondary) Data Transformation

This component is the same as in the Protected Single Channel Pattern: It performs a single
transformation step on the input data.

• (Primary or Secondary) Data Validation

This component is the same as in the Protected Single Channel Pattern: It validates that the data
is correct or reasonable, except that it stops the processing on the current channel and begins it
on the second channel when a fault is detected.

• (Primary or Secondary) Input Processing

This component is the same as in the Protected Single Channel Pattern. It acquires and possibly
performs initial processing on the raw data.

• (Primary or Secondary) Input Sensor

This is the source of information used to (ultimately) control the actuator, just as it is in the
Protected Single Channel Pattern.

• (Primary or Secondary) Output Processing

This component does the last stage of data transformation and controls the Actuator itself.

• (Primary or Secondary) Actuation Channel

This is one of two replicated channels, the one used as a default. It is normally self-tested on
startup, at reset, or every 24 hours, whichever comes first.

9.5.5 Consequences

This pattern has two "heavyweight" channels. This means both are relatively expensive to design and
construct, and either can perform the actuation processing with similar levels of fidelity. Similar to the
Homogeneous Redundancy Pattern, this pattern has a high recurring cost due to the inclusion of
additional hardware support for the redundancy. However, in addition to this, the Heterogeneous
Redundancy Pattern also has a high development cost because multiple independent designs must be
performed, usually with different teams to provide independence of systematic faults. This is generally
considered the safest architectural pattern and the most expensive as well. With only two channels,
however, it may have lower availability than with the Triple Modular Redundancy Pattern. To enhance
availability, a Triple Modular Redundancy Pattern may be used with heterogeneous channels to get the
best (and the worst) of both worlds.

328

9.5.6 Implementation Strategies

The implementation of this pattern requires fault independence. That means that the hardware
components must be replicated in both channels (CPU, memory, and so on). It is common to replicate
the computing hardware rather than use different CPUs, but different computing hardware does give a
slightly increased level of safety. The sensors and actuators are, however, usually different hardware
implementations, often using different technologies. It is best if the software is not only designed by
different teams but also uses different algorithms. Nancy Leveson [1] has noted that simply using
independent teams doesn't provide total independence of systematic faults, since the teams will tend to
make mistakes in the same portions of the application (such as the hard parts).

9.5.7 Related Patterns

As mentioned earlier, this is a very expensive pattern to implement. Reduced cost can be had at the
expense of reducing safety coverage as well. A Homogeneous Redundancy Pattern can be used with the
effect of lowering the ability to detect systematic faults and lowering development cost. A Triple Modular
Redundancy Pattern implemented with heterogeneous channels improves availability over the
Heterogeneous Redundancy Pattern but at the cost of increasing both the development and recurring cost
by one third. When protection should be provided but the system does not need to continue operation in
the presence of a fault, then a lower-weight solution, such as the Monitor-Actuator or Sanity Check
Pattern may be used.

9.5.8 Sample Model

Figure 9-9 shows the Speed Computation Subsystem, just as in the last section, but this time it is done
using a Heterogeneous Redundancy Pattern rather than a TMR pattern. In this case, the subsystem
operates in a switch-to-backup mode rather than running the channels simultaneously, and there are
only two channels instead of three. Note that different sensor technology is used—in one case, an optical
wheel sensor is used, while in the other, a Doppler radar is used. These sensing technologies have
different failure modes (the optical sensor is sensitive to the reduction in wheel size over time due to
friction, while the Doppler radar has dropouts due to different reflection surfaces).

Figure 9-9. Heterogeneous Redundancy Pattern Example

329

Note that the Engine Controller is not replicated. A train system has a fail-safe mode (OFF), so it is
assumed that the design of the Engine Controller would include logic that would shut down the engines
and engage the brakes should speed data stop being delivered. Thus, it is enough for the subsystem
design to ensure that only correct data or no data is delivered to the Engine Controller.

9.6 Monitor-Actuator Pattern
All safety-critical and reliable architectures have redundancy in some form or another. In some of these
patterns, the entire channel, from original data sensing to final output actuation, is replicated in some
form or another. In the Monitor-Actuator Pattern, an independent sensor maintains a watch on the
actuation channel looking for an indication that the system should be commanded into its fail-safe state.

9.6.1 Abstract

Many safety-critical systems have what is called a fail-safe state. This is a condition of the system known
to be always safe. When this is true, and when the system doesn't have extraordinarily high availability
requirements (that is, in the case of a fault detection it is appropriate to enter the fail-safe state), then
the safety of the system can be maintained at a lower cost than some of the other patterns discussed in
this chapter. The Monitor-Actuator Pattern is a specialized form of the Heterogeneous Redundancy
Pattern because the redundancy provided is different from the primary actuation channel: It provides
monitoring, typically of the commanded actuation itself (although it may also monitor the internal
operation of the actuation channel as well).

Assuming fault independence and a single point fault protection requirement, the basic principle of the
Monitor-Actuator Pattern may be summed up this way: If the actuation channel has a fault, the
monitoring channel detects it. If the monitoring channel breaks, then the actuation channel continues to
operate properly.

9.6.2 Problem

330

The Monitor-Actuator Pattern addresses the problem of improving safety in a system with moderate to
low availability requirements at a low cost.

9.6.3 Pattern Structure

The Monitor-Actuator Pattern structure is shown in Figure 9-10. Both channels run independently and
simultaneously.

Figure 9-10. Monitor-Actuator Pattern

9.6.4 Collaboration Roles

• Actuation Channel

This is the channel that contains components that perform the end-to-end actuation required by
the system. "End-to-end" means it includes the sensing of control signals from environmental
sensors, sequential or parallel data processing, and output actuation signals. It contains no
components in common with the Monitoring Channel.

• Actuation Data Source

The Actuation Data Source is the source of sensed data used for control of actuation. This is a
physically independent sensor from the Actuation Monitor Sensor.

• Actuator

The Actuator actor is the actual device performing the actuation.

• Actuator Monitor Sensor

This sensor is used to monitor the output of the actual actuator for comparison against the
expected values. It feeds the Monitoring Channel for the monitoring of the success of the
Actuation Channel. This sensor must be physically independent from the Actuation Data Source.

331

• Data Integrity Checks

This component is used by the Actuation Channel to check that its own internal processing is
proceeding properly.

• Data Transformation

As in the other patterns, these components process the sensing data in a sequential fashion to
compute the ultimate actuation output. This can be done with a single datum running all the way
through the channel before another is acquired or with multiple data in various stages of
processing simultaneously to provide a serial or parallel Actuation Channel, respectively.

• Monitor

The Monitor compares the commanded output (received from the Set Point Source) and
compares it with the actual output (received from the Actuator Monitor Sensor and initially
processed by the Monitoring Input Processing component). This comparison must take into
account many aspects of the physical and computational environment in order to do an accurate
comparison: the computational lag time, the physical lag time (inertia) of the environment,
computational error, and measurement error.

• Monitoring Channel

The Monitoring Channel checks on the proper operation of the Actuation Channel. It receives
some measure of the expected output from the Set Point Source actor and compares against the
actual values obtained from monitoring the Actuator. If the difference is sufficiently great, the
Monitoring Channel forces the Actuation Channel into its fail-safe state.

• Monitoring Input Processing

This is a device driver for the Actuator Monitor Sensor actor. It performs any initial formatting or
transformations necessary for the particular Actuator Monitor Sensor.

• Output Processing

This is a device driver for the Actuator actor. It performs any final formatting for transformations
necessary for the particular Actuator.

• Sensor Input Processing

The Sensor Input Processing component is a device driver for the Actuation Data Source actor. It
performs any initial formatting or transformations necessary for the particular Actuation Data
Source sensor.

• Set Point Source

332

This actor is the source of commanded actuation signals. Its purpose is to provide the set point
for the actuation control and for its monitoring. It provides the same control signal to both the
Actuation and Monitoring Channels.

9.6.5 Consequences

This pattern is a relatively inexpensive safety solution that is applicable when the system does not have
high availability requirements and when there is a fail-safe state. Assuming that its implementation
correctly isolates faults, a fault in the Actuation Channel will be identified by the Monitoring Channel. A
fault in the Monitoring Channel will not affect the proper execution of the Actuation Channel. Because
there is minimal redundancy, the system cannot continue to function when a fault is identified.

9.6.6 Implementation Strategies

The Monitoring Channel must take into account lag, measurement jitter, control system jitter,
computational accuracies (specifically the propagation and compounding of computational numeric error),
and other forms of error in determining whether the actuation channel is acting properly. For example, if
in an anesthetic agent vaporizer, the concentration of Halothane is increased from 0.0% to 1.5%, the
breathing circuit will take time to saturate at 1.5% because of the time necessary to inject that much
drug into that much gas volume and the time necessary for it to diffuse evenly into that volume. If the
Monitoring Channel expects to find the breathing mixture instantly at the proper concentration, it will
inappropriately identify a fault. On the other hand, if the concentration never reaches something close to
1.5%, then the Monitor should identify a fault. The Monitor in this case may require the simulation of the
drug delivery and diffusion in order to identify whether the system is achieving the proper actuation. In
situations where time lags are irrelevant, it will usually still be necessary to have a band around the
commanded actuation set point. For example, if the commanded value of agent is 1.5%, any value in the
range 1.45% to 1.55% may be valid.

Another issue with the Monitoring Channel is the handling of transient faults. In some situations, a single
transient fault may not be harmful at all, but persistent faults must be identified. In such cases, it may be
necessary for the Monitoring Channel to maintain a recent history of its monitored values to determine
whether an unexpected value indicates a transient or persistent fault.

The system can operate with a fault in the Monitor Channel, but if it does so, this is called a latent fault.
A latent fault is one that by itself does not present a hazard but with the addition of a second fault does
present a hazard. For this reason, the Monitor Channel must be periodically checked. The timeframe for
this check must be significantly less than the mean-time between failures (MTBF) of the Monitor Channel.
In practice, this check is usually done daily or on every startup, whichever is less. It may, at times, be
performed during scheduled maintenance of the system but must be done much more frequently than
the MTBF of the channel and any of its components. Often, systems using this pattern use a pair set of
life ticks sent between the channels to indicate the health of the other system. If one channel does not
receive a life tick from the other within a specified time frame, then this indicates a fault, and the fail-
safe state is entered.

9.6.7 Related Patterns

Sometimes the control signal does not provide the desired end-result to the Monitoring Channel. When
this is the case, the Monitoring Channel must in some sense simulate the processing done in the
Actuation Channel. When this is done in a lightweight way to get a check on the reasonableness of the
resulting actuation output, this is called the Sanity Check Pattern.

333

A very lightweight means of providing monitoring is the Watchdog Pattern. This pattern monitors what
the Actuator Pattern thinks is the right thing to do and not the actual output of the actuation. If it is
necessary to continue actuation in the face of a fault, then a heavier-weight pattern, such as the
Homogeneous Redundancy or the Heterogeneous Redundancy Pattern, must be used.

9.6.8 Sample Model

Figure 9-11 shows a straightforward application of this pattern to a drug vaporizer, such as those used in
surgical room anesthesia machines. The system works by receiving a drug concentration set point from
the physician; this command is sent to both the Vaporizer Actuation Channel and the Vaporizer
Monitoring Channel. The Vaporizer Actuation Channel changes its internal set point to what is
commanded and acts like a closed-loop control system to infuse more drug into the breathing mixture.
The controller itself might try to minimize the time to reach the commanded concentration by inserting a
bolus dose into the breathing mixture (via the Vaporizer Hardware) and then lowering in infusion rate, or
it may decide to allow a long ramp-up time to achieve the commanded concentration. The Vaporizer
Hardware does the actual vaporization of drug into the breathing circuit by controlling the amount of
agent in the vaporization chamber and the temperature of the chamber (hardware details not shown).
The Closed-Loop Controller of the Vaporizer Actuation Channel gets feedback from the Agent
Concentration Sensor 1 actor, which it uses to quickly and accurately converge on the commanded
concentration. (We hope.)

Figure 9-11. Monitor-Actuator Example

In the case of a fault, the Vaporizer Monitor Channel monitors the concentration of the drug in the
breathing circuit, using a physically different sensor, Agent Concentration Sensor 2. If the Actuation
Channel is not acting appropriately, then the Anesthetic Agent Monitor detects the fault and disables the
Vaporizer Actuation Channel and issues an alarm to the physician to indicate the fault. As mentioned
previously, such a system has a significant lag time between commanding a new concentration and
achieving it, so the monitor must take into account time lag, measurement jitter, and the fidelity of
control of the closed-loop control system.

9.7 Sanity Check Pattern

334

The Sanity Check Pattern is a very lightweight pattern that provides minimal fault coverage. The purpose
of the Sanity Check Pattern is to ensure that the system is more or less doing something reasonable,
even if not quite correct. This is useful in situations where the actuation is not critical if performed
correctly (such as an optional enhancement) but is capable of doing harm if it is done incorrectly. It is a
variant of the Monitor-Actuator Pattern and, like the that pattern, assumes that a fail-safe state is
available.

9.7.1 Abstract

The Sanity Check Pattern is a variant of the Monitor-Actuator Pattern; it has the same basic properties.
Where it differs is in the functionality provided by the Monitor Component. The Sanity Check Pattern only
exists to ensure that the actuation is approximately correct. It typically uses lower-cost (and usually
lower-accuracy) sensors and can only identify when the actuation is grossly incorrect. Thus, it is
applicable only in situations where fine control is not a safety property of the Actuation Channel. In some
extreme cases, the monitor may not even be required to know the commanded set point because it will
only ensure that the actuation output is within some fixed range. Usually, however, the Monitor will have
a "valid range" that varies with the commanded set point.

9.7.2 Problem

This pattern addresses the issue, making sure the "system does no harm" when minor, or even
moderate, deviations from the commanded set point have no safety impact, and providing this minimal
level of protection at a very low recurring and design cost.

9.7.3 Pattern Structure

The Sanity Check Pattern, shown in Figure 9-12, is virtually identical that of the Monitor-Actuator Pattern
(shown earlier) from which it is derived.

Figure 9-12. Sanity Check Pattern

9.7.4 Collaboration Roles

• Actuation Channel

335

This is the channel that contains components that perform the end-to-end actuation required by
the system. "End-to-end" means that it includes the sensing of control signals from
environmental sensors, sequential or parallel data processing, and output actuation signals. It
contains no components in common with the Sanity Check Channel.

• Actuation Data Source

The Actuation Data Source is the source of sensed data used to control actuation. This is a
physically independent sensor from the Actuation Monitor Sensor.

• Actuator

The Actuator actor is the actual device performing the actuation.

• Actuator Monitor Sensor

This sensor is used to monitor the output of the actual actuator for comparison against the
expected values. It is normally inexpensive compared to the Actuation Data Source sensor
because the accuracy demands on this sensor are not very high. This sensor must nevertheless
be physically independent from the Actuation Data Source.

• Data Integrity Checks

This component is used by the Actuation Channel to check that its own internal processing is
proceeding properly.

• Data Transformation

As in the other patterns, these components process the sensing data in a sequential fashion to
compute the ultimate actuation output. This can be done with a single datum running all the way
through the channel before another is acquired or with multiple data in various stages of
processing simultaneously to provide a serial or parallel Actuation Channel, respectively.

• Monitor

The Monitor compares the commanded output (received from the Set Point Source) and
compares it with the actual output (received from the Actuator Monitor Sensor and initially
processed by the Monitoring Input Processing component). This comparison is a very rough one
with a relatively broad range to ensure that the Actuation Channel isn't doing anything obviously
bad.

• Monitoring Input Processing

This is a device driver for the Actuator Monitor Sensor actor. It performs any initial formatting or
transformations necessary for the particular Actuator Monitor Sensor.

• Output Processing

336

This is a device driver for the Actuator actor. It performs any final formatting for transformations
necessary for the particular Actuator.

• Sanity Check Channel

The Monitoring Channel checks on the proper operation of the Actuation Channel. It receives
some measure of the expected output from the Set Point Source actor and compares against the
actual values obtained from monitoring the Actuator. If the difference is sufficiently great, the
Monitoring Channel forces the Actuation Channel into its fail-safe state.

• Sensor Input Processing

The Sensor Input Processing component is a device driver for the Actuation Data Source actor. It
performs any initial formatting or transformations necessary for the particular Actuation Data
Source sensor.

• Set Point Source

This actor is the source of commanded actuation signals. Its purpose is to provide the set point
for the actuation control and for its monitoring. It provides the same control signal to both the
Actuation and Monitoring Channels.

9.7.5 Consequences

The Sanity Check Pattern is meant to be a very inexpensive solution that provides minimal coverage. It
has a low recurring cost because cheaper, coarser-grained sensors may be used. It has a lower design
cost because the comparison is usually just a simple verification that the commanded set point is
somewhere in a relatively broad range, so the design is usually very simple. As a result, however, the
coverage is very minimal and does not attempt to replicate the accuracy of the actuation channel. This
means that this pattern is applicable in only situations where there is a fail-safe state that the system can
be commanded into if the output is grossly in error and that small deviations from the commanded set
point that will be missed by the Sanity Check Pattern have no relevance to the safety of the system.

9.7.6 Implementation Strategies

The normal implementation of this pattern will include two different sensors: the high-fidelity sensor used
to provide input to the Actuation Channel and a low-cost, low-fidelity sensor used for the Sanity Channel.
The Monitor component is often just a simple object with a very simple algorithm. This is most often a
simple range comparison. In some cases, it may only need to check that the output is in the same fixed
range regardless of the commanded set point, but most often the range will vary with the commanded
set point. The implementation usually does not take into account time lag or computational jitter because
the check is broad enough to account for those kinds of error sources. In some cases, a slightly more
complex algorithm that does take into account time lag may be necessary, but it is almost always a
simple computation.

9.7.7 Related Patterns

If a higher-fidelity check on the Actuator Channel is necessary, then the Monitor-Actuator Pattern will be
more appropriate at the incremental increase in both design and recurring cost. An even lighter-weight

337

solution than the Sanity Check Pattern is the Watchdog Pattern, which provides even less coverage. For
more coverage, or when there is no fail-safe state, one of the Homogeneous or Heterogeneous
Redundancy Patterns may be used.

9.7.8 Sample Model

The antiskid braking system shown in Figure 9-13 is a good example of a situation that is applicable for
the Sanity Check Pattern. As long as the system is working at least somewhat correctly, its use helps in
controlling the vehicle. If, however, it fails in a gross fashion, then it could easily lead to a loss of life. If
the computer-controlled antiskid braking is shut down in that case, then simple linear force braking
remains as the backup system. While this may not be as effective as a correctly functioning antiskid
braking system, it may be vastly better than a malfunctioning one.

Figure 9-13. Sanity Check Pattern Example

9.8 Watchdog Pattern
The Watchdog Pattern is similar to the Sanity Check Pattern in the sense that it is lightweight and
inexpensive. It differs in what it monitors. While the Sanity Check Pattern monitors the actual output of
the system using an external environmental sensor, the Watchdog Pattern merely checks that the
internal computational processing is proceeding as expected. This means that its coverage is minimal,
and a broad set of faults will not be detected. On the other hand, it is a pattern that can add additional
safety when combined with other heavier-weight patterns.

9.8.1 Abstract

338

A watchdog, used in common computing parlance, is a component that watches out over processing of
another component. Its job is to make sure that nothing is obviously wrong, just as a real watchdog
protects the entrance to the henhouse without bothering to check if in fact the chickens inside are
plotting nefarious deeds. The most common purpose of a watchdog is to check a computation timebase
or to ensure that computation steps are proceeding in a predefined order. Watchdogs are often used in
real-time systems to ensure that time-dependent processing is proceeding appropriately.

9.8.2 Problem

Real-time systems are those that are predictably timely. In the most common (albeit simplified) view, the
computations have a deadline by which they must be applied. If the computation occurs after that
deadline, the result may either be erroneous or irrelevant—so-called hard real-time systems. Systems
implementing PID control loops, for example, are notoriously sensitive to the time lag between the
occurrence of the input signal and the output of the control signal. If the output comes too late, then the
system cannot be controlled; then the system is said to be in an unstable region.

9.8.3 Pattern Structure

The simplicity of the Watchdog Pattern is apparent from Figure 9-14. The Actuator Channel operates
pretty much independently of the watchdog, sending a liveness message every so often to the watchdog.
This is called stroking the watchdog. The watchdog uses the timeliness of the stroking to determine
whether a fault has occurred. Most watchdogs check only that a stroke occurs by some elapse of time
and don't concern themselves with what happens if the stroke comes too quickly. Such a statechart for
the watchdog is shown in Figure 9-15a. Some watchdogs check that the stroke comes neither too quickly
nor too slowly. The statechart for such a time-range watchdog is shown in Figure 9-15b. [4]

[4] Note that the timeouts in the statecharts are shown with the tm() event transition.

Figure 9-14. Watchdog Pattern

Figure 9-15. Watchdog State Machine

339

For some systems, protection against a timebase fault is safety-critical. [5] In such cases, it is preferable
to have an independent timebase. This is normally a timing circuit separate and independent from the
one used to drive the CPU executing the Actuation Channel.

[5] It should be noted that all safety-critical systems are real-time systems because they
must respond to a fault by the Fault Tolerance Time [2].

9.8.4 Collaboration Roles

• Actuation Channel

This is the channel that contains components that perform the end-to-end actuation required by
the system. "End-to-end" means that it includes the sensing of control signals from
environmental sensors, sequential or parallel data processing, and output actuation signals. It
contains no components in common with the Watchdog.

• Actuation Data Source

340

The Actuation Data Source is the source of sensed data used for control of actuation.

• Actuator

The Actuator actor is the actual device performing the actuation.

• Data Transformation

As in the other patterns, these components process the sensing data in a sequential fashion to
compute the ultimate actuation output. This can be done with a single datum running all the way
through the channel before another is acquired or with multiple data in various stages of
processing simultaneously to provide a serial or parallel Actuation Channel, respectively.

• Integrity Checks

This component is (optionally) invoked on every valid stroke of the Watchdog. This can be used
to run a periodic Built In Test (BIT), check for stack overflow of the tasks, and so on.

• Output Processing

This is a device driver for the Actuator actor. It performs any final formatting for transformations
necessary for the particular Actuator.

• Sensor Input Processing

The Sensor Input Processing component is a device driver for the Actuation Data Source actor. It
performs any initial formatting or transformations necessary for the particular Actuation Data
Source sensor.

• Timebase

The Timebase is an independent timing source (such as an electronic circuit) used to drive the
Watchdog.

• Watchdog

The Watchdog waits for a stroke event sent to it by the components of the Actuation Channel. If
the stroke does occur within the appropriate timeframe, the Watchdog may command integrity
checks to be performed. If it does not, then it shuts down the Actuation Channel.

9.8.5 Consequences

The Watchdog Pattern is a very lightweight pattern that is rarely used alone in safety-critical systems. It
is best at identifying timebase faults, particularly when an independent timebase drives the Watchdog. It
can also be used to detect a deadlock in the actuation channel. To improve deadlock detection, the
watchdog may require the strokes to be keyed—that is, to contain data that can be used to identify that
strokes from different computational steps occur in the proper sequence. Such a watchdog is called a
Keyed Watchdog or a Sequential Watchdog.

341

Because the coverage of the Watchdog Pattern is so minimal, it is rarely used alone. It may be combined
with any of the other safety patterns discussed in this chapter.

9.8.6 Implementation Strategies

As mentioned before, if the watchdog is to provide protection from timebase faults, a separate electronic
circuit must supply an independent measure of the flow of time. This means an independent timing
circuit, usually driven by a crystal, but the timebase may be driven by an R-C circuit. Note, however, that
the watchdog detects a mismatch between the two timing sources but cannot detect whether the fault is
the primary actuation channel or the watchdog timebase.

To prevent a fault where the primary actuation channel gets stuck in a loop (so called live-lock) that
strokes the watchdog but doesn't actually perform the appropriate computation and actuation, the
watchdog may require data with the strokes that must occur in a specific pattern. To implement a keyed
watchdog, the best approach is to not store the keys in memory but to have them dynamically computed
as a result of the proper execution of the actuation process. This diminishes the likelihood of a live-lock
situation not being detected.

When the watchdog is stroked, it is common to invoke a BIT (Built In Test) of some kind to ensure the
proper execution of other aspects of the system. These actions can either return a Boolean value
indicating their success or failure, or may directly cause the system to shut down in the case of their
failure. For example, the watchdog may execute an action on the evStroke transition (see Figure 9-15)
that checks for stack overflow [6] and performs CRC checks on the executing application software. If it
does a similar check on the application data, it must lock the data resources during this computation,
which can adversely affect performance if you're not careful.

[6] Stack overflow may be checked for by writing a known pattern into the stack of each
task beyond the expected stack size. If this pattern is disrupted, then a stack overflow (or
something equally bad) has occurred.

When watchdog fires because it hasn't been stroked within the specified timeframe, it invokes some
safety measure, normally either shutting down the system or causing the system to reset.

9.8.7 Related Patterns

The Watchdog Pattern is about as lightweight (low effort as well as low protection) as a safety and
reliability pattern gets. For this reason, it is normally mixed with other patterns as a way to test the
timebase and to drive periodic BITs.

9.8.8 Sample Model

The pacemaker model shown in Figure 9-16 illustrates this pattern. The primary actuation channel
controls the pacing of the heart based on time (if the heart doesn't beat on its own quickly enough) or on
the heart's intrinsic beat (if it beats faster than the programmed "pace time"). Timing in such a system is
crucial to the effective maintenance of cardiac output; in fact, pacing at the wrong time can induce
ventricular fibrillation and death. Thus, the Watchdog component uses an RC circuit to maintain its
internal timer. If it discovers a fault, then it shuts down the software-driven pacing actuation channel and
starts up a simple, nonprogrammable hardware pace-making engine that serves as a backup. The Pace
Electronics Device Driver and the Backup HW Pacing Engine have an association between them so that if
one is active, it disables the other. This is done via hardware logic gates to ensure that the pacemaker

342

does not attempt to drive the heart using two different strategies at the same time. Astute readers will
note that this example is a combination of the Switch-to-Backup and the Watchdog Patterns.

Figure 9-16. Watchdog Pattern Example

9.9 Safety Executive Pattern
Sometimes the control of the safety measures of a system are very complex. This may be because the
system cannot be simply shut off but must be driven through a potentially complex sequence of actions
to read a fail-safe state. The Safety Executive Pattern provides a Safety Executive to oversee the
coordination of potentially multiple channels when safety measures must be actively applied.

9.9.1 Abstract

Systems often cannot merely be shut down in the event of a fault. Sometimes this is because they are in
the middle of handling some dangerous materials or a high-energy state of the system (such as high
speed or high voltage potential). Simply shutting the system off in such a state is potentially very
hazardous. In the presence of a fault, the system must be guided through a potentially complicated
series of steps to reach a condition known to be a fail-safe state. The Safety Executive Pattern models
exactly this situation in which a Safety Executive component coordinates the activities of potentially
many actuation channels and safety measures to reach a fail-safe state.

9.9.2 Problem

The problem addressed by the Safety Executive Pattern is to provide a means to coordinate and control
the execution of safety measures when the safety measures are complex.

9.9.3 Pattern Structure

Figure 9-17 shows the structure of this pattern. The complexity of the pattern can be seen at a glance. As
indicated (via the multiplicity on the association between the Safety Executive component and the
Actuation Channel), the system may have multiple Actuation channels, monitored and ultimately

343

coordinated by the Safety Executive. In addition, there may be a Fail-safe Channel if the system has an
independent fail-safe processing channel (often indicated for highly safety-critical applications).

Figure 9-17. Safety Executive Pattern

9.9.4 Collaboration Roles

• Actuation Channel

This is the channel that contains components that perform the end-to-end actuation required by
the system. "End-to-end" means that it includes the sensing of control signals from
environmental sensors, sequential or parallel data processing, and output actuation signals. It
contains no components in common with the Safety Executive or Fail-safe Processing Channel.

• Actuator

The Actuator actor is the actual device performing the actuation.

• Data Transformation

As in the other patterns, these components process the sensing data in a sequential fashion to
compute the ultimate actuation output. This can be done with a single datum running all the way

344

through the channel before another is acquired or with multiple data in various stages of
processing simultaneously to provide a serial or parallel Actuation Channel, respectively.

• Fail-safe Processing Channel

This is an optional channel for systems that have a channel dedicated to the execution and
control of the fail-safe processing. In this case, the normal actuation channels are turned off, and
the fail-safe channel takes over. It is even more common for systems not to have a channel
dedicated to fail-safe processing; instead, the actuation channels have fail-safe states built
directly into them.

• Input Processing

The Input Processing component is a device driver for the Input Sensor actor. It performs any
initial formatting or transformations necessary for the particular Input Sensor.

• Input Sensor

The Input Sensor is the source of sensed data used to control actuation.

• Output Processing

This is a device driver for the Actuator actor. It performs any final formatting for transformations
necessary for the particular Actuator.

• Safety Coordinator

This class controls and coordinates the safety processing (managed in the Safety Measure class).
The algorithms for control are specified in the instances of the Safety Policies class. There is only
a single instance of this class in the Safety Executive component.

• Safety Executive

The Safety Executive is a component that consists of the objects instantiated from the Safety
Coordinator, Safety Measure, and Safety Policy classes.

• Safety Measure

The Safety Measure class is an abstract class that controls the detailed behavior of a single safety
measure. The Safety Executive may contain several of these measures [7] controlled by the
Safety Coordinator class.

[7] Each is a different subclass of the Safety Measure class.

• Safety Policy

The Safety Policy class specifies a policy or strategy for a Safety Coordinator. This many involve a
potentially complicated sequence of steps that involve multiple Safety Measure objects. This is an
abstract class that is subclassed for a specific policy. There may be multiple policies concurrently

345

active. This separation of the coordination from the policies allows the policies to be easily
adapted and changed as necessary.

• Timebase

The Timebase is an independent timing source (such as an electronic circuit) used to drive the
Watchdog. A single Timebase may drive multiple Watchdogs as long as they are not used in the
actuation channels.

• Watchdog

The Watchdog waits for a stroke event sent to it by the components of the Actuation Channel. If
the stroke does occur within the appropriate timeframe, the Watchdog may command integrity
checks to be performed. If it does not, then it shuts down the Actuation Channel. There may be
multiple watchdogs, one per Actuation Channel, as necessary.

9.9.5 Consequences

This is a complex pattern to implement with many pieces to design. Therefore, it is usually only used in
systems that are both complex and highly safety-critical—especially when the handling of faults is very
complex. On the other hand, it can provide excellent fault protection in highly complex systems and
environments. Since this pattern was described in my earlier book [2], it has been used in high-speed
train control systems and other safety-critical systems.

9.9.6 Implementation Strategies

As with all of these patterns, single point failure safety is key. Any single component, whether hardware
or software, should be allowed to fail without creating a hazard. In the systems for which this pattern is
appropriate, this means that the channels will each run on their own CPUs with their own memory;
safety-critical information must be protected with CRCs or other means to detect data corruption; time-
critical processing must be validated as to time-base (via the watchdogs running off an independent
physical timebase).

9.9.7 Related Patterns

In some sense, the Safety Executive Pattern is the superset of all the other patterns in this chapter. The
other patterns typically describe the inner workings of a single channel, or how a small set of channels
work together to improve reliability and/or safety. Each of those patterns can be fitted in to a Safety
Executive Pattern, when appropriate. Clearly, this pattern already directly incorporate the Heterogeneous
Redundancy Pattern with a "Switch-to-Backup" strategy for the Fail-safe Channel and the Watchdog
Pattern for the normal Actuation Channels.

For simpler systems with a lower safety criticality or where the safety measures are not so complex, any
of the other patterns in this chapter can be used.

9.9.8 Sample Model

The example in Figure 9-18 is more complex than the others in this chapter: an explosive chemical
production system. The system heats and maintains nitric acid to be titrated with a nitrate to form a
mixture in the mixing chamber. The temperature of both the acid and the mixing chamber must be

346

maintained below a specified limit, or bad things can happen (fire, explosion, release of toxic gases, etc.).
Both acid and nitrate delivery channels run with a Monitor-Actuator Pattern to detect potentially
hazardous faults. Both of these channels also use a Watchdog Pattern as well to ensure liveness and a
proper timebase (since the amount of chemical delivered is the time integral of the flow rate). In the
event of a major fault, the fail-safe state of the system is to shut down, but since it contains hot acid and
nitrate flowing into the system and a mixing chamber potentially full of explosive chemicals, getting to a
nonhazardous condition is not simply a matter of shutting down the system. The Safety Executive
component manages the execution of the safety measures.

Figure 9-18. Safety Executive Pattern Example

The Safety Executive identifies a fault through notification by a watchdog, one of the monitoring
channels, or from its own monitoring of various sensors. When it detects a hazardous fault, several things
happen. The Nitrate Titration Feeder is shut off; the flow of acid is turned off via the Acid Flow Valve; the

347

mixing chamber is rapidly cooled by opening the Coolant Flow Valve; and last, the mixing chamber is
emptied via the Emergency Shunting Valve into a large water reservoir. To save space in Figure 9-18, the
internal components to the actuation channels are not shown.

References
[1] Leveson, Nancy. Safeware: System Safety and Computers, Reading, MA: Addison-Wesley 1995.

[2] Douglass, Bruce Powel. Doing Hard Time: Developing Real-Time Systems with UML, Objects,
Frameworks, and Patterns, Reading, MA: Addison-Wesley, 1999.

[3] Storey, Neil. Safety Critical Computer Systems, Reading, MA: Addison-Wesley, 1996.

[4] Friedman, M., and J. Voas. Software Assessment: Reliability, Safety, Testability, New York: Wiley &
Sons, 1995.

[5] Gardiner, Stewart. (Ed.) Testing Safety-Related Software, Glasgow, UK: Springer-Verlag, 1999.

[6] Hatton, Les. Safer C: Developing Software for High-Integrity and Safety-Critical Systems, Berkshire,
UK: McGraw-Hill, 1995.

[7] Kramer, B., and N. Volker. Safety-Critical Real-Time Systems, Norwell, MA: Kluwer Academic Press,
1997.

348

Appendix A. Notational Summary
This appendix provides a summary of the UML notation discussed in this book. It is organized by diagram
type to facilitate its use as a reference during development.

Class Diagram
Shows the existence of classes and relationships in a logical view of a system

Class

Visibility

Parameterized Class

Object

349

Association

Aggregation and Composition

350

Advanced Associations

Generalization and Specialization

351

Notes and Constraints

Stereotypes and Classifiers

352

Collaboration Diagram
Shows a sequenced set of messages illustrating a specific example of object interaction.

Object Collaboration

Message Syntax

353

Sequence Diagram
Shows a sequenced set of messages illustrating a specific example of object interaction.

Advanced Sequence Diagrams

Sequence diagrams have two dimensions. The vertical dimension usually represents time, and the
horizontal represents different objects. (These may be reversed.)

354

Use Cases
Use cases show primary areas of collaboration between the system and actors in its environment. Use
cases are isomorphic with function points.

Use Case Diagram

Use Case Relationships

355

Implementation Diagrams
Implementation diagrams show the run-time dependencies and packaging structure of the deployed
system.

Component diagram

Deployment Diagram

356

Package diagram
Shows a grouping of model elements. Packages may also appear within class and object diagrams.

357

Statechart
Shows the sequences of states for a reactive class or interaction during its life in response to stimuli,
together with its responses and actions.

State icon

358

Transitions

Nested States

Sequential substates

359

Orthogonal Substates (and-states)

Pseudostates

360

Synch Pseudostates

Submachines

361

Activity Diagrams
Activity Diagrams are a specialized form of state diagrams in which most or all transitions are taken when
the state activity is completed.

362

363

Appendix B. Pattern Index
Pattern Name Pattern Type

Five-Layer Subsystem and Component Architecture
Broker Distribution Architecture
Channel Subsystem and Component Architecture
Component-Based Architecture Subsystem and Component Architecture
Critical Section Resource Management
Cyclic Executive Concurrency Architecture
Data Bus Distribution Architecture
Dynamic Priority Concurrency Architecture
Guarded Call Concurrency Architecture
Heterogeneous Redundancy Safety and Reliability Architecture
Hierarchical Control Subsystem and Component Architecture
Highest Locker Resource Management
Homogeneous Redundancy Safety and Reliability Architecture
Interrupt Concurrency Architecture
Layered Pattern Subsystem and Component Architecture
Message Queuing Concurrency Architecture
Microkernel Subsystem and Component Architecture
Monitor-Actuator Safety and Reliability Architecture
Observer Distribution Architecture
Ordered Locking Resource Management
Priority Ceiling Resource Management
Priority Inheritance Resource Management
Protected Single Channel Safety and Reliability Architecture
Proxy Distribution Architecture
Recursive Containment Subsystem and Component Architecture
Remote Method Call Distribution Architecture
Rendezvous Concurrency Architecture
ROOM Subsystem and Component Architecture
Round Robin Concurrency Architecture
Safety Executive Safety and Reliability Architecture
Sanity Check Safety and Reliability Architecture
Shared Memory Distribution Architecture
Simultaneous Locking Resource Management
Static Priority Concurrency Architecture
Triple Modular Redundancy Safety and Reliability Architecture
Virtual Machine Subsystem and Component Architecture
Watchdog Safety and Reliability Architecture

364

	Copyright
	Dedication

	Foreword
	References

	Preface
	Goals
	Audience
	Organization
	More Information
	Acknowledgments

	Part I: Design Pattern Basics
	Chapter 1. Introduction
	1.1 Basic Modeling Concepts of the UML
	1.2 Models
	1.3 Structural Elements and Diagrams
	1.3.1 Small Things: Objects, Classes, and Interfaces
	Figure 1-1. Basic Class Diagram
	Code Listing 1: Class Diagram in Java
	Code Listing 2: Class Diagram in C++

	1.3.2 Relations
	1.3.2.1 Associations
	Figure 1-2. Association, Aggregation, and Composition
	1.3.2.2 Aggregation
	1.3.2.3 Composition
	1.3.2.4 Generalization
	Figure 1-3. Polymorphism
	Code Listing 1-3: MsgQueue::insert() operation
	Code Listing 1-4: CachedQueue::insert() operation
	Figure 1-4. Generalization
	1.3.2.5 Dependency
	Figure 1-5. Dependency

	1.3.3 Structural Diagrams
	1.3.4 Big Things: Subsystems, Components, and Packages
	Figure 1-6. Packages
	Figure 1-7. Subsystems
	Figure 1-8. Components
	Figure 1-9. System, Subsystem, Component, and Active Objects Organized by Size

	1.4 Behavioral Elements and Diagrams
	1.4.1 Actions and Activities
	1.4.2 Operations and Methods
	1.4.3 Statecharts
	Figure 1-10. Simple Statechart
	Figure 1-11. And-States
	Figure 1-12. Pseudostates

	1.4.4 Activity Charts
	Figure 1-13. Activity Chart

	1.4.5 Interactions
	Figure 1-14. Collaboration Diagram
	Figure 1-15. Sequence Diagram
	Figure 1-16. Sequence Diagram

	1.5 Use Case and Requirements Models
	Figure 1-17. Use Cases
	1.5.1 Capturing Black-Box Behavior Without Revealing Internal Structure

	1.6 What Is a Design Pattern?
	References

	Chapter 2. Architecture and the UML
	2.1 Architecture
	Figure 2-1. ROPES and Architecture

	2.2 Logical and Physical Architecture
	Figure 2-2. Logical and Physical Architecture
	2.2.1 Logical Architecture
	Figure 2-3. Logical Domain Architecture
	Figure 2-4. Domain Hierarchy
	Figure 2-5. Relating Logical and Physical Architecture

	2.2.2 Physical Architecture
	Figure 2-6. Levels of Abstraction in Architecture

	2.3 The Five Views of Architecture
	Figure 2-7. The Five Views of Architecture
	Figure 2-8. System View
	2.3.1 Subsystem and Component View
	Figure 2-9. Subsystem View
	Figure 2-10. Component View

	2.3.2 Concurrency and Resource View
	Figure 2-11. Concurrency and Resource View

	2.3.3 Distribution View
	Figure 2-12. Distribution View

	2.3.4 Safety and Reliability View
	Figure 2-13. Safety and Reliability View

	2.3.5 Deployment View
	Figure 2-14. Deployment View

	2.4 Implementing Architectures
	2.4.1 Alphabet Soup: CORBA, UML, and MDA Basics
	2.4.2 MDA to the Rescue
	2.4.3 Creating Architectural Elements—the Model Level
	2.4.3.1 Basic Elements
	Figure 2-15. Container Pattern
	2.4.3.2 Logical Model
	2.4.3.3 Physical Model

	2.4.4 Subsystem and Component View
	2.4.5 Concurrency and Resource View
	2.4.6 Distribution View
	2.4.7 Safety and Reliability View
	2.4.8 Deployment View

	References

	Chapter 3. The Role of Design Patterns
	3.1 Introduction
	3.2 The ROPES Development Process
	3.2.1 Why Process?
	Figure 3-1. Basic Elements of Process

	3.2.2 ROPES Process Overview
	3.2.2.1 Key Enabling Technologies
	Figure 3-2. Key Enabling Technologies
	3.2.2.1.1 Visual Modeling
	3.2.2.1.2 Model Execution
	Figure 3-3. Visual Model Execution and Test
	3.2.2.1.3 Model-Code Associativity
	3.2.2.1.4 Automated Requirements-Based Testing
	Figure 3-4. Incremental Development with Prototypes
	3.2.2.1.5 Frameworks
	3.2.2.1.6 Iterative Development
	3.2.2.2 Process Timescales
	Figure 3-5. ROPES Spiral Macrocycle
	Figure 3-6. ROPES Microcycle (Overview)
	Figure 3-7. ROPES Nanocycle
	3.2.2.2.1 Semispiral Lifecycle Model
	Figure 3-8. ROPES Semispiral Lifecycle

	3.2.3 The ROPES Microcycle in Detail
	Figure 3-9. ROPES Spiral Microcycle (Detail)

	3.2.4 Party!
	3.2.5 Analysis with the ROPES Process
	3.2.5.1 Requirements Analysis Phase
	3.2.5.2 Systems Engineering Phase
	3.2.5.3 Object Analysis Phase

	3.2.6 Design with the ROPES Process
	3.2.6.1 Architectural Design Phase
	3.2.6.2 Mechanistic Design Phase
	3.2.6.3 Detailed Design Phase

	3.2.7 Translation
	3.2.8 Test

	3.3 Design Pattern Basics
	3.3.1 What Is a Design Pattern?
	3.3.2 Basic Structure of Design Patterns
	3.3.3 How to Read Design Patterns in this Book

	3.4 Using Design Patterns in Development
	3.4.1 Pattern Hatching—Locating the Right Patterns
	Figure 3-10. Pattern Hatching

	3.4.2 Pattern Mining—Rolling Your Own Patterns
	Figure 3-11. Pattern Mining

	3.4.3 Pattern Instantiation—Applying Patterns in Your Designs
	Figure 3-12. Pattern Instantiation

	References

	Part II: Architectural Design Patterns
	References
	Chapter 4. Subsystem and Component Architecture Patterns
	4.1 Layered Pattern
	4.1.1 Abstract
	Figure 4-1. Cardiology Conceptual Hierarchy

	4.1.2 Problem
	4.1.3 Pattern Structure
	Figure 4-2. Layered Pattern Structure

	4.1.4 Collaboration Roles
	4.1.5 Consequences
	4.1.6 Implementation Strategies
	4.1.7 Related Patterns
	4.1.8 Sample Model
	Figure 4-3. ECG Domain Model
	Figure 4-4. ECG Collaboration

	4.2 Five-Layer Architecture Pattern
	4.2.1 Abstract
	4.2.2 Problem
	4.2.3 Pattern Structure
	Figure 4-5. Five-Layer Architecture Pattern Structure

	4.2.4 Collaboration Roles
	4.2.5 Consequences
	4.2.6 Implementation Strategies
	4.2.7 Related Patterns
	4.2.8 Sample Model
	Figure 4-6. Ventilator Example Domains

	4.3 Microkernel Architecture Pattern
	4.3.1 Abstract
	4.3.2 Problem
	4.3.3 Pattern Structure
	Figure 4-7. Microkernel Architecture Pattern Structure

	4.3.4 Collaboration Roles
	4.3.5 Consequences
	4.3.6 Implementation Strategies
	4.3.7 Related Patterns
	4.3.8 Sample Model
	Figure 4-8. nanoOS Model

	4.4 Channel Architecture Pattern
	4.4.1 Abstract
	4.4.2 Problem
	4.4.3 Pattern Structure
	Figure 4-9. Channel Architecture Pattern Structure

	4.4.4 Collaboration Roles
	4.4.5 Consequences
	4.4.6 Implementation Strategies
	4.4.7 Related Patterns
	4.4.8 Sample Model
	Figure 4-10. ECG Monitor Channel Pattern Example

	4.5 Recursive Containment Pattern
	4.5.1 Abstract
	4.5.2 Problem
	4.5.3 Pattern Structure
	Figure 4-11. Recursive Containment Pattern Structure

	4.5.4 Collaboration Roles
	4.5.5 Consequences
	4.5.6 Implementation Strategies
	4.5.7 Related Patterns
	4.5.8 Sample Model
	Figure 4-12. High Level Use Case
	Figure 4-13. Spacecraft Subsystem Model
	Figure 4-14. Decomposed Use Cases
	Figure 4-15. Mapping Decomposed Use Cases to Subsystems
	Figure 4-16. Spacecraft Subsystem Details

	4.6 Hierarchical Control Pattern
	4.6.1 Abstract
	4.6.2 Problem
	4.6.3 Pattern Structure
	Figure 4-17. Hierarchical Control Pattern Structure

	4.6.4 Collaboration Roles
	4.6.5 Consequences
	4.6.6 Implementation Strategies
	4.6.7 Related Patterns
	4.6.8 Sample Model
	Figure 4-18. Hierarchical Control Pattern Structure

	4.7 Virtual Machine Pattern
	4.7.1 Abstract
	4.7.2 Problem
	4.7.3 Pattern Structure
	Figure 4-19. Virtual Machine Pattern Structure

	4.7.4 Collaboration Roles
	4.7.5 Consequences
	4.7.6 Implementation Strategies
	4.7.6.1 Reusability of the Virtual Machine
	4.7.6.2 Interacting with the Underlying Platform
	4.7.6.3 Representing the Application
	4.7.6.4 Scheduling Applications
	4.7.6.5 Debugging the Testing Facilities

	4.7.7 Related Patterns

	4.8 Component-Based Architecture
	4.8.1 Abstract
	4.8.2 Problem
	4.8.3 Pattern Structure
	Figure 4-20. Component-Based Architecture Pattern Structure

	4.8.4 Collaboration Roles
	4.8.5 Consequences
	4.8.6 Implementation Strategies
	4.8.7 Related Patterns
	4.8.8 Sample Model
	Figure 4-21. Control System Sample Model
	Figure 4-22. Initialization of Display Objects Sequence Diagram

	4.9 ROOM Pattern
	4.9.1 Abstract
	4.9.2 Problem
	4.9.3 Pattern Structure
	Figure 4-23. ROOM Pattern Structure

	4.9.4 Collaboration Roles
	4.9.5 Consequences
	4.9.6 Implementation Strategies
	4.9.7 Related Patterns
	4.9.8 Sample Model
	Figure 4-24. ROOM Pattern Example Class Model
	Figure 4-25. ROOM Pattern Example Statechart Model

	References

	Chapter 5. Concurrency Patterns
	5.1 Introduction
	5.2 Concurrency Pattern
	Figure 5-1. Using «active» Objects

	5.3 Message Queuing Pattern
	Figure 5-2. The Mutual Exclusion Problem
	5.3.1 Abstract
	5.3.2 Problem
	5.3.3 Pattern Structure
	Figure 5-3. Message Queuing Pattern

	5.3.4 Collaboration Roles
	5.3.5 Consequences
	5.3.6 Implementation Strategies
	5.3.7 Related Patterns
	5.3.8 Sample Model
	Figure 5-4. Message Queuing Pattern Example

	5.4 Interrupt Pattern
	5.4.1 Abstract
	5.4.2 Problem
	5.4.3 Pattern Structure
	Figure 5-5. Interrupt Pattern
	Figure 5-6. Interrupt Handling Methods

	5.4.4 Collaboration Roles
	5.4.5 Consequences
	5.4.6 Implementation Strategies
	5.4.7 Related Patterns
	5.4.8 Sample Model
	Figure 5-7. Interrupt Pattern Example

	5.5 Guarded Call Pattern
	Figure 5-8. Guarded Call Pattern
	5.5.1 Abstract
	5.5.2 Problem
	5.5.3 Pattern Structure
	5.5.4 Collaboration Roles
	5.5.5 Consequences
	5.5.6 Implementation Strategies
	5.5.7 Related Patterns
	5.5.8 Sample Model
	Figure 5-9. Guarded Call Pattern Example

	5.6 Rendezvous Pattern
	Figure 5-10. Rendezvous Pattern
	5.6.1 Abstract
	5.6.2 Problem
	5.6.3 Pattern Structure
	5.6.4 Collaboration Roles
	5.6.5 Consequences
	5.6.6 Implementation Strategies
	Figure 5-11. Thread Barrier Synch Policy Statechart

	5.6.7 Related Patterns
	5.6.8 Sample Model
	Figure 5-12. Rendezvous Pattern Example

	5.7 Cyclic Executive Pattern
	5.7.1 Abstract
	5.7.2 Problem
	5.7.3 Pattern Structure
	Figure 5-13. Cyclic Executive Pattern

	5.7.4 Collaboration Roles
	5.7.5 Consequences
	5.7.6 Implementation Strategies
	5.7.7 Related Patterns
	Figure 5-14. Cyclic Executive Pattern Example

	5.8 Round Robin Pattern
	5.8.1 Abstract
	5.8.2 Problem
	5.8.3 Pattern Structure
	Figure 5-15. Round Robin Pattern

	5.8.4 Collaboration Roles
	5.8.5 Consequences
	5.8.6 Implementation Strategies
	5.8.7 Related Patterns
	5.8.8 Sample Model
	Figure 5-16. Round Robin Pattern Example

	5.9 Static Priority Pattern
	5.9.1 Abstract
	5.9.2 Problem
	5.9.3 Pattern Structure
	Figure 5-17. Static Priority Pattern

	5.9.4 Collaboration Roles
	5.9.5 Consequences
	5.9.6 Implementation Strategies
	5.9.7 Related Patterns
	5.9.8 Sample Model
	Figure 5-18. Static Priority Pattern Example

	5.10 Dynamic Priority Pattern
	5.10.1 Abstract
	5.10.2 Problem
	5.10.3 Pattern Structure
	Figure 5-19. Dynamic Priority Pattern

	5.10.4 Collaboration Roles
	5.10.5 Consequences
	5.10.6 Implementation Strategies
	5.10.7 Related Patterns
	5.10.8 Sample Model
	Figure 5-20. Dynamic Priority Pattern Example

	References

	Chapter 6. Memory Patterns
	6.1 Memory Management Patterns
	6.2 Static Allocation Pattern
	6.2.1 Abstract
	6.2.2 Problem
	6.2.3 Pattern Structure
	Figure 6-1. Static Allocation Pattern

	6.2.4 Collaboration Roles
	6.2.5 Consequences
	6.2.6 Implementation Strategies
	6.2.7 Related Patterns
	6.2.8 Sample Model
	Figure 6-2. Static Allocation Pattern Example

	6.3 Pool Allocation Pattern
	6.3.1 Abstract
	6.3.2 Problem
	6.3.3 Pattern Structure
	Figure 6-3. Pooled Allocation Pattern

	6.3.4 Collaboration Roles
	6.3.5 Consequences
	6.3.6 Implementation Strategies
	Code Segment 6-1: C++ Pooled Allocation Implementation Strategy
	Code Segment 6-2: Java Implementation Strategy for Pools

	6.3.7 Related Patterns
	6.3.8 Sample Model
	Figure 6-4. Pooled Allocation Pattern Example

	6.4 Fixed Sized Buffer Pattern
	6.4.1 Abstract
	6.4.2 Problem
	6.4.3 Pattern Structure
	Figure 6-5. Fixed Sized Buffer Pattern

	6.4.4 Collaboration Roles
	6.4.5 Consequences
	6.4.6 Implementation Strategies
	6.4.7 Related Patterns
	6.4.8 Sample Model
	Figure 6-6. Fixed Sized Buffer Pattern Example

	6.5 Smart Pointer Pattern
	6.5.1 Abstract
	6.5.2 Problem
	6.5.3 Pattern Structure
	Figure 6-7. Smart Pointer Pattern

	6.5.4 Collaboration Roles
	6.5.5 Consequences
	Figure 6-8. Smart Pointer Cycles

	6.5.6 Implementation Strategies
	6.5.7 Related Patterns
	6.5.8 Sample Model
	Figure 6-9. Smart Pointer Pattern Example

	6.6 Garbage Collection Pattern
	6.6.1 Abstract
	6.6.2 Problem
	6.6.3 Pattern Structure
	Figure 6-10. Garbage Collection Pattern (Mark and Sweep)

	6.6.4 Collaboration Roles
	6.6.5 Consequences
	6.6.6 Implementation Strategies
	6.6.7 Related Patterns
	6.6.8 Sample Model
	Figure 6-11. Garbage Collection Pattern
	Figure 6-12. Garbage Collection Pattern Example Scenario

	6.7 Garbage Compactor Pattern
	6.7.1 Abstract
	6.7.2 Problem
	6.7.3 Pattern Structure
	Figure 6-13. Garbage Compactor Pattern

	6.7.4 Collaboration Roles
	6.7.5 Consequences
	6.7.6 Implementation Strategies
	6.7.7 Related Patterns
	6.7.8 Sample Model
	Figure 6-14. Garbage Compactor Pattern
	Figure 6-15. Garbage Compactor Pattern Example Scenario

	References

	Chapter 7. Resource Patterns
	7.1 Introduction
	Figure 7-1. Task Blocking [1]
	Figure 7-2. Unbounded Task Blocking
	Figure 7-3. Deadlock

	7.2 Critical Section Pattern
	7.2.1 Abstract
	7.2.2 Problem
	7.2.3 Pattern Structure
	Figure 7-4. Critical Section Pattern

	7.2.4 Collaboration Roles
	7.2.5 Consequences
	7.2.6 Implementation Strategies
	7.2.7 Related Patterns
	7.2.8 Sample Model
	Figure 7-5. Critical Section Pattern Example

	7.3 Priority Inheritance Pattern
	7.3.1 Abstract
	7.3.2 Problem
	7.3.3 Pattern Structure
	Figure 7-6. Priority Inheritance Pattern

	7.3.4 Collaboration Roles
	7.3.5 Consequences
	Figure 7-7. Priority Inheritance Pattern
	Figure 7-8. Priority Inheritance Pattern

	7.3.6 Implementation Strategies
	7.3.7 Related Patterns
	7.3.8 Sample Model
	Figure 7-9. Priority Inheritance Pattern

	7.4 Highest Locker Pattern
	7.4.1 Abstract
	7.4.2 Problem
	7.4.3 Pattern Structure
	Figure 7-10. Highest Locker Pattern

	7.4.4 Collaboration Roles
	7.4.5 Consequences
	7.4.6 Implementation Strategies
	7.4.7 Related Patterns
	7.4.8 Sample Model
	Figure 7-11. Highest Locker Pattern

	7.5 Priority Ceiling Pattern
	7.5.1 Abstract
	7.5.2 Problem
	7.5.3 Pattern Structure
	Figure 7-12. Priority Ceiling Pattern
	Figure 7-13. Priority Ceiling Pattern Resource Algorithm

	7.5.4 Collaboration Roles
	7.5.5 Consequences
	7.5.6 Implementation Strategies
	7.5.7 Related Patterns
	7.5.8 Sample Model
	Figure 7-14. Priority Ceiling Pattern

	7.6 Simultaneous Locking Pattern
	7.6.1 Abstract
	7.6.2 Problem
	7.6.3 Pattern Structure
	Figure 7-15. Simultaneous Locking Pattern

	7.6.4 Collaboration Roles
	7.6.5 Consequences
	7.6.6 Implementation Strategies
	7.6.7 Related Patterns
	7.6.8 Sample Model
	Figure 7-16. Simultaneous Locking Pattern

	7.7 Ordered Locking Pattern
	7.7.1 Abstract
	7.7.2 Problem
	7.7.3 Pattern Structure
	Figure 7-17. Ordered Locking Pattern

	7.7.4 Collaboration Roles
	7.7.5 Consequences
	7.7.6 Implementation Strategies
	7.7.7 Related Patterns
	7.7.8 Sample Model
	Figure 7-18. Ordered Locking Pattern

	References

	Chapter 8. Distribution Patterns
	8.1 Introduction
	8.2 Shared Memory Pattern
	8.2.1 Abstract
	8.2.2 Problem
	8.2.3 Pattern Structure
	Figure 8-1. Shared Memory Pattern

	8.2.4 Collaboration Roles
	8.2.5 Consequences
	8.2.6 Implementation Strategies
	8.2.7 Related Patterns
	8.2.8 Sample Model
	Figure 8-2. Shared Memory Pattern

	8.3 Remote Method Call Pattern
	8.3.1 Abstract
	8.3.2 Problem
	8.3.3 Pattern Structure
	Figure 8-3. Remote Method Call Pattern

	8.3.4 Collaboration Roles
	8.3.5 Consequences
	8.3.6 Implementation Strategies
	8.3.7 Related Patterns
	8.3.8 Sample Model
	Figure 8-4. Remote Method Call Example
	Figure 8-5. Remote Method Call Scenario

	8.4 Observer Pattern
	8.4.1 Abstract
	8.4.2 Problem
	8.4.3 Pattern Structure
	Figure 8-6. Observer Pattern

	8.4.4 Collaboration Roles
	8.4.5 Consequences
	8.4.6 Implementation Strategies
	8.4.7 Related Patterns
	8.4.8 Sample Model
	Figure 8-7. Observer Pattern Example

	8.5 Data Bus Pattern
	8.5.1 Abstract
	8.5.2 Problem
	8.5.3 Pattern Structure
	Figure 8-8. Data Bus Pattern (Pull Version)
	Figure 8-9. Data Bus Pattern (Push Version)

	8.5.4 Collaboration Roles
	8.5.5 Consequences
	8.5.6 Implementation Strategies
	8.5.7 Related Patterns
	8.5.8 Sample Model
	Figure 8-10. Data Bus Pattern Example Structure
	Figure 8-11. Data Bus Pattern Example Scenario

	8.6 Proxy Pattern
	8.6.1 Abstract
	8.6.2 Problem
	8.6.3 Pattern Structure
	Figure 8-12. Proxy Pattern

	8.6.4 Collaboration Roles
	8.6.5 Consequences
	8.6.6 Implementation Strategies
	8.6.7 Related Patterns
	8.6.8 Sample Model
	Figure 8-13. Proxy Pattern Example Structure
	Figure 8-14. Proxy Pattern Example Scenario

	8.7 Broker Pattern
	8.7.1 Abstract
	8.7.2 Problem
	8.7.3 Pattern Structure
	Figure 8-15. Broker Pattern

	8.7.4 Collaboration Roles
	8.7.5 Consequences
	8.7.6 Implementation Strategies
	Figure 8-16. Simple CORBA Example Model

	8.7.7 Related Patterns
	8.7.8 Sample Model
	Figure 8-17. Broker Pattern

	References

	Chapter 9. Safety and Reliability Patterns
	9.1 Introduction
	Figure 9-1. Safety Versus Reliability
	9.1.1 Handling Faults

	9.2 Protected Single Channel Pattern
	9.2.1 Abstract
	9.2.2 Problem
	9.2.3 Pattern Structure
	Figure 9-2. Protected Single Channel Pattern

	9.2.4 Collaboration Roles
	9.2.5 Consequences
	9.2.6 Implementation Strategies
	9.2.7 Related Patterns
	9.2.8 Sample Model
	Figure 9-3. Protected Single Channel Pattern Example

	9.3 Homogeneous Redundancy Pattern
	9.3.1 Abstract
	9.3.2 Problem
	9.3.3 Pattern Structure
	Figure 9-4. Homogeneous Redundancy Pattern

	9.3.4 Collaboration Roles
	9.3.5 Consequences
	9.3.6 Implementation Strategies
	9.3.7 Related Patterns
	9.3.8 Sample Model
	Figure 9-5. Homogeneous Redundancy Pattern Example

	9.4 Triple Modular Redundancy Pattern
	9.4.1 Abstract
	9.4.2 Problem
	9.4.3 Pattern Structure
	Figure 9-6. Triple Modular Redundancy Pattern

	9.4.4 Collaboration Roles
	9.4.5 Consequences
	9.4.6 Implementation Strategies
	9.4.7 Related Patterns
	9.4.8 Sample Model
	Figure 9-7. Triple Modular Redundancy Example

	9.5 Heterogeneous Redundancy Pattern
	9.5.1 Abstract
	9.5.2 Problem
	9.5.3 Pattern Structure
	Figure 9-8. Heterogeneous Redundancy Pattern

	9.5.4 Collaboration Roles
	9.5.5 Consequences
	9.5.6 Implementation Strategies
	9.5.7 Related Patterns
	9.5.8 Sample Model
	Figure 9-9. Heterogeneous Redundancy Pattern Example

	9.6 Monitor-Actuator Pattern
	9.6.1 Abstract
	9.6.2 Problem
	9.6.3 Pattern Structure
	Figure 9-10. Monitor-Actuator Pattern

	9.6.4 Collaboration Roles
	9.6.5 Consequences
	9.6.6 Implementation Strategies
	9.6.7 Related Patterns
	9.6.8 Sample Model
	Figure 9-11. Monitor-Actuator Example

	9.7 Sanity Check Pattern
	9.7.1 Abstract
	9.7.2 Problem
	9.7.3 Pattern Structure
	Figure 9-12. Sanity Check Pattern

	9.7.4 Collaboration Roles
	9.7.5 Consequences
	9.7.6 Implementation Strategies
	9.7.7 Related Patterns
	9.7.8 Sample Model
	Figure 9-13. Sanity Check Pattern Example

	9.8 Watchdog Pattern
	9.8.1 Abstract
	9.8.2 Problem
	9.8.3 Pattern Structure
	Figure 9-14. Watchdog Pattern
	Figure 9-15. Watchdog State Machine

	9.8.4 Collaboration Roles
	9.8.5 Consequences
	9.8.6 Implementation Strategies
	9.8.7 Related Patterns
	9.8.8 Sample Model
	Figure 9-16. Watchdog Pattern Example

	9.9 Safety Executive Pattern
	9.9.1 Abstract
	9.9.2 Problem
	9.9.3 Pattern Structure
	Figure 9-17. Safety Executive Pattern

	9.9.4 Collaboration Roles
	9.9.5 Consequences
	9.9.6 Implementation Strategies
	9.9.7 Related Patterns
	9.9.8 Sample Model
	Figure 9-18. Safety Executive Pattern Example

	References

	Appendix A. Notational Summary
	Class Diagram
	Class
	Visibility
	Parameterized Class
	Object
	Association
	Aggregation and Composition
	Advanced Associations
	Generalization and Specialization
	Notes and Constraints
	Stereotypes and Classifiers

	Collaboration Diagram
	Object Collaboration
	Message Syntax

	Sequence Diagram
	Advanced Sequence Diagrams

	Use Cases
	Use Case Diagram
	Use Case Relationships

	Implementation Diagrams
	Component diagram
	Deployment Diagram

	Package diagram
	Statechart
	State icon
	Transitions
	Nested States
	Sequential substates
	Orthogonal Substates (and-states)
	Pseudostates
	Synch Pseudostates
	Submachines

	Activity Diagrams

	Appendix B. Pattern Index

