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Abstract

When implementing a function mapping on the contemporary GPU, sev-
eral contradictory performance factors have to be balanced. Previously a
decomposition-fusion scheme was devised to guide such an implementa-
tion and this work is here further elaborated. To ease this process, an au-
tomatic source-to-source compiler is presented, while the main subject of
this thesis are the core algorithms for generation, pruning and search in the
state-space of possible implementations of the mapped function. The per-
formance of the generated implementation is evaluated together with the
overall complexity of the optimization process.
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Chapter 1

Introduction

The contemporary GPUs outperform CPUs in order of magnitude in both
instruction and memory throughtput, and are programmable enough to be
able to run general purpose computations. Their performance is enabled by
simpler although more rigid architecture and massive parallelism.

Implementing a function mapping on a GPU can provide enough paral-
lelism; however, implementing more complicated functions in a monolithic
way on the GPU is not only challenging, but also often inefficient. For ex-
ample, the diverse memory consumption in different stages of the compu-
tation leads to different optimal granularity, and fixing it on the whole can
reduce the parallelism and performance of some parts. Therefore, we di-
vide the computation to separate simple operations which are more easily
implemented in a optimal way and which exchange the data via the global
memory.

To improve the ratio between the global memory operations and arith-
metical operations, suitable groups of separate operations are fused together
again in order to exchange data via the faster on-chip memory. This part
of the process is far less straightforward, and also the number of possible
fusions and their implementations is large. This thesis introduces a source-
to-source compiler which automates this scheme.

During the fusion step of the scheme, the compiler begins with a simpli-
fied description of the computation and a library of elementary operations
with descriptive metadata, such as the expected size of the threadblock or
an empirically evaluated performance behaviour under limited parallelism.
In the first step, the compiler parses the computation description into the
dataflow graph.

In the second step, it searches for gainful fusions and their implemen-
tations. Since the statespace of these implementations is very large even
for reasonable inputs, a set of heuristics is used to prune it and to lead fur-
ther optimizations. And as the performance estimation is based on approxi-
mated values, a small set of the most promising candidate implementations
is benchmarked after the process to determine the most optimal implemen-
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1. INTRODUCTION

tation of the mapped function.
In the last step, the final code is generated using the code templates from

the library of the elementary operations, and handed over to the user.
The decomposition fusion scheme, together with the compiler, enable

the programmer to implement and evaluate generic reusable functions on
one hand and, on the other hand, to write application specific code in a sim-
ple, high-level language. The actual implementation is then automatically
generated by translating the high-level specification into calls to generic
functions and fusing some of them in order to achieve an implementation
as efficient as possible.

This thesis elaborates on an already published work done by Jiřı́ Fil-
ipovič and co-authored by me to provide further details and steps towards
a practical implementation. While the medium-grained mapping pattern
and the decomposition-fusion scheme were published in [6], [8], and the
concept of the optimizing compiler is submitted for publishing in [7], the
design and implementation of the actual algorithms for generation, prun-
ing and search for the most efficient mapped function implementation are
results of this thesis.

The work is structured as follows. After the introductory chapter, a the-
oretical background and tools are presented in chapter two. Here, a generic
description of the GPU architecture and a CUDA programming model is
covered, accompanied by a description of the later utilised optimization al-
gorithms and a formal description of function mapping. Chapter three sets
the presented work into a broader context and also points to previously
published results. The main contribution of this thesis is presented in chap-
ter four. First, the overall design of the compiler is presented, followed by a
description of the particular algorithms used during the state space gener-
ation and pruning. In chapter five, an experimental evaluation of the com-
piler is presented, followed by the last chapter, summing up the achieved
results.
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Chapter 2

Preliminaries

In this chapter, the basic principles used in the later text are presented.
These include the generic sketches of the optimization algorithms in the
first section, an overview of the architecture and programming model for
the general purpose GPU, as it was established lately by NVIDIA, and the
definition of function mapping on the GPU, which is the problem this work
addresses.

2.1 Optimization Algorithms

2.1.1 Branch and Bound

The Branch and bound is an optimization technique for searching a state
space of candidate solutions for the optimal one. It consist of two basic prin-
ciples: first, candidate solutions are generated in an iterative manner – the
so called branching. Second, an upper and a lower bound are determined
for the value of the optimal solution and used to prune the state space by
discarding whole sets of fruitless solutions during the branching phase.

This technique is especially useful when an exact solution of the opti-
mization is required and when the upper and lower bound can be com-
puted in an easy way with reasonable precision. A nice overview is pro-
vided in [12].

2.1.2 Integer Programming

Integer programming is a special case of a linear programing problem with
integer variables. The linear programming is a technique for solving opti-
mization problems defined by linear cost function and constraints. For a set
of variables X = x0...xn the term c0x0 + ...+ cnxn represents the cost func-
tion, the constraints are denoted as a0x0 + ... + a0x0 ≤ k where k is some
constant, and solution is defined as assignment of a value from the variable
domain to a particular variable. In the case of the integer programming, the
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2. PRELIMINARIES

variables are from the N domain and this variant is known to be NP-hard.
Linear programming is an old albeit still popular technique dated back to
the pre-computer era, and there are numerous solvers available. Therefore
it was possible, with the help of an external fine tuned solver [3], to keep
the solving time of our integer problem low. A detailed description of the
linear programming and its application can be found in [14]

2.2 CUDA computing model

The CUDA (Computer Unified Device Architecture) is a computing archi-
tecture developed and used by NVIDIA GPU to enable generic computa-
tions on the GPU. The programming model itself is closely bound to the
GPU hardware architecture and one has to keep this architecture in mind
to understand the performance implications of particular design and im-
plementation decisions. In following subsection I provide a short overview
of both the GPU architecture and the CUDA programming model.

2.2.1 GPU architecture

The hardware layout of a GPU based on G80 is depicted on Fig. 2.2.1. The
device consists of several multiprocessors, one device memory, a thread
scheduler and an interconnection to the host. Each multiprocessor consists
of a shared memory, the constant and texture caches, one instruction unit
and several processors equipped with register memory.

All processors on one multiprocessor have to execute the same instruc-
tion at a time, as there is only one instruction unit on one multiprocessor.
The thread scheduling is performed in the hardware by the thread sched-
uler.

The fastest and smallest memory – the registers – reside nearest to the
particular processors. The size of the registers per multiprocessor ranges
from 32 KB to 128 KB. All processors on a single multiprocessor have access
to the shared memory which ranges in size from 16 KB to 48 KB, the access
speed being similar to the access speed to the registers with some limita-
tion on the access pattern. Beside the shared memory, the multiprocessors
provide the read-only constant and texture caches. All multiprocessors can
access the largest and slowest device memory with a latency of aligned ac-
cess around hundreds of cycles and a bandwidth in an order of magnitude
than in the case of registers and shared memory.
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2. PRELIMINARIES

Figure 2.1: The hardware layout of the G80 based GPU (reprinted from
[15]).

2.2.2 CUDA programming model

One of the possibilities how to write programs for the CUDA systems is
the so-called C for CUDA which is an conservative extension of C language.
These extensions allow the programmer to describe CUDA specific aspects
of the program while keeping the actual code in the well known C. The ex-
tensions to C are following [15]: function type qualifiers denoting whether
the function should be executed on the device or on the host, variable qual-
ifiers specifying the type of device memory, a device kernel execution di-
rective, and built-in variables describing the position of a thread within the
CUDA thread hierarchy. Additionally, the access to the CUDA API is pro-
vided, enabling e. g. host-device synchronization, device management, etc.

In CUDA, the threads are organized hierarchically. Threads operating
on spatially near data are grouped into three dimensional thread blocks which
are organized into a grid. This thread hierarchy reflects the hardware layout
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2. PRELIMINARIES

as can be seen on Fig. 2.2.2. A single thread is executed on a single proces-
sor and has access to its register memory. The thread block executes on a
single multiprocessor and therefore the threads within it can exchange data
via the shared memory. The device memory has to be used to share data
between thread blocks.

Figure 2.2: Comparison of the threading and memory hierarchy of the GPU
(reprinted from [15]).

2.2.3 Execution on a GPU

A significant source of computational performance lies in the way how the
latencies to the device memory are masked. On a multiprocessor, numer-
ous1 threads are executed in parallel and, with the help of hardware switch-
ing and planing, those who are not waiting for the return of data transfer
are picked for execution. Thanks to this switching the computational and
memory transfer times can be effectively overlapped and the overall perfor-
mance can get closer to the computational or bandwidth theoretical peak.
However, for this overlapping to be effective a large number of threads is

1. usually more than the number of processors on the given multiprocessor
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2. PRELIMINARIES

required to be executed in parallel. If the parallelism is limited for any rea-
son, so is the achieved performance.

The high numbers of threads being run at once are planned, switched
and managed on the device directly in hardware, employing the so-called
Single Instruction Multiple Data (SIMT) manner of execution. The threads
are within the block scheduled and executed in consecutive groups of size
32 called warps. All threads within one warp start the execution at the same
program counter, but are then allowed to execute independently. However
if a divergence in the execution within a warp occurs, the warp is split and
executed in serial manner, lowering the overall performance.

2.3 Function Mapping

We call n-ary function f to be mapped to the input lists L1, .., Ln when it is
applied element-wise to these lists producing single list of results. Formally
map(f, L1, .., Ln) = [f(l1,1, .., l1,n), f(l2,1, .., l2,n), .., f(lm,1, .., lm,n)], where li,j
is j-th element of Li.

Mapping a function to numerous inputs yields a sufficient degree of
parallelism necessary for the GPU to operate efficienly. However, the opti-
mal implementation becomes increasingly complicated task in case of more
complex mapped functions. Two main tasks arise for the developer: the
thread-to-data element granularity and the kernel-to-code granularity.

2.3.1 Mapped Function Granularity

The previously described CUDA thread and memory hierarchies suggest
two basic approaches to the division of the workload among the threads.
The first is the fine-grained implementation where a single thread processes
a single data element, and the other is the coarse-grained approach where a
single data element is processed by a block of threads. The coarse-grained
implementation obviously requires the mapped function to be implemented
in a parallel manner so that it can be performed by multiple threads.

Usually the decision on the granularity of function implementation is
based on the size of the input and output data elements. In other words,
small data elements which fit in the on-chip memories available to a sin-
gle thread imply the fine-grained implementation, whereas the larger data
elements have to be stored in the shared memory and the workload dis-
tributed over the block of threads.

However, there is a class of functions which don’t fit neither to the fine-
nor the coarse-grained pattern. These functions operate on data which re-
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2. PRELIMINARIES

strict parallelism if processed by a single thread, since their consumption of
the on-chip memory per function is high, but at the same time they don’t
provide enough workload for a block of threads, as the number of threads
should be a multiple of warp size. In other words, the on-chip memory re-
quirements are distributed over multiple threads but at the same time the
size of the block remains sufficiently high.

2.3.2 Decomposition-Fusion Scheme

The core problem is that the granularity of the optimal implementation of a
more complex mapped function often varies for distinct parts of the compu-
tation, and the amount of required on-chip resources is raised by the inter-
mediate results stored there. Therefore, implementing the mapped function
in a monolithic manner leads to limited performance. At the same time it
is possible to decompose the mapped function into several successive sim-
pler functions which store the intermediate results in the global memory.
Such a decomposition can be seen as a directed acyclic graph (DAG) of
data flow G = (V,E), where the set of vertices V represents the particu-
lar functions and the edges E describe the data dependecies between them.
For two vertices v1, v2 ∈ V representing functions f1 and f2, there is an
edge e = (v1, v2) ∈ E representing a list Ltmp iff Ltmp = map(f1, L0, ..Ln)
and map(f2, L

′
0, .., Ltmp, ..L

′
m).

While this approach makes the variable granularity possible and the
simpler functions are easier to develop, it introduces a non-trivial pressure
on the global memory bandwidth by storing and loading the intermediate
data. To overcome this disadvantage, we have introduced the decomposition-
fusion scheme. First, the complex function is decomposed into fairly simple
and reusable functions which are easy to implement in an optimal manner,
and in the second step some of these functions are again fused together so
that they can exchange the intermediate results via the faster on-chip mem-
ory. During the fusing phase there is a search for such sets of the elementary
functions that provide maximal performance when fused. To achieve this
goal the spared global memory traffic has to be balanced against the loss of
performance implied by different parallelism of the fused functions or by
increased on-chip resources by the intermediate results.
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Chapter 3

Related work

The map is a popular primitive in parallel processing and it is frequently
used in the form of a map-reduce pattern to solve numerous problems [5].
There already are implementations of map-reduce for the GPU architecture
[4] [9], however they both limit the thread-to-data granularity to one thread
per mapped data element. This approach is unsuitable for more complex
mapped functions as the on-chip memory resources available to a single
thread are strongly limited on the GPU. The mapped function and respec-
tive reduction are present in both [4] and [9], fused over the intermediate
result stored in the on-chip memory. However, this fusion is performed ev-
ery time since there is no difference in the usage of the GPU resources.

The initial inspiration came from an acceleration of the Finite Element
Method equation assembly on the GPU. The size of the per-FEM-element
data and parallelism attainable in our FEM simulation renders both coarse-
and fine-grained implementation of the mapped function inefficient. More-
over, both the size of the intermediate results and the optimal degree of
parallelism vary during the computation. Therefore in [8] we have intro-
duced the medium-grained implementation of mapped functions and a
fusion-decomposition scheme to guide the implementation of more com-
plex mapped functions. An application of these principles was shown on
an acceleration of a FEM matrix assembly for the StVenant material. A more
detailed description of the medium-grained implementation is given in [6].
Further, the analysis of the medium-grained pattern along with a sketch
of the automation of the fusion phase of the decomposition-fusion scheme
were submitted for publication in [7].

Independently on our work, the medium-grained pattern was used by
[11] in an acceleration of the discontinuous Galerkin method. This work fo-
cuses mainly at problems related to the discontinuous Galerkin, although
some general characteristics of the medium-grained implementation are
also mentioned. The motivation for the medium-grained implementation
separated in multiple kernels was to find a better balance between the on-
chip resources and the size of the problem solved by the mapped function.

11



3. RELATED WORK

However, both the separation of the computation and the implementation
of the particular kernels were done by hand. [13]

An interesting analogous work was recently published by [2]. It deals
with an optimization of the arbitrary source code, using BLAS on the CPU.
While the BLAS routines are believed to be highly optimized, the subse-
quent call to these routines can result in suboptimal performance of the
whole composition due to unoptimized memory access. This issue is ad-
dressed in [2] by fusing the loops of the selected subsequently called BLAS
routines, giving rise to application specific fusions. Furthermore, a source-
to-source compiler automating the whole process was presented and oper-
ated in analogous manner as the compiler presented in this thesis. It starts
with an Matlab-like description of the computation, then enumerates the
possible fusions and, with the help of a mixture of empirical and analytical
performance prediction, determines the most efficient fusions.

Various work was done on the prediction of the CUDA code. Most effort
was invested in the static analysis of the CUDA source code, resulting as
shown in work of [1]. A workflow graph is extracted from the kernel source
code and the performance prediction is computed from its structure. Since
the analytical model presented in [1] has to capture all vital performance
factors, it is fairly complicated and has no ability to adapt to changes in
the GPU architecture introduced with newer generations of the hardware.
Also, in our case there is no need to repeatedly analytically determine the
performance of particular elementary functions as they don’t change over
time.

12



Chapter 4

Automatic Fusion

Several counteracting principles determine the resulting performance of
particular fusion and also there are numerous variants of possible fusions
for a given decomposed complex function. To avoid time costly and error-
prone testing by hand, an automatic tool is presented in this section. This
optimizing compiler is able to choose an optimal implementation of the
mapped function and to generate the CUDA code from prepared templates
of the particular fused functions. The choice of the optimal implementation
of the mapped function is done by searching the state space of all possi-
ble implementations. This state space is very large and therefore the per-
formance of particular implementations is not evaluated empirically but is
instead predicted.

A short note to the terminology: The input is a description of a mapped
function decomposed to several elementary functions. Each of these functions
is taken from the library of elementary functions, where it is present in sev-
eral variants refered to as implementations of the elementary function. A set
of the elementary functions can build up a fusion and a fusion linearization
can be subsequently created by ordering these fused functions. Setting sev-
eral properties described below on the fusion linearization results in a final
fusion implementation which can be translated to a CUDA source code.

4.1 Compiler Design

The compiler begins with a C-like description of the mapped function and
a library of elementary functions with descriptive metadata such as input
and output types, block sizes etc. In a first step the computation description
is parsed into a data flow graph and performance of all required elemen-
tary functions is evaluated by benchmarking under various combinations
of reduced parallelism and number of data elements processed per block.

In the second step the state space of possible implementations is searched
and the performance prediction of the candidates is based on the previously
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4. AUTOMATIC FUSION

benchmarked performance of elementary functions. Detailed description of
the performance prediction is given in section 4.4. As a result several best
implementations are picked and the compiler generates the corresponding
CUDA code. Finally the best implementation is chosen according to its real
performance and handed over to the user. The compiler doesn’t perform
any low level optimizations and leaves these to the native CUDA compiler.

Example Listing 4.1 shows description of mapped function f : X =
||A ·B ·v||2 · (C ·D+C) whereA andB are 3×3 matrices, the v is a vector of
size 3, the C and D are 5× 5 matrices and ||x||2 is a vector l2-norm. As you
can see, the original function was decomposed to elementary functions with
explicitly named and typed intermediate results. First four rows declare the
types of the used variables. Note that the code describes computation of the
mapped function, not the mapping itself which is also reflected in the types
of the variables which describe single data elements instead of lists. Lines 6
and 15 denote the input and output arguments of the mapped function. At
the present the number of output variables is limited to one for the sake of
simplicity but this limitation should be lifted in future to enable mapping of
more generic functions. Rest of the code describes the actual computation
and is fairly self explanatory.

Listing 4.1: Example description of the mapped function
MATRIX3x3 A, B , M1;
MATRIX5x5 D, E , F , M2, M3;
VECTOR3 c , v1 ;
SCALAR s1 ;

input A, B , c , D, E ;

M1 = mmul33 (A, B ) ; // M1 = A ·B
v1 = mvmul33 (M1, c ) ; // v1 = M1 · c
s1 = venorm3 ( v1 ) ; // s1 = ||v1||2
M2 = mmul55(D, E ) ; // M2 = D · E
M3 = madd55 (M2, D) ; // M3 = M2 +D

F = smmul55 (M3, s1 ) ; // F = M3 · s1

re turn F ;

The language of the computation description is limited to basic function
call without loops or branching possibilities. While the branching function-
ality is expected to be covered within particular kernels if not avoided alto-
gether for performance reasons, finite loops can be in current implementa-

14



4. AUTOMATIC FUSION

tion substituted by unrolling.

4.1.1 Library of Elementary Functions

The library of elementary functions can contain arbitrary simple functions,
in our example case a range of basic linear algebra operations such as matrix-
matrix multiplication, vector norm, etc. These are the basic building ele-
ments from which the mapped function is composed. All of them are writ-
ten for data elements of fixed size (e. g.square matrices of size 5) and hand
tuned for best possible performance. Programming of such functions is rea-
sonably simple and it is possible to reach near optimal performance of these
particular functions with reasonable effort.

Short note on the fixation1 of the matrix size. We are dealing with the
implementation of given complex function working with some data ele-
ments and we suppose that the size of these data elements is determined
by the nature of the solved function. What changes for different calls to the
mapped function – and is therefore problem dependent – is the number of
input data element instances, not the size of the data elements.

The library functions have prescribed form to enable automated pro-
cessing. Every function consists of load and store routines, which take care
for data transfers of the inputs and output between the global and shared
memory, and a compute routine performing the actual computation on the
data stored in the shared memory. There is one load function for every input
argument of the function. Thank to this separation of the memory transfers
and the computational part it is possible to create fusions easily by gluing
together only the compute routines of all fused vertices and using the ap-
propriate load routines to fetch the input data and respectively the store
routines to save the fusion results to the global memory.

The important properties of the elementary functions are stored in the
metadata comments in the function sources. For the load function there is a
notation of the data type which the function transfers and for the compute
function the metadata stores the required sizes of grid and block.

There are two types of the on-chip memory resources available to the
threads. It is the shared memory and the registers. While the overall design
of the compiler was created with both in mind, at present it takes only the
shared memory into account. This limitation was introduced for the sake of
simplicity of the initial version of the compiler and will be removed in the

1. The size of the matrices is fixed during the benchmarking and compilation process.
However there is no need to write every single elementary function by hand as they can
be easily generated from parametrized templates by an external script.
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future.

4.2 Configuration Space

4.2.1 The Data Flow Graph

As mentioned before the decomposition of given mapped function f can
be represented by a directed acyclic graph (DAG) G = (V,E) with vertices V
labeled by the functions and edges E by the data types of the intermediate
results. This representation is the core formalism used by the compiler. To
capture the input and output parameters of the function f we add a vertex
for each such a variable representing helper functions loading the input
data from the host to the device memory and storing the results back to
the host memory. Example of such a DAG is depicted on Figure 4.2.1. This
DAG corresponds to the computation description shown on Listing 4.1.

Various information has to be stored in the vertex to make the genera-
tion of the CUDA code possible. The vertex represents a call to CUDA ker-
nel and therefore it has to store the name of the implementation of the par-
ticular elementary function, the number of elements it processes per block
in the case of the medium- or fine-grained implementation and also the
other two dimensions of the thread block. Also the size of the grid has to
be set for each kernel from the number, however it can be easily computed
from the size of the input elements to be mapped on and the number of ele-
ments processed in one block. These variables can be set to arbitrary values
during the initial creation of the data flow graph as they are subject of the
optimization process described in the next section.

The fusions are represented as single vertices in the modified main graph
G′ associated with a DAG describing for a given fusion F the computation
within as GF = (VF , EF ) where VF ⊆ V and EF ⊆ E. Similarly to the main
graph G vertices representing the loading of the inputs and storing the out-
puts of the fusion are added to theGF , however they represent loading and
storing data to and from the on-chip memories as the intermediate results
of the fused functions are stored there. Each such a load vertex is created
for a group of input edges from E sharing one source to prevent redun-
dant copying of identical data. Additionally each of such a I/O vertices has
references to these incoming edges to the fusion which it represents so that
the information about the data dependence is kept between particular func-
tions both inside the fusion in GF and outside of the fusion – in the DAG
G′. Example of the fusion DAG within a mapped function DAG is depicted
on Figure 4.2.1.
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A

mmul33_0

MATRIX3x3

B

MATRIX3x3

c

mvmul33_2

VECTOR3

D
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madd55_8
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VECTOR3 MATRIX5x5

smmul55_10

MATRIX5x5

MATRIX5x5

SCALAR

Figure 4.1: Example of a DAG representing the mapped function computa-
tion

Also the fusion has to bear the information about the thread block size
and number of elements. The dimensions of the thread block required by
the particular fused functions can differ and as the threads cannot be dy-
namically created and destroyed during the kernel execution the total num-
ber of threads has to remain constant during the lifetime of an CUDA ker-
nel. Therefore the fusion vertex stores the maximal number of thread re-
quired by the particular fused functions as an one dimensional block and re-
calculates the position for each thread within this block before every execu-
tion of a fused function. This approach can render some of the threads idle
if some function requires smaller block, however almost no performance is
lost as they don’t perform any computation and are quickly scheduled out.
Considering the number of elements processed by one block this number
has to be constant during the whole execution of the fusion kernel because
it is not possible to exchange the intermediate results outside of the fusion.

4.2.2 Degrees of Freedom

There are numerous possibilities how to perform the second step of the
decomposition-fusion scheme – i. e. the fusing – for given decomposition of
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Figure 4.2: Example of a fusion subgraph within a DAG representing the
mapped function computation

mapped function. Following possible choices has to be taken into consider-
ation:

1. all fusible subgraphs of the data flow graph

2. all linearizations of particular fusions

3. all implementations of elementary functions within fusion

4. all valid combinations of fusions (non-overlapping)

The subgraph GF of the data flow graph G can in general be fused if it
is a connected component of the graph G and if there is no outgoing edge
e ∈ EF from this component such that there is a path beginning with the
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edge e and returning back to the component GF . Although the fusible sub-
graphs are limited by this condition the number of such subgraphs for more
complex functions can grow quickly. Further in the current implementation
of the compiler a function can have only one output and therefore a fusion
can be created only from a sink-like subgraph of the data flow graph if there
is only one fused vertex with edges leading out of the fusion. However this
limitation has been introduced only to simplify the implementation and
will be removed in near future as functions with multiple outputs are also
interesting in general.

To translate the a DAG representing the fusion subgraph to the CUDA
code a linearization has to be made. A linearization of a DAG G = (V,E)
is such a ordering λ : V →< 1, |V | > of its vertices that ∀(v1, v2) ∈ E :
λ(v1) < λ(v2), i. e. that there is no edge leading to previous vertex. There
can be obviously multiple possible linearizations for a given DAG.

Every elementary function can be present in the library in multiple dis-
tinct implementations. These implementations differ for example in required
block sizes or performance behaviour. Therefore for every vertex in a fusion
DAG some of these particular function implementations has to be chosen.

Finally multiple fusion can be part of the DAG representing the mapped
function f . Therefore from all possible candidates most effective combina-
tion has to be chosen according to the resulting performance gain.

4.2.3 Performance Implications

The choices presented in previous section have direct implication on the
performance of the subsequently generated code.

In mapped function decomposition the particular functions have to ex-
change the intermediate results. This is done outside the fusion over the
global memory yielding every intermediate result to be stored to the global
memory and at least once loaded from the global memory. This traffic is
avoided inside the fusion as the fused functions store the intermediate re-
sults in the fast on-chip shared memory. Therefore the performance gained
by easing the pressure on the global memory bandwidth is determined by
the choice on the set of vertices building up the fusion.

The linearization predetermines the amount of shared memory required
by the fusion. The shared memory of a CUDA kernel cannot be allocated
dynamically and the size of the share memory required by a CUDA kernel
puts an upper bound on the degree of achievable parallelism, because all
blocks on one multiprocessor share one on-chip storage. Therefore it is vital
to order the vertices of the DAG in such way that the intermediate results
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are not stored longer than is necessary for the actual usage and at the same
time the shared memory fragmentation can be avoided.

The implementations of the particular functions in a given fusion can
operate on different granularity and can require different number of threads
to process one element. While the loss of performance from the recompu-
tation of the coordinates within a thread block is rather small (though not
negligible as it may require modulo operation which is slow on contem-
porary GPUs), the different requirements of the on-chip resources by the
implementations with different granularity can lead to loss of attainable
parallelism in some parts of the computation and consequently limit the
performance.

And finally only nonintersecting fusions can be used to implement given
mapped function and so the performance contribution of every fusion has
to be evaluated and compared to other overlapping fusions and respective
standalone functions to determine the most efficient combination.

4.3 State Space Searching

Several decisions with numerous combinations has to be made during the
search for the most efficient implementation of the mapped function. Every
combination of the these decisions results in a different implementation of
the mapped function and forms a single state in the state space of all pos-
sible implementations. The state space is generated and pruned in follow-
ing order. First all possible fusions are generated based on a given mapped
function DAG. The size of the fusions (number of fused vertices) is limited
by a chosen constant to limit the number of such fusions and to keep the fur-
ther computations feasible. Then for every fusion all possible combinations
of the implementations of the fused functions are enumerated multiplying
the number of generated fusions. After this step, every fusion is linearized
forming a fusion implementation and the performance is estimated. At this
point the unfruitful fusion implementations are discarded based on the per-
formance estimation presented in Section 4.4. In the last step the candidates
on the implementation of the mapped function are chosen form the sets of
evaluated fusion implementations and the standalone vertices and handed
over to the optional final empirical testing. Algorithms used in particular
steps of the state space generation and pruning are presented in following
sections.
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4.3.1 Generation of Valid Fusions

Basically the number of possible fusions on a given DAG G = (V,E) is in
the worst case near the number of subsets of all vertices – |2V |. However
the performance gain of the fusions stagnates for large number of fused
vertices so it is possible to consider only fusions of limited size. The stag-
nation is caused by the decreasing the ratio of the spared memory transfers
compared to the amount of on-chip resources required by the fusion. Also
with the growing size of the fusion the probability of reaching the compu-
tational bound grows. Therefore the number of fusions of size lower then k
is bound by the number of subsets of V of size at most k is then:

k∑
i=1

(
|V |
i

)

Note that this is the worst case of the number of possible fusions. The
exact number depends on the actual structure of the DAG and is usually
significantly lower. The algorithm enumerates all possible subsets of V of
size up to the previously set k and tests for each such a subset if it can be
turned into a fusion. A set of vertices VF ⊆ V can be fused if and only if for
every edge (v1, v2) ∈ E such that v1 ∈ VF and v2 /∈ VF there is no path from
v2 to any of the fused vertices v ∈ V . Such a path would lead to a deadlock
as it is not effectively possible to execute two different functions in parallel
and synchronize between them. This property can be checked in very fast
way by starting a breath-first search from every outgoing edge and coloring
the visited vertices. Therefore every edge is tested only once on belonging
to a forbidden path and the overall complexity is in O(|E|).

The worst case number of possible fusions is reached on a DAG com-
posed of one source and one sink vertex with an arbitrary big layer of ver-
tices connected to both in between and is presented on the Figure 4.3 on the
left. On the other hand the amount of possible fusion is quadratic when the
structure of the DAG is linear as depicted on the Figure 4.3 on the right. Al-
though the structure of a typical DAG describing a mapped function is not
linear it is far from the worst case as the in-degree of the vertices is limited
by the arity of the elementary functions.

4.3.2 Implementation Combinations

For every function inside a fusion there are several implementations to be
chosen from in the library of elementary functions with different thread to
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Figure 4.3: Left: the worst case structure of a DAG. Right: the easiest struc-
ture.

data granularity or – in the case of the fine- and medium-grained imple-
mentations – with different optimal number of elements processed by one
thread block. The generation of all possible combinations of these imple-
mentations for one fusion is fairly simple and is done by enumeration. The
number of the different implementations If of one function f is usually
lower than ten and therefore for a fusion of functions f1, ..., fk the number
of the possible implementations combinations computed as If1 · ... · Ifk is
limited by the choice of constant k limiting the size of generated fusions.
The particular combination of the implementations determines the degree
of limited parallelism (and subsequently performance) and it is therefore
possible to prune the underperforming combinations by performance pre-
diction described in section 4.4.

4.3.3 Shared Memory Allocation

The size of allocated shared memory has a big influence on the parallelism
exposed by given fusion because the amount of the on-chip resources is
limited and it is therefore crucial for the performance of the fusion to keep
consumption low. The size of the shared memory of the particular lineariza-
tion of the fusion is determined by the allocation of the variables in the
shared memory. It is not necessary to allocate extra space for every variable
because not every variable is used in every time point during the fusion
computation. Therefore the space used by the variables holding the inter-
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mediate results, which will be no more used, can be filled with the data of
actually required variables. As the current GPU doesn’t allow to allocate the
shared memory dynamically a memory reusing scheme had to be devised
and is presented in this section.

Instead of allocating the shared memory for every variable one big mem-
ory space is allocated for the whole fusion and the variables are then asso-
ciated with a offset pointing to the beginning of the space designated to
store that particular variable. It is possible to reuse the space belonging to
the unneeded variables by simply associating another variable with offset
pointing somewhere in the unneeded space. So far we consider all variables
to be arrays of the same basic type, e. g. float. Also note that every variable
can be associated with multiple edges: a set of outgoing edges of one func-
tion – describing situation where a result of one function is used as input of
multiple functions – is associated with one variable.

Formally let the set B denote all shared memory variables of a given
fusion with a size labeling function σ : B → N where for some b ∈ B the
σ(b) is the length of array representing the type of b in memory (for example
the σ(bmatrix5×5) = 25). Let the α : B → N be the association of the variables
with the respective offset. The size of the shared memory space can be then
computed as max

b∈B
(α(b) + σ(b)).

The offset function α however has to assign the offset in such a way that
the space occupied by two active variables does not overlap. This property
can be formulated for given vertices V and the respective linearization λ :
V → N giving the position in the ordering as follows. For every variable
b ∈ B let the set of edges Eb ⊆ E denote the edges associated with the
variable. The variable b is called active on a position i of the linearization
if there is an edge (v1, v2) ∈ Eb such that λ(v1) ≤ i ≤ λ(v2). Let Ai ⊆ B

denote the set of variables active at position i then on every position i for
every two variables b1, b2 ∈ Ai the intersection of corresponding memory
intervals is empty: [α(b1), α(b1) + σ(b1)) ∪ [α(b2), α(b2) + σ(b2)) = ∅.

This property also implies the lower bound on the total allocated shared
memory space. Let us denote this lower bound as Mlb and define it as a the
biggest sum of active variables on particular positions in the linearization:

Mlb = max
v∈V

 ∑
b∈Aλ(v)

σ(b)


The lower bound Mlb can be easily computed for given linearization

and the usage is twofold. First it is used during the linearization generation
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algorithm presented in next section as the approximation of the the size of
the allocated memory of particular linearization allowing to prune search
space of possible linearizations. Second it is used in the allocation computa-
tion algorithm 4.3 presented below, where it allows to recognize the optimal
allocation and stop the search. However it is to be noted, that the value of
optimal allocation can be in some cases higher thanMlb due to unavoidable
fragmentation of the common shared memory space. Nevertheless this fact
doesn’t break the linearization algorithm as the value of Mlb is used only as
a heuristic parameter and also the allocation algorithm remains sound and
only looses the ability to recognize the optimal solution at first sight.

The branch and bound algorithm for the computation of optimal shared
memory allocation is presented in listing 4.3. It performs two basic steps:
first it uses simple hungry algorithm to generate initial solution and after-
wards it searches for an optimization with the help of backtracking. Both
the hungry and the optimal algorithm operate on set of the variables or-
dered by the first usage of the variable in the linearization. The solution is
build gradually from the beginning of this set so that when the offset for
the variable b on place i, denoted as α(bi), is being computed than for every
j < i the offset α(bj) is already fixed and for every l > i the offset α(bj) is
undefined. Therefore the process of assigning the offset α(bi) can be seen
as a branching part of the branch and bound algorithm with the all possi-
ble values of the offset for variable bi representing branches leading from
actual partial solution to different complete solutions. Bounding part of the
branch and bound scheme is performed in pruning the unfruitful branches
of the partial solutions based on the lower and upper bound values pre-
sented later on.

Short remark to the notation. EF is a set of edges within the particular
fusion F ,OF is the ordering of the vertices of a fusion F , i. e. an array where
the vertices are ordered by the linearization numbering λ. Sets in(V ) and
out(V ) denote the incoming and outgoing edges of the vertex V .

Listing 4.2: Helper functions for the optimal allocation of the shared mem-
ory

1 func t ion computeCol l i s ionSets (O)
2 f o r every b ∈ B :
3 Cb = ∅
4 f o r every edge e = (v1, v2) such t h a t v1, v2 ∈ O :
5 l e t i and j be the p o s i t i o n s of v1 and v2 in O

6 b i s such t h a t e ∈ Eb
7 f o r k form i to j :
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8 Ak = Ak ∪ b
9 f o r every Ai :

10 f o r every b ∈ Ai :
11 Cb = Cb ∪Ai
12 re turn {Cb, b ∈ B}
13

14 func t ion computeHungryAllocation (O)
15 computeCol l i s ionSets (O)
16 f o r every b ∈ B
17 choose s m a l l e s t m such t h a t f o r every bc in Cb :
18 [m,m+ σ(b)) ∪ [α(bc), α(bc) + σ(bc)) 6= ∅
19 α(b) = m

20 re turn α

The algorithm uses in both steps the sets of collision variables Cb for
every variable b ∈ B. Two variables b1, b2 ∈ B are said to be in collision
if they are both active at some position i of the linearization – ∃i : b1 ∈
Ai ∧ b2 ∈ Ai. These sets are for given variable b computed as an union of
all edges starting or ending on any of the vertices in the range given by the
indexes of the start and end vertices of the edges in Eb.

The hungry algorithm iterates over all variables and chooses for every
variable b the smallest offset such that the variable doesn’t overlap with
previously processed ones. Let bi be a variable for which the offset is to be
chosen. Then for any j < i the α(bj) is defined, for every k ≥ i the α(bk) is
not defined. The only variables with which the bi can overlap are those with
which it is in conflict, therefore for the correct assignment it is enough to
check against the variables in bc ∈ Cb such that α(bc) was already assigned.
The choice on line 17 is done by sorting the already assigned colliding vari-
ables by the offset and searching from zero for space big enough for the bi

to fit in. If there is no such a space, the offset is set to point right behind the
space occupied by the last conflicting variable. Note that it is not important
how the sort handles the variables bc with undefined offset as they will be
dealt with at later point of the solution generation.

Listing 4.3: Optimal allocation of the shared memory
1 func t ion computeOptimalAllocation (O)
2 computeCol l i s ionSets (O)
3 αbest = computeHungryAllocation (O)
4 Mbest = Mαbest

5 Mlb = computeLowerBound (O)
6 i f Mbest = Mlb
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7 re turn αbest
8 i = 0
9 while t rue :

10 choose s m a l l e s t m such t h a t f o r every bjc ∈ Cbi , j < i :
11 [m,m+ σ(bi)) ∪ [α(bc), α(bc) + σ(bc)) 6= ∅
12 while (m+ σ(bi) ≥Mbest )
13 i = max({j : bj ∈ Cbi ∧ j < i} )
14 m′ = α(Cbi) + 1
15 choose s m a l l e s t m ≥ m′ such t h a t f o r every bjc ∈ Cbi , j < i :
16 [m,m+ σ(bi)) ∪ [α(bc), α(bc) + σ(bc)) 6= ∅
17 i f i = 0 ∧m+ σ(b0) ≥Mbest

18 re turn αbest
19 α(bi) = m

20 i ++
21 i f i = |B|
22 Mbest = maxb∈B(α(b) + σ(b))
23 αbest = α

24 i f Mbest = Mlb

25 re turn αbest
26 l e t j be the f i r s t index such t h a t α(bj) + σ(bj) = Mbest

27 i = j

The memory allocation produced by the hungry algorithm can be frag-
mented and in that case it can be further optimized. However it gives a
good upper bound for the value of optimal solution. Note that if the value
of the hungry solution Mbest is equal the lower bound Mlb described earlier
it implies that it is in fact already optimal (line 6). However if the lower and
upper bound differ it is not clear whether the lower bound can be reached
and in such a case all possible assignments have to be evaluated. The algo-
rithm searching for the optimal assignment of the offsets α is in principle
same as the hungry algorithm but uses backtracking to search for alterna-
tive solutions.

For a given bi an candidate offset is found in the same manner as in the
hungry algorithm (line 10). Then the upper border of the memory taken by
the data of the variable bi is on line 12 checked against the upper bound
Mbest and if violated, backtracking loop starts. On line 13 the variable is
chosen to which the algorithm will backtrack. It is the conflicting variable
which was assigned an offset as last. The idea behind this choice is, that
two successive variables bi and bi+1 doesn’t necessary have to be in colli-
sion and therefore when repairing the inefficient solution, there is no point
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in manipulating variables, which cannot overlap with the variable we are
backtracking from. Also by manipulating any other then the most recently
assigned could result in skipping potential solutions. The offset for new
actual variable is increased by one and corrected on line 15 if an conflict
occurs. The backtracking continues further when the new offset causes the
variable to violate the upper bound in the loop condition on the line 12.
The sensitivity of the algorithm on the value of partial solution at this place
is increased with time as the upper bound is toughened with every found
solution as described further.

Note that the backtracking is initiated already during the construction
of the offset assignment, every time the upper boundMbest is reached by the
value of the partial solution. Therefore thank to this bounding on the par-
tial solutions the unfruitful branches are cut away at the very moment when
some variable is assigned offset leading to uninteresting solution. Also ev-
ery generated complete solution is therefore better than any previous and
leads to an update of Mbest resulting in even stricter pruning in further iter-
ations.

Also the restart of the offset assignment after the generation of a com-
plete solution is directed at the variable which was first to define the value
of the solution (determined on line 26). Therefore time is not wasted by op-
timizing the tail of the solution while the value of the solution is defined by
the offset of some earlier variable.

The search for optimal assignment of α is terminated on one of two dis-
tinct conditions. If the value of some generated solution reaches the lower
bound Mlb on line 24 or if the all possible assignments has been evaluated.
Latter condition is detected on line 17 when the first variable b0 reaches the
actual upper bound Mbest implying that there is no space left for further
optimization as it is not possible to backtrack from the first variable.

4.3.4 Linearizing the Fusions

The linearization of the particular fusion F has contrary to the linearization
of DAG representing the whole mapped function significant influence on
the performation because the order of the particular kernels within a fu-
sion determines the volume of shared memory required by the function.
However to calculate exactly how much shared memory the linearized fu-
sion will need the variable offsets has to be computed. As the computation
of these offsets is very demanding task it is not possible to evaluate every
candidate linearization of particular fusion. The number of all lineariza-
tions of a DAG can be large and therefore it was necessary to approximate
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the value of shared memory during the search. For this approximation the
lower bound Mlb from equation 4.3.3 was chosen as for most cases it is
equal the value of optimal allocation for the given linearization and be-
cause the difference introduced by the fragmentation is acceptable for an
approximation. This little degree of fragmentation is implied by the facts:
that the size of the fusion is limited and that thank to the low arity of the
library functions the degree of particular vertices is also low. Therefore the
DAG representing the fusion tends to be rather less branched and doesn’t
provide enough complexity to introduce large fragmentation.

The linearization algorithm presented on the listing 4.4 is based on basic
recursive algorithm presented in [10]. It enumerates all possible lineariza-
tions and keeps only the one with lowest lower bound on the shared mem-
ory λbest. The set Z denotes vertices of the fusion graph with in-degree zero,
function I : V → N stores the in-degree so that it is not necessary to actually
modify the graph when removing processed nodes and p is the actual posi-
tion in the linearization λ. The algorithm is initialized with Z0 being the set
of load vertices, I0 computed from the fusion DAG and p0 = 0.

Listing 4.4: Linearization of a fusion
1 func t ion nce (Z , I , p ,λ )
2 i f p = |F | ∧Mλbest

lb > Mλ
lb

3 λbest = λ

4 e l s e
5 f o r every v ∈ Z
6 I ′ = I

7 f o r every (v, v1) ∈ out(v)
8 I ′(v1) = I ′(v1)− 1
9 Zv = {w,w ∈ out(v) ∧ I ′(w) = 0}

10 Z ′ = Z \ {v} ∪ Zv
11 λ(v) = p

12 nce (Z ′ ,I ′ ,p+ 1 ,λ )

Every iteration of the loop on line 5 represents a possible decision for a
vertex on a position p which can be chosen from the vertices with already
computed (i. e.already placed in the linearization) predecessors. When a
vertex is placed in the linearization, it doesn’t further block any vertices
and is virtually removed from the DAG by lowering the in-degree of its
successors in the loop on line 7. Then the set of zero in-degree Z ′ is updated
and next position in the linearization is processed.

The complexity of this algorithm is in O(n!) as noted by [10], however
recall that the size of the fusion is limited and also the typical degree of a
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node is low. Therefore there was no reason to enploy far more sofisticated
algorithm presented also in [10] which improves the complexity to n22n as
with the size of the problem limited by some constant, the behaviour of
both algorithms would be almost identical.

4.3.5 Fusion Combinations

As a last step a subset of all candidate fusions implementations is to be cho-
sen. Fusions in this subset must not include one vertex of the original DAG
more than once and the total performance of the whole mapped function
implementation is to be maximized.

This task can be seen as an instance of set covering problem. For a DAG
G = (V,E) and a set of fusions F ⊆ 2V a set S of candidate subsets is
constructed as S = F ∪ {{v}, v ∈ V }. Then a performance of the fusions
implementations and the standalone elementary functions is predicted (see
section 4.4) and will be refferenced as a function of predicted time τ : S →
R. The cover is then a set C ⊆ S such that

⋂
C = ∅ and

⋃
C = V . The total

time of the cover is then
∑
c∈C

τ(c).

In the linear notation each set U ∈ S is associated with a binary variable
xU representing the participation of the set in the cover. The requirement of
empty intersection is enforced by the equations 4.1 and the cost function is
reformulated as equation 4.2.∑

U :v∈U
xU = 1, ∀v ∈ V (4.1)

∑
s∈S

τ(s)xs (4.2)

The optimization variant of the set cover problem is known to be NP-
hard however the linear programming formulation has |V | equations and
|V | + |F | variables and can be solved for the pruned state space with the
help of generic linear programming solver. See section 5 for more detailed
performance evaluation.

As the performance prediction τ is not exact it is desirable to generate
several fusion covers with similar expected performance and empirically
evaluate them. For this purpose we iteratively restart the linear program-
ming solver on modified set S for given number of times so that we obtain
alternative solutions. The algorithm works as follows: when for a candidate
set S a cover C is computed consisting of fusions U1...Un a new candidate
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sets S1...Sn are created by subtracting the particular members of the cover
C from the original candidate set S.

The algorithm computing the fusions covers is presented on Listing 4.5
To avoid repetitive modifications of the set of candidate fusions the algo-
rithm keeps track of the already processed modification of the original set.
These modifications are represented by sets of fusions N ⊆ 2F which were
on line 16 subtracted from the original set. The algorithm begins with a
set of fusions F and empty modification set in the queue. In each iteration
an optimal cover is computed on line 3 and afterwards new candidate set
is created for every fusion in the cover by subtracting it from the candi-
date set. On these new candidate sets the resulting optimal cover will differ
from all previously computed covers and at the same time any cover can be
reached as the difference between two successive candidate sets is only one
fusion. The algorithm pseudocode is presented in listing 4.5.

Listing 4.5: Algorithm for fusions covers computation
1 func t ion computeCover (F )
2 formulate l i n e a r problem from F

3 solve l i n e a r problem to get fus ion cover C

4 re turn C

5

6 func t ion generateBestCovers (F )
7 enqueue ( (F, ∅) )
8 B = ∅
9 N = ∅

10 while ( queueNotEmpty ( ) ∧ |B| < ε )
11 (F ′,M) = dequeue ( )
12 C = computeCover (F ′ )
13 i f ( C = ∅ ) continue
14 B = B ∪ {C}
15 f o r each U ∈ F ′ such t h a t M ∪ U /∈ N
16 F ′′ = F ′ \ U
17 enqueue ( (F ′′,M ∪ U) )
18 N = N ∪M ∪ U
19 re turn B

4.4 Performance model

The size of the state space of possible mapped function implementations
and the time costs of code generation, compilation and performance mea-
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surement does not allow the empirical evaluation of every possible fusion
implementation in practice. Instead an empirical model is used to predict
the performance implication of decisions made during the fusing phase and
only handful of most promising candidates are evaluated in reality. In this
section the performance factors are presented followed by the description
of the model used for the prediction.

4.4.1 Performance Factors

The performance of particular CUDA code on given GPU is determined
by numerous factors. While some of them depend on the implementation
of the particular function, some depend on the choices made during the
fusion phase as described in section 4.2.3.

The developers are responsible for the performance of the standalone
elementary functions during the decomposition phase. That means taking
care for coalesced memory access, avoiding bank conflicts, choosing opti-
mal granularity and avoiding warp divergence. These performance factors
are not influenced in the composition phase as they all relate to the im-
plementation of the particular function which is not modified during the
composition phase.

There are however factors influencing the performance of the particu-
lar functions within a fusion which relate to the implementation of the fu-
sion and are therefore determined in the composition phase. It is the total
amount of the allocated shared memory in the fusion, the overhead intro-
duced by the computation reorganization between function implementa-
tions operating on different granularity inside the fusion and the volume of
spared traffic to the global memory.

The amount of shared memory and the number of threads are both fixed
for the whole fusion as it is not possible to resize the thread block or allocate
the shared memory in a dynamical manner. Although the idling threads
do not limit the performance directly, the computation between two func-
tions with different requirements on the thread block size has to be reor-
ganized. This reorganisation consists in recomputation of the thread coor-
dinates within a block and limiting the number of threads taking part in
the execution. Both parts introduce an overhead – the position is recom-
puted with the help of costly modulo operations and the limitation re-
quires additional branching resulting in serialization of some warps. These
performance limitations are introduced by the fusion and have to be out-
weighed by the spared global memory traffic for the fusion to be gainful
in the means of performance. A performance model incorporating these
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counter-working factors is presented in next section.

4.4.2 Performance Prediction

The elementary functions stored in the library all share same template-like
design separating the load and store routines from the computational part.
Therefore it is possible to empirically evaluate the performance of these
building blocks separately and to compute the overall performance of a
fusion from these values.

The most important feature of the GPU which has to be taken into ac-
count is the ability to overlap the warps executing the computational in-
structions with the warps performing the memory operations. Therefore
the basic estimation of the performance of particular fusion has to evaluate
time spent both in the global memory operations and in computation and
determine if the performance of the fusion is memory- or computationally-
bound. To make this prediction the empirically estimated times of the load,
store and computational routines of particular fused functions are used.
The equation 4.3 has to be further refined to incorporate previously de-
scribed performance limitations. The estimation of these performance fac-
tors is presented in the rest of the section.

tbound = max(
∑

tload + tstore,
∑

tcompute) (4.3)

The statically allocated memory of a fusion is usually larger than the
memory required by the particular fused functions. It is either necessary
for storing the intermediate results or is required by some larger function
and is left unused because it is not possible to deallocate it before the end of
the fusion execution. The additional memory lowers the number of blocks
which can be executed on the multiprocessor at one time and therefore
lowers the attained parallelism of the particular fused functions execution
compared to the standalone execution. However it is not necessary to em-
pirically evaluate the performance of every fused function in every fusion.
Instead the performance of all elementary functions in the library is eval-
uated once with respect to a particular GPU. We refer to this process as to
the benchmarking of the library of elementary functions and it is described
in next section. This association of timing to the additional allocation and
number of elements can be also seen as table function ψ : R × N × N → R
where R is the set of all routines of all elementary functions.

First the amount of additionaly allocated memory is computed for each
used routine r of the fused function f during the performance evaluation as
Mr = Mfusion −Mf

function. Then the time estimations tload, tstore and toverall
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for particular routines in the formula 4.3 are replaced with the correspond-
ing values given by ψ resulting in following equation, where the sets RFc
and RFl denote the compute and load routines used in the fusion F and
where e is the number of elements processed by one instance of the fusion:

tfusion = max(
∑
rl∈RFl

ψ(rl, e,Mrl) + ψ(rs, e,Mrs),
∑
rc∈RFc

ψ(rc, e,Mrc)) (4.4)

There is one more factor limiting the performance beside the size of the
allocated shared memory – the number of unused threads. Similarly to the
shared memory allocation the required number of threads used per data
element can vary through the fusion while it is not possible to start and
end threads (i. e.resize the block) during the lifetime of a CUDA kernel.
One possibility how to model the performance loss could be introduce the
number of additionally issued threads as a parameter to the function ψ and
to evaluate all possible combinations of the limitation of the parallelism by
shared memory and by the unused threads. That would however render the
empirical evaluation either very time consuming or infeasible depending
on the size of the elementary function library.

The performance behaviour of the fusions with very different thread-
to-data granularity functions implementations has shown to be rather com-
plex. Therefore it was decided that for implementation combinations dif-
fering only little in the thread number requirements the overhead will be
approximated by adding a time spent by executing the modulo operation.
This value is modeled as multiplication of empirically chosen constant by
the number of threads required by the corresponding fused function. How-
ever this model underestimates the significant loss of the performance for
larger differences in the block size requirements and therefore such fusions
are a priori discarded.

4.4.3 Acquiring the Input Values

As mentioned above the timing for all elementary functions in the library is
empirically evaluated once for given GPU. The benchmarking is performed
by small single purpose programs generated by the compiler to measure the
performance of particular routines of the elementary functions. Every rou-
tine of every function is benchmarked on all combinations of the addition-
ally allocated shared memory and the number of elements, both from pre-
viously defined ranges.The range of additionally allocated shared memory
starts and zero and ends at chosen limit. If the size of the allocated memory

33



4. AUTOMATIC FUSION

of a kernel is too large it fails to execute giving natural upper bound for the
additional allocation. The results of this benchmarking are aggregated to
the performance files and made available to the compiler. It is also not nec-
essary to evaluate the whole range as the difference in performance caused
by allocation of one float variable is very low. Also the number of possible
combinations of the number of elements and the shared memory is quite
large and the compilation and run times of single benchmark are in order
of seconds. Therefore the range is covered stepwise with reasonably small
step and during the fusion performance evaluation the required values of
additionally allocated memory and number of elements are rounded to cor-
responding multiplies of the step used during the benchmarking phase.
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Experimental Evaluation

In this chapter the experimental evaluation of previously presented algo-
rithms is presented. It is divided in three basic topics targeting the accuracy
of the performance prediction of the fusion implementations, the real per-
formance of generated implementations of the mapped function and the
timing of the compiler execution.

The experiments were performed on single workstation equipped with
a quad core Intel R© CoreTM i7 950 at 3.07 GHz, 6 GB RAM and a NVIDIA
GeForce GTX 480.

As a testing input the example code presented previously in Listing 4.1
was used as it provides a state space of interesting size and also diversity in
the size of particular functions and reasonably complicated computation. It
will be refered to as Function I in this chapter, while the second and simpler
code presented in Listing 5.1 will be refered to as Function II.

5.1 Medium-Grained Operations

In this section the comparison of the performance behaviour of medium-
grained operations on different GPU architecture generations is presented.
As will be shown later on, the space for a performance gain is on newer
Fermi architecture even wider than before, moreover different implemen-
tations became most efficient for different sizes of the matrices compared
to the previous architecture. This fact implies that for a given fusion the
most efficient combination of the elementary functions implementations
can change with respect to the particular GPU architecture and supports
the usefulness of the usage of an auto tuning compiler when transfering
the code between different hardware architectures. This experiment is anal-
ogous to the results presented in [7], however it additionally provides the
comparison to latest GPU architecture.

The operation under test is the square matrix multiplication. On the x-
axis is plotted the size of the matrix and on the y-axis the attained band-
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Figure 5.1: The performance of mapped matrix-matrix multiplications – left
on GTX480, right on the GTX280.

width in GB/s. Four different implementations of the multiplication were
measured: the fine-grained per-thread (one multiplication is computed by
one thread), coarse-grained per-block (one thread computes one element
of the resulting matrix) and two medium-grained. First medium-grained
implementation processes the matrices analogously to the coarse-grained,
however there are several multiplication computed in one block. Second
medium-grained implementation uses one thread to compute one row of
the resulting matrix and again computes multiple matrices in one block.

5.2 Prediction Accuracy

In this section the prediction of the performance of particular fusions is
compared to real attained performance. For this purpose the compiler was
modified to generate all possible fusions and several implementations of
each fusion. For each implementation the value of predicted performance
was stored to be compared with later measured real performance.

The real performance was measured by running the computation on
randomly generated input lists of 31744 data elements repeatedly for 1000
times. A mean time needed for one data element was taken as a resulting
value and the performance in processed data elements per second was de-
rived from this result.

The results are presented in the Figure 5.2. The particular fusions are
on the x-axis ordered descending by the real attained performance which
is plotted on the y-axis together with the corresponding predicted value.
As mentioned previously, the performance is in millions of processed data
elements per second. As can be seen from the figure, the predicted perfor-
mance is in most cases lower than the real attained performance, however
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it copies the general trend of the real performance. There are however some
fusions which are slightly underestimated at the beginning of the spectrum.
This performance estimation error can be either product of suboptimal gen-
eration of the code, e. g. some redundant synchronization or thread block
recalculation, or the fact, that for example necessary synchronization be-
tween the particular fused function calls is not taken into account in the
performance prediction.
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Figure 5.2: Prediction accurancy for fusions on GTX 480.

5.3 Performance of the Generated Code

The final result of the whole optimization process is the CUDA implemen-
tation of the mapped function. In this section the predicted performance of
the generated implementations is confronted with the real attained perfor-
mance. The number of best solution generated by the compiler can be arbi-
trary set. In the common use it should be around 50 to keep the empirical
evaluation time reasonably low. However for the sake of this experiment
the number was risen to 300 mapped function implementations to show
the relation between the predicted performance and the real one also for
the implementations marked by the compiler as less perspective.

As in to previous section, the measured value was the time of the com-
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putation for one of 31744 the data elements for 1000 repetitions and the
mean performance in the milions of data elements per second was derived.

The Figures 5.3 and 5.3 show the real performance of the first 300 se-
lected mapped function implementations in the order of selection on two
example mapped functions. The first function was already presented in
Listing 4.1 representing the computation of the term ||A ·B ·v||2 · (C ·D+C)
whereA andB are 3×3 matrices, the v is a vector of size 3 and the C andD
are 5× 5 matrices. Second function is described in listing 5.1 and represents
computation of the term A · B + A · C + A · D on the square matrices of
size 5. Note that both functions are synthetic examples created fore the sole
purpose of the testing and although these particular computations can be
simplified on the algebraical level, it doesn’t relate to the work presented
here. In both figures there is a fitted curve plotted to better illustrate the
overall trends. It is the polynomial of fifth degree fitted to the data by the
least squares method. The least squares method is a standard approach to
solving overdetermined system e. g. determination of the coefficients of the
fitted polynomial.

Listing 5.1: Description of the mapped function
MATRIX5x5 A, B , C, D, M1, M2, M3, M4, F ;

input A, B , C, D;
M1 = mmul55 (A, B ) ;
M2 = mmul55 (A, C ) ;
M3 = mmul55 (A, D) ;
M4 = madd55 (M1,M2) ;
F = madd55 (M4, M3) ;
re turn F ;

It can be observed from both figures, that the best implementations are
selected among first and are even more or less sorted by the performance.
In the case of the first function the fluctuation in the attained performance
rises around the 30th selected implementation as the compiler begins to
generate less effective implementations. This behaviour can be caused by
underestimation of the performance degrading factors by the performance
prediction. Also note, that this order is generated by the queue and there-
fore wouldn’t be in principle strict even if the performance prediction was
exact. Such a difference between the predicted and real performance can be
caused by accumulated error of the performance prediction for particular
fusions of which the mapped function implementation consists. It is also
possible, that the NVIDIA nvcc compiler was able to perform the low-level
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optimization better than in the case of neighbouring implementations and
boosted the performance against the predicted value.
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Figure 5.3: Real performance of the implementations in the order of selec-
tion by the compiler (i. e. by the predicted performance) of the computation
from Listing 4.1.

In the case of the second function – with the results presented on Fig-
ure 5.3 – the improved accuracy is connected to the higher homogeneity of
the tested function. Recall that all elementary functions used in this exam-
ple operate on the matrices of the same size and therefore have the same
consumption of the on-chip resources. This is also the reason for the stable
level of performance in the middle of the range under observation.

The overview of the position of the five best solution in the previously
shown generated order is presented in the Table 5.3. It can be seen that the
best solutions can be found in very few iterations.

position
function I 0 48 1 6 28
function II 2 0 3 1 4

Table 5.1: Positions of the best five solutions in the generated order.

In the case of the function I the performance of the global memory
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Figure 5.4: Real performance of the implementations in the order of selec-
tion by the compiler (i. e. by the predicted performance) of the computation
from Listing 5.1.

implementation was 94.2 milions of elements per second while the best
generated implementation achieved 234.5 Melems/s which is 2.5× better.
Similarly in the case of the function II the global memory implementation
yielded the performance of 68.5 Melems/s and the best generated imple-
mentation processed 176.5 Melems/s, again 2.6× better. This significant
speedup justifies the effort invested in the second phase of the decomposition-
fusion scheme.

5.4 Compiler Efficiency

In this section the running times of the substantial parts of the compiler
functionality are presented. All timings were obtained during the process-
ing of the function I. The time taken by the generation of the state-space
(i. e. all fusion implementation candidates) is presented on the first row of
the Table 5.4. Then the determination and CUDA code generation of the
first 50 mapped function implementation is shown on row two. On the last
row is presented the time for compilation of the CUDA code of a single
function implementation by the NVIDIA nvcc compiler.

The running times of the state-space generation and cover determina-
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state-space generation 0.21 s
cover determination and code generation 7.34 s
compilation of a candidate 2.08 s

Table 5.2: Positions of the best five solutions in the generated order.

tion leave enough space for processing of more complex mapped functions.
If the running time would rise too quickly on large mapped functions it is
possible to explicitly divide the computation of these functions and opti-
mize the parts separately. Also note that the amount of time spent by com-
pilation of the mapped function candidates can be easily adjusted by the
number of these candidates generated as an output of the repetitive opti-
mization process.

The compilation time of one benchmark instance is 1.77 s and the run-
ning time depends on the function implementation and routine under test,
but oscillates around two seconds. Recall, that the number of benchmark
instances1 is relatively large, depending on the density of the parameter
coverage and the number of implementations of the elementary functions.
However the benchmarking is done only once per elementary function im-
plementation on given GPU and the long benchmarking time is therefore
acceptable as the elementary functions are supposed to be reused frequently.

1. combination of fusion implementation routine, number of elements and additionally
allocated shared memory
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Conclusion

The main subject of this thesis was to define the state space of all possible
implementations of a given mapped function and to devise and implement
algorithms that would search this space for the most efficient implementa-
tion.

The state space was defined in detail, as was the complexity of the par-
ticular steps of its generation. Additionally, several heuristics were pro-
posed to reduce its size and to make the search for an efficient implementa-
tion feasible.

As another result of this thesis, algorithms for searching the state space
were devised and implemented. It was shown how the performance of the
resulting implementation related to the choices made during the implemen-
tations process, and this knowledge was used to effectively predict the per-
formance and to guide the automated generation of the resulting code. It
is now possible to predict with reasonable precision the performance of
a given implementation of given fusion and subsequently of the whole
mapped function implementation.

Finally, these algorithms were implemented to the core of a source-to-
source compiler, and the functionality of this implementation was proven
and evaluated on a synthetic example. It was shown that the state space
search was feasible and capable of interesting optimizations.

This implementation demonstrates and extends the usefulness of the
medium-grained approach to the mapped function implementation, and
moreover, it elaborates on and automates the fusion-decomposition scheme
devised previously to guide the implementation of such mapped functions.

In future work, when the language accepted by the compiler is enriched
by looping, further optimizations will be possible in the initial phase where
fusible subsets are generated. Also, the accuracy of the prediction can be
improved by incorporation of the synchronization, computation reconfig-
uration within a fusion, performance loss introduced by idle threads and
more detailed modeling of the overlaping of the computation and memory
operations. The implementation has been done with further development
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in mind and is prepared for changes in the structure of the considered func-
tions, and for modifications of the performance prediction.
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