
MASARYKOVA UNIVERZITA
FAKULTA INFORMATIKY

}w��������
��
������������� !"#$%&'()+,-./012345<yA|
Image reconstruction in digital

holographic microscopy on
GPU

BACHELOR THESIS

Andrej Krejčír

Brno, 2013

Declaration

Hereby I declare, that this paper is my original authorial work, which
I have worked out by my own. All sources, references and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Andrej Krejčír

Advisors:
doc. RNDr. Pavel Matula, Ph.D.
RNDr. Pavel Karas

ii

Acknowledgement

I would like to thank my supervisor doc. RNDr. Pavel Matula, Ph.D.
and my consultant RNDr. Pavel Karas for their expert advice and
comments during the work on this thesis. Next, I would like to thank
everyone who supported me during my work.

iii

Abstract

The aim of the thesis is to implement and optimize chosen image
processing algorithms used in digital holographic microscopy on the
GPU. The algorithms are 2-D phase unwrapping and polynomial
surface fitting. They are described and certain used optimizations are
pointed out. The results chapter shows the performance and preci-
sion of the GPU implementation compared to CPU on various input
images.

iv

Keywords

Digital holographic microscopy, Fourier transform, Phase unwrap-
ping, Least squares method, Polynomial surface fitting, CUDA

v

Contents

1 Introduction . 1
1.1 Digital holographic microscopy 1
1.2 CUDA and GPU programming model 2

2 Image Processing in Digital Holographic Microscopy . . . 5
2.1 Fourier transform . 5

2.1.1 Usage in Digital signal processing 5
2.1.2 Usage in DHM 5

2.2 Phase unwrapping . 7
2.2.1 Unwrapping in one dimension 8
2.2.2 Problems in two dimensions 8
2.2.3 Residue detection and pairing 11
2.2.4 Integration by flood-fill 13

2.3 Uneven background removal 13
2.3.1 Used numerical methods 13

3 Implementation of Described methods 18
3.1 Existing implementations of Fourier transform on GPU 18
3.2 Phase unwrapping algorithm 18

3.2.1 Finding the residue points 19
3.2.2 Pairing the residue points 21
3.2.3 Rasterization of pairs 22
3.2.4 Flood-fill gradient integration 23
3.2.5 Interpolation of branch cuts 26

3.3 Least squares method on GPU 26
3.3.1 Reduction of the coefficients 27
3.3.2 Cholesky decomposition on GPU 29
3.3.3 Background removal 30

4 Results and performance analysis 31
4.1 Performance of CUFFT compared to CPU 31
4.2 Phase unwrapping on GPU and CPU 31
4.3 Least squares method . 33
4.4 Whole pipeline . 34
4.5 Combination of GPU and CPU parts 35

5 Conclusion . 41
A Content of the digital archive 42

vi

1 Introduction

1.1 Digital holographic microscopy

Digital holographic microscopy is a special form of microscopy used
widely in biology to observe living cells and tissues non-intrusively
in their environment. The advantage of DHM compared to other
types of microscopy is that it produces two images containing two
distinct types of information: a light intensity image and a phase
shift image. The intensity image shows the intensity of the light that
passed through the object and gives information about the trans-
parency of the object. The phase image shows the phase shift be-
tween the light beam that passed through the object and the refer-
ence beam. The object has a different refractive index than the envi-
ronment so the light that passes through the former has a different
phase than the light that passes through the latter. The phase shift
represents optical thickness of the object and can be used to calculate
the distance that the light travelled through the object

DHM uses interference patterns from coherent light sources to get
information about the object. It works on the principle of holography.
A light beam of single frequency is divided into two beams. One
is shone through the object and the other travels the same distance
through empty space. These two beams interfere together and the
interference pattern is recorded by an image sensor. More detailed
explanation of DHM can be found in [1].

The image recorded by the microscope must be digitally pro-
cessed to get the two images of the object. This process should be
fast enough to allow real-time observation of the object. In this thesis,
these algorithms were implemented on the GPU to get better perfor-
mance.

Examples of the hologram image and of the intensity and phase
image are shown in Figure 1.1 and 1.2, respectively.

1

1. INTRODUCTION

Figure 1.1: Example of a hologram image.

1.2 CUDA and GPU programming model

Modern graphics cards have a programmable processing unit which
makes them usable for solving general problems unrelated to real-
time graphics or video output. There are several programming lan-
guages specialized for writing programs that run on the GPU.

GPU is a massively parallel processor which is able to run thou-
sands of threads. To achieve this, a specific execution model is used,
called SIMT — single instruction, multiple threads. This means that
one instruction is executed by multiple threads, each operating on
different data. The GPU is good for solving data-parallel problems
where the task is composed of many instances of the same opera-
tion, each on different data. It is not suitable for task-parallel prob-
lems, where the tasks may depend on each other using non-trivial
synchronization.

The implementation part of this thesis is written in CUDA, but
many principles apply to other languages as well, because the pro-
gramming paradigm is specific for the GPU. CUDA (Compute uni-
fied device architecture) is a general purpose computing model and
programming language for the GPU. Detailed description of the pro-
gramming model can be found in [2] and in [3]

2

1. INTRODUCTION

(a) Intensity (b) Phase

Figure 1.2: Example of intensity and phase image.

The basic architecture of the CUDA model is the following. The
kernel is executed by blocks of threads. Each block contains the same
amount of threads. The number can be specified when launching the
kernel. Threads are grouped into blocks because only one block can
run on one multiprocessor at the same time. This thread hierarchy al-
lows scalability across different graphics cards with different number
of multiprocessors. The threads inside one block can exchange data
using shared memory, and can be easily synchronized. The global
synchronization across blocks is not directly supported due to the
fact that it is too expensive for a large number of GPU processors.

The memory hierarchy on the GPU has three layers, each has dif-
ferent access latency. The first one is represented by the global mem-
ory. It is accessible by any thread in the kernel and can be as large
as the physical memory on the graphics card, but has the biggest la-
tency. The second one is the shared memory. Each block of threads
has its own shared memory and no other block can access it. It has
much lower latency than the global memory, but its size is limited.
The implementation part of this thesis is written for GPUs with com-
pute capability 2.0, where the size of the shared memory can be up
to 48 KB. The third memory layer is represented by registers. Each
block has a certain amount of memory reserved for registers. This
means that the number of registers available to a thread depends on
the number of threads in the block. Registers have the lowest latency,

3

1. INTRODUCTION

so it is good for performance to keep as much of the data in the reg-
isters. However, registers are used only when the access pattern to
the data can be determined at compile time. Otherwise, the data is
stored in a thread-local part of the global memory, called local mem-
ory, which has the same high latency.

The GPU kernels can be optimized by using memory layers with
the lowest latency possible, optimal access pattern to memory and
optimal size of the thread blocks.

4

2 Image Processing in Digital Holographic Mi-
croscopy

2.1 Fourier transform

Fourier transform is a mathematical transformation of input signal
from spacial domain to frequency domain [4]. It is one of the fun-
damental tools used in digital signal processing. The definition for
continuous signal is the following.

F (ξ) =

∫ ∞
−∞

f(x)e−2πixξdx

The inverse transform is defined as following.

f(x) =

∫ ∞
−∞

F (ξ)e2πξxdξ

Where f(x) is a function R → C in the spacial domain, x ∈ R
is the spacial coordinate, F (ξ) is a function R → C in the frequency
domain and ξ ∈ R is the the frequency.

2.1.1 Usage in Digital signal processing

In digital signal processing, the discrete version of Fourier transform
is used. The input is a signal sampled at regular frequency and the
output is sampled frequency spectrum. In spite of the sampling of
both signals, the transform is lossless.

The discrete Fourier transform can be computed efficiently us-
ing the method called fast Fourier transform [4]. The method has
O(NlogN) complexity in contrast to the naive method from defini-
tion, which has O(N2) complexity.

2.1.2 Usage in DHM

Image acquired by the holographic microscope is an interferogram
of the incoming light. This image contains one dominant spacial fre-
quency as seen in Figure 1.1. Using Fourier transform, this frequency

5

2. IMAGE PROCESSING IN DIGITAL HOLOGRAPHIC MICROSCOPY

is shifted to the center of the spectrum to zero frequency. By this shift,
the information modulated in the waves is demodulated. The shifted
spectrum is multiplied by a windowing function to remove the other
dominant frequencies. The size of the window is as large as possible
while still excluding the other peaks in the spectrum. These opera-
tions are showed in Figure 2.1.

(a) Original

(b) Shifted

(c) Windowed

Figure 2.1: Fourier spectrum of the hologram in Figure 1.1

Inverse Fourier transform is applied to the spectrum to obtain
the image of the object. It has two components, intensity image and
phase image, as seen in Figure 1.2.

There are two artifacts typically present in the phase image. The
first one is caused by the fact that the values of the phase lie in the
interval (−π, π). Therefore, any information modulated in the phase
image is wrapped around this interval. This introduces sudden steps
in phase at the edges of the interval and makes the information non-
continuous. The second one is uneven illumination, caused by the
nature of encoding of the information in the hologram image.

The suppression of the artifacts is essential task in DHM. The fol-
lowing text, describes several methods to achieve this goal.

6

2. IMAGE PROCESSING IN DIGITAL HOLOGRAPHIC MICROSCOPY

2.2 Phase unwrapping

There are several applications of digital image-processing techniques
which work with images in complex domain. The algorithms often
use arctangent function to get the phase of the image, which returns
phase wrapped around the interval (−π, π) and any integer multi-
ples of 2π in the continuous phase signal are lost. The subsequent
stages of the image processing pipeline often require a continuous
phase image, so an inverse operation to the wrapping has to be ap-
plied.

Phase unwrapping techniques are used to reconstruct the original
function encoded in the phase. This can be an ill-posed problem if
there is noise in the signal or the spacial frequency of the jumps in
phase is too high compared to the sampling frequency of the signal.
As implied by the Nyquist–Shannon sampling theorem [5], it has to
be at least half the image sampling frequency.

In order for these methods to work, an assumption about the
original signal is made, requiring that the difference between neigh-
bouring pixels is in the interval (−π, π). Then, phase unwrapping
is computed by integrating wrapped gradients of the phase image.
Wrapped and unwrapped phase image can be seen in Figure 2.2.

(a) Wrapped (b) Unwrapped

Figure 2.2: Image from [6]

There are two groups of algorithms solving the phase unwrap-
ping problem:

7

2. IMAGE PROCESSING IN DIGITAL HOLOGRAPHIC MICROSCOPY

• Path-following methods, which are based on locally integrat-
ing the wrapped phase gradient over the image.

• Minimum-norm methods, which are global integration tech-
niques.

These are described in detail by [7]. One of the path-following meth-
ods is implemented in this thesis.

2.2.1 Unwrapping in one dimension

For 1-D signal, phase unwrapping is a simple operation because there
is only one possible integration path.

The main idea is to go through all the samples linearly and un-
wrap them in respect to the previous sample. The process is shown
in the following equation.

P̂i = P̂i−1 + wrap(Pi − P̂i−1) (2.1)

Where Pi is the wrapped signal, P̂i is the unwrapped signal and func-
tion wrap wraps the value around the interval (−π, π) as follows.

wrap(x) = x− 2π

⌊
x+ π

2π

⌋
The first sample of the signal is considered unwrapped P̂0 = P0.
More in-depth explanation of 1-D unwrapping can be found in [8].
Wrapped signal is shown in figure 2.3.

2.2.2 Problems in two dimensions

The technique described in previous subsection can be extended to
work for 2-D images. One point is considered as unwrapped and
every other point can be unwrapped by integrating wrapped phase
gradient on the path from the unwrapped point to the new point.
Many possible paths of integration exists in two dimensions, but if
the signal is simple and without noise, the result does not depend on
the chosen path. [7]

Often, this simple technique does not produce a reasonable re-
sult. Due to the noise or a certain topography of the signal, there can

8

2. IMAGE PROCESSING IN DIGITAL HOLOGRAPHIC MICROSCOPY

2

0 50 100 150 200 250 300 350 400 450 500

-6

-4

-2

0

2

4

6

Sample index

O
rig

in
al

 p
ha

se
 in

 ra
di

an
s

The signal x whose amplitude exceeds the range [-π,π]

0 50 100 150 200 250 300 350 400 450 500
-4

-3

-2

-1

0

1

2

3

4

Sample index

W
ra

pp
ed

 p
ha

se
 in

 ra
di

an
s

The wrapped phase

%The number of samples in the signal
N=512;
n=0:N-1;
fo=1/512;

% The signal x whose amplitude exceeds the range [-pi,pi]
x = 6*sin(2*pi*fo*n);
plot(x)
xlabel('Sample index')
ylabel('Original phase in radians')
axis([0 512 -6.5 6.5])
title('The signal x whose amplitude exceeds the range [-\pi,\pi]')

%Calculating the wrapped signal using the four quadrant arctangent function
xw = atan2(sin(x), cos(x));
figure, plot(xw)
xlabel('Sample index')
ylabel('Wrapped phase in radians')
axis([0 512 -4 4])
title('The wrapped phase')

The 2π jumps that are present in the wrapped phase signal that is shown in Figure 1 (b) must be
removed in order to return the phase signal 𝑥𝑤(𝑛) to a continuous form and hence make the phase
usable in any analysis or further processing. This process is called phase unwrapping and has the
effect of returning a wrapped phase signal to a continuous phase signal that is free from 2π jumps.
The basic phase unwrapping process can be explained by splitting the task down into the following
steps.

1. Start with the second sample from the left in the wrapped phase signal 𝑥𝑤(𝑛).
2. Calculate the difference between the current sample and its directly adjacent left-hand

neighbour.
3. If the difference between the two is larger than +π, then subtract 2π from this sample and

also from all the samples to the right of it.

)(a)(b
Figure 1: (a) Continuous phase, (b) wrapped phase.

Figure 2.3: Unwrapped and wrapped signal from [8]

be points where the phase is not defined, where both the real and
imaginary parts of the complex number are zero. These points can
be thought to lie on the crossing of lines with equal wrapped phase
as seen on Figure 2.4. Any closed loop in the path of integration that
encircles this point has non-zero value. Such paths must not be used
during unwrapping because they introduce an error of multiple of 2π
to the unwrapped value, and it will propagate through the image, as
shown on Figure 2.5. The residue points always appear in pairs. In-
tegral in a loop around one of them has a positive value and integral
around the other one has a negative value.

11Sept. 3, 2007 Lecture D1Lb4 Interferometry: Phase unwrapping Rocca

Example: constant slope + noise

Noise shifts re=0 and im=0 lines. A crossing may happen.

re=0

im=0 For small noise, crossings are paired and nearby.

When the summation path contours the vortex, the line
integral increases by +2π (or - 2π) every circuitation.

In fact every time we cross a blue or an orange line, we
change to the adjacent quadrant. In the example, the contour
integral adds -2π for every circuitation of the vortex.

im>0
re>0

im=0

im<0 re<0
re=0

im<0
re>0

Figure 2.4: Appearance of residue pair from [9]

The exact point in which the phase is not defined may not be
present in the sampled image because it can lie on coordinates be-
tween the pixels. However, its effect remains.

9

2. IMAGE PROCESSING IN DIGITAL HOLOGRAPHIC MICROSCOPY

Figure 2.5: Propagation of the error while unwrapping.

There are two main causes why residues appear in the image, as
written above. The first one is noise in the image and the second one
is the topography of the signal. Residues caused by noise often lie
in neighbouring positions and form so-called dipoles. It is relatively
easy to detect and pair them. Residues caused by topography are
often far away from each other and it is hard to determine exactly
how these points should be paired. Such residue pair can be seen
on Figure 2.6. Various methods exists to solve this pairing problem,
such as pairing the closest points, or pairing based on some a priori
knowledge about the original signal.

16Sept. 3, 2007 Lecture D1Lb4 Interferometry: Phase unwrapping Rocca

5 10 15 20 25

5

10

15

20

25

Original phases

Connecting residuals

5 10 15 20 25

5

10

15

20

25

Unwrapped phases

Figure 2.6: Example of residue caused by topography from [9]

10

2. IMAGE PROCESSING IN DIGITAL HOLOGRAPHIC MICROSCOPY

2.2.3 Residue detection and pairing

To successfully integrate the phase gradient over the image, the al-
gorithm must avoid paths that would cause inconsistencies, intro-
duce an error and propagate it through the image, as explained in
the previous subsection. To achieve this, certain integration paths
are avoided based on Goldstein’s branch cut algorithm [10], also de-
scribed in [7]. The algorithm pairs residue points with opposite po-
larity and prevents any integration path from crossing the line be-
tween them.

The first step of the unwrapping algorithm is to detect the po-
sition and polarity of residues in the image. The function to test if
there is a residue point at certain coordinates is shown in Algorithm
2.1. To detect the position of the point, the gradient is integrated in
the smallest loops of four pixels. If the value of the integral is non-
zero a residue point is found and its polarity is equal to the sign of
the value of the integral.

Algorithm 2.1 Residue detection at coordinates (x, y)
function DETECTRESIDUE(x,y)

V0 := img(x, y)
V1 := img(x+ 1, y)
V2 := img(x+ 1, y + 1)
V3 := img(x, y + 1)
D := wrap(V1 − V0) + wrap(V2 − V1)
D := D + wrap(V3 − V2) + wrap(V0 − V3)
if D ≥ 2π then

Positive residue found at (x, y)
return POSITIV E_POINT

end if
if D ≤ −2π then

Negative residue found at (x, y)
return NEGATIV E_POINT

end if
return NO_POINT

end function
Where the wrap() function wraps the value to the interval (−π, π).

After the points are found, they need to be paired. It is not clear

11

2. IMAGE PROCESSING IN DIGITAL HOLOGRAPHIC MICROSCOPY

which positive points should be paired with which negative points.
Various pairing methods can be chosen. The algorithm implemented
in this thesis tries to pair residues of opposite polarity with the small-
est distance from each other.

It is easy to pair residues of opposite polarity next to each other
or very close to each other. They are considered dipoles caused by
noise, and because they are close, there is small possibility of error
due to wrong pairing. The other points are paired based on minimal
distance from each other. The optimal solution may not always be
found, but the results are reasonable enough. Certain maximum pair-
ing distance is defined and only points up to this distance are paired.
The rest of the points are considered to have the corresponding pair-
ing point outside the image, so they are paired with the nearest edge
of the image.

The pairs of residues define lines, called brunch cuts, which must
not be crossed by an integration path. These are shown in Figure 2.7.

(a) Unwrapped, Figure2.2 (b) Unwrapped, Figure4.5

Figure 2.7: Branch cuts are shown in yellow.

12

2. IMAGE PROCESSING IN DIGITAL HOLOGRAPHIC MICROSCOPY

2.2.4 Integration by flood-fill

After pairs of residues have been found, it is safe to integrate the
wrapped gradient of the image. The result will be independent on
the choice of integration path, as long as it does not cross any branch
cut.

The integration is based on the idea of the flood-fill algorithm.
Which gradually finds paths from one specific point to all the other
points in the image, avoiding branch cuts and unwrapping pixels on
the way.

One point is chosen as the starting point and it is marked as
unwrapped. Subsequently, all pixels in its 4-neighbourhood [4] that
don’t lie on a branch cut are unwrapped using the equation 2.1

2.3 Uneven background removal

The unwrapped phase image which was acquired by the methods
described in previous sections is corrupted by an uneven illumina-
tion. The term ”illumination” may not be accurate, because the effect
is not caused by different light intensity. It is caused by the way the
phase image is encoded in the interferogram.

This effect can be seen in Figure 2.8, where it is clear that it is not
just a linear gradient. This uneven illumination should be removed
to get a quantifiable phase image of the object.

The background can be sufficiently approximated by a third-order
two-dimensional polynomial function. The approximation is abstract
enough so that it fits only the illumination of the image, not the de-
tails of the object. For better fit, only the pixels corresponding to the
background can be used. After the polynomial is computed, it is sub-
tracted from the image, so that the background corresponds to zero
value in the final image. The result can be seen in Figure 2.9.

2.3.1 Used numerical methods

The coefficients of the polynomial surface are chosen to minimize
selected error function. The result is that the surface approximates
the image as closely as possible with a given number of coefficients.

13

2. IMAGE PROCESSING IN DIGITAL HOLOGRAPHIC MICROSCOPY

(a) Wrapped (b) Unwrapped

Figure 2.8: Phase of a test image.

Figure 2.9: Background removed from the image in Figure 2.8.

The polynomial function has the following form.

PC(x, y) = CTVx,y, where C =



C0

C1

C2

C3

C4

C5

C6

C7

C8

C9


, Vx,y =



1
x
y
x2

xy
y2

x3

x2y
xy2

y3


14

2. IMAGE PROCESSING IN DIGITAL HOLOGRAPHIC MICROSCOPY

The chosen error function in this case is the sum of square differ-
ences of the pixel value and the value of the polynomial surface at
each point.

E(C) =
∑
x,y

(PC(x, y)− Ix,y)2

Where Ix,y is the value of pixel at coordinates (x, y).
The polynomial surface is a linear function of its coefficients, so

finding the optimal coefficients is the Linear Least Squares problem
[11]. The optimal coefficients lie in the global minimum of the error
function.

Gradient of the error function is following.

∇E(C) =
∑
x,y

∇
[
(CTVx,y − Ix,y)2

]
∇E(C) =

∑
x,y

2(CTVx,y − Ix,y) · ∇(CTVx,y − Ix,y)

∇E(C) = 2
∑
x,y

(CTVx,y − Ix,y)Vx,y

By setting the gradient to zero, we get the coordinates of local
minima.

∇E(C) = 0∑
x,y

(CTVx,y − Ix,y)Vx,y = 0∑
x,y

Vx,yC
TVx,y − Vx,yIx,y = 0∑

x,y

Vx,y
(
V T
x,yC

)T
=
∑
x,y

Vx,yIx,y(∑
x,y

Vx,yV
T
x,y

)
C =

∑
x,y

Vx,yIx,y

MC = Y

Where Vx,yV T
x,y is the outer product of column vectors Vx,y. The re-

sulting equation is a linear system of equations, where M is a square

15

2. IMAGE PROCESSING IN DIGITAL HOLOGRAPHIC MICROSCOPY

symmetric and positive-definite matrix. The system has exactly one
solution, because M has a positive determinant.

The matrix M and the vector Y are calculated as a sum through
all the used points in the image. Because not all points in the image
are used, the Matrix M cannot be expressed analytically.

The solution is the vector C of optimal coefficients. To solve the
system, matrix M is decomposed into the product of two triangu-
lar matrices using Cholesky decomposition [12]. Then the system is
solved for each matrix in sequence. Solving a linear system with a
triangle matrix is trivial. So it is preferable to use this solution, in
contrast to another, for example the Gaussian elimination, which is
computationally more expensive, and more difficult to implement on
GPU.

Cholesky decomposition decomposes a matrix to the product of
one triangle matrix and its transpose.

M = LLT

Not every matrix can be decomposed this way. The matrix must be
symmetric and positive-definite. These conditions apply to the ma-
trix M, so this method is used.

The decomposition is defined as follows:A00 A01 A02

A10 A11 A12

A20 A21 A22

 =

L00 0 0
L10 L11 0
L20 L21 L22

L00 L10 L20

0 L11 L21

0 0 L22


From this, the equations for Li,j are following.

Li,i =

√√√√Ai,i −
i−1∑
k=0

L2
i,k

Li,j =
1

Lj,j

(
Ai,j −

j−1∑
k=0

Li,kLj,k

)
After decomposing the matrix, the equation MC = Y can be

solved in two steps as following.

LX = Y

LTC = X

16

2. IMAGE PROCESSING IN DIGITAL HOLOGRAPHIC MICROSCOPY

The first equation is in the form:L00 0 0
L10 L11 0
L20 L21 L22

X0

X1

X2

 =

Y0Y1
Y2


The solution for elements of vector X is the following.

Xi =
1

Li,i

(
Yi −

i−1∑
j=0

XjLi,j

)

Similar solution can be found for the second equation, only the loop
with index i goes from bottom up.

Using this method, the optimal coefficients are computed.

17

3 Implementation of Described methods

3.1 Existing implementations of Fourier transform on
GPU

The fast Fourier transform was implemented and optimized for GPU
in the library CUFFT, which is a part of the CUDA Toolkit and is
usually installed with CUDA drivers. Its API is modelled after FFTW
[13], one of the most efficient and widely used CPU implementations.
More information can be found in [14].

3.2 Phase unwrapping algorithm

The algorithm implemented as a part of this thesis is a parallel ver-
sion of branch-cut method, based on principles of Goldstein’s algo-
rithm [10] also described in [7].

The whole algorithm is split into the following parts. Detection
of residue points, pairing the residues, rasterization of pairs, integra-
tion of phase gradient using flood-filling and interpolation of branch
cuts. Each part consists of its own kernel because they operate mostly
on different type of data and could not be merged into a single ker-
nel. For this reason, only pairing the points which are few pixels
away from each other, called dipoles, is done in the same kernel as
detecting residues. The reason is explained in the following subsec-
tion.

For storing pairs and points in memory an array is used. It is im-
plemented as a buffer of a sufficient size and one 32-bit unsigned
integer pointing past the last element. In the worst case, the number
of residue points cannot be higher than the number of all points in
the image, so a sufficient buffer size for the array is the size of the
image. When a thread wants to add elements to the back, it allocates
the needed number of elements by increasing the back pointer us-
ing atomicAdd instruction. This ensures deterministic behaviour if
multiple threads want to add elements to the array at the same time.

To measure the distance between the residue points, the supre-

18

3. IMPLEMENTATION OF DESCRIBED METHODS

mum norm is used.

||P −N ||∞ = max(|Px −Nx|, |Py −Ny|)

Where P is the positive residue point and N is the negative point.
The value of the distance is an integer, because the coordinates of the
points are only integers. The fact is used in the pairing algorithm.

All kernels use templates wherever possible. Because they pro-
vide more information to the compiler to optimize the code, like to
unroll the cycles, reorder instructions and inline function calls.

3.2.1 Finding the residue points

The idea how residue points are found in the image is described
in previous chapter. The implementation of the idea is straightfor-
ward. One thread is run for each pixel and executes Algorithm2.1. If
a residue point is detected, the coordinates are stored to appropriate
array in the global memory.

Various optimizations of this kernel have been tested. For exam-
ple, loading a block of image into the shared memory and finding
the residues there, which reduces access to the global memory to
approximately 1/4. However, using the shared memory only to de-
tect residues brings no significant performance boost. This may be
caused by the atomicAdd operation used in each thread to allocate
space in the global array.

The implemented kernel finds the residues using the method de-
scribed above and pairs points that are close to each other. It takes
advantage of the information about the surrounding pixels, which is
lost once the points are stored into an array in undefined order. Only
residues in the same block are paired in this stage. Still, the global
performance gain is significant.

The kernel works as shown in Algorithm 3.1. No atomic oper-
ation is needed because the surrounding pixels are checked in the
same order for every point and threads are synchronized after the
check. The condition tx, ty ∈ {dist − 1, ..., BlockSize − dist} ensures
that, the distance from the positive point to every edge is at least
dist−1 so no negative point from other block is closer than the found
negative point from this block, otherwise it would cause incorrect
pairing. The mask in shared memory has one pixel border with no

19

3. IMPLEMENTATION OF DESCRIBED METHODS

negative points so no additional boundary checking is needed. The
maxDipoleDistance was experimentally set to be 3 pixels in this the-
sis.

Algorithm 3.1 Residue detection and dipole pairing kernel
function RESIDUEDETECTIONKERNEL

SHARED mask[BlockSize+ 2][BlockSize+ 2]
mask(tx, ty) := DetectResidue(imgx, imgy)
syncThreads()
if mask(tx, ty) == POSITIV E_POINT then

for dist := 1 do maxDipoleDistance do
if tx, ty ∈ {dist− 1, ..., BlockSize− dist} then

for all (x, y) : ||(x, y)− (tx, tx)|| == dist do
if mask(x, y) == NEGATIV E_POINT then

mask(x, y) := NO_POINT
mask(tx, ty) := NO_POINT
Found residue pair: (tx, ty) , (x, y)

end if
syncThreads()

end for
end if

end for
end if

end function
Where tx, ty are coordinates of the thread inside the block, imgx, imgy are
coordinates of the thread in the image, BlockSize is one dimension of the
square block and ||X|| is the supremum norm.

The kernel with pairing of dipoles takes more time, but greatly re-
duces the overall time of the whole unwrapping algorithm. Because
dipoles are caused by noise, noisy areas in the image contain a lot of
residues close together. Pairing them in the pairing stage would re-
quire much more time because the performance of the pairing kernel
is proportional to the number of residue points found. On the other
hand, the performance of this kernel depends only on the size of the
image.

20

3. IMPLEMENTATION OF DESCRIBED METHODS

3.2.2 Pairing the residue points

Pairing the residues is split into two parts, pairing dipoles, and pair-
ing the rest of the points. This subsection describes the pairing of
points, which weren’t paired in the previous part.

The pairing kernel is called iteratively. Each iteration pairs points
at specified distance away from each other. The distance is increased
in each iteration and the loop stops when a maximum distance is
reached, which can be set empirically. Lower values have better per-
formance and higher values may produce more optimal result in
some cases. In this thesis the value is set to max(width, height)/4.

A thread is run for each positive point and it linearly scans all
the negative points, that haven’t been paired in previous iterations.
The information if a point is free to be paired or was already used is
stored in a mask in global memory. When a negative point is found at
a specified distance from the positive, its mask is changed to "used"
by the atomic operation atomicExch. This avoids a race condition
when more threads want to create a pair with the same negative
residue, only one of them succeeds. The others continue checking
other points.

The algorithm as explained here is not very efficient. There are
two things that can be successfully optimized without changing the
logic of the algorithm.

First let us consider what influences the performance of the ker-
nel. A thread is run for each positive point and right after it starts, it
checks if the point is free. If not, the thread ends. However, it makes
performance better only if all 32 threads in the warp evaluate this
condition as false finishing the whole warp at once. Otherwise, all 32
threads are active even if just one of them processes a free positive
point. So in the worst case, the number of free points can be 32 times
less than the number of all points and the performance will be the
same as if all were being processed.

Secondly, the performance also depends on the number of neg-
ative points. There is no divergence because all threads in the warp
access the same negative point. If the negative point is not free it is
simply skipped, but the check still requires a memory operation.

To gain performance, the arrays can be reorganized and shrunk
between the iterations of the kernel so that they only contain the

21

3. IMPLEMENTATION OF DESCRIBED METHODS

unpaired points. This reduces the number of thread blocks needed
by the kernel and also each warp is better utilized, because the free
points are close together.

Two parameters of this shrinking were tested and optimal values
were found experimentally. The first is the number of iterations of
the pairing kernel between the shrink kernels, as it is not optimal to
shrink after each pairing iteration. A good value was found to be 3.
The second parameter is the smallest array size for which the shrink
kernel is run, because it has little effect to shrink small arrays. The
value of 32 is the minimum for this parameter, because the whole
array is processed by one warp and no performance is gained by
shrinking it. Experimentally, a good value was found to be 64.

Another optimization is to minimize the number of iterations of
the pairing kernel. This means to minimize the number of different
distances for which the kernel is called. Iterating through all possible
distances from 1 to the maximum pairing distance is inefficient, but if
a distance was skipped and some two points were the given distance
away from each other they would not be paired. So an additional
parameter added to the kernel is a pointer to an integer in the global
memory, storing the distance that will be used in the next iteration.
Before the kernel is run, the number is set to the maximum distance.
When a thread finds a point whose distance is less than the stored
next distance and more than the current pairing distance, it updates
the next distance using atomicMin instruction. After the kernel has
finished, the number is copied to the host memory and used in the
next iteration. This can greatly increase the performance, because it
skips unused distances.

3.2.3 Rasterization of pairs

The rasterization kernel uses one thread per line and each line is ras-
terized using the Bresenham line algorithm[15], example is shown in
Figure 3.1. The kernel is highly divergent, because each thread ras-
terizes different line and writes to a different location in the global
memory in a loop with different length. However, its performance is
acceptable for average input image.

22

3. IMPLEMENTATION OF DESCRIBED METHODS

Figure 3.1: Rasterized line using Bresenham algorithm

3.2.4 Flood-fill gradient integration

The integration of wrapped phase gradient is implemented on the
basis of flood-fill method. The basic implementation idea is to pro-
cess the whole image iteratively. In each iteration more pixels are
unwrapped. Each pixel can be in one of the following four states.

• Unprocessed pixels, they contain the wrapped phase and do no
lie on a branch cut.

• Branch cut pixels, they were marked by the pair rasterization
kernel and are ignored by this kernel.

• Active pixels, they are in an intermediate state. Their phase
value is unwrapped, but some of the surrounding pixels may
be in the unprocessed state. These pixels form an edge between
processed and unprocessed pixels.

• Processed pixels, their value is unwrapped and they are not
surrounded by any unprocessed pixels.

The state of each pixel is stored in a mask in the global memory.
An example of this mask is showed in Figure 3.2.

Before the first iteration, one unprocessed pixel is marked as ac-
tive, for example, the one in the center of the image. Then the kernel
is called iteratively and each thread runs Algorithm 3.2.

No atomic operation is needed because if more threads unwrap
the same pixel from different neighbours concurrently, they compute
the same value regardless of the order of reads and writes to the
memory location of the pixel. This is caused by two facts. Firstly, the

23

3. IMPLEMENTATION OF DESCRIBED METHODS

Figure 3.2: Pixel states: white - unprocessed, grey - branch cut, red -
active, blue - processed

result of the gradient integral is independent on the integration path
taken to the pixel. Secondly, the unwrapping operation called on an
already unwrapped pixel does not change its value.

The kernel is called in a loop until the repeatOut value is false.
When the loop ends the image is fully unwrapped or the areas of
unprocessed pixels are enclosed by branch cut pixels. In the worst
case, the number of iterations of this trivial kernel is proportional to
the number of pixels in the image.

A more optimal kernel to solve this problem can be used, taking
advantage of the low latency of shared memory. The image is di-
vided into regular blocks and each block is processed by one thread
block. So the algorithm has two layers, block layer and pixel layer, as
shown in Figure 3.3. A pseudo-code is shown in Algorithm 3.3.

On the block layer, each block can be in one of two states, active
and not active. After a block is processed its state is set to not active
and if a certain condition is met, its four neighbouring blocks are
activated. The condition will be described later. The kernel is called
iteratively and in each iteration active blocks are processed and their
neighbours are activated.

The same block can be activated multiple times, because there
might be multiple areas of pixels separated by branch cuts inside
one block and these areas can be connected through multiple other
blocks so to unwrap the block successfully, it has to be activated more
than once. This can cause problems because all blocks run in parallel
and there can be a case where two blocks next to each other are active

24

3. IMPLEMENTATION OF DESCRIBED METHODS

Algorithm 3.2 Basic flood-fill kernel
function FLOODFILLKERNEL(repeatOut)

mask := maskImg(imgx, imgy)
if mask == ACTIV E then

val := phaseImg(imgx, imgy)
ProcessPixel(imgx+ 1, imgy, val)
ProcessPixel(imgx− 1, imgy, val)
ProcessPixel(imgx, imgy + 1, val)
ProcessPixel(imgx, imgy − 1, val)
maskImg(imgx, imgy) := PROCESSED
repeatOut := TRUE

end if
end function
function PROCESSPIXEL(x, y, prevV alue)

if maskImg(x, y) == UNPROCESSED then
val := phaseImg(x, y)
newV al := prevV alue+ wrap(val − prevV alue)
phaseImg(x, y) := newV al
maskImg(x, y) := ACTIV E

end if
end function

Where imgx, imgy are the image coordinates of the thread and the wrap()
function wraps the value to the interval (−π, π). No boundary checking is
shown in this algorithm.

at the same time and one of them wants to activate the other. There
can be a case when the block is activated only once, not twice. To
solve this problem, the mask which stores the state of the block is be
double-buffered, one input and one output mask. After each kernel
iteration, they are swapped and the new output mask is cleared.

On the pixel layer, a similar unwrapping algorithm is used as the
one in previous kernel, but run on a small block in the shared mem-
ory.

In the kernel, the function UnwrapFromNeighbours() unwraps
and activates pixels on the border, which are next to a processed
pixel in the other block. The function ActivateNeighbours() activates
neighbouring block if at least one unprocessed pixel in the block can
be unwrapped from this block.

25

3. IMPLEMENTATION OF DESCRIBED METHODS

Figure 3.3: Block layer and pixel layer

This optimization makes the performance about three times bet-
ter. Different sizes of the block have been tested, the size of 16x16 is
fastest on the tested GPU.

3.2.5 Interpolation of branch cuts

The interpolation is quite straightforward. For each pixel lying on
the branch cut, the weighted average value of the unwrapped neigh-
bours is computed and the result is written as value of the pixel. The
weights are shown in the following matrix.1 2 1

2 0 2
1 2 1


3.3 Least squares method on GPU

The algorithm has the following parts.

• Computation of the needed coefficients to construct the linear
system of equations as described in the previous chapter.

• Solving the system and computing the coefficients of the poly-
nomial.

• Subtracting the polynomial surface from the image to remove
background.

26

3. IMPLEMENTATION OF DESCRIBED METHODS

Algorithm 3.3 Block flood-fill kernel
function FLOODFILLBLOCKKERNEL(repeatOut)

SHARED sPhaseImg[BlockSize][BlockSize]
SHARED sMaskImg[BlockSize][BlockSize]
if blockMask(bx, by) == ACTIV E then

Load block from phaseImg to sPhaseImg
Load block from maskImg to sMaskImg
UnwrapFromNeighbours(sPhaseImg, sMask)
SHARED sRepeat := FALSE
repeat

FloodFill(sPhaseImg, sMaskImg, sRepeat)
syncThreads()

until sRepeat == FALSE
Store sPhaseImg block to phaseImg
Store sMaskImg block to maskImg
ActivateNeighbours(sMask, repeatOut)

end if
end function

Where bx, by are coordinates of the block in the grid, phaseImg is the phase
image in global memory,maskImg is the mask image in the global memory,
function FloodFill() is similar to the kernel in Algorithm 3.2 and functions
UnwrapFromNeighbours() and ActivateNeighbours() are described in Al-
gorithm 3.4.

3.3.1 Reduction of the coefficients

As explained in previous chapter, to find the coefficients of the poly-
nomial surface, a system of linear equations has to be solved. This
system is in the form MC = Y where the values of matrix M and
vector Y depend on all used pixels in the image.

The basic idea is to compute the matrix and the vector for each
pixel in the image and then sum them together into a single matrix
and a single vector. This sum is implemented as parallel reduction.

The reduction on CUDA is implemented in the following way. In
the first pass, each thread computes its value and keeps it in a reg-
ister. Each block of threads performs the reduction independently
using the shared memory and the single result is saved to global
memory. In the subsequent passes, the values are read, the reduc-

27

3. IMPLEMENTATION OF DESCRIBED METHODS

Algorithm 3.4 Functions used in Algorithm 3.3
function UNWRAPFROMNEIGHBOURS(sPhase, sMask)

if (tx, ty) is border pixel of the block then
(ox, oy) is the pixel on the other side of the block edge
if sMask(tx, ty) == UNPROCESSED and
maskImg(ox, oy) == PROCESSED then
val := sPhase(tx, ty)
nearV al := phaseImg(ox, oy)
sPhase(tx, ty) := nearV al + wrap(val − nearV al)
sMask(tx, ty) := ACTIV E

end if
end if

end function
function ACIVATENEIGHBOURS

if (x, y) is border pixel of the block then
(ox, oy) is the pixel on the other side of the block edge
if maskImg(x, y) == PROCESSED and
maskImg(ox, oy) == UNPROCESSED then
blockMask(otherBlockX, otherBlockY) := ACTIV E
repeatOut := TRUE

end if
end if

end function

tion is performed in the shared memory, and the results are stored
in the global memory. The step is repeated until only a singe value
remains. Detailed description can be found in [16].

The effective reduction in shared memory is shown in Listing 3.1
where N is the number of values in shared memory that are being
reduced, tx is the thread number, val is the thread’s value stored in
register and sharedVal is the array in shared memory.

To represent the matrix M, only 28 values are needed, the rest of
the 100 are duplicates of some value from the 28. This reduces the
amount of needed memory for each thread and speeds up the re-
duction. The number 28 comes from the observation, that each value
in the matrix is the product of two values form the vector Vx,y. The
largest sum of exponents of x and y in the vector is 3, so the largest
sum of exponents in the matrix M is 6. The number of combinations

28

3. IMPLEMENTATION OF DESCRIBED METHODS

Listing 3.1: Parallel reduction in shared memory
template<int N>
__device__ inline void blockReduction

(uint32_t tx, Val& val, Val* sharedVal)
{

if((tx >= N / 2) && (tx < N))
{ sharedVal[tx - N/2] = val; }

if(N > 32) { __syncthreads(); }
if(tx < N / 2)

{ val += sharedVal[tx]; }
blockReduction<N/2>(tx,val,sharedVal);

}

template<>
__device__ inline void blockReduction<1>

(uint32_t, Val&, Val*) {}

of exponents with sum up to 6 is: (6 + 1)(6 + 2)/2 = 28. The matrix
coefficients for each pixel are in the following form.(

1, x, y, x2, xy, y2, ..., x6, x5y, x4y2, x3y3, x2y4, xy5, y6
)

Another 10 numbers are needed to represent the vector Y in the sys-
tem. They have the following form.

Y = Ix,y
(
1, x, y, x2, xy, y2, x3, x2y, xy2, y3

)
where x, y are coordinates of the pixel and Ix,y is the value of the pixel
at those coordinates.

In total, a vector of 38 values is computed for each pixel and sub-
sequently these vectors are summed together.

3.3.2 Cholesky decomposition on GPU

Implementation on GPU has lower performance than the same im-
plementation running on CPU, but it is included for completeness.
The reason is that the matrix is small and Cholesky decomposition
is mostly sequential algorithm. However, this part takes very little
time compared to other, more time-consuming parts so there is no
reason to optimize it. The parallel version uses only ten threads, one

29

3. IMPLEMENTATION OF DESCRIBED METHODS

Listing 3.2: Matrix decomposition on GPU
val_t accum = 0.0f;
for(long j = 0; j < 10; ++j)
{

if(tid == j)
{ sMat[j][j] = sqrt(sMat[j][j] - accum); }

__syncthreads();
if(tid > j)
{

val_t diagVal = sMat[j][j];
val_t accum2 = 0;
for(long k = 0; k < j; ++k)

{ accum2 += sMat[tid][k]*sMat[j][k]; }

val_t val = (sMat[tid][j] - accum2)/diagVal;
sMat[tid][j] = val;
accum += val * val;

}
__syncthreads();

}

for each row of the matrix. The implementation is in the Listing 3.2.
Columns are processed in parallel and threads are synchronized be-
tween columns. They accumulate needed values form the previous
columns. The synchronization is implicit, because all threads are in
one warp.

After the matrix is decomposed into multiplication of two lower
triangle matrices, the system is solved first for the L matrix and then
for LT . The implementation runs one thread for each row and syn-
chronizes between columns, similarly to the decomposition.

3.3.3 Background removal

After computing coefficients of the polynomial surface approximat-
ing background, the value of the surface is subtracted from the image
at each pixel. The implementation is straightforward and the kernel
is as simple as possible to enable the compiler to do optimizations.

30

4 Results and performance analysis

The performance of each GPU algorithm is compared to the perfor-
mance of a CPU algorithm. The CPU algorithms are mostly equiva-
lent sequential versions of the GPU kernels. They are single-threaded
and no vector instructions were used.

All tests were run on a system with Intel Core 2 Quad CPU Q6600
2.40GHz and GeForce GTX 470.

4.1 Performance of CUFFT compared to CPU

The performance of CUFFT compared to MKL FFT implementation
[17] is shown in the Figure 4.1.

Figure 4.1: Performance of CUFFT compared to MKL, picture from
[18]

4.2 Phase unwrapping on GPU and CPU

The performance of GPU and CPU phase unwrapping algorithm is
shown in the following tables. More input images were created from
one image, by scaling the values by an integer factor and wrapping
them. This creates images with higher gradients and more phase

31

4. RESULTS AND PERFORMANCE ANALYSIS

jumps. When double precision numbers are used, the performance
is nearly unaffected, except for the memory transfer of the image,
which takes twice as long.

Each table contains the time of individual stages of the algorithm.
The difference in performance between the single and double preci-
sion algorithms on the CPU is negligible, so only the double preci-
sion is shown. Table 4.1 shows the performance on a typical image
acquired by the microscope. Table 4.2 and 4.3 show the performance
on an image with higher resolution. Table 4.4 shows the performance
on an image with large number of residue points. For images with
many residue points, the pairing kernel takes considerable part of
the total time. The second time-consuming part is the flood-fill inte-
gration, whose performance depends on the size of the image.

Table 4.5 shows the precision of the GPU implementation com-
pared to the reference CPU double precision implementation. Results
are compared using mean square error and peak signal to noise ra-
tio. The maximum signal value for computing PSNR is chosen to 255.
Higher values of the error in the fourth row are caused by different
pairing of the residues on the GPU compared to CPU.

Table 4.1: Performance of phase unwrapping the image in Figure 4.4
with scaling factor 15.

With the resolution 398 x 299 and 55 residue pairs.
GPU Float GPU Double CPU Double

Memcpy to GPU 0.22 ms 0.40 ms -
Residue detection 0.21 ms 0.20 ms 11.13 ms
Residue pairing 0.95 ms 0.94 ms 0.06 ms
Rasterization 0.02 ms 0.02 ms < 0.01 ms
Flood-fill 1.90 ms 1.83 ms 6.18 ms
Interpolation 0.02 ms 0.02 ms 0.24 ms
Memcpy from GPU 0.27 ms 0.51 ms -
Total time 4.41 ms 4.99 ms 18.09 ms

32

4. RESULTS AND PERFORMANCE ANALYSIS

Table 4.2: Performance of phase unwrapping the image in Figure 4.2

With the resolution 702 x 701 and 130 residue pairs.
GPU Float GPU Double CPU Double

Memcpy to GPU 0.77 ms 1.48 ms -
Residue detection 0.78 ms 0.74 ms 44.87 ms
Residue pairing 0.83 ms 0.82 ms 0.10 ms
Rasterization 0.02 ms 0.02 ms 0.01 ms
Flood-fill 5.39 ms 5.19 ms 28.13 ms
Interpolation 0.05 ms 0.05 ms 0.98 ms
Memcpy from GPU 1.06 ms 2.08 ms -
Total time 11.23 ms 13.39 ms 75.56 ms

Table 4.3: Performance of phase unwrapping the image in Figure 4.3

With the resolution 850 x 640 and 1 residue pair.
GPU Float GPU Double CPU Double

Memcpy to GPU 0.84 ms 1.63 ms -
Residue detection 0.86 ms 0.81 ms 48.81 ms
Residue pairing 0.11 ms 0.11 ms < 0.01 ms
Rasterization 0.01 ms 0.01 ms < 0.01 ms
Flood-fill 5.83 ms 5.62 ms 28.71 ms
Interpolation 0.05 ms 0.05 ms 1.06 ms
Memcpy from GPU 1.17 ms 2.29 ms -
Total time 11.18 ms 13.91 ms 79.40 ms

4.3 Least squares method

In this section, we show the performance of the polynomial fitting al-
gorithm and the background removal. The performance of the com-
putation of coefficients is better on CPU because the Cholesky de-
composition is mostly sequential algorithm and the matrix, which is
decomposed is relatively small, to the GPU is not fully utilized. The
speed of the algorithm depends only on the size of the image. The
tests show that the reduction on GPU is much slower when using
double precision numbers. The reason is that the reduction kernel
stores the 38 intermediate coefficients in registers, but if double pre-
cision is used, not all coefficients fit into registers and some of them

33

4. RESULTS AND PERFORMANCE ANALYSIS

Table 4.4: Performance of phase unwrapping the image in Figure 4.5

With the resolution 512 x 578 and 6050 residue pairs.
GPU Float GPU Double CPU Double

Memcpy to GPU 0.49 ms 0.92 ms -
Residue detection 0.52 ms 0.50 ms 33.17 ms
Residue pairing 3.65 ms 3.63 ms 52.79 ms
Rasterization 0.06 ms 0.06 ms 0.25 ms
Flood-fill 4.15 ms 3.95 ms 15.81 ms
Interpolation 0.09 ms 0.11 ms 1.29 ms
Memcpy from GPU 0.65 ms 1.27 ms -
Total time 11.01 ms 12.65 ms 105.26 ms

Table 4.5: Precision of the GPU phase unwrapping method, com-
pared to the reference CPU implementation

Float Double
MSE PSNR MSE PSNR

Figure 2.8 0.51 51.06 0.51 51.05
Figure 4.3 10−5 97.00 10−5 97.00
Figure 4.4 10−14 186.32 10−32 358.82
Figure 4.5 2.21 44.68 1.84 45.48

are stored in local memory, which introduces considerable latency.
Table 4.6 and Table 4.7 show the performance on a bigger pic-

ture. Table 4.8 shows the performance on a typical image resolution
acquired from the microscope. The resulting images are shown in
Figure 4.6.

The precision of the GPU algorithm is compared to the reference
implementation the same way as in previous section. Table 4.9 shows
the results.

4.4 Whole pipeline

The advantage of running the whole pipeline on GPU is that very lit-
tle memory transfer from host to device and the other way is needed
during computation. The transfer can take milliseconds as shown

34

4. RESULTS AND PERFORMANCE ANALYSIS

(a) Wrapped (b) Unwrapped

(c) Wrapped, factor 2 (d) Unwrapped, factor 2

Figure 4.2: Phase of a test image

in the tables displaying performance and is unnecessary if the CPU
does not process the data. Some transfer is required by the residue
pairing and flood-filling kernels, because they are run iteratively and
the condition needs to be checked. The transferred data is only one
32-bit integer, but it prevents the algorithm to run asynchronously
from the CPU.

4.5 Combination of GPU and CPU parts

Each component of the pipeline is composed of multiple parts, that
correspond to kernels in CUDA. These parts were also implemented

35

4. RESULTS AND PERFORMANCE ANALYSIS

(a) Wrapped (b) Unwrapped

(c) Wrapped, factor 15 (d) Unwrapped, factor 15

Figure 4.3: Image of a cell

on CPU, because on some images, it might by faster to use them than
the GPU ones. For small instances of a problem CPU is usually faster,
because GPU cannot be fully utilized.

For all of the images tested in this thesis, the GPU versions of
all stages of the pipeline were significantly faster than the CPU ver-
sions, except for matrix decomposition and linear system solving.
However, the time spent by computing the aforementioned tasks is
negligible, compared to the rest of the pipeline. Hence, we did not
combine the CPU and GPU methods together, as we consider the
fully GPU-accelerated implementation close enough to optimal.

36

4. RESULTS AND PERFORMANCE ANALYSIS

Table 4.6: Performance of polynomial fitting on the image in Figure
2.8

With the resolution 702 x 701.
GPU Float GPU Double CPU Double

Memcpy to GPU 0.92 ms 1.64 ms -
Reduction of coefficients 0.23 ms 3.88 ms 32.10 ms
Decomposition and solve 0.03 ms 0.05 ms < 0.01 ms
Surface subtraction 0.06 ms 0.25 ms 5.51 ms
Memcpy from GPU 1.07 ms 2.07 ms -
Total time 4.59 ms 11.42 ms 40.25 ms

Table 4.7: Performance of polynomial fitting on the image in Figure
4.3

With the resolution 850 x 640.
GPU Float GPU Double CPU Double

Memcpy to GPU 1.01 ms 1.82 ms -
Reduction of coefficients 0.24 ms 4.07 ms 35.45 ms
Decomposition and solve 0.06 ms 0.04 ms < 0.01 ms
Surface subtraction 0.07 ms 0.28 ms 6.11 ms
Memcpy from GPU 1.15 ms 2.28 ms -
Total time 4.65 ms 12.50 ms 40.25 ms

Table 4.8: Performance of polynomial fitting on the image in Figure
4.4

With the resolution 398 x 299.
GPU Float GPU Double CPU Double

Memcpy to GPU 0.25 ms 0.42 ms -
Reduction of coefficients 0.13 ms 0.92 ms 7.75 ms
Decomposition and solve 0.03 ms 0.05 ms < 0.01 ms
Surface subtraction 0.02 ms 0.07 ms 1.34 ms
Memcpy from GPU 0.28 ms 0.54 ms -
Total time 1.16 ms 2.79 ms 9.68 ms

37

4. RESULTS AND PERFORMANCE ANALYSIS

(a) Wrapped (b) Unwrapped

(c) Wrapped, factor 10 (d) Unwrapped, factor 10

(e) Wrapped, factor 15 (f) Unwrapped, factor 15

Figure 4.4: Image of cells

38

4. RESULTS AND PERFORMANCE ANALYSIS

(a) Wrapped (b) Unwrapped

Figure 4.5: Image of a terrain from [19]

Table 4.9: Precision of the least squares method on GPU compared to
the reference CPU implementation

Float Double
MSE PSNR MSE PSNR

Figure 2.8 10−7 114.44 10−17 210.22
Figure 4.3 10−9 135.10 10−18 222.26
Figure 4.4 10−9 135.87 10−22 261.78
Figure 4.5 10−7 110.60 10−17 214.98

39

4. RESULTS AND PERFORMANCE ANALYSIS

(a) Unwrapped (b) Background removed

(c) Unwrapped (d) Background removed

(e) Unwraped (f) Background removed

Figure 4.6: Images before and after background removal.

40

5 Conclusion

This thesis described some of the fundamental algorithms used in
digital holographic microscopy. The algorithms were implemented
and tested on both the CPU and GPU architecture.

On all the testing data, the GPU implementation was faster than
the CPU implementation. On a typical image with the resolution
around 400x400 and a small number of residue points, the perfor-
mance of the GPU pipeline is approximately five times better than
the CPU pipeline. On images with higher amount of noise or of larger
resolution, the benefit of using the GPU was even more significant.
The tables in chapter 4 show approximately ten times better perfor-
mance. The precision of the GPU implementation is practically the
same as the CPU reference implementation, the difference is negligi-
ble.

This work can be extended by further optimizing the kernels or
by suppressing other artifacts in the image, mainly caused by the im-
purities in the optical system. It should be possible to more optimize
the most time consuming part of the pipeline, the flood-fill integra-
tion and the residue pairing.

41

A Content of the digital archive

The attached archive contains the following items.

• project/CudaPipeline folder contains the implementation
of the algorithms. To build the project the NetBeans IDE con-
figured for remote building was used, but it should be straight-
forward to build it in other environments as well. All used li-
braries are included in the include and lib directories. The
CImg library is used for loading and displaying images and the
newmat10 is used by the reference CPU implementation. The
program takes two parameters the path to wrapped phase im-
age and an optional image value coefficient.

• project/CudaPipeline/imgs contains images, which were
used for testing the algorithms.

• project/stats directory contains the results of performance
and precision tests.

• thesis directory contains the PDF version of this thesis and
the LaTeX source used to create it.

42

Bibliography

[1] I. Moon, M. Daneshpanah, A. Anand, and B. Javidi, “Cell iden-
tification with computational 3-d holographic microscopy,”
June 2011. [Online] URL: http://www.osa-opn.org/
home/articles/volume_22/issue_6/features/cell_
identification_computational_3-d_holographic/.

[2] NVIDIA, CUDA C Programming Guide, October 2012.
URL: http://docs.nvidia.com/cuda/pdf/CUDA_C_
Programming_Guide.pdf.

[3] NVIDIA, CUDA C Best Practices Guide, October 2012.
URL: http://docs.nvidia.com/cuda/pdf/CUDA_C_
Programming_Guide.pdf.

[4] R. C. Gonzales and R. E. Woods, Digital Image Processing. Pren-
tice Hall, 2nd ed., 2002.

[5] A. Oppenheim, R. Schafer, J. Buck, and et al, Discrete-time signal
processing, vol. 2. Upper Saddle River, NJ: Prentice Hall, 1989.

[6] N. Petrovic, “Graphical models for 2d phase unwrap-
ping.” URL: http://www.ifp.illinois.edu/~nemanja/
phase.html Accessed: 18.5.2013.

[7] S. Karout, Two-Dimensional Phase Unwrapping. PhD
thesis, Liverpool John Moores University, April 2007.
URL: http://www.ljmu.ac.uk/GERI/Theses/Salah_
Karout_Thesis_.pdf.

[8] Z. N. Karam, “Computation of the one-dimensional unwrapped
phase,” Master’s thesis, Massachusetts Institute of Technol-
ogy, January 2006. URL: http://www.rle.mit.edu/dspg/
documents/KaramMastersThesis.pdf.

[9] European Space Agency, “Phase unwrapping,” 2007. URL:
http://earth.esa.int/landtraining07/D1LB4-
Rocca.pdf.

43

http://www.osa-opn.org/home/articles/volume_22/issue_6/features/cell_identification_computational_3-d_holographic/
http://www.osa-opn.org/home/articles/volume_22/issue_6/features/cell_identification_computational_3-d_holographic/
http://www.osa-opn.org/home/articles/volume_22/issue_6/features/cell_identification_computational_3-d_holographic/
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://www.ifp.illinois.edu/~nemanja/phase.html
http://www.ifp.illinois.edu/~nemanja/phase.html
http://www.ljmu.ac.uk/GERI/Theses/Salah_Karout_Thesis_.pdf
http://www.ljmu.ac.uk/GERI/Theses/Salah_Karout_Thesis_.pdf
http://www.rle.mit.edu/dspg/documents/KaramMastersThesis.pdf
http://www.rle.mit.edu/dspg/documents/KaramMastersThesis.pdf
http://earth.esa.int/landtraining07/D1LB4-Rocca.pdf
http://earth.esa.int/landtraining07/D1LB4-Rocca.pdf

A. CONTENT OF THE DIGITAL ARCHIVE

[10] R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satel-
lite radar interferometry: Two-dimensional phase unwrap-
ping,” Radio Science, vol. 23, pp. 713–720, July - August
1988. URL: http://igppweb.ucsd.edu/~fialko/insar/
Goldstein_RadioSci1988.pdf.

[11] E. W. Weisstein, “Least squares fitting–polynomial.”
URL: http://mathworld.wolfram.com/
LeastSquaresFittingPolynomial.html Accessed
18.5.2013.

[12] C. D. Meyer, ed., Matrix analysis and applied linear alge-
bra. Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2000.

[13] M. Frigo and S. G. Johnson, “The design and implementation
of FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231,
2005. Special issue on “Program Generation, Optimization, and
Platform Adaptation”.

[14] NVIDIA, CUFFT Library, October 2012. URL: http://docs.
nvidia.com/cuda/pdf/CUDA_CUFFT_Users_Guide.pdf.

[15] C. Flanagan, “The bresenham line-drawing algorithm.” URL:
http://www.cs.helsinki.fi/group/goa/mallinnus/
lines/bresenh.html Accessed 18.5.2013.

[16] M. Harris, “Optimizing parallel reduction in CUDA.” URL:
http://developer.download.nvidia.com/compute/
cuda/1.1-Beta/x86_website/projects/reduction/
doc/reduction.pdf.

[17] R. Rahman, “The intel math kernel library and its
fast fourier transform routines,” 2011. URL: http:
//software.intel.com/en-us/articles/the-intel-
math-kernel-library-and-its-fast-fourier-
transform-routines.

[18] NVIDIA, “CUDA Fast Fourier Transform library.” URL:
https://developer.nvidia.com/cufft Accessed:
18.5.2013.

44

http://igppweb.ucsd.edu/~fialko/insar/Goldstein_RadioSci1988.pdf
http://igppweb.ucsd.edu/~fialko/insar/Goldstein_RadioSci1988.pdf
http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html
http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html
http://docs.nvidia.com/cuda/pdf/CUDA_CUFFT_Users_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_CUFFT_Users_Guide.pdf
http://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
http://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
http://software.intel.com/en-us/articles/the-intel-math-kernel-library-and-its-fast-fourier-transform-routines
http://software.intel.com/en-us/articles/the-intel-math-kernel-library-and-its-fast-fourier-transform-routines
http://software.intel.com/en-us/articles/the-intel-math-kernel-library-and-its-fast-fourier-transform-routines
http://software.intel.com/en-us/articles/the-intel-math-kernel-library-and-its-fast-fourier-transform-routines
https://developer.nvidia.com/cufft

A. CONTENT OF THE DIGITAL ARCHIVE

[19] M. Costantini, “A phase unwrapping method based on net-
work programming,” 1996. URL: http://earth.esa.int/
workshops/fringe_1996/costanti/.

45

http://earth.esa.int/workshops/fringe_1996/costanti/
http://earth.esa.int/workshops/fringe_1996/costanti/

	Introduction
	 Digital holographic microscopy
	 CUDA and GPU programming model

	Image Processing in Digital Holographic Microscopy
	 Fourier transform
	 Usage in Digital signal processing
	 Usage in DHM

	 Phase unwrapping
	 Unwrapping in one dimension
	 Problems in two dimensions
	 Residue detection and pairing
	 Integration by flood-fill

	 Uneven background removal
	 Used numerical methods

	Implementation of Described methods
	 Existing implementations of Fourier transform on GPU
	 Phase unwrapping algorithm
	 Finding the residue points
	 Pairing the residue points
	 Rasterization of pairs
	 Flood-fill gradient integration
	 Interpolation of branch cuts

	 Least squares method on GPU
	 Reduction of the coefficients
	 Cholesky decomposition on GPU
	 Background removal

	Results and performance analysis
	 Performance of CUFFT compared to CPU
	 Phase unwrapping on GPU and CPU
	 Least squares method
	 Whole pipeline
	 Combination of GPU and CPU parts

	Conclusion
	Content of the digital archive

