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Preface
TensorFlow was open sourced in November of 2015 by Google, and since
then it has become the most starred machine learning repository on
GitHub. TensorFlow's popularity is due to the approach of creating
computational graphs, automatic differentiation, and customizability.
Because of these features, TensorFlow is a very powerful and adaptable
tool that can be used to solve many different machine learning problems.

This book addresses many machine learning algorithms, applies them to
real situations and data, and shows how to interpret the results.

What this book covers
Chapter 1, Getting Started with TensorFlow, covers the main objects and
concepts in TensorFlow. We introduce tensors, variables, and placeholders.
We also show how to work with matrices and various mathematical
operations in TensorFlow. At the end of the chapter we show how to
access the data sources used in the rest of the book.

Chapter 2, The TensorFlow Way, establishes how to connect all the
algorithm components from Chapter 1 into a computational graph in
multiple ways to create a simple classifier. Along the way, we cover
computational graphs, loss functions, back propagation, and training with
data.

Chapter 3, Linear Regression, focuses on using TensorFlow for exploring
various linear regression techniques, such as Deming, lasso, ridge, elastic
net, and logistic regression. We show how to implement each in a
TensorFlow computational graph.

Chapter 4, Support Vector Machines, introduces support vector machines
(SVMs) and shows how to use TensorFlow to implement linear SVMs, non-



linear SVMs, and multi-class SVMs.

Chapter 5, Nearest Neighbor Methods, shows how to implement nearest
neighbor techniques using numerical metrics, text metrics, and scaled
distance functions. We use nearest neighbor techniques to perform record
matching among addresses and to classify hand-written digits from the
MNIST database.

Chapter 6, Neural Networks, covers how to implement neural networks in
TensorFlow, starting with the operational gates and activation function
concepts. We then show a shallow neural network and show how to build
up various different types of layers. We end the chapter by teaching
TensorFlow to play tic-tac-toe via a neural network method.

Chapter 7, Natural Language Processing, illustrates various text
processing techniques with TensorFlow. We show how to implement the
bag-of-words technique and TF-IDF for text. We then introduce neural
network text representations with CBOW and skip-gram and use these
techniques for Word2Vec and Doc2Vec for making real-world predictions.

Chapter 8, Convolutional Neural Networks, expands our knowledge of
neural networks by illustrating how to use neural networks on images with
convolutional neural networks (CNNs). We show how to build a simple
CNN for MNIST digit recognition and extend it to color images in the
CIFAR-10 task. We also illustrate how to extend prior trained image
recognition models for custom tasks. We end the chapter by explaining and
showing the stylenet/neural style and deep-dream algorithms in
TensorFlow.

Chapter 9, Recurrent Neural Networks, explains how to implement
recurrent neural networks (RNNs) in TensorFlow. We show how to do
text-spam prediction, and expand the RNN model to do text generation
based on Shakespeare. We also train a sequence to sequence model for
German-English translation. We finish the chapter by showing the usage of
Siamese RNN networks for record matching on addresses.



Chapter 10, Taking TensorFlow to Production, gives tips and examples on
moving TensorFlow to a production environment and how to take
advantage of multiple processing devices (for example GPUs) and setting
up TensorFlow distributed on multiple machines.

Chapter 11, More with TensorFlow, show the versatility of TensorFlow by
illustrating how to do k-means, genetic algorithms, and solve a system of
ordinary differential equations (ODEs). We also show the various uses of
Tensorboard, and how to view computational graph metrics.



What you need for this book
The recipes in this book use TensorFlow, which is available at
https://www.tensorflow.org/ and are based on Python 3, available at
https://www.python.org/downloads/. Most of the recipes will require the
use of an Internet connection to download the necessary data.

https://www.tensorflow.org/
https://www.python.org/downloads/


Who this book is for
The TensorFlow Machine Learning Cookbook is for users that have some
experience with machine learning and some experience with Python
programming. Users with an extensive machine learning background may
find the TensorFlow code enlightening, and users with an extensive Python
programming background may find the explanations helpful.



Sections
In this book, you will find several headings that appear frequently (Getting
ready, How to do it…, How it works…, There's more…, and See also).

To give clear instructions on how to complete a recipe, we use these
sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to
set up any software or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in
the previous section.

There's more…
This section consists of additional information about the recipe in order to
make the reader more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the
recipe.



Conventions
In this book, there are many styles of text that distinguish between the
types of information. Code words in text are shown as follows: "We then
set the batch_size variable."

A block of code is set as follows:

embedding_mat = tf.Variable(tf.random_uniform([vocab_size, 
embedding_size], -1.0, 1.0))
embedding_output = tf.nn.embedding_lookup(embedding_mat, 
x_data_ph)

Some code blocks will have output associated with that code, and we note
this in the code block as follows:

print('Training Accuracy: {}'.format(accuracy))

Which results in the following output:

Training Accuracy: 0.878171

Important words are shown in bold.

Note

Warnings or important notes appear in a box like this.

Tip

Tips and tricks appear like this.



Reader feedback
Feedback from our readers is always welcome. Let us know what you
think about this book— what you liked or may have disliked. Reader
feedback is important for us to develop titles that you really get the most
out of.

To send us general feedback, simply drop an email to
<feedback@packtpub.com>, and mention the book title in the subject of
your message.

If there is a book that you need and would like to see us publish, please
send us a note in the SUGGEST A TITLE form on www.packtpub.com or
email <suggest@packtpub.com>.

If there is a topic that you have expertise in and you are interested in
either writing or contributing to a book, see our author guide on
www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com
mailto:suggest@packtpub.com
http://www.packtpub.com/authors


Customer support
Now that you are the proud owner of a Packt book, we have a number of
things to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

You can download the code files by following these steps:
1. Log in or register to our website using your e-mail address and

password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book

from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/TensorFlow-Machine-Learning-

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/TensorFlow-Machine-Learning-Cookbook


Cookbook. We also have other code bundles from our rich catalog of
books and videos available at https://github.com/PacktPublishing/. Check
them out!

If you are using Tableau Public, you'll need to locate the workbooks that
have been published to Tableau Public. These may be found at the
following link: http://goo.gl/wJzfDO.

Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a
mistake in the text or the code—we would be grateful if you could report
this to us. By doing so, you can save other readers from frustration and
help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the Errata Submission Form link, and
entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website
or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of
the book in the search field. The required information will appear under
the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem
across all media. At Packt, we take the protection of our copyright and
licenses very seriously. If you come across any illegal copies of our works
in any form on the Internet, please provide us with the location address or
website name immediately so that we can pursue a remedy.

Please contact us at <copyright@packtpub.com> with a link to the
suspected pirated material.

https://github.com/PacktPublishing/
http://goo.gl/wJzfDO
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
mailto:copyright@packtpub.com


We appreciate your help in protecting our authors and our ability to bring
you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
<questions@packtpub.com>, and we will do our best to address the
problem.

mailto:questions@packtpub.com


Chapter 1. Getting Started with
TensorFlow
In this chapter, we will cover basic recipes in order to understand how
TensorFlow works and how to access data for this book and additional
resources. By the end of the chapter, you should have knowledge of the
following:

How TensorFlow Works
Declaring Variables and Tensors
Using Placeholders and Variables
Working with Matrices
Declaring Operations
Implementing Activation Functions
Working with Data Sources
Additional Resources

Introduction
Google's TensorFlow engine has a unique way of solving problems. This
unique way allows us to solve machine learning problems very efficiently.
Machine learning is used in almost all areas of life and work, but some of
the more famous areas are computer vision, speech recognition, language
translations, and healthcare. We will cover the basic steps to understand
how TensorFlow operates and eventually build up to production code
techniques later in the book. These fundamentals are important in order to
understand the recipes in the rest of this book.



How TensorFlow Works
At first, computation in TensorFlow may seem needlessly complicated. But
there is a reason for it: because of how TensorFlow treats computation,
developing more complicated algorithms is relatively easy. This recipe will
guide us through the pseudocode of a TensorFlow algorithm.

Getting ready
Currently, TensorFlow is supported on Linux, Mac, and Windows. The
code for this book has been created and run on a Linux system, but should
run on any other system as well. The code for the book is available on
GitHub at https://github.com/nfmcclure/tensorflow_cookbookTensorFlow.
Throughout this book, we will only concern ourselves with the Python
library wrapper of TensorFlow, although most of the original core code for
TensorFlow is written in C++. This book will use Python 3.4+
(https://www.python.org) and TensorFlow 0.12
(https://www.tensorflow.org). TensorFlow has a 1.0.0 alpha version
available on the official GitHub site, and the code in this book has been
reviewed to be compatible with that version as well. While TensorFlow
can run on the CPU, most algorithms run faster if processed on the GPU,
and it is supported on graphics cards with Nvidia Compute Capability
v4.0+ (v5.1 recommended). Popular GPUs for TensorFlow are Nvidia
Tesla architectures and Pascal architectures with at least 4 GB of video
RAM. To run on a GPU, you will also need to download and install the
Nvidia Cuda Toolkit and also v 5.x + (https://developer.nvidia.com/cuda-
downloads). Some of the recipes will rely on a current installation of the
Python packages: Scipy, Numpy, and Scikit-Learn. These accompanying
packages are also all included in the Anaconda package
(https://www.continuum.io/downloads).

How to do it…

https://github.com/nfmcclure/tensorflow_cookbookTensorFlow
https://www.python.org
https://www.tensorflow.org
https://developer.nvidia.com/cuda-downloads
https://www.continuum.io/downloads


Here we will introduce the general flow of TensorFlow algorithms. Most
recipes will follow this outline:
1. Import or generate datasets: All of our machine-learning algorithms

will depend on datasets. In this book, we will either generate data or
use an outside source of datasets. Sometimes it is better to rely on
generated data because we will just want to know the expected
outcome. Most of the time, we will access public datasets for the given
recipe and the details on accessing these are given in section 8 of this
chapter.

2. Transform and normalize data: Normally, input datasets do not come
in the shape TensorFlow would expect so we need to transform
TensorFlow them to the accepted shape. The data is usually not in the
correct dimension or type that our algorithms expect. We will have to
transform our data before we can use it. Most algorithms also expect
normalized data and we will do this here as well. TensorFlow has built-
in functions that can normalize the data for you as follows:

data = tf.nn.batch_norm_with_global_normalization(...)

3. Partition datasets into train, test, and validation sets: We generally
want to test our algorithms on different sets that we have trained on.
Also, many algorithms require hyperparameter tuning, so we set aside
a validation set for determining the best set of hyperparameters.

4. Set algorithm parameters (hyperparameters): Our algorithms
usually have a set of parameters that we hold constant throughout the
procedure. For example, this can be the number of iterations, the
learning rate, or other fixed parameters of our choosing. It is
considered good form to initialize these together so the reader or user
can easily find them, as follows:

learning_rate = 0.01
batch_size = 100
iterations = 1000

5. Initialize variables and placeholders: TensorFlow depends on
knowing what it can and cannot modify. TensorFlow will



modify/adjust the variables and weight/bias during optimization to
minimize a loss function. To accomplish this, we feed in data through
placeholders. We need to initialize both of these variables and
placeholders with size and type, so that TensorFlow knows what to
expect. TensorFlow also needs to know the type of data to expect: for
most of this book, we will use float32. TensorFlow also provides
float64 and float16. Note that the more bytes used for precision
results in slower algorithms, but the less we use results in less
precision. See the following code:

a_var = tf.constant(42)
x_input = tf.placeholder(tf.float32, [None, input_size])
y_input = tf.placeholder(tf.float32, [None, num_classes])

6. Define the model structure: After we have the data, and have
initialized our variables and placeholders, we have to define the
model. This is done by building a computational graph. TensorFlow
chooses what operations and values must be the variables and
placeholders to arrive at our model outcomes. We talk more in depth
about computational graphs in the Operations in a Computational
Graph TensorFlow recipe in Chapter 2, The TensorFlow Way. Our
model for this example will be a linear model:

y_pred = tf.add(tf.mul(x_input, weight_matrix), b_matrix)

7. Declare the loss functions: After defining the model, we must be able
to evaluate the output. This is where we declare the loss function. The
loss function is very important as it tells us how far off our predictions
are from the actual values. The different types of loss functions are
explored in greater detail, in the Implementing Back Propagation
recipe in Chapter 2, The TensorFlow Way:

loss = tf.reduce_mean(tf.square(y_actual – y_pred))

8. Initialize and train the model: Now that we have everything in place,
we need to create an instance of our graph, feed in the data through
the placeholders, and let TensorFlow change the variables to better
predict our training data. Here is one way to initialize the



computational graph:

with tf.Session(graph=graph) as session:
  ...
  session.run(...)
  ...

Note that we can also initiate our graph with:

session = tf.Session(graph=graph)
session.run(…)

9. Evaluate the model: Once we have built and trained the model, we
should evaluate the model by looking at how well it does with new
data through some specified criteria. We evaluate on the train and test
set and these evaluations will allow us to see if the model is underfit or
overfit. We will address these in later recipes.

10. Tune hyperparameters: Most of the time, we will want to go back
and change some of the hyperparamters, based on the model
performance. We then repeat the previous steps with different
hyperparameters and evaluate the model on the validation set.

11. Deploy/predict new outcomes: It is also important to know how to
make predictions on new, unseen, data. We can do this with all of our
models, once we have them trained.

How it works…
In TensorFlow, we have to set up the data, variables, placeholders, and
model before we tell the program to train and change the variables to
improve the predictions. TensorFlow accomplishes this through the
computational graphs. These computational graphs are a directed graphs
with no recursion, which allows for computational parallelism. We create a
loss function for TensorFlow to minimize. TensorFlow accomplishes this
by modifying the variables in the computational graph. Tensorflow knows
how to modify the variables because it keeps track of the computations in
the model and automatically computes the gradients for every variable.



Because of this, we can see how easy it can be to make changes and try
different data sources.

See also
A great place to start is to go through the official documentation of the
Tensorflow Python API section at
https://www.tensorflow.org/api_docs/python/
There are also tutorials available at:
https://www.tensorflow.org/tutorials/

https://www.tensorflow.org/api_docs/python/
https://www.tensorflow.org/tutorials/


Declaring Tensors
Tensors are the primary data structure that TensorFlow uses to operate on
the computational graph. We can declare these tensors as variables and or
feed them in as placeholders. First we must know how to create tensors.

Getting ready
When we create a tensor and declare it to be a variable, TensorFlow
creates several graph structures in our computation graph. It is also
important to point out that just by creating a tensor, TensorFlow is not
adding anything to the computational graph. TensorFlow does this only
after creating available out of the tensor. See the next section on variables
and placeholders for more information.

How to do it…
Here we will cover the main ways to create tensors in TensorFlow:
1. Fixed tensors:

Create a zero filled tensor. Use the following:

zero_tsr = tf.zeros([row_dim, col_dim])

Create a one filled tensor. Use the following:

ones_tsr = tf.ones([row_dim, col_dim])

Create a constant filled tensor. Use the following:

filled_tsr = tf.fill([row_dim, col_dim], 42)

Create a tensor out of an existing constant. Use the following:

constant_tsr = tf.constant([1,2,3])

Note

Note that the tf.constant() function can be used to broadcast a value



into an array, mimicking the behavior of tf.fill() by writing
tf.constant(42, [row_dim, col_dim])

2. Tensors of similar shape:
We can also initialize variables based on the shape of other
tensors, as follows:

zeros_similar = tf.zeros_like(constant_tsr)
ones_similar = tf.ones_like(constant_tsr)

Note

Note, that since these tensors depend on prior tensors, we must
initialize them in order. Attempting to initialize all the tensors all at
once willwould result in an error. See the section There's more… at the
end of the next chapter on variables and placeholders.

3. Sequence tensors:
TensorFlow allows us to specify tensors that contain defined
intervals. The following functions behave very similarly to the
range() outputs and numpy's linspace() outputs. See the
following function:

linear_tsr = tf.linspace(start=0, stop=1, start=3)

The resulting tensor is the sequence [0.0, 0.5, 1.0]. Note that
this function includes the specified stop value. See the following
function:

integer_seq_tsr = tf.range(start=6, limit=15, delta=3)

The result is the sequence [6, 9, 12]. Note that this function does
not include the limit value.

4. Random tensors:
The following generated random numbers are from a uniform
distribution:

randunif_tsr = tf.random_uniform([row_dim, col_dim], 
minval=0, maxval=1)



Note that this random uniform distribution draws from the interval
that includes the minval but not the maxval (minval <= x <
maxval).
To get a tensor with random draws from a normal distribution, as
follows:

randnorm_tsr = tf.random_normal([row_dim, col_dim], 
mean=0.0, stddev=1.0)

There are also times when we wish to generate normal random
values that are assured within certain bounds. The
truncated_normal() function always picks normal values within
two standard deviations of the specified mean. See the following:

runcnorm_tsr = tf.truncated_normal([row_dim, col_dim], 
mean=0.0, stddev=1.0)

We might also be interested in randomizing entries of arrays. To
accomplish this, there are two functions that help us:
random_shuffle() and random_crop(). See the following:

shuffled_output = tf.random_shuffle(input_tensor)
cropped_output = tf.random_crop(input_tensor, crop_size)

Later on in this book, we will be interested in randomly cropping
an image of size (height, width, 3) where there are three color
spectrums. To fix a dimension in the cropped_output, you must
give it the maximum size in that dimension:

cropped_image = tf.random_crop(my_image, [height/2, 
width/2, 3])

How it works…
Once we have decided on how to create the tensors, then we may also
create the corresponding variables by wrapping the tensor in the
Variable() function, as follows. More on this in the next section:

my_var = tf.Variable(tf.zeros([row_dim, col_dim]))



There's more…
We are not limited to the built-in functions. We can convert any numpy
array to a Python list, or constant to a tensor using the function
convert_to_tensor(). Note that this function also accepts tensors as an
input in case we wish to generalize a computation inside a function.



Using Placeholders and Variables
Placeholders and variables are key tools for using computational graphs in
TensorFlow. We must understand the difference and when to best use them
to our advantage.

Getting ready
One of the most important distinctions to make with the data is whether it
is a placeholder or a variable. Variables are the parameters of the algorithm
and TensorFlow keeps track of how to change these to optimize the
algorithm. Placeholders are objects that allow you to feed in data of a
specific type and shape and depend on the results of the computational
graph, such as the expected outcome of a computation.

How to do it…
The main way to create a variable is by using the Variable() function,
which takes a tensor as an input and outputs a variable. This is the
declaration and we still need to initialize the variable. Initializing is what
puts the variable with the corresponding methods on the computational
graph. Here is an example of creating and initializing a variable:

my_var = tf.Variable(tf.zeros([2,3]))
sess = tf.Session()
initialize_op = tf.global_variables_initializer ()
sess.run(initialize_op)

To see what the computational graph looks like after creating and
initializing a variable, see the next part in this recipe.

Placeholders are just holding the position for data to be fed into the graph.
Placeholders get data from a feed_dict argument in the session. To put a
placeholder in the graph, we must perform at least one operation on the
placeholder. We initialize the graph, declare x to be a placeholder, and



define y as the identity operation on x, which just returns x. We then create
data to feed into the x placeholder and run the identity operation. It is
worth noting that TensorFlow will not return a self-referenced placeholder
in the feed dictionary. The code is shown here and the resulting graph is
shown in the next section:

sess = tf.Session()
x = tf.placeholder(tf.float32, shape=[2,2])
y = tf.identity(x)
x_vals = np.random.rand(2,2)
sess.run(y, feed_dict={x: x_vals})
# Note that sess.run(x, feed_dict={x: x_vals}) will result in a 
self-referencing error.

How it works…
The computational graph of initializing a variable as a tensor of zeros is
shown in the following figure:

Figure 1: Variable

In Figure 1, we can see what the computational graph looks like in detail
with just one variable, initialized to all zeros. The grey shaded region is a
very detailed view of the operations and constants involved. The main
computational graph with less detail is the smaller graph outside of the



grey region in the upper right corner. For more details on creating and
visualizing graphs, see Chapter 10, Taking TensorFlow to Production ,
section 1.

Similarly, the computational graph of feeding a numpy array into a
placeholder can be seen in the following figure:

Figure 2: Here is the computational graph of a placeholder initialized.
The grey shaded region is a very detailed view of the operations and

constants involved. The main computational graph with less detail is the
smaller graph outside of the grey region in the upper right.

There's more…
During the run of the computational graph, we have to tell TensorFlow
when to initialize the variables we have created. TensorFlow must be
informed about when it can initialize the variables. While each variable
has an initializer method, the most common way to do this is to use the
helper function, which is global_variables_initializer(). This function
creates an operation in the graph that initializes all the variables we have
created, as follows:

initializer_op = tf.global_variables_initializer ()

But if we want to initialize a variable based on the results of initializing



another variable, we have to initialize variables in the order we want, as
follows:

sess = tf.Session()
first_var = tf.Variable(tf.zeros([2,3]))
sess.run(first_var.initializer)
second_var = tf.Variable(tf.zeros_like(first_var))
# Depends on first_var
sess.run(second_var.initializer)



Working with Matrices
Understanding how TensorFlow works with matrices is very important to
understanding the flow of data through computational graphs.

Getting ready
Many algorithms depend on matrix operations. TensorFlow gives us easy-
to-use operations to perform such matrix calculations. For all of the
following examples, we can create a graph session by running the
following code:

import tensorflow as tf
sess = tf.Session()

How to do it…
1. Creating matrices: We can create two-dimensional matrices from

numpy arrays or nested lists, as we described in the earlier section on
tensors. We can also use the tensor creation functions and specify a
two-dimensional shape for functions such as zeros(), ones(),
truncated_normal(), and so on. TensorFlow also allows us to create a
diagonal matrix from a one-dimensional array or list with the function
diag(), as follows:

identity_matrix = tf.diag([1.0, 1.0, 1.0])
A = tf.truncated_normal([2, 3])
B = tf.fill([2,3], 5.0)
C = tf.random_uniform([3,2])
D = tf.convert_to_tensor(np.array([[1., 2., 3.],[-3., -7., 
-1.],[0., 5., -2.]]))
print(sess.run(identity_matrix))
[[ 1.  0.  0.]
 [ 0.  1.  0.]
 [ 0.  0.  1.]]
print(sess.run(A))
[[ 0.96751703  0.11397751 -0.3438891 ]
 [-0.10132604 -0.8432678   0.29810596]]



print(sess.run(B))
[[ 5.  5.  5.]
 [ 5.  5.  5.]]
print(sess.run(C))
[[ 0.33184157  0.08907614]
 [ 0.53189191  0.67605299]
 [ 0.95889051  0.67061249]]
print(sess.run(D))
[[ 1.  2.  3.]
 [-3. -7. -1.]
 [ 0.  5. -2.]]

Note

Note that if we were to run sess.run(C) again, we would reinitialize
the random variables and end up with different random values.

2. Addition and subtraction uses the following function:

print(sess.run(A+B))
[[ 4.61596632  5.39771316  4.4325695 ]
 [ 3.26702736  5.14477345  4.98265553]]
print(sess.run(B-B))
[[ 0.  0.  0.]
 [ 0.  0.  0.]]
Multiplication
print(sess.run(tf.matmul(B, identity_matrix)))
[[ 5.  5.  5.]
 [ 5.  5.  5.]]

3. Also, the function matmul() has arguments that specify whether or not
to transpose the arguments before multiplication or whether each
matrix is sparse.

4. Transpose the arguments as follows:

print(sess.run(tf.transpose(C)))
[[ 0.67124544  0.26766731  0.99068872]
 [ 0.25006068  0.86560275  0.58411312]]

5. Again, it is worth mentioning the reinitializing that gives us different
values than before.

6. For the determinant, use the following:



print(sess.run(tf.matrix_determinant(D)))
-38.0

Inverse:

print(sess.run(tf.matrix_inverse(D)))
[[-0.5        -0.5        -0.5       ]
 [ 0.15789474  0.05263158  0.21052632]
 [ 0.39473684  0.13157895  0.02631579]]

Note

Note that the inverse method is based on the Cholesky decomposition
if the matrix is symmetric positive definite or the LU decomposition
otherwise.

7. Decompositions:
For the Cholesky decomposition, use the following:

print(sess.run(tf.cholesky(identity_matrix)))
[[ 1.  0.  1.]
 [ 0.  1.  0.]
 [ 0.  0.  1.]]

8. For Eigenvalues and eigenvectors, use the following code:

print(sess.run(tf.self_adjoint_eig(D))
[[-10.65907521  -0.22750691   2.88658212]
 [  0.21749542   0.63250104  -0.74339638]
 [  0.84526515   0.2587998    0.46749277]
 [ -0.4880805    0.73004459   0.47834331]]

Note that the function self_adjoint_eig() outputs the eigenvalues in the
first row and the subsequent vectors in the remaining vectors. In
mathematics, this is known as the Eigen decomposition of a matrix.

How it works…
TensorFlow provides all the tools for us to get started with numerical
computations and adding such computations to our graphs. This notation



might seem quite heavy for simple matrix operations. Remember that we
are adding these operations to the graph and telling TensorFlow what
tensors to run through those operations. While this might seem verbose
now, it helps to understand the notations in later chapters, when this way
of computation will make it easier to accomplish our goals.



Declaring Operations
Now we must learn about the other operations we can add to a TensorFlow
graph.

Getting ready
Besides the standard arithmetic operations, TensorFlow provides us with
more operations that we should be aware of. We need to know how to use
them before proceeding. Again, we can create a graph session by running
the following code:

import tensorflow as tf
sess = tf.Session()

How to do it…
TensorFlow has the standard operations on tensors: add(), sub(), mul(),
and div(). Note that all of these operations in this section will evaluate the
inputs element-wise unless specified otherwise:
1. TensorFlow provides some variations of div() and relevant functions.
2. It is worth mentioning that div() returns the same type as the inputs.

This means it really returns the floor of the division (akin to Python 2)
if the inputs are integers. To return the Python 3 version, which casts
integers into floats before dividing and always returning a float,
TensorFlow provides the function truediv() function, as shown as
follows:

print(sess.run(tf.div(3,4)))
0
print(sess.run(tf.truediv(3,4)))
0.75

3. If we have floats and want an integer division, we can use the function
floordiv(). Note that this will still return a float, but rounded down to
the nearest integer. The function is shown as follows:



print(sess.run(tf.floordiv(3.0,4.0)))
0.0

4. Another important function is mod(). This function returns the
remainder after the division. It is shown as follows:

print(sess.run(tf.mod(22.0, 5.0)))
2.0-

5. The cross-product between two tensors is achieved by the cross()
function. Remember that the cross-product is only defined for two
three-dimensional vectors, so it only accepts two three-dimensional
tensors. The function is shown as follows:

print(sess.run(tf.cross([1., 0., 0.], [0., 1., 0.])))
[ 0.  0.  1.0]

6. Here is a compact list of the more common math functions. All of
these functions operate elementwise.

abs() Absolute value of one input tensor

ceil() Ceiling function of one input tensor

cos() Cosine function of one input tensor

exp() Base e exponential of one input tensor

floor() Floor function of one input tensor

inv() Multiplicative inverse (1/x) of one input tensor

log() Natural logarithm of one input tensor

maximum() Element-wise max of two tensors

minimum() Element-wise min of two tensors

neg() Negative of one input tensor



pow()
The first tensor raised to the second tensor element-wise

round() Rounds one input tensor

rsqrt() One over the square root of one tensor

sign() Returns -1, 0, or 1, depending on the sign of the tensor

sin() Sine function of one input tensor

sqrt() Square root of one input tensor

square() Square of one input tensor

7. Specialty mathematical functions: There are some special math
functions that get used in machine learning that are worth mentioning
and TensorFlow has built in functions for them. Again, these functions
operate element-wise, unless specified otherwise:

digamma() Psi function, the derivative of the lgamma() function

erf() Gaussian error function, element-wise, of one tensor

erfc() Complimentary error function of one tensor

igamma() Lower regularized incomplete gamma function

igammac() Upper regularized incomplete gamma function

lbeta() Natural logarithm of the absolute value of the beta function

lgamma() Natural logarithm of the absolute value of the gamma function

squared_difference() Computes the square of the differences between two tensors



How it works…
It is important to know what functions are available to us to add to our
computational graphs. Mostly, we will be concerned with the preceding
functions. We can also generate many different custom functions as
compositions of the preceding functions, as follows:

# Tangent function (tan(pi/4)=1)
print(sess.run(tf.div(tf.sin(3.1416/4.), tf.cos(3.1416/4.))))
1.0

There's more…
If we wish to add other operations to our graphs that are not listed here,
we must create our own from the preceding functions. Here is an example
of an operation not listed previously that we can add to our graph. We
choose to add a custom polynomial function, :

def custom_polynomial(value):
    return(tf.sub(3 * tf.square(value), value) + 10)
print(sess.run(custom_polynomial(11)))
362



Implementing Activation
Functions
Getting ready
When we start to use neural networks, we will use activation functions
regularly because activation functions are a mandatory part of any neural
network. The goal of the activation function is to adjust weight and bias. In
TensorFlow, activation functions are non-linear operations that act on
tensors. They are functions that operate in a similar way to the previous
mathematical operations. Activation functions serve many purposes, but a
few main concepts is that they introduce a non-linearity into the graph
while normalizing the outputs. Start a TensorFlow graph with the following
commands:

import tensorflow as tf
sess = tf.Session()

How to do it…
The activation functions live in the neural network (nn) library in
TensorFlow. Besides using built-in activation functions, we can also design
our own using TensorFlow operations. We can import the predefined
activation functions (import tensorflow.nn as nn) or be explicit and
write .nn in our function calls. Here, we choose to be explicit with each
function call:
1. The rectified linear unit, known as ReLU, is the most common and

basic way to introduce a non-linearity into neural networks. This
function is just max(0,x). It is continuous but not smooth. It appears as
follows:

print(sess.run(tf.nn.relu([-3., 3., 10.])))
[  0.  3.  10.]



2. There will be times when we wish to cap the linearly increasing part of
the preceding ReLU activation function. We can do this by nesting the
max(0,x) function into a min() function. The implementation that
TensorFlow has is called the ReLU6 function. This is defined as
min(max(0,x),6). This is a version of the hard-sigmoid function and is
computationally faster, and does not suffer from vanishing
(infinitesimally near zero) or exploding values. This will come in
handy when we discuss deeper neural networks in Chapters 8,
Convolutional Neural Networks and Chapter 9, Recurrent Neural
Networks. It appears as follows:

print(sess.run(tf.nn.relu6([-3., 3., 10.])))
[ 0.  3.  6.]

3. The sigmoid function is the most common continuous and smooth
activation function. It is also called a logistic function and has the form
1/(1+exp(-x)). The sigmoid is not often used because of the tendency
to zero-out the back propagation terms during training. It appears as
follows:

print(sess.run(tf.nn.sigmoid([-1., 0., 1.])))
[ 0.26894143  0.5         0.7310586 ]

Note

We should be aware that some activation functions are not zero
centered, such as the sigmoid. This will require us to zero-mean the
data prior to using it in most computational graph algorithms.

4. Another smooth activation function is the hyper tangent. The hyper
tangent function is very similar to the sigmoid except that instead of
having a range between 0 and 1, it has a range between -1 and 1. The
function has the form of the ratio of the hyperbolic sine over the
hyperbolic cosine. But another way to write this is ((exp(x)-exp(-
x))/(exp(x)+exp(-x)). It appears as follows:

print(sess.run(tf.nn.tanh([-1., 0., 1.])))
[-0.76159418  0.         0.76159418 ]



5. The softsign function also gets used as an activation function. The
form of this function is x/(abs(x) + 1). The softsign function is
supposed to be a continuous approximation to the sign function. It
appears as follows:

print(sess.run(tf.nn.softsign([-1., 0., -1.])))
[-0.5  0.   0.5]

6. Another function, the softplus, is a smooth version of the ReLU
function. The form of this function is log(exp(x) + 1). It appears as
follows:

print(sess.run(tf.nn.softplus([-1., 0., -1.])))
[ 0.31326166  0.69314718  1.31326163]

Note

The softplus goes to infinity as the input increases whereas the
softsign goes to 1. As the input gets smaller, however, the softplus
approaches zero and the softsign goes to -1.

7. The Exponential Linear Unit (ELU) is very similar to the softplus
function except that the bottom asymptote is -1 instead of 0. The form
is (exp(x)+1) if x < 0 else x. It appears as follows:

print(sess.run(tf.nn.elu([-1., 0., -1.])))
[-0.63212055  0.          1.        ]

How it works…
These activation functions are the way that we introduce nonlinearities in
neural networks or other computational graphs in the future. It is important
to note where in our network we are using activation functions. If the
activation function has a range between 0 and 1 (sigmoid), then the
computational graph can only output values between 0 and 1.

If the activation functions are inside and hidden between nodes, then we
want to be aware of the effect that the range can have on our tensors as



we pass them through. If our tensors were scaled to have a mean of zero,
we will want to use an activation function that preserves as much variance
as possible around zero. This would imply we want to choose an activation
function such as the hyperbolic tangent (tanh) or softsign. If the tensors
are all scaled to be positive, then we would ideally choose an activation
function that preserves variance in the positive domain.

There's more…
Here are two graphs that illustrate the different activation functions. The
following figure shows the following functions ReLU, ReLU6, softplus,
exponential LU, sigmoid, softsign, and the hyperbolic tangent:

Figure 3: Activation functions of softplus, ReLU, ReLU6, and exponential
LU

In Figure 3, we can see four of the activation functions, softplus, ReLU,
ReLU6, and exponential LU. These functions flatten out to the left of zero
and linearly increase to the right of zero, with the exception of ReLU6,
which has a maximum value of 6:



Figure 4: Sigmoid, hyperbolic tangent (tanh), and softsign activation
function

In Figure 4, we have the activation functions sigmoid, hyperbolic tangent
(tanh), and softsign. These activation functions are all smooth and have a S
n shape. Note that there are two horizontal asymptotes for these functions.



Working with Data Sources
For most of this book, we will rely on the use of datasets to fit machine
learning algorithms. This section has instructions on how to access each of
these various datasets through TensorFlow and Python.

Getting ready
In TensorFlow some of the datasets that we will use are built in to Python
libraries, some will require a Python script to download, and some will be
manually downloaded through the Internet. Almost all of these datasets
require an active Internet connection to retrieve data.

How to do it…
1. Iris data: This dataset is arguably the most classic dataset used in

machine learning and maybe all of statistics. It is a dataset that
measures sepal length, sepal width, petal length, and petal width of
three different types of iris flowers: Iris setosa, Iris virginica, and Iris
versicolor. There are 150 measurements overall, 50 measurements of
each species. To load the dataset in Python, we use Scikit Learn's
dataset function, as follows:

from sklearn import datasets
iris = datasets.load_iris()
print(len(iris.data))
150
print(len(iris.target))
150
print(iris.target[0]) # Sepal length, Sepal width, Petal 
length, Petal width
[ 5.1 3.5 1.4 0.2]
print(set(iris.target)) # I. setosa, I. virginica, I. 
versicolor
{0, 1, 2}

2. Birth weight data: The University of Massachusetts at Amherst has



compiled many statistical datasets that are of interest (1). One such
dataset is a measure of child birth weight and other demographic and
medical measurements of the mother and family history. There are 189
observations of 11 variables. Here is how to access the data in Python:

import requests
birthdata_url = 
'https://www.umass.edu/statdata/statdata/data/lowbwt.dat'
birth_file = requests.get(birthdata_url)
birth_data = birth_file.text.split('\'r\n') [5:]
birth_header = [x for x in birth_data[0].split( '') if 
len(x)>=1]
birth_data = [[float(x) for x in y.split( ')'' if len(x)>=1] 
for y in birth_data[1:] if len(y)>=1]
print(len(birth_data))
189
print(len(birth_data[0]))
11

3. Boston Housing data: Carnegie Mellon University maintains a library
of datasets in their Statlib Library. This data is easily accessible via
The University of California at Irvine's Machine-Learning Repository
(2). There are 506 observations of house worth along with various
demographic data and housing attributes (14 variables). Here is how to
access the data in Python:

import requests
housing_url = 'https://archive.ics.uci.edu/ml/machine-
learning-databases/housing/housing.data'
housing_header = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 
'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV0']
housing_file = requests.get(housing_url)
housing_data = [[float(x) for x in y.split( '') if len(x)>=1] 
for y in housing_file.text.split('\n') if len(y)>=1]
print(len(housing_data))
506
print(len(housing_data[0]))
14

4. MNIST handwriting data: MNIST (Mixed National Institute of
Standards and Technology) is a subset of the larger NIST



handwriting database. The MNIST handwriting dataset is hosted on
Yann LeCun's website (https://yann.lecun.com/exdb/mnist/). It is a
database of 70,000 images of single digit numbers (0-9) with about
60,000 annotated for a training set and 10,000 for a test set. This
dataset is used so often in image recognition that TensorFlow provides
built-in functions to access this data. In machine learning, it is also
important to provide validation data to prevent overfitting (target
leakage). Because of this TensorFlow, sets aside 5,000 of the train set
into a validation set. Here is how to access the data in Python:

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/"," 
one_hot=True)
print(len(mnist.train.images))
55000
print(len(mnist.test.images))
10000
print(len(mnist.validation.images))
5000
print(mnist.train.labels[1,:]) # The first label is a 3'''
[ 0.  0.  0.  1.  0.  0.  0.  0.  0.  0.]

5. Spam-ham text data. UCI's machine -learning data set library (2) also
holds a spam-ham text message dataset. We can access this .zip file
and get the spam-ham text data as follows:

import requests
import io
from zipfile import ZipFile
zip_url = 'http://archive.ics.uci.edu/ml/machine-learning-
databases/00228/smsspamcollection.zip'
r = requests.get(zip_url)
z = ZipFile(io.BytesIO(r.content))
file = z.read('SMSSpamCollection')
text_data = file.decode()
text_data = text_data.encode('ascii',errors='ignore')
text_data = text_data.decode().split(\n')
text_data = [x.split(\t') for x in text_data if len(x)>=1]
[text_data_target, text_data_train] = [list(x) for x in 
zip(*text_data)]
print(len(text_data_train))

https://yann.lecun.com/exdb/mnist/


5574
print(set(text_data_target))
{'ham', 'spam'}
print(text_data_train[1])
Ok lar... Joking wif u oni...

6. Movie review data: Bo Pang from Cornell has released a movie
review dataset that classifies reviews as good or bad (3). You can find
the data on the website, http://www.cs.cornell.edu/people/pabo/movie-
review-data/. To download, extract, and transform this data, we run
the following code:

import requests
import io
import tarfile
movie_data_url = 
'http://www.cs.cornell.edu/people/pabo/movie-review-data/rt-
polaritydata.tar.gz'
r = requests.get(movie_data_url)
# Stream data into temp object
stream_data = io.BytesIO(r.content)
tmp = io.BytesIO()
while True:
    s = stream_data.read(16384)
    if not s:
        break
    tmp.write(s)
stream_data.close()
tmp.seek(0)
# Extract tar file
tar_file = tarfile.open(fileobj=tmp, mode="r:gz")
pos = tar_file.extractfile('rt'-polaritydata/rt-
polarity.pos')
neg = tar_file.extractfile('rt'-polaritydata/rt-
polarity.neg')
# Save pos/neg reviews (Also deal with encoding)
pos_data = []
for line in pos:
    pos_data.append(line.decode('ISO'-8859-
1').encode('ascii',errors='ignore').decode())
neg_data = []
for line in neg:

http://www.cs.cornell.edu/people/pabo/movie-review-data/


    neg_data.append(line.decode('ISO'-8859-
1').encode('ascii',errors='ignore').decode())
tar_file.close()
print(len(pos_data))
5331
print(len(neg_data))
5331
# Print out first negative review
print(neg_data[0])
simplistic , silly and tedious .

7. CIFAR-10 image data: The Canadian Institute For Advanced
Research has released an image set that contains 80 million labeled
colored images (each image is scaled to 32x32 pixels). There are 10
different target classes (airplane, automobile, bird, and so on). The
CIFAR-10 is a subset that has 60,000 images. There are 50,000 images
in the training set, and 10,000 in the test set. Since we will be using
this dataset in multiple ways, and because it is one of our larger
datasets, we will not run a script each time we need it. To get this
dataset, please navigate to http://www.cs.toronto.edu/~kriz/cifar.html,
and download the CIFAR-10 dataset. We will address how to use this
dataset in the appropriate chapters.

8. The works of Shakespeare text data: Project Gutenberg (5) is a
project that releases electronic versions of free books. They have
compiled all of the works of Shakespeare together and here is how to
access the text file through Python:

import requests
shakespeare_url = 
'http://www.gutenberg.org/cache/epub/100/pg100.txt'
# Get Shakespeare text
response = requests.get(shakespeare_url)
shakespeare_file = response.content
# Decode binary into string
shakespeare_text = shakespeare_file.decode('utf-8')
# Drop first few descriptive paragraphs.
shakespeare_text = shakespeare_text[7675:]
print(len(shakespeare_text)) # Number of characters
5582212

http://www.cs.toronto.edu/~kriz/cifar.html


9. English-German sentence translation data: The Tatoeba project
(http://tatoeba.org) collects sentence translations in many languages.
Their data has been released under the Creative Commons License.
From this data, ManyThings.org (http://www.manythings.org) has
compiled sentence-to-sentence translations in text files available for
download. Here we will use the English-German translation file, but
you can change the URL to whatever languages you would like to use:

import requests
import io
from zipfile import ZipFile
sentence_url = 'http://www.manythings.org/anki/deu-eng.zip'
r = requests.get(sentence_url)
z = ZipFile(io.BytesIO(r.content))
file = z.read('deu.txt''')
# Format Data
eng_ger_data = file.decode()
eng_ger_data = 
eng_ger_data.encode('ascii''',errors='ignore''')
eng_ger_data = eng_ger_data.decode().split(\n''')
eng_ger_data = [x.split(\t''') for x in eng_ger_data if 
len(x)>=1]
[english_sentence, german_sentence] = [list(x) for x in 
zip(*eng_ger_data)]
print(len(english_sentence))
137673
print(len(german_sentence))
137673
print(eng_ger_data[10])
['I won!, 'Ich habe gewonnen!']

How it works…
When it comes time to use one of these datasets in a recipe, we will refer
you to this section and assume that the data is loaded in such a way as
described in the preceding text. If further data transformation or pre-
processing is needed, then such code will be provided in the recipe itself.

See also

http://tatoeba.org
http://www.manythings.org
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Additional Resources
Here we will provide additional links, documentation sources, and tutorials
that are of great assistance to learning and using TensorFlow.

Getting ready
When learning how to use TensorFlow, it helps to know where to turn to
for assistance or pointers. This section lists resources to get TensorFlow
running and to troubleshoot problems.

How to do it…
Here is a list of TensorFlow resources:
1. The code for this book is available online at

https://github.com/nfmcclure/tensorflow_cookbook.
2. The official TensorFlow Python API documentation is located at

https://www.tensorflow.org/api_docs/python. Here there is
documentation and examples of all of the functions, objects, and
methods in TensorFlow. Note the version number r0.8' in the link and
realize that a more current version may be available.

3. TensorFlow's official tutorials are very thorough and detailed. They are
located at https://www.tensorflow.org/tutorials/index.html. They start
covering image recognition models, and work through Word2Vec,
RNN models, and sequence-to-sequence models. They also have
additional tutorials on generating fractals and solving a PDE system.
Note that they are continually adding more tutorials and examples to
this collection.

4. TensorFlow's official GitHub repository is available via
https://github.com/tensorflow/tensorflow. Here you can view the
open-sourced code and even fork or clone the most current version of
the code if you want. You can also see current filed issues if you
navigate to the issues directory.

https://github.com/nfmcclure/tensorflow_cookbook
https://www.tensorflow.org/api_docs/python
https://www.tensorflow.org/tutorials/index.html
https://github.com/tensorflow/tensorflow


5. A public Docker container that is kept current by TensorFlow is
available on Dockerhub at:
https://hub.docker.com/r/tensorflow/tensorflow/

6. A downloadable virtual machine that contains TensorFlow installed on
an Ubuntu 15.04 OS is available as well. This option is great for
running the UNIX version of TensorFlow on a Windows PC. The VM
is available through a Google Document request form at:
https://docs.google.com/forms/d/1mUztUlK6_z31BbMW5ihXaYHlhBcbDd94mERe-
8XHyoI/viewform. It is about a 2 GB download and requires VMWare
player to run. VMWare player is a product made by VMWare and is
free for personal use and is available at:
https://www.vmware.com/go/downloadplayer/. This virtual machine is
maintained by David Winters (1).

7. A great source for community help is Stack Overflow. There is a tag
for TensorFlow. This tag seems to be growing in interest as TensorFlow
is gaining more popularity. To view activity on this tag, visit
http://stackoverflow.com/questions/tagged/Tensorflow

8. While TensorFlow is very agile and can be used for many things, the
most common usage of TensorFlow is deep learning. To understand the
basis for deep learning, how the underlying mathematics works, and to
develop more intuition on deep learning, Google has created an online
course available on Udacity. To sign up and take the video lecture
course visit https://www.udacity.com/course/deep-learning--ud730.

9. TensorFlow has also made a site where you can visually explore
training a neural network while changing the parameters and datasets.
Visit http://playground.tensorflow.org/ to explore how different
settings affect the training of neural networks.

10. Geoffrey Hinton teaches an online course, Neural Networks for
Machine Learning, through Coursera. Visit
https://www.coursera.org/learn/neural-networks

11. Stanford University has an online syllabus and detailed course notes
for Convolutional Neural Networks for Visual Recognition. Visit
http://cs231n.stanford.edu/

https://hub.docker.com/r/tensorflow/tensorflow/
https://docs.google.com/forms/d/1mUztUlK6_z31BbMW5ihXaYHlhBcbDd94mERe-8XHyoI/viewform
https://www.vmware.com/go/downloadplayer/
http://stackoverflow.com/questions/tagged/Tensorflow
https://www.udacity.com/course/deep-learning--ud730
http://playground.tensorflow.org/
https://www.coursera.org/learn/neural-networks
http://cs231n.stanford.edu/


See also
Winters, D.
https://docs.google.com/forms/d/1mUztUlK6_z31BbMW5ihXaYHlhBcbDd94mERe-
8XHyoI/viewform

https://docs.google.com/forms/d/1mUztUlK6_z31BbMW5ihXaYHlhBcbDd94mERe-8XHyoI/viewform


Chapter 2. The TensorFlow Way
In this chapter, we will introduce the key components of how TensorFlow
operates. Then we will tie it together to create a simple classifier and
evaluate the outcomes. By the end of the chapter you should have learned
about the following:

Operations in a Computational Graph
Layering Nested Operations
Working with Multiple Layers
Implementing Loss Functions
Implementing Back Propagation
Working with Batch and Stochastic Training
Combining Everything Together
Evaluating Models

Introduction
Now that we have introduced how TensorFlow creates tensors, uses
variables and placeholders, we will introduce how to act on these objects
in a computational graph. From this, we can set up a simple classifier and
see how well it performs.

Note

Also, remember that all the code from this book is available online on
GitHub at https://github.com/nfmcclure/tensorflow_cookbook.

https://github.com/nfmcclure/tensorflow_cookbook


Operations in a Computational
Graph
Now that we can put objects into our computational graph, we will
introduce operations that act on such objects.

Getting ready
To start a graph, we load TensorFlow and create a session, as follows:

import tensorflow as tf
sess = tf.Session()

How to do it…
In this example, we will combine what we have learned and feed in each
number in a list to an operation in a graph and print the output:
1. First we declare our tensors and placeholders. Here we will create a

numpy array to feed into our operation:

import numpy as np
x_vals = np.array([1., 3., 5., 7., 9.])
x_data = tf.placeholder(tf.float32)
m_const = tf.constant(3.)
my_product = tf.mul(x_data, m_const)
for x_val in x_vals:
    print(sess.run(my_product, feed_dict={x_data: x_val}))
3.0
9.0
15.0
21.0
27.0

How it works…
Steps 1 and 2 create the data and operations on the computational graph.



Then, in step 3, we feed the data through the graph and print the output.
Here is what the computational graph looks like:

Figure 1: Here we can see in the graph that the placeholder, x_data,
along with our multiplicative constant, feeds into the multiplication

operation.



Layering Nested Operations
In this recipe, we will learn how to put multiple operations on the same
computational graph.

Getting ready
It's important to know how to chain operations together. This will set up
layered operations in the computational graph. For a demonstration we will
multiply a placeholder by two matrices and then perform addition. We will
feed in two matrices in the form of a three-dimensional numpy array:

import tensorflow as tf
sess = tf.Session()

How to do it…
It is also important to note how the data will change shape as it passes
through. We will feed in two numpy arrays of size 3x5. We will multiply
each matrix by a constant of size 5x1, which will result in a matrix of size
3x1. We will then multiply this by 1x1 matrix resulting in a 3x1 matrix
again. Finally, we add a 3x1 matrix at the end, as follows:
1. First we create the data to feed in and the corresponding placeholder:

my_array = np.array([[1., 3., 5., 7., 9.],
                   [-2., 0., 2., 4., 6.],
                   [-6., -3., 0., 3., 6.]])
x_vals = np.array([my_array, my_array + 1])
x_data = tf.placeholder(tf.float32, shape=(3, 5))

2. Next we create the constants that we will use for matrix multiplication
and addition:

m1 = tf.constant([[1.],[0.],[-1.],[2.],[4.]])
m2 = tf.constant([[2.]])
a1 = tf.constant([[10.]])



3. Now we declare the operations and add them to the graph:

prod1 = tf.matmul(x_data, m1)
prod2 = tf.matmul(prod1, m2)
add1 = tf.add(prod2, a1)

4. Finally, we feed the data through our graph:

for x_val in x_vals:
    print(sess.run(add1, feed_dict={x_data: x_val}))
[[ 102.]
 [  66.]
 [  58.]]
[[ 114.]
 [  78.]
 [  70.]]

How it works…
The computational graph we just created can be visualized with
Tensorboard. Tensorboard is a feature of TensorFlow that allows us to
visualize the computational graphs and values in that graph. These features
are provided natively, unlike other machine learning frameworks. To see
how this is done, see the Visualizing graphs in Tensorboard recipe in
Chapter 11, More with TensorFlow. Here is what our layered graph looks
like:



Figure 2: In this computational graph you can see the data size as it
propagates upward through the graph.

There's more…
We have to declare the data shape and know the outcome shape of the
operations before we run data through the graph. This is not always the
case. There may be a dimension or two that we do not know beforehand or
that can vary. To accomplish this, we designate the dimension that can
vary or is unknown as value none. For example, to have the prior data
placeholder have an unknown amount of columns, we would write the



following line:

x_data = tf.placeholder(tf.float32, shape=(3,None))

This allows us to break matrix multiplication rules and we must still obey
the fact that the multiplying constant must have the same corresponding
number of rows. We can either generate this dynamically or reshape the
x_data as we feed data in our graph. This will come in handy in later
chapters when we are feeding data in multiple batches.



Working with Multiple Layers
Now that we have covered multiple operations, we will cover how to
connect various layers that have data propagating through them.

Getting ready
In this recipe, we will introduce how to best connect various layers,
including custom layers. The data we will generate and use will be
representative of small random images. It is best to understand these types
of operation on a simple example and how we can use some built-in layers
to perform calculations. We will perform a small moving window average
across a 2D image and then flow the resulting output through a custom
operation layer.

In this section, we will see that the computational graph can get large and
hard to look at. To address this, we will also introduce ways to name
operations and create scopes for layers. To start, load numpy and
tensorflow and create a graph, using the following:

import tensorflow as tf
import numpy as np
sess = tf.Session()

How to do it…
1. First we create our sample 2D image with numpy. This image will be a

4x4 pixel image. We will create it in four dimensions; the first and last
dimension will have a size of one. Note that some TensorFlow image
functions will operate on four-dimensional images. Those four
dimensions are image number, height, width, and channel, and to make
it one image with one channel, we set two of the dimensions to 1, as
follows:

x_shape = [1, 4, 4, 1]
x_val = np.random.uniform(size=x_shape)



2. Now we have to create the placeholder in our graph where we can
feed in the sample image, as follows:

x_data = tf.placeholder(tf.float32, shape=x_shape)

3. To create a moving window average across our 4x4 image, we will use
a built-in function that will convolute a constant across a window of
the shape 2x2. This function is quite common to use in image
processing and in TensorFlow, the function we will use is conv2d().
This function takes a piecewise product of the window and a filter we
specify. We must also specify a stride for the moving window in both
directions. Here we will compute four moving window averages, the
top left, top right, bottom left, and bottom right four pixels. We do this
by creating a 2x2 window and having strides of length 2 in each
direction. To take the average, we will convolute the 2x2 window with
a constant of 0.25., as follows:

my_filter = tf.constant(0.25, shape=[2, 2, 1, 1])
my_strides = [1, 2, 2, 1]
mov_avg_layer= tf.nn.conv2d(x_data, my_filter, my_strides,
                            padding='SAME''', 
name='Moving'_Avg_Window')

Note

To figure out the output size of a convolutional layer, we can use the
following formula: Output = (W-F+2P)/S+1, where W is the input
size, F is the filter size, P is the padding of zeros, and S is the stride.

4. Note that we are also naming this layer Moving_Avg_Window by using
the name argument of the function.

5. Now we define a custom layer that will operate on the 2x2 output of
the moving window average. The custom function will first multiply
the input by another 2x2 matrix tensor, and then add one to each entry.
After this we take the sigmoid of each element and return the 2x2
matrix. Since matrix multiplication only operates on two-dimensional
matrices, we need to drop the extra dimensions of our image that are
of size 1. TensorFlow can do this with the built-in function squeeze().



Here we define the new layer:

def custom_layer(input_matrix):
    input_matrix_sqeezed = tf.squeeze(input_matrix)
    A = tf.constant([[1., 2.], [-1., 3.]])
    b = tf.constant(1., shape=[2, 2])
    temp1 = tf.matmul(A, input_matrix_sqeezed)
    temp = tf.add(temp1, b) # Ax + b
    return(tf.sigmoid(temp))

6. Now we have to place the new layer on the graph. We will do this with
a named scope so that it is identifiable and collapsible/expandable on
the computational graph, as follows:

with tf.name_scope('Custom_Layer') as scope:
    custom_layer1 = custom_layer(mov_avg_layer)

7. Now we just feed in the 4x4 image in the placeholder and tell
TensorFlow to run the graph, as follows:

print(sess.run(custom_layer1, feed_dict={x_data: x_val}))
[[ 0.91914582  0.96025133]
 [ 0.87262219  0.9469803 ]]

How it works…
The visualized graph looks better with the naming of operations and
scoping of layers. We can collapse and expand the custom layer because
we created it in a named scope. In the following figure, see the collapsed
version on the left and the expanded version on the right:



Figure 3: Computational graph with two layers. The first layer is named
as Moving_Avg_Window, and the second is a collection of operations called



Custom_Layer. It is collapsed on the left and expanded on the right.



Implementing Loss Functions
Loss functions are very important to machine learning algorithms. They
measure the distance between the model outputs and the target (truth)
values. In this recipe, we show various loss function implementations in
TensorFlow.

Getting ready
In order to optimize our machine learning algorithms, we will need to
evaluate the outcomes. Evaluating outcomes in TensorFlow depends on
specifying a loss function. A loss function tells TensorFlow how good or
bad the predictions are compared to the desired result. In most cases, we
will have a set of data and a target on which to train our algorithm. The
loss function compares the target to the prediction and gives a numerical
distance between the two.

For this recipe, we will cover the main loss functions that we can
implement in TensorFlow.

To see how the different loss functions operate, we will plot them in this
recipe. We will first start a computational graph and load matplotlib, a
python plotting library, as follows:

import matplotlib.pyplot as plt
import tensorflow as tf

How to do it…
First we will talk about loss functions for regression, that is, predicting a
continuous dependent variable. To start, we will create a sequence of our
predictions and a target as a tensor. We will output the results across 500
x-values between -1 and 1. See the next section for a plot of the outputs.
Use the following code:



x_vals = tf.linspace(-1., 1., 500)
target = tf.constant(0.)

1. The L2 norm loss is also known as the Euclidean loss function. It is
just the square of the distance to the target. Here we will compute the
loss function as if the target is zero. The L2 norm is a great loss
function because it is very curved near the target and algorithms can
use this fact to converge to the target more slowly, the closer it gets.,
as follows:

l2_y_vals = tf.square(target - x_vals)
l2_y_out = sess.run(l2_y_vals)

Note

TensorFlow has a built -in form of the L2 norm, called nn.l2_loss().
This function is actually half the L2-norm above. In other words, it is
same as previously but divided by 2.

2. The L1 norm loss is also known as the absolute loss function. Instead
of squaring the difference, we take the absolute value. The L1 norm is
better for outliers than the L2 norm because it is not as steep for larger
values. One issue to be aware of is that the L1 norm is not smooth at
the target and this can result in algorithms not converging well. It
appears as follows:

l1_y_vals = tf.abs(target - x_vals)
l1_y_out = sess.run(l1_y_vals)

3. Pseudo-Huber loss is a continuous and smooth approximation to the
Huber loss function. This loss function attempts to take the best of
the L1 and L2 norms by being convex near the target and less steep
for extreme values. The form depends on an extra parameter, delta,
which dictates how steep it will be. We will plot two forms, delta1 =
0.25 and delta2 = 5 to show the difference, as follows:

delta1 = tf.constant(0.25)
phuber1_y_vals = tf.mul(tf.square(delta1), tf.sqrt(1. + 
                        tf.square((target - x_vals)/delta1)) 



- 1.)
phuber1_y_out = sess.run(phuber1_y_vals)
delta2 = tf.constant(5.)
phuber2_y_vals = tf.mul(tf.square(delta2), tf.sqrt(1. + 
                        tf.square((target - x_vals)/delta2)) 
- 1.)
phuber2_y_out = sess.run(phuber2_y_vals)

4. Classification loss functions are used to evaluate loss when predicting
categorical outcomes.

5. We will need to redefine our predictions (x_vals) and target. We will
save the outputs and plot them in the next section. Use the following:

x_vals = tf.linspace(-3., 5., 500)
target = tf.constant(1.)
targets = tf.fill([500,], 1.)

6. Hinge loss is mostly used for support vector machines, but can be used
in neural networks as well. It is meant to compute a loss between with
two target classes, 1 and -1. In the following code, we are using the
target value 1, so the as closer our predictions as near are to 1, the
lower the loss value:

hinge_y_vals = tf.maximum(0., 1. - tf.mul(target, x_vals))
hinge_y_out = sess.run(hinge_y_vals)

7. Cross-entropy loss for a binary case is also sometimes referred to as
the logistic loss function. It comes about when we are predicting the
two classes 0 or 1. We wish to measure a distance from the actual class
(0 or 1) to the predicted value, which is usually a real number between
0 and 1. To measure this distance, we can use the cross entropy
formula from information theory, as follows:

xentropy_y_vals = - tf.mul(target, tf.log(x_vals)) - 
tf.mul((1. - target), tf.log(1. - x_vals))
xentropy_y_out = sess.run(xentropy_y_vals)

8. Sigmoid cross entropy loss is very similar to the previous loss
function except we transform the x-values by the sigmoid function
before we put them in the cross entropy loss, as follows:



xentropy_sigmoid_y_vals = 
tf.nn.sigmoid_cross_entropy_with_logits(x_vals, targets)
xentropy_sigmoid_y_out = sess.run(xentropy_sigmoid_y_vals)

9. Weighted cross entropy loss is a weighted version of the sigmoid
cross entropy loss. We provide a weight on the positive target. For
an example, we will weight the positive target by 0.5, as follows:

weight = tf.constant(0.5)
xentropy_weighted_y_vals = 
tf.nn.weighted_cross_entropy_with_logits(x_vals, targets, 
weight)
xentropy_weighted_y_out = sess.run(xentropy_weighted_y_vals)

10. Softmax cross-entropy loss operates on non-normalized outputs. This
function is used to measure a loss when there is only one target
category instead of multiple. Because of this, the function transforms
the outputs into a probability distribution via the softmax function and
then computes the loss function from a true probability distribution,
as follows:

unscaled_logits = tf.constant([[1., -3., 10.]])
target_dist = tf.constant([[0.1, 0.02, 0.88]])
softmax_xentropy = 
tf.nn.softmax_cross_entropy_with_logits(unscaled_logits, 
target_dist)
print(sess.run(softmax_xentropy))
[ 1.16012561]

11. Sparse softmax cross-entropy loss is the same as previously, except
instead of the target being a probability distribution, it is an index of
which category is true. Instead of a sparse all-zero target vector with
one value of one, we just pass in the index of which category is the
true value, as follows:

unscaled_logits = tf.constant([[1., -3., 10.]])
sparse_target_dist = tf.constant([2])
sparse_xentropy = 
tf.nn.sparse_softmax_cross_entropy_with_logits(unscaled_logit
s, sparse_target_dist)
print(sess.run(sparse_xentropy))



[ 0.00012564]

How it works…
Here is how to use matplotlib to plot the regression loss functions:

x_array = sess.run(x_vals)
plt.plot(x_array, l2_y_out, 'b-', label='L2 Loss')
plt.plot(x_array, l1_y_out, 'r--', label='L1 Loss')
plt.plot(x_array, phuber1_y_out, 'k-.', label='P-Huber Loss 
(0.25)')
plt.plot(x_array, phuber2_y_out, 'g:', label='P'-Huber Loss 
(5.0)')
plt.ylim(-0.2, 0.4)
plt.legend(loc='lower right', prop={'size': 11})
plt.show()

Figure 4: Plotting various regression loss functions.

And here is how to use matplotlib to plot the various classification loss
functions:

x_array = sess.run(x_vals)
plt.plot(x_array, hinge_y_out, 'b-', label='Hinge Loss')
plt.plot(x_array, xentropy_y_out, 'r--', label='Cross Entropy 
Loss')



plt.plot(x_array, xentropy_sigmoid_y_out, 'k-.', label='Cross 
Entropy Sigmoid Loss')
plt.plot(x_array, xentropy_weighted_y_out, g:', label='Weighted 
Cross Enropy Loss (x0.5)')
plt.ylim(-1.5, 3)
plt.legend(loc='lower right', prop={'size': 11})
plt.show()

Figure 5: Plots of classification loss functions.

There's more…
Here is a table summarizing the different loss functions that we have
described:

Loss
function Use Benefits Disadvantages

L2 Regression More stable Less robust

L1 Regression More robust Less stable

Psuedo-Huber Regression More robust and stable One more parameter



Hinge Classification Creates a max margin for use in
SVM

Unbounded loss affected by outliers

Cross-entropy Classification More stable Unbounded loss, less robust

The remaining classification loss functions all have to do with the type of
cross-entropy loss. The cross-entropy sigmoid loss function is for use on
unscaled logits and is preferred over computing the sigmoid, and then the
cross entropy, because TensorFlow has better built-in ways to handle
numerical edge cases. The same goes for softmax cross entropy and
sparse softmax cross entropy.

Note

Most of the classification loss functions described here are for two class
predictions. This can be extended to multiple classes via summing the
cross entropy terms over each prediction/target.

There are also many other metrics to look at when evaluating a model.
Here is a list of some more to consider:

Model metric Description

R-squared
(coefficient of
determination)

For linear models, this is the proportion of variance in the dependent variable
that is explained by the independent data.

RMSE (root mean
squared error)

For continuous models, measures the difference between predictions and actual
via the square root of the average squared error.

Confusion matrix For categorical models, we look at a matrix of predicted categories versus actual
categories. A perfect model has all the counts along the diagonal.

Recall For categorical models, this is the fraction of true positives over all predicted
positives.

For categorical models, this is the fraction of true positives over all actual



Precision positives.

F-score For categorical models, this is the harmonic mean of precision and recall.



Implementing Back Propagation
One of the benefits of using TensorFlow, is that it can keep track of
operations and automatically update model variables based on back
propagation. In this recipe, we will introduce how to use this aspect to our
advantage when training machine learning models.

Getting ready
Now we will introduce how to change our variables in the model in such a
way that a loss function is minimized. We have learned about how to use
objects and operations, and create loss functions that will measure the
distance between our predictions and targets. Now we just have to tell
TensorFlow how to back propagate errors through our computational graph
to update the variables and minimize the loss function. This is done via
declaring an optimization function. Once we have an optimization function
declared, TensorFlow will go through and figure out the back propagation
terms for all of our computations in the graph. When we feed data in and
minimize the loss function, TensorFlow will modify our variables in the
graph accordingly.

For this recipe, we will do a very simple regression algorithm. We will
sample random numbers from a normal, with mean 1 and standard
deviation 0.1. Then we will run the numbers through one operation, which
will be to multiply them by a variable, A. From this, the loss function will
be the L2 norm between the output and the target, which will always be
the value 10. Theoretically, the best value for A will be the number 10
since our data will have mean 1.

The second example is a very simple binary classification algorithm. Here
we will generate 100 numbers from two normal distributions, N(-1,1) and
N(3,1). All the numbers from N(-1, 1) will be in target class 0, and all the
numbers from N(3, 1) will be in target class 1. The model to differentiate



these numbers will be a sigmoid function of a translation. In other words,
the model will be sigmoid (x + A) where A is a variable we will fit.
Theoretically, A will be equal to -1. We arrive at this number because if
m1 and m2 are the means of the two normal functions, the value added to
them to translate them equidistant to zero will be –(m1+m2)/2. We will see
how TensorFlow can arrive at that number in the second example.

While specifying a good learning rate helps the convergence of algorithms,
we must also specify a type of optimization. From the preceding two
examples, we are using standard gradient descent. This is implemented
with the TensorFlow function GradientDescentOptimizer().

How to do it…
Here is how the regression example works:
1. We start by loading the numerical Python package, numpy and

tensorflow:

import numpy as np
import tensorflow as tf

2. Now we start a graph session:

sess = tf.Session()

3. Next we create the data, placeholders, and the A variable:

x_vals = np.random.normal(1, 0.1, 100)
y_vals = np.repeat(10., 100)
x_data = tf.placeholder(shape=[1], dtype=tf.float32)
y_target = tf.placeholder(shape=[1], dtype=tf.float32)
A = tf.Variable(tf.random_normal(shape=[1]))

4. We add the multiplication operation to our graph:

my_output = tf.mul(x_data, A)

5. Next we add our L2 loss function between the multiplication output
and the target data:



loss = tf.square(my_output - y_target)

6. Before we can run anything, we have to initialize the variables:

init = tf.initialize_all_variables()
sess.run(init)

7. Now we have to declare a way to optimize the variables in our graph.
We declare an optimizer algorithm. Most optimization algorithms need
to know how far to step in each iteration. This distance is controlled
by the learning rate. If our learning rate is too big, our algorithm might
overshoot the minimum, but if our learning rate is too small, out
algorithm might take too long to converge; this is related to the
vanishing and exploding gradient problem. The learning rate has a big
influence on convergence and we will discuss this at the end of the
section. While here we use the standard gradient descent algorithm,
there are many different optimization algorithms that operate
differently and can do better or worse depending on the problem. For
a great overview of different optimization algorithms, see the paper by
Sebastian Ruder in the See Also section at the end of this recipe:

my_opt = 
tf.train.GradientDescentOptimizer(learning_rate=0.02)
train_step = my_opt.minimize(loss)

Note

There is much theory on what learning rates are best. This is one of the
harder things to know and figure out in machine learning algorithms.
Good papers to read about how learning rates are related to specific
optimization algorithms are listed in the There's more… section at the
end of this recipe.

8. The final step is to loop through our training algorithm and tell
TensorFlow to train many times. We will do this 101 times and print
out results every 25th iteration. To train, we will select a random x and
y entry and feed it through the graph. TensorFlow will automatically
compute the loss, and slightly change the A bias to minimize the loss:



for i in range(100):
    rand_index = np.random.choice(100)
    rand_x = [x_vals[rand_index]]
    rand_y = [y_vals[rand_index]]
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    if (i+1)%25==0:
        print('Step #' + str(i+1) + ' A = ' + 
str(sess.run(A)))
        print('Loss = ' + str(sess.run(loss, feed_dict=
{x_data: rand_x, y_target: rand_y})))
Here is the output:
Step #25 A = [ 6.23402166]
Loss = 16.3173
Step #50 A = [ 8.50733757]
Loss = 3.56651
Step #75 A = [ 9.37753201]
Loss = 3.03149
Step #100 A = [ 9.80041122]
Loss = 0.0990248

9. Now we will introduce the code for the simple classification example.
We can use the same TensorFlow script if we reset the graph first.
Remember we will attempt to find an optimal translation, A that will
translate the two distributions to the origin and the sigmoid function
will split the two into two different classes.

10. First we reset the graph and reinitialize the graph session:

from tensorflow.python.framework import ops
ops.reset_default_graph()
sess = tf.Session()

11. Next we will create the data from two different normal distributions,
N(-1, 1) and N(3, 1). We will also generate the target labels,
placeholders for the data, and the bias variable, A:

x_vals = np.concatenate((np.random.normal(-1, 1, 50), 
np.random.normal(3, 1, 50)))
y_vals = np.concatenate((np.repeat(0., 50), np.repeat(1., 
50)))
x_data = tf.placeholder(shape=[1], dtype=tf.float32)
y_target = tf.placeholder(shape=[1], dtype=tf.float32)



A = tf.Variable(tf.random_normal(mean=10, shape=[1]))

Note

Note that we initialized A to around the value 10, far from the
theoretical value of -1. We did this on purpose to show how the
algorithm converges from the value 10 to the optimal value, -1.

12. Next we add the translation operation to the graph. Remember that we
do not have to wrap this in a sigmoid function because the loss
function will do that for us:

my_output = tf.add(x_data, A)

13. Because the specific loss function expects batches of data that have
an extra dimension associated with them (an added dimension which is
the batch number), we will add an extra dimension to the output with
the function, expand_dims() In the next section we will discuss how to
use variable sized batches in training. For now, we will again just use
one random data point at a time:

my_output_expanded = tf.expand_dims(my_output, 0)
y_target_expanded = tf.expand_dims(y_target, 0)

14. Next we will initialize our one variable, A:

init = tf.initialize_all_variables()
sess.run(init)

15. Now we declare our loss function. We will use a cross entropy with
unscaled logits that transforms them with a sigmoid function.
TensorFlow has this all in one function for us in the neural network
package called nn.sigmoid_cross_entropy_with_logits(). As stated
before, it expects the arguments to have specific dimensions, so we
have to use the expanded outputs and targets accordingly:

xentropy = tf.nn.sigmoid_cross_entropy_with_logits( 
my_output_expanded, y_target_expanded)

16. Just like the regression example, we need to add an optimizer function
to the graph so that TensorFlow knows how to update the bias variable



in the graph:

my_opt = tf.train.GradientDescentOptimizer(0.05)
train_step = my_opt.minimize(xentropy)

17. Finally, we loop through a randomly selected data point several
hundred times and update the variable A accordingly. Every 200
iterations, we will print out the value of A and the loss:

for i in range(1400):
    rand_index = np.random.choice(100)
    rand_x = [x_vals[rand_index]]
    rand_y = [y_vals[rand_index]]
    
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    if (i+1)%200==0:
        print('Step #' + str(i+1) + ' A = ' + 
str(sess.run(A)))
        print('Loss = ' + str(sess.run(xentropy, feed_dict=
{x_data: rand_x, y_target: rand_y})))
Step #200 A = [ 3.59597969]
Loss = [[ 0.00126199]]
Step #400 A = [ 0.50947344]
Loss = [[ 0.01149425]]
Step #600 A = [-0.50994617]
Loss = [[ 0.14271219]]
Step #800 A = [-0.76606178]
Loss = [[ 0.18807337]]
Step #1000 A = [-0.90859312]
Loss = [[ 0.02346182]]
Step #1200 A = [-0.86169094]
Loss = [[ 0.05427232]]
Step #1400 A = [-1.08486211]
Loss = [[ 0.04099189]]

How it works…
As a recap, for both examples, we did the following:
1. Created the data.
2. Initialized placeholders and variables.



3. Created a loss function.
4. Defined an optimization algorithm.
5. And finally, iterated across random data samples to iteratively update

our variables.

There's more…
We've mentioned before that the optimization algorithm is sensitive to the
choice of the learning rate. It is important to summarize the effect of this
choice in a concise manner:

Learning rate
size Advantages/Disadvantages Uses

Smaller learning
rate

Converges slower but more
accurate results.

If solution is unstable, try lowering the learning
rate first.

Larger learning
rate Less accurate, but converges faster. For some problems, helps prevent solutions from

stagnating.

Sometimes the standard gradient descent algorithm can get stuck or slow
down significantly. This can happen when the optimization is stuck in the
flat spot of a saddle. To combat this, there is another algorithm that takes
into account a momentum term, which adds on a fraction of the prior step's
gradient descent value. TensorFlow has this built in with the
MomentumOptimizer() function.

Another variant is to vary the optimizer step for each variable in our
models. Ideally, we would like to take larger steps for smaller moving
variables and shorter steps for faster changing variables. We will not go
into the mathematics of this approach, but a common implementation of
this idea is called the Adagrad algorithm. This algorithm takes into account
the whole history of the variable gradients. Again, the function in
TensorFlow for this is called AdagradOptimizer().



Sometimes, Adagrad forces the gradients to zero too soon because it takes
into account the whole history. A solution to this is to limit how many steps
we use. Doing this is called the Adadelta algorithm. We can apply this by
using the function AdadeltaOptimizer().

There are a few other implementations of different gradient descent
algorithms. For these, we would refer the reader to the TensorFlow
documentation at:
https://www.tensorflow.org/api_docs/python/train/optimizers.

See also
For some references on optimization algorithms and learning rates, see the
following papers and articles:

Kingma, D., Jimmy, L. Adam: A Method for Stochastic Optimization.
ICLR 2015. https://arxiv.org/pdf/1412.6980.pdf
Ruder, S. An Overview of Gradient Descent Optimization Algorithms.
2016. https://arxiv.org/pdf/1609.04747v1.pdf
Zeiler, M. ADADelta: An Adaptive Learning Rate Method. 2012.
http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf

https://www.tensorflow.org/api_docs/python/train/optimizers
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1609.04747v1.pdf
http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf


Working with Batch and
Stochastic Training
While TensorFlow updates our model variables according to the prior
described back propagation, it can operate on anywhere from one datum
observation to a large group of data at once. Operating on one training
example can make for a very erratic learning process, while using a too
large batch can be computationally expensive. Choosing the right type of
training is crucial to getting our machine learning algorithms to converge to
a solution.

Getting ready
In order for TensorFlow to compute the variable gradients for back
propagation to work, we have to measure the loss on a sample or multiple
samples. Stochastic training is only putting through one randomly sampled
data-target pair at a time, just like we did in the previous recipe. Another
option is to put a larger portion of the training examples in at a time and
average the loss for the gradient calculation. Batch training size can vary
up to and including the whole dataset at once. Here we will show how to
extend the prior regression example, which used stochastic training to
batch training.

We will start by loading numpy, matplotlib, and tensorflow and start a
graph session, as follows:

import matplotlib as plt
import numpy as np
import tensorflow as tf
sess = tf.Session()

How to do it…
1. We will start by declaring a batch size. This will be how many data



observations we will feed through the computational graph at one
time:

batch_size = 20

2. Next we declare the data, placeholders, and the variable in the model.
The change we make here is tothat we change the shape of the
placeholders. They are now two dimensions, where the first dimension
is None, and second will be the number of data points in the batch. We
could have explicitly set it to 20, but we can generalize and use the
None value. Again, as mentioned in Chapter 1, Getting Started with
TensorFlow, we still have to make sure that the dimensions work out
in the model and this does not allow us to perform any illegal matrix
operations:

x_vals = np.random.normal(1, 0.1, 100)
y_vals = np.repeat(10., 100)
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
A = tf.Variable(tf.random_normal(shape=[1,1]))

3. Now we add our operation to the graph, which will now be matrix
multiplication instead of regular multiplication. Remember that matrix
multiplication is not communicative so we have to enter the matrices
in the correct order in the matmul() function:

my_output = tf.matmul(x_data, A)

4. Our loss function will change because we have to take the mean of all
the L2 losses of each data point in the batch. We do this by wrapping
our prior loss output in TensorFlow's reduce_mean() function:

loss = tf.reduce_mean(tf.square(my_output - y_target))

5. We declare our optimizer just like we did before:

my_opt = tf.train.GradientDescentOptimizer(0.02)
train_step = my_opt.minimize(loss)

6. Finally, we will loop through and iterate on the training step to
optimize the algorithm. This part is different than before because we



want to be able to plot the loss over versus stochastic training
convergence. So we initialize a list to store the loss function every
five intervals:

loss_batch = []
for i in range(100):
    rand_index = np.random.choice(100, size=batch_size)
    rand_x = np.transpose([x_vals[rand_index]])
    rand_y = np.transpose([y_vals[rand_index]])
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    if (i+1)%5==0:
        print('Step #' + str(i+1) + ' A = ' + 
str(sess.run(A)))
        temp_loss = sess.run(loss, feed_dict={x_data: rand_x, 
y_target: rand_y})
        print('Loss = ' + str(temp_loss))
        loss_batch.append(temp_loss)

7. Here is the final output of the 100 iterations. Notice that the value of
A has an extra dimension because it now has to be a 2D matrix:

Step #100 A = [[ 9.86720943]]
Loss = 0.

How it works…
Batch training and stochastic training differ in their optimization method
and their convergence. Finding a good batch size can be difficult. To see
how convergence differs between batch and stochastic, here is the code to
plot the batch loss from above. There is also a variable here that contains
the stochastic loss, but that computation follows from the prior section in
this chapter. Here is the code to save and record the stochastic loss in the
training loop. Just substitute this code in the prior recipe:

loss_stochastic = []
for i in range(100):
    rand_index = np.random.choice(100)
    rand_x = [x_vals[rand_index]]
    rand_y = [y_vals[rand_index]]



    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    if (i+1)%5==0:
        print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)))
        temp_loss = sess.run(loss, feed_dict={x_data: rand_x, 
y_target: rand_y})
        print('Loss = ' + str(temp_loss))
        loss_stochastic.append(temp_loss)

Here is the code to produce the plot of both the stochastic and batch loss
for the same regression problem:

plt.plot(range(0, 100, 5), loss_stochastic, 'b-', 
label='Stochastic Loss')
plt.plot(range(0, 100, 5), loss_batch, 'r--', label='Batch' Loss, 
size=20')
plt.legend(loc='upper right', prop={'size': 11})
plt.show()

Figure 6: Stochastic loss and batch loss (batch size = 20) plotted over
100 iterations. Note that the batch loss is much smoother and the

stochastic loss is much more erratic.

There's more…
Type of



training Advantages Disadvantages

Stochastic Randomness may help move out of local
minimums.

Generally, needs more iterations to
converge.

Batch Finds minimums quicker. Takes more resources to compute.



Combining Everything Together
In this section, we will combine everything we have illustrated so far and
create a classifier on the iris dataset.

Getting ready
The iris data set is described in more detail in the Working with Data
Sources recipe in Chapter 1, Getting Started with TensorFlow. We will
load this data, and do a simple binary classifier to predict whether a flower
is the species Iris setosa or not. To be clear, this dataset has three classes
of species, but we will only predict whether it is a single species (I. setosa)
or not, giving us a binary classifier. We will start by loading the libraries
and data, then transform the target accordingly.

How to do it…
1. First we load the libraries needed and initialize the computational

graph. Note that we also load matplotlib here, because we would like
to plot the resulting line after:

import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets
import tensorflow as tf
sess = tf.Session()

2. Next we load the iris data. We will also need to transform the target
data to be just 1 or 0 if the target is setosa or not. Since the iris data set
marks setosa as a zero, we will change all targets with the value 0 to 1,
and the other values all to 0. We will also only use two features, petal
length and petal width. These two features are the third and fourth
entry in each x-value:

iris = datasets.load_iris()
binary_target = np.array([1. if x==0 else 0. for x in 
iris.target])



iris_2d = np.array([[x[2], x[3]] for x in iris.data])

3. Let's declare our batch size, data placeholders, and model variables.
Remember that the data placeholders for variable batch sizes have
None as the first dimension:

batch_size = 20
x1_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
x2_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
A = tf.Variable(tf.random_normal(shape=[1, 1]))
b = tf.Variable(tf.random_normal(shape=[1, 1]))

Note

Note that we can increase the performance (speed) of the algorithm by
decreasing the bytes for floats by using dtype=tf.float32 instead.

4. Here we define the linear model. The model will take the form
x2=x1*A+b. And if we want to find points above or below that line,
we see whether they are above or below zero when plugged into the
equation x2-x1*A-b. We will do this by taking the sigmoid of that
equation and predicting 1 or 0 from that equation. Remember that
TensorFlow has loss functions with the sigmoid built in, so we just
need to define the output of the model prior to the sigmoid function:

my_mult = tf.matmul(x2_data, A)
my_add = tf.add(my_mult, b)
my_output = tf.sub(x1_data, my_add)

5. Now we add our sigmoid cross-entropy loss function with
TensorFlow's built in function,
sigmoid_cross_entropy_with_logits():

xentropy = tf.nn.sigmoid_cross_entropy_with_logits(my_output, 
y_target)

6. We also have to tell TensorFlow how to optimize our computational
graph by declaring an optimizing method. We will want to minimize
the cross-entropy loss. We will also choose 0.05 as our learning rate:



my_opt = tf.train.GradientDescentOptimizer(0.05)
train_step = my_opt.minimize(xentropy)

7. Now we create a variable initialization operation and tell TensorFlow
to execute it:

init = tf.initialize_all_variables()
sess.run(init)

8. Now we will train our linear model with 1000 iterations. We will feed
in the three data points that we require: petal length, petal width, and
the target variable. Every 200 iterations we will print the variable
values:

for i in range(1000):
    rand_index = np.random.choice(len(iris_2d), 
size=batch_size)
    rand_x = iris_2d[rand_index]
    rand_x1 = np.array([[x[0]] for x in rand_x])
    rand_x2 = np.array([[x[1]] for x in rand_x])
    rand_y = np.array([[y] for y in 
binary_target[rand_index]])
    sess.run(train_step, feed_dict={x1_data: rand_x1, 
x2_data: rand_x2, y_target: rand_y})
    if (i+1)%200==0:
        print('Step #' + str(i+1) + ' A = ' + 
str(sess.run(A)) + ', b = ' + str(sess.run(b)))
Step #200 A = [[ 8.67285347]], b = [[-3.47147632]]
Step #400 A = [[ 10.25393486]], b = [[-4.62928772]]
Step #600 A = [[ 11.152668]], b = [[-5.4077611]]
Step #800 A = [[ 11.81016064]], b = [[-5.96689034]]
Step #1000 A = [[ 12.41202831]], b = [[-6.34769201]]

9. The next set of commands extracts the model variables, and plots the
line on a graph. The resulting graph is in the next section:

[[slope]] = sess.run(A)
[[intercept]] = sess.run(b)
x = np.linspace(0, 3, num=50)
ablineValues = []
for i in x:
  ablineValues.append(slope*i+intercept)
setosa_x = [a[1] for i,a in enumerate(iris_2d) if 



binary_target[i]==1]
setosa_y = [a[0] for i,a in enumerate(iris_2d) if 
binary_target[i]==1]
non_setosa_x = [a[1] for i,a in enumerate(iris_2d) if 
binary_target[i]==0]
non_setosa_y = [a[0] for i,a in enumerate(iris_2d) if 
binary_target[i]==0]
plt.plot(setosa_x, setosa_y, 'rx', ms=10, mew=2, 
label='setosa''')
plt.plot(non_setosa_x, non_setosa_y, 'ro', label='Non-
setosa')
plt.plot(x, ablineValues, 'b-')
plt.xlim([0.0, 2.7])
plt.ylim([0.0, 7.1])
plt.suptitle('Linear' Separator For I.setosa', fontsize=20)
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.legend(loc='lower right')
plt.show()

How it works…
Our goal was to fit a line between the I.setosa points and the other two
species using only petal width and petal length. If we plot the points and
the resulting line, we see that we have achieved the following:



Figure 7: Plot of I.setosa and non-setosa for petal width vs petal length.
The solid line is the linear separator that we achieved after 1,000

iterations.

There's more…
While we achieved our objective of separating the two classes with a line,
it may not be the best model for separating two classes. In Chapter 4,
Support Vector Machines we will discuss support vector machines, which
is a better way of separating two classes in a feature space.

See also
For more information on the iris dataset, see the Wikipedia entry,
https://en.wikipedia.org/wiki/Iris_flower_data_set. For information about
the Scikit Learn iris dataset implementation, see the documentation at
http://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html.

https://en.wikipedia.org/wiki/Iris_flower_data_set
http://scikit-learn.org/stable/auto_examples/datasets/plot_iris_dataset.html


Evaluating Models
We have learned how to train a regression and classification algorithm in
TensorFlow. After this is accomplished, we must be able to evaluate the
model's predictions to determine how well it did.

Getting ready
Evaluating models is very important and every subsequent model will have
some form of model evaluation. Using TensorFlow, we must build this
feature into the computational graph and call it during and/or after our
model is training.

Evaluating models during training gives us insight into the algorithm and
may give us hints to debug it, improve it, or change models entirely. While
evaluation during training isn't always necessary, we will show how to do
this with both regression and classification.

After training, we need to quantify how the model performs on the data.
Ideally, we have a separate training and test set (and even a validation set)
on which we can evaluate the model.

When we want to evaluate a model, we will want to do so on a large batch
of data points. If we have implemented batch training, we can reuse our
model to make a prediction on such a batch. If we have implemented
stochastic training, we may have to create a separate evaluator that can
process data in batches.

Note

If we included a transformation on our model output in the loss function,
for example, sigmoid_cross_entropy_with_logits(), we must take that
into account when computing predictions for accuracy calculations. Don't
forget to include this in our evaluation of the model.



How to do it…
Regression models attempt to predict a continuous number. The target is
not a category, but a desired number. To evaluate these regression
predictions against the actual targets, we need an aggregate measure of the
distance between the two. Most of the time, a meaningful loss function
will satisfy these criteria. Here is how to change the simple regression
algorithm from above into printing out the loss in the training loop and
evaluating the loss at the end. For an example, we will revisit and rewrite
our regression example in the prior Implementing Back Propagation
recipe in this chapter.

Classification models predict a category based on numerical inputs. The
actual targets are a sequence of 1s and 0s and we must have a measure of
how close we are to the truth from our predictions. The loss function for
classification models usually isn't that helpful in interpreting how well our
model is doing. Usually, we want some sort of classification accuracy,
which is commonly the percentage of correctly predicted categories. For
this example, we will use the classification example from the prior
Implementing Back Propagation recipe in this chapter.

How it works…
First we will show how to evaluate the simple regression model that simply
fits a constant multiplication to the target of 10, as follows:
1. First we start by loading the libraries, creating the graph, data,

variables, and placeholders. There is an additional part to this section
that is very important. After we create the data, we will split the data
into training and testing datasets randomly. This is important because
we will always test our models if they are predicting well or not.
Evaluating the model both on the training data and test data also lets
us see whether the model is overfitting or not:

import matplotlib.pyplot as plt



import numpy as np
import tensorflow as tf
sess = tf.Session()
x_vals = np.random.normal(1, 0.1, 100)
y_vals = np.repeat(10., 100)
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
batch_size = 25
train_indices = np.random.choice(len(x_vals), 
round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - 
set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]
A = tf.Variable(tf.random_normal(shape=[1,1]))

2. Now we declare our model, loss function, and optimization algorithm.
We will also initialize the model variable A. Use the following code:

my_output = tf.matmul(x_data, A)
loss = tf.reduce_mean(tf.square(my_output - y_target))
init = tf.initialize_all_variables()
sess.run(init)
my_opt = tf.train.GradientDescentOptimizer(0.02)
train_step = my_opt.minimize(loss)

3. We run the training loop just as we would before, as follows:

for i in range(100):
    rand_index = np.random.choice(len(x_vals_train), 
size=batch_size)
    rand_x = np.transpose([x_vals_train[rand_index]])
    rand_y = np.transpose([y_vals_train[rand_index]])
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    if (i+1)%25==0:
        print('Step #' + str(i+1) + ' A = ' + 
str(sess.run(A)))
        print('Loss = ' + str(sess.run(loss, feed_dict=
{x_data: rand_x, y_target: rand_y})))
Step #25 A = [[ 6.39879179]]
Loss = 13.7903



Step #50 A = [[ 8.64770794]]
Loss = 2.53685
Step #75 A = [[ 9.40029907]]
Loss = 0.818259
Step #100 A = [[ 9.6809473]]
Loss = 1.10908

4. Now, to evaluate the model, we will output the MSE (loss function)
on the training and test sets, as follows:

mse_test = sess.run(loss, feed_dict={x_data: 
np.transpose([x_vals_test]), y_target: 
np.transpose([y_vals_test])})
mse_train = sess.run(loss, feed_dict={x_data: 
np.transpose([x_vals_train]), y_target: 
np.transpose([y_vals_train])})
print('MSE' on test:' + str(np.round(mse_test, 2)))
print('MSE' on train:' + str(np.round(mse_train, 2)))
MSE on test:1.35
MSE on train:0.88

5. For the classification example, we will do something very similar. This
time, we will need to create our own accuracy function that we can
call at the end. One reason for this is because our loss function has
the sigmoid built in and we will need to call the sigmoid separately
and test it to see if our classes are correct.

6. In the same script, we can just reload the graph and create our data,
variables, and placeholders. Remember that we will also need to
separate the data and targets into training and testing sets. Use the
following code:

from tensorflow.python.framework import ops
ops.reset_default_graph()
sess = tf.Session()
batch_size = 25
x_vals = np.concatenate((np.random.normal(-1, 1, 50), 
np.random.normal(2, 1, 50)))
y_vals = np.concatenate((np.repeat(0., 50), np.repeat(1., 
50)))
x_data = tf.placeholder(shape=[1, None], dtype=tf.float32)
y_target = tf.placeholder(shape=[1, None], dtype=tf.float32)



train_indices = np.random.choice(len(x_vals), 
round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - 
set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]
A = tf.Variable(tf.random_normal(mean=10, shape=[1]))

7. We will now add the model and the loss function to the graph,
initialize variables, and create the optimization procedure, as follows:

my_output = tf.add(x_data, A)
init = tf.initialize_all_variables()
sess.run(init)
xentropy = 
tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(my_out
put, y_target))
my_opt = tf.train.GradientDescentOptimizer(0.05)
train_step = my_opt.minimize(xentropy)

8. Now we run our training loop, as follows:

for i in range(1800):
    rand_index = np.random.choice(len(x_vals_train), 
size=batch_size)
    rand_x = [x_vals_train[rand_index]]
    rand_y = [y_vals_train[rand_index]]
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    if (i+1)%200==0:
        print('Step #' + str(i+1) + ' A = ' + 
str(sess.run(A)))
        print('Loss = ' + str(sess.run(xentropy, feed_dict=
{x_data: rand_x, y_target: rand_y})))
Step #200 A = [ 6.64970636]
Loss = 3.39434
Step #400 A = [ 2.2884655]
Loss = 0.456173
Step #600 A = [ 0.29109824]
Loss = 0.312162
Step #800 A = [-0.20045301]
Loss = 0.241349



Step #1000 A = [-0.33634067]
Loss = 0.376786
Step #1200 A = [-0.36866501]
Loss = 0.271654
Step #1400 A = [-0.3727718]
Loss = 0.294866
Step #1600 A = [-0.39153299]
Loss = 0.202275
Step #1800 A = [-0.36630616]
Loss = 0.358463

9. To evaluate the model, we will create our own prediction operation.
We wrap the prediction operation in a squeeze function because we
want to make the predictions and targets the same shape. Then we test
for equality with the equal function. After that, we are left with a
tensor of true and false values that we cast to float32 and take the
mean of them. This will result in an accuracy value. We will evaluate
this function for both the training and testing sets, as follows:

y_prediction = 
tf.squeeze(tf.round(tf.nn.sigmoid(tf.add(x_data, A))))
correct_prediction = tf.equal(y_prediction, y_target)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 
tf.float32))
acc_value_test = sess.run(accuracy, feed_dict={x_data: 
[x_vals_test], y_target: [y_vals_test]})
acc_value_train = sess.run(accuracy, feed_dict={x_data: 
[x_vals_train], y_target: [y_vals_train]})
print('Accuracy' on train set: ' + str(acc_value_train))
print('Accuracy' on test set: ' + str(acc_value_test))
Accuracy on train set: 0.925
Accuracy on test set: 0.95

10. Many times, seeing the model results (accuracy, MSE, and so on) will
help us to evaluate the model. We can easily graph the model and data
here because it is one-dimensional. Here is how to visualize the model
and data with two separate histograms using matplotlib:

A_result = sess.run(A)
bins = np.linspace(-5, 5, 50)
plt.hist(x_vals[0:50], bins, alpha=0.5, label='N'(-1,1)', 



color='white')
plt.hist(x_vals[50:100], bins[0:50], alpha=0.5, 
label='N'(2,1)', color='red')
plt.plot((A_result, A_result), (0, 8), 'k--', linewidth=3, 
label='A = '+ str(np.round(A_result, 2)))
plt.legend(loc='upper right')
plt.title('Binary' Classifier, Accuracy=' + 
str(np.round(acc_value, 2)))
plt.show()

Figure 8: Visualization of data and the end model, A. The two normal
values are centered at -1 and 2, making the theoretical best split at
0.5. Here the model found the best split very close to that number.



Chapter 3. Linear Regression
In this chapter, we will cover the basic recipes for understanding how
TensorFlow works and how to access data for this book and additional
resources. We will cover the following areas:

Using the Matrix Inverse Method
Implementing a Decomposition Method
Learning the TensorFlow Way of Regression
Understanding Loss Functions in Linear Regression
Implementing Deming Regression
Implementing Lasso and Ridge Regression
Implementing Elastic Net Regression
Implementing Regression Logistic Regression

Introduction
Linear regression may be one of the most important algorithms in statistics,
machine learning, and science in general. It's one of the most used
algorithms and it is very important to understand how to implement it and
its various flavors. One of the advantages that linear regression has over
many other algorithms is that it is very interpretable. We end up with a
number for each feature that directly represents how that feature
influences the target or dependent variable. In this chapter, we will
introduce how linear regression can be classically implemented, and then
move on to how to best implement it in TensorFlow. Remember that all the
code is available at GitHub online at
https://github.com/nfmcclure/tensorflow_cookbook.

https://github.com/nfmcclure/tensorflow_cookbook


Using the Matrix Inverse Method
In this recipe, we will use TensorFlow to solve two dimensional linear
regressions with the matrix inverse method.

Getting ready
Linear regression can be represented as a set of matrix equations, say 

. Here we are interested in solving the coefficients in matrix x. We
have to be careful if our observation matrix (design matrix) A is not
square. The solution to solving x can be expressed as . To
show this is indeed the case, we will generate two-dimensional data, solve
it in TensorFlow, and plot the result.

How to do it…
1. First we load the necessary libraries, initialize the graph, and create the

data, as follows:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
sess = tf.Session()
x_vals = np.linspace(0, 10, 100)
y_vals = x_vals + np.random.normal(0, 1, 100)

2. Next we create the matrices to use in the inverse method. We create
the A matrix first, which will be a column of x-data and a column of 1s.
Then we create the b matrix from the y-data. Use the following code:

x_vals_column = np.transpose(np.matrix(x_vals))
ones_column = np.transpose(np.matrix(np.repeat(1, 100)))
A = np.column_stack((x_vals_column, ones_column))
b = np.transpose(np.matrix(y_vals))

3. We then turn our A and b matrices into tensors, as follows:

A_tensor = tf.constant(A)
b_tensor = tf.constant(b)



4. Now that we have our matrices set up , we can use TensorFlow to
solve this via the matrix inverse method, as follows:

tA_A = tf.matmul(tf.transpose(A_tensor), A_tensor)
tA_A_inv = tf.matrix_inverse(tA_A)
product = tf.matmul(tA_A_inv, tf.transpose(A_tensor))
solution = tf.matmul(product, b_tensor)
solution_eval = sess.run(solution)

5. We now extract the coefficients from the solution, the slope and the y-
intercept, as follows:

slope = solution_eval[0][0]
y_intercept = solution_eval[1][0]
print('slope: ' + str(slope))
print('y'_intercept: ' + str(y_intercept))

slope: 0.955707151739
y_intercept: 0.174366829314

best_fit = []
for i in x_vals:
  best_fit.append(slope*i+y_intercept)
plt.plot(x_vals, y_vals, 'o', label='Data')
plt.plot(x_vals, best_fit, 'r-', label='Best' fit line', 
linewidth=3)
plt.legend(loc='upper left')
plt.show()



Figure 1: Data points and a best-fit line obtained via the matrix
inverse method.

How it works…
Unlike prior recipes, or most recipes in this book, the solution here is found
exactly through matrix operations. Most TensorFlow algorithms that we
will use are implemented via a training loop and take advantage of
automatic back propagation to update model variables. Here, we illustrate
the versatility of TensorFlow by implementing a direct solution to fitting a
model to data.



Implementing a Decomposition
Method
For this recipe, we will implement a matrix decomposition method for
linear regression. Specifically we will use the Cholesky decomposition, for
which relevant functions exist in TensorFlow.

Getting ready
Implementing inverse methods in the previous recipe can be numerically
inefficient in most cases, especially when the matrices get very large.
Another approach is to decompose the A matrix and perform matrix
operations on the decompositions instead. One such approach is to use the
built-in Cholesky decomposition method in TensorFlow. One reason people
are so interested in decomposing a matrix into more matrices is because
the resulting matrices will have assured properties that allow us to use
certain methods efficiently. The Cholesky decomposition decomposes a
matrix into a lower and upper triangular matrix, say  and , such that
these matrices are transpositions of each other. For further information on
the properties of this decomposition, there are many resources available
that describe it and how to arrive at it. Here we will solve the system, 

, by writing it as . We will first solve  and then solve 
 to arrive at our coefficient matrix, x.

How to do it…
1. We will set up the system exactly in the same way as the previous

recipe. We will import libraries, initialize the graph, and create the
data. Then we will obtain our A matrix and b matrix in the same way as
before:

import matplotlib.pyplot as plt
import numpy as np



import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()
sess = tf.Session()
x_vals = np.linspace(0, 10, 100)
y_vals = x_vals + np.random.normal(0, 1, 100)
x_vals_column = np.transpose(np.matrix(x_vals))
ones_column = np.transpose(np.matrix(np.repeat(1, 100)))
A = np.column_stack((x_vals_column, ones_column))
b = np.transpose(np.matrix(y_vals))
A_tensor = tf.constant(A)
b_tensor = tf.constant(b)

2. Next we will find the Cholesky decomposition of our square matrix, 
:

Note

Note that the TensorFlow function, cholesky(), only returns the lower
diagonal part of the decomposition. This is fine, as the upper diagonal
matrix is just the lower one, transposed.

tA_A = tf.matmul(tf.transpose(A_tensor), A_tensor)
L = tf.cholesky(tA_A)
tA_b = tf.matmul(tf.transpose(A_tensor), b)
sol1 = tf.matrix_solve(L, tA_b)
sol2 = tf.matrix_solve(tf.transpose(L), sol1)

3. Now that we have the solution, we extract the coefficients:

solution_eval = sess.run(sol2)
slope = solution_eval[0][0]
y_intercept = solution_eval[1][0]
print('slope: ' + str(slope))
print('y'_intercept: ' + str(y_intercept))

slope: 0.956117676145
y_intercept: 0.136575513864

best_fit = []
for i in x_vals:
  best_fit.append(slope*i+y_intercept)
plt.plot(x_vals, y_vals, 'o', label='Data')



plt.plot(x_vals, best_fit, 'r-', label='Best' fit line', 
linewidth=3)
plt.legend(loc='upper left')
plt.show()

Figure 2: Data points and best-fit line obtained via Cholesky
decomposition.

How it works…
As you can see, we arrive at a very similar answer to the prior recipe.
Keep in mind that this way of decomposing a matrix, then performing our
operations on the pieces, is sometimes much more efficient and
numerically stable.



Learning The TensorFlow Way of
Linear Regression
Getting ready
In this recipe, we will loop through batches of data points and let
TensorFlow update the slope and y-intercept. Instead of generated data,
we will us the iris dataset that is built in to the Scikit Learn. Specifically,
we will find an optimal line through data points where the x-value is the
petal width and the y-value is the sepal length. We choose these two
because there appears to be a linear relationship between them, as we will
see in the graphs at the end. We will also talk more about the effects of
different loss functions in the next section, but for this recipe we will use
the L2 loss function.

How to do it…
1. We start by loading the necessary libraries, creating a graph, and

loading the data:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
from tensorflow.python.framework import ops
ops.reset_default_graph()
sess = tf.Session()
iris = datasets.load_iris()

x_vals = np.array([x[3] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data])

2. We then declare our learning rate, batch size, placeholders, and model
variables:

learning_rate = 0.05
batch_size = 25



x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
A = tf.Variable(tf.random_normal(shape=[1,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))

3. Next, we write the formula for the linear model, y=Ax+b:

model_output = tf.add(tf.matmul(x_data, A), b)

4. Then we declare our L2 loss function (which includes the mean over
the batch), initialize the variables, and declare our optimizer. Note that
we chose 0.05 as our learning rate:

loss = tf.reduce_mean(tf.square(y_target - model_output))
init = tf.global_variables_initializer()
sess.run(init)
my_opt = tf.train.GradientDescentOptimizer(learning_rate)
train_step = my_opt.minimize(loss)

5. We can now loop through and train the model on randomly selected
batches. We will run it for 100 loops and print out the variable and
loss values every 25 iterations. Note that here we are also saving the
loss of every iteration so that we can view it afterwards:

loss_vec = []
for i in range(100):
    rand_index = np.random.choice(len(x_vals), 
size=batch_size)
    rand_x = np.transpose([x_vals[rand_index]])
    rand_y = np.transpose([y_vals[rand_index]])
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    temp_loss = sess.run(loss, feed_dict={x_data: rand_x, 
y_target: rand_y})
    loss_vec.append(temp_loss)
    if (i+1)%25==0:
        print('Step #' + str(i+1) + ' A = ' + 
str(sess.run(A)) + ' b = ' + str(sess.run(b)))
        print('Loss = ''' + str(temp_loss))
Step #25 A = [[ 2.17270374]] b = [[ 2.85338426]]
Loss = 1.08116
Step #50 A = [[ 1.70683455]] b = [[ 3.59916329]]
Loss = 0.796941



Step #75 A = [[ 1.32762754]] b = [[ 4.08189011]]
Loss = 0.466912
Step #100 A = [[ 1.15968263]] b = [[ 4.38497639]]
Loss = 0.281003

6. Next we will extract the coefficients we found and create a best-fit
line to put in the graph:

[slope] = sess.run(A)
[y_intercept] = sess.run(b)
best_fit = []
for i in x_vals:
  best_fit.append(slope*i+y_intercept)

7. Here we will create two plots. The first will be the data with the found
line overlaid. The second is the L2 loss function over the 100
iterations:

plt.plot(x_vals, y_vals, 'o', label='Data Points')
plt.plot(x_vals, best_fit, 'r-', label='Best' fit line', 
linewidth=3)
plt.legend(loc='upper left')
plt.title('Sepal' Length vs Pedal Width')
plt.xlabel('Pedal Width')
plt.ylabel('Sepal Length')
plt.show()
plt.plot(loss_vec, 'k-')
plt.title('L2' Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('L2 Loss')
plt.show()



Figure 3: These are the data points from the iris dataset (sepal length
versus pedal width) overlaid with the optimal line fit found in

TensorFlow with the specified algorithm.

Figure 4: Here is the L2 loss of fitting the data with our algorithm.
Note the jitter in the loss function; this can be decreased with a

larger batch size or increased with a smaller batch size.



Note

Here is a good place to note how to see if the model is over-or
underfitting the data. If our data is broken into a test and train set,
and the accuracy is greater on the train set and going down on the
test set, then we are overfitting the data. If the accuracy is still
increasing on both the test and train set, then the model is
underfitting and we should continue training.

How it works…
The optimal line found is not guaranteed to be the best-fit line.
Convergence to the best-fit line depends on the number of iterations, batch
size, learning rate, and the loss function. It is always good practice to
observe the loss function over time as it can help us troubleshoot
problems or hyperparameter changes.



Understanding Loss Functions in
Linear Regression
It is important to know the effect of loss functions in algorithm
convergence. Here we will illustrate how the L1 and L2 loss functions
affect convergence in linear regression.

Getting ready
We will use the same iris dataset as in the prior recipe, but we will change
our loss functions and learning rates to see how convergence changes.

How to do it…
1. The start of the program is unchanged from before until we get to our

loss function. We load the necessary libraries, start a session, load the
data, create placeholders, and define our variables and model. One
thing to note is that we are pulling out our learning rate and model
iterations. We are doing this because we want to show the effect of
quickly changing these parameters. Use the following code:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
sess = tf.Session()
iris = datasets.load_iris()
x_vals = np.array([x[3] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data])
batch_size = 25
learning_rate = 0.1 # Will not converge with learning rate at 
0.4
iterations = 50
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
A = tf.Variable(tf.random_normal(shape=[1,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))



model_output = tf.add(tf.matmul(x_data, A), b)

2. Our loss function will change to the L1 loss, as follows:

loss_l1 = tf.reduce_mean(tf.abs(y_target - model_output))

Note

Note that we can change this back to the L2 loss by substituting in the
following formula: tf.reduce_mean(tf.square(y_target –
model_output)).

3. Now we resume by initializing the variables declaring our optimizer,
and looping them through the training part. Note that we are also
saving our loss at every generation to measure the convergence. Use
the following code:

init = tf.global_variables_initializer()
sess.run(init)
my_opt_l1 = tf.train.GradientDescentOptimizer(learning_rate)
train_step_l1 = my_opt_l1.minimize(loss_l1)
loss_vec_l1 = []
for i in range(iterations):
    rand_index = np.random.choice(len(x_vals), 
size=batch_size)
    rand_x = np.transpose([x_vals[rand_index]])
    rand_y = np.transpose([y_vals[rand_index]])
    sess.run(train_step_l1, feed_dict={x_data: rand_x, 
y_target: rand_y})
    temp_loss_l1 = sess.run(loss_l1, feed_dict={x_data: 
rand_x, y_target: rand_y})
    loss_vec_l1.append(temp_loss_l1)
    if (i+1)%25==0:
        print('Step #' + str(i+1) + ' A = ' + 
str(sess.run(A)) + ' b = ' + str(sess.run(b)))

plt.plot(loss_vec_l1, 'k-', label='L1 Loss')
plt.plot(loss_vec_l2, 'r--', label='L2 Loss')
plt.title('L1' and L2 Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('L1 Loss')
plt.legend(loc='upper right')



plt.show()

How it works…
When choosing a loss function, we must also choose a corresponding
learning rate that will work with our problem. Here, we will illustrate two
situations, one in which L2 is preferred and one in which L1 is preferred.

If our learning rate is small, our convergence will take more time. But if
our learning rate is too large, we will have issues with our algorithm never
converging. Here is a plot of the loss function of the L1 and L2 loss for
the iris linear regression problem when the learning rate is 0.05:

Figure 5: Here is the L1 and L2 loss with a learning rate of 0.05 for the
iris linear regression problem.

With a learning rate of 0.05, it would appear that L2 loss is preferred, as it
converges to a lower loss on the data. Here is a graph of the loss
functions when we increase the learning rate to 0.4:



Fihure 6: Shows the L1 and L2 loss on the iris linear regression problem
with a learning rate of 0.4. Note that the L1 loss is not visible because of

the high scale of the y-axis.

Here, we can see that the large learning rate can overshoot in the L2 norm,
whereas the L1 norm converges.

There's more…
To understand what is happening, we should look at how a large learning
rate and small learning rate act on L1 and L2 norms. To visualize this, we
look at a one-dimensional representation of learning steps on both norms,
as follows:



Figure 7: Illustrates what can happen with the L1 and L2 norm with
larger and smaller learning rates.



Implementing Deming regression
In this recipe, we will implement Deming regression (total regression),
which means we will need a different way to measure the distance
between the model line and data points.

Getting ready
If least squares linear regression minimizes the vertical distance to the line,
Deming regression minimizes the total distance to the line. This type of
regression minimizes the error in the y values and the x values. See the
following figure for a comparison:

Figure 8: Here we illustrate the difference between regular linear
regression and Deming regression. Linear regression on the left

minimizes the vertical distance to the line, and Deming regression
minimizes the total distance to the line.



To implement Deming regression, we have to modify the loss function.
The loss function in regular linear regression minimizes the vertical
distance. Here, we want to minimize the total distance. Given a slope and
intercept of a line, the perpendicular distance to a point is a known
geometric formula. We just have to substitute this formula in and tell
TensorFlow to minimize it.

How to do it…
1. Everything stays the same except when we get to the loss function.

We begin by loading the libraries, starting a session, loading the data,
declaring the batch size, creating the placeholders, variables, and
model output, as follows:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
sess = tf.Session()
iris = datasets.load_iris()
x_vals = np.array([x[3] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data])
batch_size = 50
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
A = tf.Variable(tf.random_normal(shape=[1,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))
model_output = tf.add(tf.matmul(x_data, A), b)

2. The loss function is a geometric formula that comprises of a
numerator and denominator. For clarity we will write these out
separately. Given a line, y=mx+b and a point, , the
perpendicular distance between the two can be written as follows:



demming_numerator = tf.abs(tf.sub(y_target, 
tf.add(tf.matmul(x_data, A), b)))
demming_denominator = tf.sqrt(tf.add(tf.square(A),1))
loss = tf.reduce_mean(tf.truediv(demming_numerator, 
demming_denominator))

3. We now initialize our variables, declare our optimizer, and loop
through the training set to arrive at our parameters, as follows:

init = tf.global_variables_initializer()
sess.run(init)
my_opt = tf.train.GradientDescentOptimizer(0.1)
train_step = my_opt.minimize(loss)
loss_vec = []
for i in range(250):
    rand_index = np.random.choice(len(x_vals), 
size=batch_size)
    rand_x = np.transpose([x_vals[rand_index]])
    rand_y = np.transpose([y_vals[rand_index]])
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    temp_loss = sess.run(loss, feed_dict={x_data: rand_x, 
y_target: rand_y})
    loss_vec.append(temp_loss)
    if (i+1)%50==0:
        print('Step #''' + str(i+1) + ' A = ' + 
str(sess.run(A)) + ' b = ' + str(sess.run(b)))
        print('Loss = ' + str(temp_loss))

4. We can plot the output with the following code:

[slope] = sess.run(A)
[y_intercept] = sess.run(b)
best_fit = []
for i in x_vals:
  best_fit.append(slope*i+y_intercept)
plt.plot(x_vals, y_vals, 'o', label='Data Points')
plt.plot(x_vals, best_fit, 'r-', label='Best' fit line', 
linewidth=3)
plt.legend(loc='upper left')
plt.title('Sepal' Length vs Pedal Width')
plt.xlabel('Pedal Width')
plt.ylabel('Sepal Length')
plt.show()



Figure 9: The graph depicting the solution to Deming regression on
the iris dataset.

How it works…
The recipe here for Deming regression is almost identical to regular linear
regression. The key difference here is how we measure the loss between
the predictions and the data points. Instead of a vertical loss, we have a
perpendicular loss (or total loss) with the y values and x values.

Note

Note that the type of Deming regression implemented here is called total
regression. Total regression is when we assume the error in the x and y
values are similar. We can also scale the x and y axes in the distance
calculation by the difference in the errors according to our beliefs.



Implementing Lasso and Ridge
Regression
There are also ways to limit the influence of coefficients on the regression
output. These methods are called regularization methods and two of the
most common regularization methods are lasso and ridge regression. We
cover how to implement both of these in this recipe.

Getting ready
Lasso and ridge regression are very similar to regular linear regression,
except we adding regularization terms to limit the slopes (or partial slopes)
in the formula. There may be multiple reasons for this, but a common one
is that we wish to restrict the features that have an impact on the
dependent variable. This can be accomplished by adding a term to the loss
function that depends on the value of our slope, A.

For lasso regression, we must add a term that greatly increases our loss
function if the slope, A, gets above a certain value. We could use
TensorFlow's logical operations, but they do not have a gradient associated
with them. Instead, we will use a continuous approximation to a step
function, called the continuous heavy step function, that is scaled up and
over to the regularization cut off we choose. We will show how to do lasso
regression shortly.

For ridge regression, we just add a term to the L2 norm, which is the
scaled L2 norm of the slope coefficient. This modification is simple and is
shown in the There's more… section at the end of this recipe.

How to do it…
1. We will use the iris dataset again and set up our script the same way as

before. We first load the libraries, start a session, load the data, declare



the batch size, create the placeholders, variables, and model output as
follows:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
from tensorflow.python.framework import ops
ops.reset_default_graph()
sess = tf.Session()
iris = datasets.load_iris()
x_vals = np.array([x[3] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data])
batch_size = 50
learning_rate = 0.001
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
A = tf.Variable(tf.random_normal(shape=[1,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))
model_output = tf.add(tf.matmul(x_data, A), b)

2. We add the loss function, which is a modified continuous heavyside
step function. We also set the cutoff for lasso regression at 0.9. This
means that we want to restrict the slope coefficient to be less than 0.9.
Use the following code:

lasso_param = tf.constant(0.9)
heavyside_step = tf.truediv(1., tf.add(1., 
tf.exp(tf.mul(-100., tf.sub(A, lasso_param)))))
regularization_param = tf.mul(heavyside_step, 99.)
loss = tf.add(tf.reduce_mean(tf.square(y_target - 
model_output)), regularization_param)

3. We now initialize our variables and declare our optimizer, as follows:

init = tf.global_variables_initializer()
sess.run(init)
my_opt = tf.train.GradientDescentOptimizer(learning_rate)
train_step = my_opt.minimize(loss)

4. We will run the training loop a fair bit longer because it can take a
while to converge. We can see that the slope coefficient is less than



0.9. Use the following code:

loss_vec = []
for i in range(1500):
    rand_index = np.random.choice(len(x_vals), 
size=batch_size)
    rand_x = np.transpose([x_vals[rand_index]])
    rand_y = np.transpose([y_vals[rand_index]])
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    temp_loss = sess.run(loss, feed_dict={x_data: rand_x, 
y_target: rand_y})
    loss_vec.append(temp_loss[0])
    if (i+1)%300==0:
        print('Step #''' + str(i+1) + ' A = ' + 
str(sess.run(A)) + ' b = ' + str(sess.run(b)))
        print('Loss = ' + str(temp_loss))
Step #300 A = [[ 0.82512331]] b = [[ 2.30319238]]
Loss = [[ 6.84168959]]
Step #600 A = [[ 0.8200165]] b = [[ 3.45292258]]
Loss = [[ 2.02759886]]
Step #900 A = [[ 0.81428504]] b = [[ 4.08901262]]
Loss = [[ 0.49081498]]
Step #1200 A = [[ 0.80919558]] b = [[ 4.43668795]]
Loss = [[ 0.40478843]]
Step #1500 A = [[ 0.80433637]] b = [[ 4.6360755]]
Loss = [[ 0.23839757]]

How it works…
We implement lasso regression by adding a continuous heavyside step
function to the loss function of linear regression. Because of the steepness
of the step function, we have to be careful with the step size. Too big of a
step size and it will not converge. For ridge regression, see the necessary
change in the next section.

There's' more…
For ridge regression, we change the loss function to look like the
following code:



ridge_param = tf.constant(1.)
ridge_loss = tf.reduce_mean(tf.square(A))
loss = tf.expand_dims(tf.add(tf.reduce_mean(tf.square(y_target - 
model_output)), tf.mul(ridge_param, ridge_loss)), 0)



Implementing Elastic Net
Regression
Elastic net regression is a type of regression that combines lasso regression
with ridge regression by adding a L1 and L2 regularization term to the
loss function.

Getting ready
Implementing elastic net regression should be straightforward after the
previous two recipes, so we will implement this in multiple linear
regression on the iris dataset, instead of sticking to the two-dimensional
data as before. We will use pedal length, pedal width, and sepal width to
predict sepal length.

How to do it…
1. First we load the necessary libraries and initialize a graph, as follows:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
sess = tf.Session()

2. Now we will load the data. This time, each element of x data will be a
list of three values instead of one. Use the following code:

iris = datasets.load_iris()
x_vals = np.array([[x[1], x[2], x[3]] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data])

3. Next we declare the batch size, placeholders, variables, and model
output. The only difference here is that we change the size
specifications of the x data placeholder to take three values instead of
one, as follows:



batch_size = 50
learning_rate = 0.001
x_data = tf.placeholder(shape=[None, 3], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
A = tf.Variable(tf.random_normal(shape=[3,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))
model_output = tf.add(tf.matmul(x_data, A), b)

4. For elastic net, the loss function has the L1 and L2 norms of the
partial slopes. We create these terms and then add them into the loss
function, as follows:

elastic_param1 = tf.constant(1.)
elastic_param2 = tf.constant(1.)
l1_a_loss = tf.reduce_mean(tf.abs(A))
l2_a_loss = tf.reduce_mean(tf.square(A))
e1_term = tf.mul(elastic_param1, l1_a_loss)
e2_term = tf.mul(elastic_param2, l2_a_loss)
loss = 
tf.expand_dims(tf.add(tf.add(tf.reduce_mean(tf.square(y_targe
t - model_output)), e1_term), e2_term), 0)

5. Now we can initialize the variables, declare our optimizer, and run
the training loop and fit our coefficients, as follows:

init = tf.global_variables_initializer()
sess.run(init)
my_opt = tf.train.GradientDescentOptimizer(learning_rate)
train_step = my_opt.minimize(loss)
loss_vec = []
for i in range(1000):
    rand_index = np.random.choice(len(x_vals), 
size=batch_size)
    rand_x = x_vals[rand_index]
    rand_y = np.transpose([y_vals[rand_index]])
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    temp_loss = sess.run(loss, feed_dict={x_data: rand_x, 
y_target: rand_y})
    loss_vec.append(temp_loss[0])
    if (i+1)%250==0:
        print('Step #' + str(i+1) + ' A = ' + 
str(sess.run(A)) + ' b = ' + str(sess.run(b)))



        print('Loss = ' + str(temp_loss))

6. Here is the output of the code:

Step #250 A = [[ 0.42095602]
 [ 0.1055888 ]
 [ 1.77064979]] b = [[ 1.76164341]]
Loss = [ 2.87764359]
Step #500 A = [[ 0.62762028]
 [ 0.06065864]
 [ 1.36294949]] b = [[ 1.87629771]]
Loss = [ 1.8032167]
Step #750 A = [[ 0.67953539]
 [ 0.102514  ]
 [ 1.06914485]] b = [[ 1.95604002]]
Loss = [ 1.33256555]
Step #1000 A = [[ 0.6777274 ]
 [ 0.16535147]
 [ 0.8403284 ]] b = [[ 2.02246833]]
Loss = [ 1.21458709]

7. Now we can observe the loss over the training iterations to be sure
that it converged, as follows:

plt.plot(loss_vec, 'k-')
plt.title('Loss' per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()



Figure 10: Elastic net regression loss plotted over the 1,000 training
iterations

How it works…
Elastic net regression is implemented here as well as multiple linear
regression. We can see that with these regularization terms in the loss
function the convergence is slower than in prior sections. Regularization is
as simple as adding in the appropriate terms in the loss functions.



Implementing Logistic Regression
For this recipe, we will implement logistic regression to predict the
probability of low birthweight.

Getting ready
Logistic regression is a way to turn linear regression into a binary
classification. This is accomplished by transforming the linear output in a
sigmoid function that scales the output between zero and 1. The target is a
zero or 1, which indicates whether or not a data point is in one class or
another. Since we are predicting a number between zero or 1, the
prediction is classified into class value 1''' if the prediction is above a
specified cut off value and class 0 otherwise. For the purpose of this
example, we will specify that cut off to be 0.5, which will make the
classification as simple as rounding the output.

The data we will use for this example will be the low birthweight data that
is obtained through the University of Massachusetts Amherst statistical
dataset repository (https://www.umass.edu/statdata/statdata/). We will be
predicting low birthweight from several other factors.

How to do it…
1. We start by loading the libraries, including the request library, because

we will access the low birth weight data through a hyperlink. We will
also initiate a session:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import requests
from sklearn import datasets
from sklearn.preprocessing import normalize
from tensorflow.python.framework import ops
ops.reset_default_graph()

https://www.umass.edu/statdata/statdata/


sess = tf.Session()

2. Next we will load the data through the request module and specify
which features we want to use. We have to be specific because one
feature is the actual birth weight and we don't want to use this to
predict if the birthweight is greater or less than a specific amount. We
also do not want to use the ID column as a predictor either:

birthdata_url = 
'https://www.umass.edu/statdata/statdata/data/lowbwt.dat'
birth_file = requests.get(birthdata_url)
birth_data = birth_file.text.split('\r\n')[5:]
birth_header = [x for x in birth_data[0].split( '') if 
len(x)>=1]
birth_data = [[float(x) for x in y.split( '') if len(x)>=1] 
for y in birth_data[1:] if len(y)>=1]
y_vals = np.array([x[1] for x in birth_data])
x_vals = np.array([x[2:9] for x in birth_data])

3. First we split the dataset into test and train sets:

train_indices = np.random.choice(len(x_vals), 
round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - 
set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

4. Logistic regression convergence works better when the features are
scaled between 0 and 1 (min-max scaling). So next we will scale each
feature:

def normalize_cols(m):
    col_max = m.max(axis=0)
    col_min = m.min(axis=0)
    return (m-col_min) / (col_max - col_min)
    
x_vals_train = np.nan_to_num(normalize_cols(x_vals_train))
x_vals_test = np.nan_to_num(normalize_cols(x_vals_test))

Note



Note that we split the dataset into train and test before we scaled the
dataset. This is an important distinction to make. We want to make
sure that the training set does not influence the test set at all. If we
scaled the whole set before splitting, then we cannot guarantee that
they don't influence each other.

5. Next we declare the batch size, placeholders, variables, and the
logistic model. We do not wrap the output in a sigmoid because that
operation is built into the loss function:

batch_size = 25
x_data = tf.placeholder(shape=[None, 7], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
A = tf.Variable(tf.random_normal(shape=[7,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))
model_output = tf.add(tf.matmul(x_data, A), b)

6. Now we declare our loss function, which has the sigmoid function,
initialize our variables, and declare our optimizer function:

loss = 
tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(model_
output, y_target))
init = tf.global_variables_initializer()
sess.run(init)
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)

7. Along with recording the loss function, we will also want to record
the classification accuracy on the training and test set. So we will
create a prediction function that returns the accuracy for any size
batch:

prediction = tf.round(tf.sigmoid(model_output))
predictions_correct = tf.cast(tf.equal(prediction, y_target), 
tf.float32)
accuracy = tf.reduce_mean(predictions_correct)

8. Now we can start our training loop and recording the loss and
accuracies:



loss_vec = []
train_acc = []
test_acc = []
for i in range(1500):
    rand_index = np.random.choice(len(x_vals_train), 
size=batch_size)
    rand_x = x_vals_train[rand_index]
    rand_y = np.transpose([y_vals_train[rand_index]])
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    temp_loss = sess.run(loss, feed_dict={x_data: rand_x, 
y_target: rand_y})
    loss_vec.append(temp_loss)
    temp_acc_train = sess.run(accuracy, feed_dict={x_data: 
x_vals_train, y_target: np.transpose([y_vals_train])})
    train_acc.append(temp_acc_train)
    temp_acc_test = sess.run(accuracy, feed_dict={x_data: 
x_vals_test, y_target: np.transpose([y_vals_test])})
    test_acc.append(temp_acc_test)

9. Here is the code to look at the plots of the loss and accuracies:

plt.plot(loss_vec, 'k-')
plt.title('Cross Entropy Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Cross' Entropy Loss')
plt.show()
plt.plot(train_acc, 'k-', label='Train Set Accuracy')
plt.plot(test_acc, 'r--', label='Test Set Accuracy')
plt.title('Train' and Test Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

How it works…
Here is the loss over the iterations and train and test set accuracies.
Since the dataset is only 189 observations, the train and test accuracy
plots will change owing to the random splitting of the dataset:



Figure 11: Cross-entropy loss plotted over the course of 1,500 iterations

Figure 12: Test and train set accuracy plotted over 1,500 generations.



Chapter 4. Support Vector
Machines
This chapter will cover some important recipes regarding how to use,
implement, and evaluate support vector machines (SVM) in TensorFlow.
The following areas will be covered:

Working with a Linear SVM
Reduction to Linear Regression
Working with Kernels in TensorFlow
Implementing a Non-Linear SVM
Implementing a Multi-Class SVM

Note

Note that both the prior covered logistic regression and most of the SVMs
in this chapter are binary predictors. While logistic regression tries to find
any separating line that maximizes the distance (probabilistically), SVMs
also try to minimize the error while maximizing the margin between
classes. In general, if the problem has a large number of features compared
to training examples, try logistic regression or a linear SVM. If the number
of training examples is larger, or the data is not linearly separable, a SVM
with a Gaussian kernel may be used.

Also remember that all the code for this chapter is available online at
https://github.com/nfmcclure/tensorflow_cookbook.

Introduction
Support vector machines are a method of binary classification. The basic
idea is to find a linear separating line (or hyperplane) between the two
classes. We first assume that the binary class targets are -1 or 1, instead of
the prior 0 or 1 targets. Since there may be many lines that separate two

https://github.com/nfmcclure/tensorflow_cookbook


classes, we define the best linear separator that maximizes the distance
between both classes.

Figure 1: Given two separable classes, 'o' and 'x', we wish to find the
equation for the linear separator between the two. The left shows that
there are many lines that separate the two classes. The right shows the

unique maximum margin line. The margin width is given by 2/. This line is
found by minimizing the L2 norm of A.

We can write such a hyperplane as follows:

Here, A is a vector of our partial slopes and x is a vector of inputs. The
width of the maximum margin can be shown to be two divided by the L2
norm of A. There are many proofs out there of this fact, but for a



geometric idea, solving the perpendicular distance from a 2D point to a
line may provide motivation for moving forward.

For linearly separable binary class data, to maximize the margin, we

minimize the L2 norm of A, . We must also subject this minimum to the
constraint:

The preceding constraint assures us that all the points from the
corresponding classes are on the same side of the separating line.

Since not all datasets are linearly separable, we can introduce a loss
function for points that cross the margin lines. For n data points, we
introduce what is called the soft margin loss function, as follows:

Note that the product  is always greater than 1 if the point is on
the correct side of the margin. This makes the left term of the loss function
equal to zero, and the only influence on the loss function is the size of the
margin.

The preceding loss function will seek a linearly separable line, but will
allow for points crossing the margin line. This can be a hard or soft
allowance, depending on the value of . Larger values of  result in more
emphasis on widening the margin, and smaller values of  result in the
model acting more like a hard margin, while allowing data points to cross
the margin, if need be.



In this chapter, we will set up a soft margin SVM and show how to extend
it to nonlinear cases and multiple classes.



Working with a Linear SVM
For this example, we will create a linear separator from the iris data set.
We know from prior chapters that the sepal length and petal width create a
linear separable binary data set for predicting if a flower is I. setosa or not.

Getting ready
To implement a soft separable SVM in TensorFlow, we will implement the
specific loss function, as follows:

Here, A is the vector of partial slopes, b is the intercept,  is a vector of
inputs,  is the actual class, (-1 or 1) and  is the soft separability
regularization parameter.

How to do it…
1. We start by loading the necessary libraries. This will include the scikit

learn dataset library for access to the iris data set. Use the following
code:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets

Note

To set up Scikit-learn for this exercise, we just need to type $pip
install –U scikit-learn. Note that it also comes installed with



Anaconda as well.
2. Next we start a graph session and load the data as we need it.

Remember that we are loading the first and fourth variables in the
iris dataset as they are the sepal length and sepal width. We are
loading the target variable, which will take on the value 1 for I. setosa
and -1 otherwise. Use the following code:

sess = tf.Session()

iris = datasets.load_iris()
x_vals = np.array([[x[0], x[3]] for x in iris.data])
y_vals = np.array([1 if y==0 else -1 for y in iris.target])

3. We should now split the dataset into train and test sets. We will
evaluate the accuracy on both the training and test sets. Since we
know this data set is linearly separable, we should expect to get one
hundred percent accuracy on both sets. Use the following code:

train_indices = np.random.choice(len(x_vals), 
round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - 
set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

4. Next we set our batch size, placeholders, and model variables. It is
important to mention that with this SVM algorithm, we want very large
batch sizes to help with convergence. We can imagine that with very
small batch sizes, the maximum margin line would jump around
slightly. Ideally, we would also slowly decrease the learning rate as
well, but this will suffice for now. Also, the A variable will take on the
shape 2x1 because we have two predictor variables, sepal length and
pedal width. Use the following code:

batch_size = 100

x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32)



y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

A = tf.Variable(tf.random_normal(shape=[2,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))

5. We now declare our model output. For correctly classified points, this
will return numbers that are greater than or equal to 1 if the target is I.
setosa and less than or equal to -1 otherwise. Use the following code:

model_output = tf.sub(tf.matmul(x_data, A), b)

6. Next we will put together and declare the necessary components for
the maximum margin loss. First we will declare a function that will
calculate the L2 norm of a vector. Then we add the margin parameter, 

. We then declare our classification loss and add together the two
terms. Use the following code:

l2_norm = tf.reduce_sum(tf.square(A))

alpha = tf.constant([0.1])

classification_term = tf.reduce_mean(tf.maximum(0., 
tf.sub(1., tf.mul(model_output, y_target))))

loss = tf.add(classification _term, tf.mul(alpha, l2_norm))

7. Now we declare our prediction and accuracy functions so that we
can evaluate the accuracy on both the training and test sets, as
follows;

prediction = tf.sign(model_output)
accuracy = tf.reduce_mean(tf.cast(tf.equal(prediction, 
y_target), tf.float32))

8. Here we will declare our optimizer function and initialize our model
variables, as follows:

my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)

init = tf.initialize_all_variables()
sess.run(init)



9. We now can start our training loop, keeping in mind that we want to
record our loss and training accuracy on both the training and test
set, as follows:

loss_vec = []
train_accuracy = []
test_accuracy = []
for i in range(500):
    rand_index = np.random.choice(len(x_vals_train), 
size=batch_size)
    rand_x = x_vals_train[rand_index]
    rand_y = np.transpose([y_vals_train[rand_index]])
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    
    temp_loss = sess.run(loss, feed_dict={x_data: rand_x, 
y_target: rand_y})
    loss_vec.append(temp_loss)
    
    train_acc_temp = sess.run(accuracy, feed_dict={x_data: 
x_vals_train, y_target: np.transpose([y_vals_train])})
    train_accuracy.append(train_acc_temp)
    
    test_acc_temp = sess.run(accuracy, feed_dict={x_data: 
x_vals_test, y_target: np.transpose([y_vals_test])})
    test_accuracy.append(test_acc_temp)
    
    if (i+1)%100==0:
        print('Step #' + str(i+1) + ' A = ' + 
str(sess.run(A)) + ' b = ' + str(sess.run(b)))
        print('Loss = ' + str(temp_loss))

10. The output of the script during training should look like the following.

Step #100 A = [[-0.10763293]
 [-0.65735245]] b = [[-0.68752676]]
Loss = [ 0.48756418]
Step #200 A = [[-0.0650763 ]
 [-0.89443302]] b = [[-0.73912662]]
Loss = [ 0.38910741]
Step #300 A = [[-0.02090022]
 [-1.12334013]] b = [[-0.79332656]]
Loss = [ 0.28621092]



Step #400 A = [[ 0.03189624]
 [-1.34912157]] b = [[-0.8507266]]
Loss = [ 0.22397576]
Step #500 A = [[ 0.05958777]
 [-1.55989814]] b = [[-0.9000265]]
Loss = [ 0.20492229]

11. In order to plot the outputs, we have to extract the coefficients and
separate the x values into I. setosa and non- I. setosa, as follows:

[[a1], [a2]] = sess.run(A)
[[b]] = sess.run(b)
slope = -a2/a1
y_intercept = b/a1

x1_vals = [d[1] for d in x_vals]

best_fit = []
for i in x1_vals:
  best_fit.append(slope*i+y_intercept)

setosa_x = [d[1] for i,d in enumerate(x_vals) if 
y_vals[i]==1]
setosa_y = [d[0] for i,d in enumerate(x_vals) if 
y_vals[i]==1]
not_setosa_x = [d[1] for i,d in enumerate(x_vals) if 
y_vals[i]==-1]
not_setosa_y = [d[0] for i,d in enumerate(x_vals) if 
y_vals[i]==-1]

12. The following is the code to plot the data with the linear separator,
accuracies, and loss:

plt.plot(setosa_x, setosa_y, 'o', label='I. setosa')
plt.plot(not_setosa_x, not_setosa_y, 'x', label='Non-setosa')
plt.plot(x1_vals, best_fit, 'r-', label='Linear Separator', 
linewidth=3)
plt.ylim([0, 10])
plt.legend(loc='lower right')
plt.title('Sepal Length vs Pedal Width')
plt.xlabel('Pedal Width')
plt.ylabel('Sepal Length')
plt.show()



plt.plot(train_accuracy, 'k-', label='Training Accuracy')
plt.plot(test_accuracy, 'r--', label='Test Accuracy')
plt.title('Train and Test Set Accuracies')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

plt.plot(loss_vec, 'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()

Note

Using TensorFlow in this manner to implement the SVD algorithm may
result in slightly different outcomes each run. The reasons for this
include the random train/test set splitting and the selection of different
batches of points on each training batch. Also it would be ideal to also
slowly lower the learning rate after each generation.

Figure 2: Final linear SVM fit with the two classes plotted.



Final linear SVM fit with the two classes plotted:

Figure 3: Test and train set accuracy over iterations. We do get 100%
accuracy because the two classes are linearly separable.

Test and train set accuracy over iterations. We do get 100% accuracy
because the two classes are linearly separable:

Figure 4: Plot of the maximum margin loss over 500 iterations.



How it works…
In this recipe, we have shown that implementing a linear SVD model is
possible by using the maximum margin loss function.



Reduction to Linear Regression
Support vector machines can be used to fit linear regression. In this
chapter, we will explore how to do this with TensorFlow.

Getting ready
The same maximum margin concept can be applied toward fitting linear
regression. Instead of maximizing the margin that separates the classes, we
can think about maximizing the margin that contains the most (x, y) points.
To illustrate this, we will use the same iris data set, and show that we can
use this concept to fit a line between sepal length and petal width.

The corresponding loss function will be similar to max .
Here,  is half of the width of the margin, which makes the loss equal to
zero if a point lies in this region.

How to do it…
1. First we load the necessary libraries, start a graph, and load the iris

dataset. After that, we will split the dataset into train and test sets to
visualize the loss on both. Use the following code:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
sess = tf.Session()
iris = datasets.load_iris()
x_vals = np.array([x[3] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data])
train_indices = np.random.choice(len(x_vals), 
round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - 
set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]



y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

Note

For this example, we have split the data into train and test. It is also
common to split the data into three datasets, which includes the
validation set. We can use this validation set to verify that we are not
overfitting models as we train them.

2. Let's declare our batch size, placeholders, and variables, and create
our linear model, as follows:

batch_size = 50

x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

A = tf.Variable(tf.random_normal(shape=[1,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))

model_output = tf.add(tf.matmul(x_data, A), b)

3. Now we declare our loss function. The loss function, as described in
the preceding text, is implemented to follow with . Remember
that the epsilon is part of our loss function, which allows for a soft
margin instead of a hard margin.

epsilon = tf.constant([0.5])
loss = tf.reduce_mean(tf.maximum(0., 
tf.sub(tf.abs(tf.sub(model_output, y_target)), epsilon)))

4. We create an optimizer and initialize our variables next, as follows:

my_opt = tf.train.GradientDescentOptimizer(0.075)
train_step = my_opt.minimize(loss)

init = tf.initialize_all_variables()
sess.run(init)

5. Now we iterate through 200 training iterations and save the training
and test loss for plotting later:



train_loss = []
test_loss = []
for i in range(200):
    rand_index = np.random.choice(len(x_vals_train), 
size=batch_size)
    rand_x = np.transpose([x_vals_train[rand_index]])
    rand_y = np.transpose([y_vals_train[rand_index]])
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    
    temp_train_loss = sess.run(loss, feed_dict={x_data: 
np.transpose([x_vals_train]), y_target: 
np.transpose([y_vals_train])})
    train_loss.append(temp_train_loss)
    
    temp_test_loss = sess.run(loss, feed_dict={x_data: 
np.transpose([x_vals_test]), y_target: 
np.transpose([y_vals_test])})
    test_loss.append(temp_test_loss)
    if (i+1)%50==0:
        print('-----------')
        print('Generation: ' + str(i))
        print('A = ' + str(sess.run(A)) + ' b = ' + 
str(sess.run(b)))
        print('Train Loss = ' + str(temp_train_loss))
        print('Test Loss = ' + str(temp_test_loss))

6. This results in the following output:

Generation: 50
A = [[ 2.20651722]] b = [[ 2.71290684]]
Train Loss = 0.609453
Test Loss = 0.460152
-----------
Generation: 100
A = [[ 1.6440177]] b = [[ 3.75240564]]
Train Loss = 0.242519
Test Loss = 0.208901
-----------
Generation: 150
A = [[ 1.27711761]] b = [[ 4.3149066]]
Train Loss = 0.108192
Test Loss = 0.119284
-----------



Generation: 200
A = [[ 1.05271816]] b = [[ 4.53690529]]
Train Loss = 0.0799957
Test Loss = 0.107551

7. We can now extract the coefficients we found, and get values for the
best-fit line. For plotting purposes, we will also get values for the
margins as well. Use the following code:

[[slope]] = sess.run(A)
[[y_intercept]] = sess.run(b)
[width] = sess.run(epsilon)

best_fit = []
best_fit_upper = []
best_fit_lower = []
for i in x_vals:
  best_fit.append(slope*i+y_intercept)
  best_fit_upper.append(slope*i+y_intercept+width)
  best_fit_lower.append(slope*i+y_intercept-width)

8. Finally, here is the code to plot the data with the fitted line and the
train-test loss:

plt.plot(x_vals, y_vals, 'o', label='Data Points')
plt.plot(x_vals, best_fit, 'r-', label='SVM Regression Line', 
linewidth=3)
plt.plot(x_vals, best_fit_upper, 'r--', linewidth=2)
plt.plot(x_vals, best_fit_lower, 'r--', linewidth=2)
plt.ylim([0, 10])
plt.legend(loc='lower right')
plt.title('Sepal Length vs Pedal Width')
plt.xlabel('Pedal Width')
plt.ylabel('Sepal Length')
plt.show()
plt.plot(train_loss, 'k-', label='Train Set Loss')
plt.plot(test_loss, 'r--', label='Test Set Loss')
plt.title('L2 Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('L2 Loss')
plt.legend(loc='upper right')
plt.show()



Figure 5: SVM regression with a 0.5 margin on the iris data (sepal
length versus petal width).

Here is the train and test loss over the training iterations:

Figure 6: SVM regression loss per generation on both the train and test
sets.



How it works…
Intuitively, we can think of SVM regression as a function that is trying to
fit as many points in the  width margin from the line as possible. The
fitting of this line is somewhat sensitive to this parameter. If we choose too
small an epsilon, the algorithm will not be able to fit many points in the
margin. If we choose too large of an epsilon, there will be many lines that
are able to fit all the data points in the margin. We prefer a smaller epsilon,
since nearer points to the margin contribute less loss than further away
points.



Working with Kernels in
TensorFlow
The prior SVMs worked with linear separable data. If we would like to
separate non-linear data, we can change how we project the linear
separator onto the data. This is done by changing the kernel in the SVM
loss function. In this chapter, we introduce how to changer kernels and
separate non-linear separable data.

Getting ready
In this recipe, we will motivate the usage of kernels in support vector
machines. In the linear SVM section, we solved the soft margin with a
specific loss function. A different approach to this method is to solve what
is called the dual of the optimization problem. It can be shown that the
dual for the linear SVM problem is given by the following formula:

Where:

Here, the variable in the model will be the b vector. Ideally, this vector will
be quite sparse, only taking on values near 1 and -1 for the corresponding
support vectors of our dataset. Our data point vectors are indicated by 



and our targets (1 or -1) are represented by .

The kernel in the preceding equations is the dot product, , which
gives us the linear kernel. This kernel is a square matrix filled with the 
dot products of the data points.

Instead of just doing the dot product between data points, we can expand
them with more complicated functions into higher dimensions, in which
the classes may be linear separable. This may seem needlessly
complicated, but if we select a function, k, that has the property where:

then k is called a kernel function. This is one of the more common kernels
if the Gaussian kernel (also known as the radian basis function kernel or
the RBF kernel) is used. This kernel is described with the following
equation:

In order to make predictions on this kernel, say at a point , we just
substitute in the prediction point in the appropriate equation in the kernel
as follows:

In this section, we will discuss how to implement the Gaussian kernel. We



will also make a note of where to make the substitution for implementing
the linear kernel where appropriate. The dataset we will use will be
manually created to show where the Gaussian kernel would be more
appropriate to use over the linear kernel.

How to do it…
1. First we load the necessary libraries and start a graph session, as

follows:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
sess = tf.Session()

2. Now we generate the data. The data we will generate will be two
concentric rings of data, each ring will belong to a different class. We
have to make sure that the classes are -1 or 1 only . Then we will split
the data into x and y values for each class for plotting purposes. Use
the following code:

(x_vals, y_vals) = datasets.make_circles(n_samples=500, 
factor=.5, noise=.1)
y_vals = np.array([1 if y==1 else -1 for y in y_vals])
class1_x = [x[0] for i,x in enumerate(x_vals) if 
y_vals[i]==1]
class1_y = [x[1] for i,x in enumerate(x_vals) if 
y_vals[i]==1]
class2_x = [x[0] for i,x in enumerate(x_vals) if 
y_vals[i]==-1]
class2_y = [x[1] for i,x in enumerate(x_vals) if 
y_vals[i]==-1]

3. Next we declare our batch size, placeholders, and create our model
variable, b. For SVMs we tend to want larger batch sizes because we
want a very stable model that won't fluctuate much with each training
generation. Also note that we have an extra placeholder for the
prediction points. To visualize the results, we will create a color grid to
see which areas belong to which class at the end. Use the following



code:

batch_size = 250
x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
prediction_grid = tf.placeholder(shape=[None, 2], 
dtype=tf.float32)
b = tf.Variable(tf.random_normal(shape=[1,batch_size]))

4. We will now create the Gaussian kernel. This kernel can be expressed
as matrix operations as follows:

gamma = tf.constant(-50.0)
dist = tf.reduce_sum(tf.square(x_data), 1)
dist = tf.reshape(dist, [-1,1])
sq_dists = tf.add(tf.sub(dist, tf.mul(2., tf.matmul(x_data, 
tf.transpose(x_data)))), tf.transpose(dist))
my_kernel = tf.exp(tf.mul(gamma, tf.abs(sq_dists))) 

Note

Note the usage of broadcasting in the sq_dists line of the add and
subtract operations.

Note that the linear kernel can be expressed as my_kernel =
tf.matmul(x_data, tf.transpose(x_data)).

5. Now we declare the dual problem as previously stated in this recipe.
At the end, instead of maximizing, we will be minimizing the negative
of the loss function with a tf.neg() function. Use the following code:

model_output = tf.matmul(b, my_kernel)
first_term = tf.reduce_sum(b)
b_vec_cross = tf.matmul(tf.transpose(b), b)
y_target_cross = tf.matmul(y_target, tf.transpose(y_target))
second_term = tf.reduce_sum(tf.mul(my_kernel, 
tf.mul(b_vec_cross, y_target_cross)))
loss = tf.neg(tf.sub(first_term, second_term)) 

6. We now create the prediction and accuracy functions. First, we must
create a prediction kernel, similar to step 4, but instead of a kernel of



the points with itself, we have the kernel of the points with the
prediction data. The prediction is then the sign of the output of the
model. Use the following code:

rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1),[-1,1])
rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1),
[-1,1])
pred_sq_dist = tf.add(tf.sub(rA, tf.mul(2., tf.matmul(x_data, 
tf.transpose(prediction_grid)))), tf.transpose(rB))
pred_kernel = tf.exp(tf.mul(gamma, tf.abs(pred_sq_dist)))

prediction_output = 
tf.matmul(tf.mul(tf.transpose(y_target),b), pred_kernel)
prediction = tf.sign(prediction_output-
tf.reduce_mean(prediction_output))
accuracy = 
tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(prediction), 
tf.squeeze(y_target)), tf.float32))

Note

To implement the linear prediction kernel, we can write pred_kernel =
tf.matmul(x_data, tf.transpose(prediction_grid)).

7. Now we can create an optimizer function and initialize all the
variables, as follows:

my_opt = tf.train.GradientDescentOptimizer(0.001)
train_step = my_opt.minimize(loss)
init = tf.initialize_all_variables()
sess.run(init)

8. Next we start the training loop. We will record the loss vector and the
batch accuracy for each generation. When we run the accuracy, we
have to put in all three placeholders, but we feed in the x data twice to
get the prediction on the points. Use the following code:

loss_vec = []
batch_accuracy = []
for i in range(500):
    rand_index = np.random.choice(len(x_vals), 
size=batch_size)



    rand_x = x_vals[rand_index]
    rand_y = np.transpose([y_vals[rand_index]])
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    
    temp_loss = sess.run(loss, feed_dict={x_data: rand_x, 
y_target: rand_y})
    loss_vec.append(temp_loss)
    
    acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x,
                                             y_target: 
rand_y,
                                             
prediction_grid:rand_x})
    batch_accuracy.append(acc_temp)
    
    if (i+1)%100==0:
        print('Step #' + str(i+1))
        print('Loss = ' + str(temp_loss))

9. This results in the following output:

Step #100
Loss = -28.0772
Step #200
Loss = -3.3628
Step #300
Loss = -58.862
Step #400
Loss = -75.1121
Step #500
Loss = -84.8905

10. In order to see the output class on the whole space, we will create a
mesh of prediction points in our system and run the prediction on all of
them, as follows:

x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                     np.arange(y_min, y_max, 0.02))
grid_points = np.c_[xx.ravel(), yy.ravel()]
[grid_predictions] = sess.run(prediction, feed_dict={x_data: 



rand_x,
                                                   y_target: 
rand_y,
                                                   
prediction_grid: grid_points})
grid_predictions = grid_predictions.reshape(xx.shape)

11. The following is the code to plot the result, batch accuracy, and loss:

plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, 
alpha=0.8)
plt.plot(class1_x, class1_y, 'ro', label='Class 1')
plt.plot(class2_x, class2_y, 'kx', label='Class -1')
plt.legend(loc='lower right')
plt.ylim([-1.5, 1.5])
plt.xlim([-1.5, 1.5])
plt.show()

plt.plot(batch_accuracy, 'k-', label='Accuracy')
plt.title('Batch Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

plt.plot(loss_vec, 'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()

12. For succinctness, we will show only the results graph, but we can also
separately run the plotting code and see all three if we so choose:



Figure 7: Linear SVM on non-linear separable data.

Linear SVM on non-linear separable data.

Figure 8: Non-linear SVM with Gaussian kernel results on nonlinear ring
data.

Non-linear SVM with Gaussian kernel results on nonlinear ring data.



How it works…
There are two important pieces of the code to know about: how we
implemented the kernel and how we implemented the loss function for the
SVM dual optimization problem. We have shown how to implement the
linear and Gaussian kernel and that the Gaussian kernel can separate
nonlinear datasets.

We should also mention that there is another parameter, the gamma value
in the Gaussian kernel. This parameter controls how much influence points
have on the curvature of the separation. Small values are commonly
chosen, but it depends heavily on the dataset. Ideally this parameter is
chosen with statistical techniques such as cross-validation.

There's more…
There are many more kernels that we could implement if we so choose.
Here is a list of a few more common nonlinear kernels:

Polynomial homogeneous kernel:

Polynomial inhomogeneous kernel:

Hyperbolic tangent kernel:



Implementing a Non-Linear SVM
For this recipe, we will apply a non-linear kernel to split a dataset.

Getting ready
In this section, we will implement the preceding Gaussian kernel SVM on
real data. We will load the iris data set and create a classifier for I. setosa
(versus non-setosa). We will see the effect of various gamma values on the
classification.

How to do it…
1. We first load the necessary libraries, which includes the scikit learn

datasets so that we can load the iris data. Then we will start a graph
session. Use the following code:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
sess = tf.Session()

2. Next we will load the iris data, extract the sepal length and petal
width, and separated the x and y values for each class (for plotting
purposes later) , as follows:

iris = datasets.load_iris()
x_vals = np.array([[x[0], x[3]] for x in iris.data])
y_vals = np.array([1 if y==0 else -1 for y in iris.target])
class1_x = [x[0] for i,x in enumerate(x_vals) if 
y_vals[i]==1]
class1_y = [x[1] for i,x in enumerate(x_vals) if 
y_vals[i]==1]
class2_x = [x[0] for i,x in enumerate(x_vals) if 
y_vals[i]==-1]
class2_y = [x[1] for i,x in enumerate(x_vals) if 
y_vals[i]==-1]



3. Now we declare our batch size (larger batches are preferred),
placeholders, and the model variable, b, as follows:

batch_size = 100

x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
prediction_grid = tf.placeholder(shape=[None, 2], 
dtype=tf.float32)

b = tf.Variable(tf.random_normal(shape=[1,batch_size]))

4. Next we declare our Gaussian kernel. This kernel is dependent on the
gamma value, and we will illustrate the effects of various gamma
values on the classification later in this recipe. Use the following code:

gamma = tf.constant(-10.0)
dist = tf.reduce_sum(tf.square(x_data), 1)
dist = tf.reshape(dist, [-1,1])
sq_dists = tf.add(tf.sub(dist, tf.mul(2., tf.matmul(x_data, 
tf.transpose(x_data)))), tf.transpose(dist))
my_kernel = tf.exp(tf.mul(gamma, tf.abs(sq_dists)))
We now compute the loss for the dual optimization problem, as 
follows:
model_output = tf.matmul(b, my_kernel)
first_term = tf.reduce_sum(b)
b_vec_cross = tf.matmul(tf.transpose(b), b)
y_target_cross = tf.matmul(y_target, tf.transpose(y_target))
second_term = tf.reduce_sum(tf.mul(my_kernel, 
tf.mul(b_vec_cross, y_target_cross)))
loss = tf.neg(tf.sub(first_term, second_term))

5. In order to perform predictions using an SVM, we must create a
prediction kernel function. After that we also declare an accuracy
calculation, which will just be a percentage of points correctly
classified. Use the following code:

rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1),[-1,1])
rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1),
[-1,1])
pred_sq_dist = tf.add(tf.sub(rA, tf.mul(2., tf.matmul(x_data, 
tf.transpose(prediction_grid)))), tf.transpose(rB))



pred_kernel = tf.exp(tf.mul(gamma, tf.abs(pred_sq_dist)))

prediction_output = 
tf.matmul(tf.mul(tf.transpose(y_target),b), pred_kernel)
prediction = tf.sign(prediction_output-
tf.reduce_mean(prediction_output))
accuracy = 
tf.reduce_mean(tf.cast(tf.equal(tf.squeeze(prediction), 
tf.squeeze(y_target)), tf.float32))

6. Next we declare our optimizer function and initialize the variables, as
follows:

my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)
init = tf.initialize_all_variables()
sess.run(init)

7. Now we can start the training loop. We run the loop for 300 iterations
and will store the loss value and the batch accuracy. Use the following
code:

loss_vec = []
batch_accuracy = []
for i in range(300):
    rand_index = np.random.choice(len(x_vals), 
size=batch_size)
    rand_x = x_vals[rand_index]
    rand_y = np.transpose([y_vals[rand_index]])
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    
    temp_loss = sess.run(loss, feed_dict={x_data: rand_x, 
y_target: rand_y})
    loss_vec.append(temp_loss)
    
    acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x,
                                             y_target: 
rand_y,
                                             
prediction_grid:rand_x})
    batch_accuracy.append(acc_temp)



8. In order to plot the decision boundary, we will create a mesh of x, y
points and evaluate the prediction function we created on all of these
points, as follows:

x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                     np.arange(y_min, y_max, 0.02))
grid_points = np.c_[xx.ravel(), yy.ravel()]
[grid_predictions] = sess.run(prediction, feed_dict={x_data: 
rand_x,
                                                   y_target: 
rand_y,
                                                   
prediction_grid: grid_points})
grid_predictions = grid_predictions.reshape(xx.shape)

9. For succinctness, we will only show how to plot the points with the
decision boundaries. For the plot and effect of gamma, see the next
section in this recipe. Use the following code:

plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, 
alpha=0.8)
plt.plot(class1_x, class1_y, 'ro', label='I. setosa')
plt.plot(class2_x, class2_y, 'kx', label='Non setosa')
plt.title('Gaussian SVM Results on Iris Data')
plt.xlabel('Pedal Length')
plt.ylabel('Sepal Width')
plt.legend(loc='lower right')
plt.ylim([-0.5, 3.0])
plt.xlim([3.5, 8.5])
plt.show()

How it works…
Here is the classification of I. setosa results for four different gamma
values (1, 10, 25, 100). Notice how the higher the gamma value, the more
of an effect each individual point has on the classification boundary.



Figure 9: Classification results of I. setosa using a Gaussian kernel SVM
with four different values of gamma.



Implementing a Multi-Class SVM
We can also use SVMs to categorize multiple classes instead of just two. In
this recipe, we will use a multi-class SVM to categorize the three types of
flowers in the iris dataset.

Getting ready
By design, SVM algorithms are binary classifiers. However, there are a few
strategies employed to get them to work on multiple classes. The two main
strategies are called one versus all, and one versus one.

One versus one is a strategy where a binary classifier is created for each
possible pair of classes. Then a prediction is made for a point for the class
that has the most votes. This can be computationally hard as we must

create  classifiers for k classes.

Another way to implement multi-class classifiers is to do a one versus all
strategy where we create a classifier for each of the classes. The predicted
class of a point will be the class that creates the largest SVM margin. This
is the strategy we will implement in this section.

Here, we will load the iris dataset and perform multiclass nonlinear SVM
with a Gaussian kernel. The iris dataset is ideal because there are three
classes (I. setosa, I. virginica, and I. versicolor). We will create three
Gaussian kernel SVMs for each class and make the prediction of points
where the highest margin exists.

How to do it…
1. First we load the libraries we need and start a graph, as follows:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf



from sklearn import datasets
sess = tf.Session()

2. Next, we will load the iris dataset and split apart the targets for each
class. We will only be using the sepal length and petal width to
illustrate because we want to be able to plot the outputs. We also
separate the x and y values for each class for plotting purposes at the
end. Use the following code:

iris = datasets.load_iris()
x_vals = np.array([[x[0], x[3]] for x in iris.data])
y_vals1 = np.array([1 if y==0 else -1 for y in iris.target])
y_vals2 = np.array([1 if y==1 else -1 for y in iris.target])
y_vals3 = np.array([1 if y==2 else -1 for y in iris.target])
y_vals = np.array([y_vals1, y_vals2, y_vals3])
class1_x = [x[0] for i,x in enumerate(x_vals) if 
iris.target[i]==0]
class1_y = [x[1] for i,x in enumerate(x_vals) if 
iris.target[i]==0]
class2_x = [x[0] for i,x in enumerate(x_vals) if 
iris.target[i]==1]
class2_y = [x[1] for i,x in enumerate(x_vals) if 
iris.target[i]==1]
class3_x = [x[0] for i,x in enumerate(x_vals) if 
iris.target[i]==2]
class3_y = [x[1] for i,x in enumerate(x_vals) if 
iris.target[i]==2]

3. The biggest change we have in this example, as compared to the
Implementing a Non-Linear SVM recipe, is that a lot of the
dimensions will change (we have three classifiers now instead of one).
We will also make use of matrix broadcasting and reshaping
techniques to calculate all three SVMs at once. Since we are doing this
all at once, our y_target placeholder now has the dimensions [3,
None] and our model variable, b, will be initialized to be size [3,
batch_size]. Use the following code:

batch_size = 50

x_data = tf.placeholder(shape=[None, 2], dtype=tf.float32)
y_target = tf.placeholder(shape=[3, None], dtype=tf.float32)



prediction_grid = tf.placeholder(shape=[None, 2], 
dtype=tf.float32)

b = tf.Variable(tf.random_normal(shape=[3,batch_size]))

4. Next we calculate the Gaussian kernel. Since this is only dependent on
the x data, this code doesn't change from the prior recipe. Use the
following code:

gamma = tf.constant(-10.0)
dist = tf.reduce_sum(tf.square(x_data), 1)
dist = tf.reshape(dist, [-1,1])
sq_dists = tf.add(tf.sub(dist, tf.mul(2., tf.matmul(x_data, 
tf.transpose(x_data)))), tf.transpose(dist))
my_kernel = tf.exp(tf.mul(gamma, tf.abs(sq_dists)))

5. One big change is that we will do batch matrix multiplication. We will
end up with three-dimensional matrices and we will want to broadcast
matrix multiplication across the third index. Our data and target
matrices are not set up for this. In order for an operation such as 
to work across an extra dimension, we create a function to expand
such matrices, reshape the matrix into a transpose, and then call
TensorFlow's batch_matmul across the extra dimension. Use the
following code:

def reshape_matmul(mat):
    v1 = tf.expand_dims(mat, 1)
    v2 = tf.reshape(v1, [3, batch_size, 1])
    return(tf.batch_matmul(v2, v1))

6. With this function created, we can now compute the dual loss
function, as follows:

model_output = tf.matmul(b, my_kernel)
first_term = tf.reduce_sum(b)
b_vec_cross = tf.matmul(tf.transpose(b), b)
y_target_cross = reshape_matmul(y_target)

second_term = tf.reduce_sum(tf.mul(my_kernel, 
tf.mul(b_vec_cross, y_target_cross)),[1,2])
loss = tf.reduce_sum(tf.neg(tf.sub(first_term, second_term)))



7. Now we can create the prediction kernel. Notice that we have to be
careful with the reduce_sum function and not reduce across all three
SVM predictions, so we have to tell TensorFlow not to sum everything
up with a second index argument. Use the following code:

rA = tf.reshape(tf.reduce_sum(tf.square(x_data), 1),[-1,1])
rB = tf.reshape(tf.reduce_sum(tf.square(prediction_grid), 1),
[-1,1])
pred_sq_dist = tf.add(tf.sub(rA, tf.mul(2., tf.matmul(x_data, 
tf.transpose(prediction_grid)))), tf.transpose(rB))
pred_kernel = tf.exp(tf.mul(gamma, tf.abs(pred_sq_dist)))

8. When we are done with the prediction kernel, we can create
predictions. A big change here is that the predictions are not the
sign() of the output. Since we are implementing a one versus all
strategy, the prediction is the classifier that has the largest output. To
accomplish this, we use TensorFlow's built in argmax() function, as
follows:

prediction_output = tf.matmul(tf.mul(y_target,b), 
pred_kernel)
prediction = tf.arg_max(prediction_output-
tf.expand_dims(tf.reduce_mean(prediction_output,1), 1), 0)
accuracy = tf.reduce_mean(tf.cast(tf.equal(prediction, 
tf.argmax(y_target,0)), tf.float32))

9. Now that we have the kernel, loss, and prediction capabilities set
up, we just have to declare our optimizer function and initialize our
variables, as follows:

my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)
init = tf.initialize_all_variables()
sess.run(init)

10. This algorithm converges relatively quickly, so we won't have run the
training loop for more than 100 iterations. We do so with the following
code:

loss_vec = []
batch_accuracy = []



for i in range(100):
    rand_index = np.random.choice(len(x_vals), 
size=batch_size)
    rand_x = x_vals[rand_index]
    rand_y = y_vals[:,rand_index]
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    
    temp_loss = sess.run(loss, feed_dict={x_data: rand_x, 
y_target: rand_y})
    loss_vec.append(temp_loss)
    
    acc_temp = sess.run(accuracy, feed_dict={x_data: rand_x, 
y_target: rand_y, prediction_grid:rand_x})
    batch_accuracy.append(acc_temp)
    
    if (i+1)%25==0:
        print('Step #' + str(i+1))
        print('Loss = ' + str(temp_loss))
Step #25
Loss = -2.8951
Step #50
Loss = -27.9612
Step #75
Loss = -26.896
Step #100
Loss = -30.2325

11. We can now create the prediction grid of points and run the prediction
function on all of them, as follows:

x_min, x_max = x_vals[:, 0].min() - 1, x_vals[:, 0].max() + 1
y_min, y_max = x_vals[:, 1].min() - 1, x_vals[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                     np.arange(y_min, y_max, 0.02))
grid_points = np.c_[xx.ravel(), yy.ravel()]
grid_predictions = sess.run(prediction, feed_dict={x_data: 
rand_x,
                                                   y_target: 
rand_y,
                                                   
prediction_grid: grid_points})
grid_predictions = grid_predictions.reshape(xx.shape)



12. The following is code to plot the results, batch accuracy, and loss
function. For succinctness we will only display the end result:

plt.contourf(xx, yy, grid_predictions, cmap=plt.cm.Paired, 
alpha=0.8)
plt.plot(class1_x, class1_y, 'ro', label='I. setosa')
plt.plot(class2_x, class2_y, 'kx', label='I. versicolor')
plt.plot(class3_x, class3_y, 'gv', label='I. virginica')
plt.title('Gaussian SVM Results on Iris Data')
plt.xlabel('Pedal Length')
plt.ylabel('Sepal Width')
plt.legend(loc='lower right')
plt.ylim([-0.5, 3.0])
plt.xlim([3.5, 8.5]) 
plt.show()

plt.plot(batch_accuracy, 'k-', label='Accuracy')
plt.title('Batch Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()

plt.plot(loss_vec, 'k-')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()



Figure 10: Multi-class (three classes) nonlinear Gaussian SVM
results on the iris dataset with gamma = 10.

How it works…
The important point to notice in this recipe is how we changed our
algorithm to optimize over three SVM models at once. Our model
parameter, b, has an extra dimension to take into account all three models.
Here we can see that the extension of an algorithm to multiple similar
algorithms was made relatively easy owing to TensorFlow's built-in
capabilities to deal with extra dimensions.



Chapter 5. Nearest Neighbor
Methods
This chapter will focus on nearest neighbor methods and how to implement
them in TensorFlow. We will start with an introduction to the method and
show how to implement various forms, and the chapter will end with
examples of address matching and image recognition. This is what we will
cover:

Working with Nearest Neighbors
Working with Text-Based Distances
Computing Mixed Distance Functions
Using an Address Matching Example
Using Nearest Neighbors for Image Recognition

Note that all the code is available online at
https://github.com/nfmcclure/tensorflow_cookbook.

Introduction
Nearest neighbor methods are based on a simple idea. We consider our
training set as the model and make predictions on new points based on
how close they are to points in the training set. The most naïve way is to
make the prediction as the closest training data point class. But since most
datasets contain a degree of noise, a more common method would be to
take a weighted average of a set of k nearest neighbors. This method is
called k-nearest neighbors (k-NN).

Given a training dataset , with corresponding targets 
, we can make a prediction on a point, z, by looking at a set of

nearest neighbors. The actual method of prediction depends on whether or
not we are doing regression (continuous ) or classification (discrete ).

https://github.com/nfmcclure/tensorflow_cookbook


For discrete classification targets, the prediction may be given by a
maximum voting scheme weighted by the distance to the prediction point:

Here, our prediction, f(z) is the maximum weighted value over all classes,
j, where the weighted distance from the prediction point to the training
point, i, is given by . And  is just an indicator function if point i is
in class j.

For continuous regression targets, the prediction is given by a weighted
average of all k points nearest to the prediction:

It is obvious that the prediction is heavily dependent on the choice of the
distance metric, d.

Common specifications of the distance metric are L1 and L2 distances:



There are many different specifications of distance metrics that we can
choose. In this chapter, we will explore the L1 and L2 metrics as well as
edit and textual distances.

We also have to choose how to weight the distances. A straightforward
way to weight the distances is by the distance itself. Points that are further
away from our prediction should have less impact than nearer points. The
most common way to weight is by the normalized inverse of the distance.
We will implement this method in the next recipe.

Note

Note that k-NN is an aggregating method. For regression, we are
performing a weighted average of neighbors. Because of this, predictions
will be less extreme and less varied than the actual targets. The magnitude
of this effect will be determined by k, the number of neighbors in the
algorithm.



Working with Nearest Neighbors
We start this chapter by implementing nearest neighbors to predict housing
values. This is a great way to start with nearest neighbors because we will
be dealing with numerical features and continuous targets.

Getting ready
To illustrate how making predictions with nearest neighbors works in
TensorFlow, we will use the Boston housing dataset. Here we will be
predicting the median neighborhood housing value as a function of several
features.

Since we consider the training set the trained model, we will find the k-
NNs to the prediction points and do a weighted average of the target value.

How to do it…
1. First, we will start by loading the required libraries and starting a graph

session. We will use the requests module to load the necessary Boston
housing data from the UCI machine learning repository:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import requests

sess = tf.Session()

2. Next, we will load the data using the requests module:

housing_url = 'https://archive.ics.uci.edu/ml/machine-
learning-databases/housing/housing.data''
housing_header = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 
'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
cols_used = ['CRIM', 'INDUS', 'NOX', 'RM', 'AGE', 'DIS', 
'TAX', 'PTRATIO', 'B', 'LSTAT']
num_features = len(cols_used)



# Request data
housing_file = requests.get(housing_url)
# Parse Data
housing_data = [[float(x) for x in y.split(' ') if len(x)>=1] 
for y in housing_file.text.split('\n') if len(y)>=1]

3. Next, we separate the data into our dependent and independent
features. We will be predicting the last variable, MEDV, which is the
median value for the group of houses. We will also not use the features
ZN, CHAS, and RAD because of their uninformative or binary nature:

y_vals = np.transpose([np.array([y[13] for y in 
housing_data])])
x_vals = np.array([[x for i,x in enumerate(y) if 
housing_header[i] in cols_used] for y in housing_data])

x_vals = (x_vals - x_vals.min(0)) / x_vals.ptp(0)

4. Now we split the x and y values into the train and test sets. We will
create the training set by selecting about 80% of the rows at random,
and leave the remaining 20% for the test set:

train_indices = np.random.choice(len(x_vals), 
round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - 
set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

5. Next, we declare our k value and batch size:

k = 4
batch_size=len(x_vals_test)

6. We will declare our placeholders next. Remember that there are no
model variables to train, as the model is determined exactly by our
training set:

x_data_train = tf.placeholder(shape=[None, num_features], 
dtype=tf.float32)
x_data_test = tf.placeholder(shape=[None, num_features], 



dtype=tf.float32)
y_target_train = tf.placeholder(shape=[None, 1], 
dtype=tf.float32)
y_target_test = tf.placeholder(shape=[None, 1], 
dtype=tf.float32)

7. Next, we create our distance function for a batch of test points. Here,
we illustrate the use of the L1 distance:

distance = tf.reduce_sum(tf.abs(tf.sub(x_data_train, 
tf.expand_dims(x_data_test,1))), reduction_indices=2)

Note

Note that the L2 distance function can be used as well. We would
change the distance formula to the following:

distance =
tf.sqrt(tf.reduce_sum(tf.square(tf.sub(x_data_train,
tf.expand_dims(x_data_test,1))), reduction_indices=1))

8. Now we create our prediction function. To do this, we will use the
top_k(), function, which returns the values and indices of the largest
values in a tensor. Since we want the indices of the smallest distances,
we will instead find the k-biggest negative distances. We also declare
the predictions and the mean squared error (MSE) of the target
values:

top_k_xvals, top_k_indices = tf.nn.top_k(tf.neg(distance), 
k=k)
x_sums = tf.expand_dims(tf.reduce_sum(top_k_xvals, 1),1)
x_sums_repeated = tf.matmul(x_sums,tf.ones([1, k], 
tf.float32))
x_val_weights = 
tf.expand_dims(tf.div(top_k_xvals,x_sums_repeated), 1)

top_k_yvals = tf.gather(y_target_train, top_k_indices)
prediction = 
tf.squeeze(tf.batch_matmul(x_val_weights,top_k_yvals), 
squeeze_dims=[1])
mse = tf.div(tf.reduce_sum(tf.square(tf.sub(prediction, 
y_target_test))), batch_size)



9. Test:

num_loops = int(np.ceil(len(x_vals_test)/batch_size))

for i in range(num_loops):
    min_index = i*batch_size
    max_index = min((i+1)*batch_size,len(x_vals_train))
    x_batch = x_vals_test[min_index:max_index]
    y_batch = y_vals_test[min_index:max_index]
    predictions = sess.run(prediction, feed_dict=
{x_data_train: x_vals_train, x_data_test: x_batch, 
y_target_train: y_vals_train, y_target_test: y_batch})
    batch_mse = sess.run(mse, feed_dict={x_data_train: 
x_vals_train, x_data_test: x_batch, y_target_train: 
y_vals_train, y_target_test: y_batch})

    print('Batch #'' + str(i+1) + '' MSE: '' + 
str(np.round(batch_mse,3)))

Batch #1 MSE: 23.153

10. Additionally, we can also look at a histogram of the actual target
values compared with the predicted values. One reason to look at this
is to notice the fact that with an averaging method, we have trouble
predicting the extreme ends of the targets:

bins = np.linspace(5, 50, 45)

plt.hist(predictions, bins, alpha=0.5, label='Prediction'')
plt.hist(y_batch, bins, alpha=0.5, label='Actual'')
plt.title('Histogram of Predicted and Actual Values'')
plt.xlabel('Med Home Value in $1,000s'')
plt.ylabel('Frequency'')
plt.legend(loc='upper right'')
plt.show()



Figure 1: A histogram of the predicted values and actual target
values for k-NN (k=4).

11. One hard thing to determine is the best value of k. For the preceding
figure and predictions, we used k=4 for our model. We chose this
specifically because it gives us the lowest MSE. This is verified by
cross validation. If we use cross validation across multiple values of k,
we will see that k=4 gives us a minimum MSE. We show this in the
following figure. It is also worthwhile to plotting the variance in the
predicted values to show that it will decrease the more neighbors we
average over:



Figure 2: The MSE for k-NN predictions for various values of k. We
also plot the variance of the predicted values on the test set. Note

that the variance decreases as k increases.

How it works…
With the nearest neighbors algorithm, the model is the training set.
Because of this, we do not have to train any variables in our model. The
only parameter, k, we determined via cross-validation to minimize our
MSE.

There's more…
For the weighting of the k-NN, we chose to weight directly by the
distance. There are other options that we could consider as well. Another
common method is to weight by the inverse squared distance.



Working with Text-Based
Distances
Nearest neighbors is more versatile than just dealing with numbers. As long
as we have a way to measure distances between features, we can apply the
nearest neighbors algorithm. In this recipe, we will introduce how to
measure text distances with TensorFlow.

Getting ready
In this recipe, we will illustrate how to use TensorFlow's text distance
metric, the Levenshtein distance (the edit distance), between strings. This
will be important later in this chapter as we expand the nearest neighbor
methods to include features with text.

The Levenshtein distance is the minimal number of edits to get from one
string to another string. The allowed edits are inserting a character,
deleting a character, or substituting a character with a different one. For
this recipe, we will use TensorFlow's Levenshtein distance function,
edit_distance(). It is worthwhile to illustrate the use of this function
because the usage of this function will be applicable to later chapters.

Note

Note that TensorFlow's edit_distance() function only accepts sparse
tensors. We will have to create our strings as sparse tensors of individual
characters.

How to do it…
1. First, we load TensorFlow and initialize a graph:

import tensorflow as tf
sess = tf.Session()



2. Then we will show how to calculate the edit distance between two
words, 'bear' and 'beer'. First, we will create a list of characters
from our strings with Python's 'list()' function. Next, we create a
sparse 3D matrix from that list. We have to tell TensorFlow the
character indices, the shape of the matrix, and which characters we
want in the tensor. After this we can decide if we would like to go with
the total edit distance (normalize=False) or the normalized edit
distance (normalize=True), where we divide the edit distance by the
length of the second word:

Note

TensorFlow's documentation treats the two strings as a proposed
(hypothesis) string and a ground truth string. We will continue this
notation here with h and t tensors.

hypothesis = list('bear'')
truth = list('beers'')
h1 = tf.SparseTensor([[0,0,0], [0,0,1], [0,0,2], [0,0,3]],
                     hypothesis, [1,1,1])
t1 = tf.SparseTensor([[0,0,0], [0,0,1], [0,0,2], [0,0,3],
[0,0,4]], truth, [1,1,1])

print(sess.run(tf.edit_distance(h1, t1, normalize=False)))

3. This results in the following output:

[[ 2.]]

Note

The function, SparseTensorValue(), is a way to create a sparse tensor
in TensorFlow. It accepts the indices, values, and shape of a sparse
tensor we wish to create.

4. Next, we will illustrate how to compare two words, bear and beer,
both with another word, beers. In order to achieve this, we must
replicate the beers in order to have the same amount of comparable
words:



hypothesis2 = list('bearbeer')
truth2 = list('beersbeers')
h2 = tf.SparseTensor([[0,0,0], [0,0,1], [0,0,2], [0,0,3], 
[0,1,0], [0,1,1], [0,1,2], [0,1,3]], hypothesis2, [1,2,4])
t2 = tf.SparseTensor([[0,0,0], [0,0,1], [0,0,2], [0,0,3], 
[0,0,4], [0,1,0], [0,1,1], [0,1,2], [0,1,3], [0,1,4]], 
truth2, [1,2,5])

print(sess.run(tf.edit_distance(h2, t2, normalize=True)))

5. This results in the following output:

[[ 0.40000001  0.2       ]]

6. A more efficient way to compare a set of words against another word
is shown in this example. We create the indices and list of characters
beforehand for both the hypothesis and ground truth string:

hypothesis_words = ['bear','bar','tensor','flow']
truth_word = ['beers'']
num_h_words = len(hypothesis_words)
h_indices = [[xi, 0, yi] for xi,x in 
enumerate(hypothesis_words) for yi,y in enumerate(x)]
h_chars = list('''.join(hypothesis_words))
h3 = tf.SparseTensor(h_indices, h_chars, [num_h_words,1,1])
truth_word_vec = truth_word*num_h_words
t_indices = [[xi, 0, yi] for xi,x in 
enumerate(truth_word_vec) for yi,y in enumerate(x)]
t_chars = list('''.join(truth_word_vec))
t3 = tf.SparseTensor(t_indices, t_chars, [num_h_words,1,1])

print(sess.run(tf.edit_distance(h3, t3, normalize=True)))

7. This results in the following output:

[[ 0.40000001]
 [ 0.60000002]
 [ 0.80000001]
 [ 1.        ]]

8. Now we will illustrate how to calculate the edit distance between two
word lists using placeholders. The concept is the same, except we will
be feeding in SparseTensorValue() instead of sparse tensors. First, we



will create a function that creates the sparse tensors from a word list:

def create_sparse_vec(word_list):
    num_words = len(word_list)
    indices = [[xi, 0, yi] for xi,x in enumerate(word_list) 
for yi,y in enumerate(x)]
    chars = list('''.join(word_list))
    return(tf.SparseTensorValue(indices, chars, 
[num_words,1,1]))

hyp_string_sparse = create_sparse_vec(hypothesis_words)
truth_string_sparse = 
create_sparse_vec(truth_word*len(hypothesis_words))

hyp_input = tf.sparse_placeholder(dtype=tf.string)
truth_input = tf.sparse_placeholder(dtype=tf.string)

edit_distances = tf.edit_distance(hyp_input, truth_input, 
normalize=True)

feed_dict = {hyp_input: hyp_string_sparse,
             truth_input: truth_string_sparse}
             
print(sess.run(edit_distances, feed_dict=feed_dict))

9. This results in the following output:

[[ 0.40000001]
 [ 0.60000002]
 [ 0.80000001]
 [ 1.        ]]

How it works…
For this recipe, we have shown that we can measure text distances several
ways using TensorFlow. This will be extremely useful for performing
nearest neighbors on data that has text features. We will see more of this
later in the chapter when we perform address matching.

There's more…



Other text distance metrics exist that we should discuss. Here is a
definition table describing other various text distances between two
strings, s1 and s2:

Name Description Formula

Hamming
distance

Number of equal character positions. Only valid if
the strings are equal length. , where I is an indicator function of

equal characters.

Cosine
distance

The dot product of the k-gram differences divided
by the L2 norm of the k-gram differences.

Jaccard
distance

Number of characters in common divided by the
total union of characters in both strings.



Computing with Mixed Distance
Functions
When dealing with data observations that have multiple features, we
should be aware that features can be scaled differently on different scales.
In this recipe, we account for that to improve our housing value
predictions.

Getting ready
It is important to extend the nearest neighbor algorithm to take into
account variables that are scaled differently. In this example, we will show
how to scale the distance function for different variables. Specifically, we
will scale the distance function as a function of the feature variance.

The key to weighting the distance function is to use a weight matrix. The
distance function written with matrix operations becomes the following
formula:

Here, A is a diagonal weight matrix that we use to scale the distance metric
for each feature.

For this recipe, we will try to improve our MSE on the Boston housing
value dataset. This dataset is a great example of features that are on
different scales, and the nearest neighbor algorithm would benefit from
scaling the distance function.

How to do it…



1. First, we will load the necessary libraries and start a graph session:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import requests
sess = tf.Session()

2. Next, we load the data and store it in a numpy array. Again, note that
we will only use certain columns for prediction. We do not use id
variables nor variables that have very low variance:

housing_url = 'https://archive.ics.uci.edu/ml/machine-
learning-databases/housing/housing.data''
housing_header = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 
'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT', 'MEDV']
cols_used = ['CRIM', 'INDUS', 'NOX', 'RM', 'AGE', 'DIS', 
'TAX', 'PTRATIO', 'B', 'LSTAT']
num_features = len(cols_used)
housing_file = requests.get(housing_url)
housing_data = [[float(x) for x in y.split(' ') if len(x)>=1] 
for y in housing_file.text.split('\n') if len(y)>=1]
y_vals = np.transpose([np.array([y[13] for y in 
housing_data])])
x_vals = np.array([[x for i,x in enumerate(y) if 
housing_header[i] in cols_used] for y in housing_data])

3. Now we scale the x values to be between zero and 1 with min-max
scaling:

x_vals = (x_vals - x_vals.min(0)) / x_vals.ptp(0)

4. We now create the diagonal weight matrix that will provide the scaling
of the distance metric by the standard deviation of the features:

weight_diagonal = x_vals.std(0)
weight_matrix = tf.cast(tf.diag(weight_diagonal), 
dtype=tf.float32)

5. Now we split the data into a training and test set. We also declare k,
the amount of nearest neighbors, and make the batch size equal to the
test set size:



train_indices = np.random.choice(len(x_vals), 
round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - 
set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]
k = 4
batch_size=len(x_vals_test)

6. We declare our placeholders that we need next. We have four
placeholders, the x-inputs and y-targets for both the training and test
set:

x_data_train = tf.placeholder(shape=[None, num_features], 
dtype=tf.float32)
x_data_test = tf.placeholder(shape=[None, num_features], 
dtype=tf.float32)
y_target_train = tf.placeholder(shape=[None, 1], 
dtype=tf.float32)
y_target_test = tf.placeholder(shape=[None, 1], 
dtype=tf.float32)

7. Now we can declare our distance function. For readability, we break
up the distance function into its components. Note that we will have
to tile the weight matrix by the batch size and use the batch_matmul()
function to perform batch matrix multiplication across the batch size:

subtraction_term =  tf.sub(x_data_train, 
tf.expand_dims(x_data_test,1))
first_product = tf.batch_matmul(subtraction_term, 
tf.tile(tf.expand_dims(weight_matrix,0), [batch_size,1,1]))
second_product = tf.batch_matmul(first_product, 
tf.transpose(subtraction_term, perm=[0,2,1]))
distance = tf.sqrt(tf.batch_matrix_diag_part(second_product))

8. After we calculate all the training distances for each test point, we
need to return the top k-NNs. We do this with the top_k() function.
Since this function returns the largest values, and we want the smallest
distances, we return the largest of the negative distance values. We
then want to make predictions as the weighted average of the



distances of the top k neighbors:

top_k_xvals, top_k_indices = tf.nn.top_k(tf.neg(distance), 
k=k)
x_sums = tf.expand_dims(tf.reduce_sum(top_k_xvals, 1),1)
x_sums_repeated = tf.matmul(x_sums,tf.ones([1, k], 
tf.float32))
x_val_weights = 
tf.expand_dims(tf.div(top_k_xvals,x_sums_repeated), 1)
top_k_yvals = tf.gather(y_target_train, top_k_indices)
prediction = 
tf.squeeze(tf.batch_matmul(x_val_weights,top_k_yvals), 
squeeze_dims=[1])

9. To evaluate our model, we calculate the MSE of our predictions:

mse = tf.div(tf.reduce_sum(tf.square(tf.sub(prediction, 
y_target_test))), batch_size)

10. Now we can loop through our test batches and calculate the MSE for
each:

num_loops = int(np.ceil(len(x_vals_test)/batch_size))
for i in range(num_loops):
    min_index = i*batch_size
    max_index = min((i+1)*batch_size,len(x_vals_train))
    x_batch = x_vals_test[min_index:max_index]
    y_batch = y_vals_test[min_index:max_index]
    predictions = sess.run(prediction, feed_dict=
{x_data_train: x_vals_train, x_data_test: x_batch, 
y_target_train: y_vals_train, y_target_test: y_batch})
    batch_mse = sess.run(mse, feed_dict={x_data_train: 
x_vals_train, x_data_test: x_batch, y_target_train: 
y_vals_train, y_target_test: y_batch})
    print('Batch #'' + str(i+1) + '' MSE: '' + 
str(np.round(batch_mse,3)))

11. This results in the following output:

Batch #1 MSE: 21.322

12. As a final comparison, we can plot the distribution of housing values
for the actual test set and the predictions on the test set with the
following code:



bins = np.linspace(5, 50, 45)
plt.hist(predictions, bins, alpha=0.5, label='Prediction'')
plt.hist(y_batch, bins, alpha=0.5, label='Actual'')
plt.title('Histogram of Predicted and Actual Values'')
plt.xlabel('Med Home Value in $1,000s'')
plt.ylabel('Frequency'')
plt.legend(loc='upper right'')
plt.show()

Figure 3: The two histograms of the predicted and actual housing
values on the Boston dataset. This time we have scaled the distance

function differently for each feature.

How it works…
We decreased our MSE on the test set here by introducing a method of
scaling the distance functions for each feature. Here, we scaled the
distance functions by a factor of the feature's standard deviation. This
provides a more accurate view of measuring which points are the closest
neighbors or not. From this we also took the weighted average of the top k
neighbors as a function of distance to get the housing value prediction.

There's more…



This scaling factor can also be used to down-weight or up-weight features
in the nearest neighbor distance calculation. This can be useful in
situations where we trust features more or less than others.



Using an Address Matching
Example
Now that we have measured numerical and text distances, we will spend
time learning how to combine them to measure distances between
observations that have both text and numerical features.

Getting ready
Nearest neighbor is a great algorithm to use for address matching. Address
matching is a type of record matching in which we have addresses in
multiple datasets and we would like to match them up. In address
matching, we may have typos in the address, different cities, or different
zip codes, but they may all refer to the same address. Using the nearest
neighbor algorithm across the numerical and character components of an
address may help us identify addresses that are actually the same.

In this example, we will generate two datasets. Each dataset will comprise
a street address and a zip code. But one dataset has a high number of typos
in the street address. We will take the non-typo dataset as our gold
standard and return one address from it for each typo address that is the
closest as a function of the string distance (for the street) and numerical
distance (for the zip code).

The first part of the code will focus on generating the two datasets. Then
the second part of the code will run through the test set and return the
closest address from the training set.

How to do it…
1. We first start by loading the necessary libraries:

import random
import string



import numpy as np
import tensorflow as tf

2. We will now create the reference dataset. To show succinct output, we
will only make each dataset comprise of 10 addresses (but it can be
run with many more):

n = 10
street_names = ['abbey', 'baker', 'canal', 'donner', 'elm']
street_types = ['rd', 'st', 'ln', 'pass', 'ave']
rand_zips = [random.randint(65000,65999) for i in range(5)]
numbers = [random.randint(1, 9999) for i in range(n)]
streets = [random.choice(street_names) for i in range(n)]
street_suffs = [random.choice(street_types) for i in 
range(n)]
zips = [random.choice(rand_zips) for i in range(n)]
full_streets = [str(x) + ' ' + y + ' ' + z for x,y,z in 
zip(numbers, streets, street_suffs)]
reference_data = [list(x) for x in zip(full_streets,zips)]

3. To create the test set, we need a function that will randomly create a
typo in a string and return the resulting string:

def create_typo(s, prob=0.75):
    if random.uniform(0,1) < prob:
        rand_ind = random.choice(range(len(s)))
        s_list = list(s)
        
s_list[rand_ind]=random.choice(string.ascii_lowercase)
        s = '''.join(s_list)
    return(s)
typo_streets = [create_typo(x) for x in streets]
typo_full_streets = [str(x) + ' ' + y + ' ' + z for x,y,z in 
zip(numbers, typo_streets, street_suffs)]
test_data = [list(x) for x in zip(typo_full_streets,zips)]

4. Now we can initialize a graph session and declare the placeholders we
need. We will need four placeholders in each test and reference set,
and we will need an address and zip code placeholder:

sess = tf.Session()
test_address = tf.sparse_placeholder( dtype=tf.string)
test_zip = tf.placeholder(shape=[None, 1], dtype=tf.float32)



ref_address = tf.sparse_placeholder(dtype=tf.string)
ref_zip = tf.placeholder(shape=[None, n], dtype=tf.float32)

5. Now we declare the numerical zip distance and the edit distance for
the address string:

zip_dist = tf.square(tf.sub(ref_zip, test_zip))
address_dist = tf.edit_distance(test_address, ref_address, 
normalize=True)

6. We now convert the zip distance and the address distance into
similarities. For the similarities, we want a similarity of 1 when the two
inputs are exactly the same and near 0 when they are very different.
For the zip distance, we can do this by taking the distances,
subtracting from the max, and then dividing by the range of the
distances. For the address similarity, since the distance is already
scaled between 0 and 1, we just subtract it from 1 to get the similarity:

zip_max = tf.gather(tf.squeeze(zip_dist), tf.argmax(zip_dist, 
1))
zip_min = tf.gather(tf.squeeze(zip_dist), tf.argmin(zip_dist, 
1))
zip_sim = tf.div(tf.sub(zip_max, zip_dist), tf.sub(zip_max, 
zip_min))
address_sim = tf.sub(1., address_dist)

7. To combine the two similarity functions, we take a weighted average
of the two. For this recipe, we put equal weight on the address and the
zip code. We can also change this depending on how much we trust
each feature. We then return the index of the highest similarity of the
reference set:

address_weight = 0.5
zip_weight = 1. - address_weight
weighted_sim = tf.add(tf.transpose(tf.mul(address_weight, 
address_sim)), tf.mul(zip_weight, zip_sim))
top_match_index = tf.argmax(weighted_sim, 1)

8. In order to use the edit distance in TensorFlow, we have to convert the
address strings to a sparse vector. In a prior recipe in this chapter,
Working with Text- Based Distances recipe, we created the following



function and will use it in this recipe as well:

def sparse_from_word_vec(word_vec):
    num_words = len(word_vec)
    indices = [[xi, 0, yi] for xi,x in enumerate(word_vec) 
for yi,y in enumerate(x)]
    chars = list('''.join(word_vec))
    # Now we return our sparse vector
    return(tf.SparseTensorValue(indices, chars, 
[num_words,1,1]))

9. We need to separate the addresses and zip codes in the reference
dataset, so we can feed them into the placeholders when we loop
through the test set:

reference_addresses = [x[0] for x in reference_data]
reference_zips = np.array([[x[1] for x in reference_data]])

10. We need to create the sparse tensor set of reference addresses using
the function we created in step 8:

sparse_ref_set = sparse_from_word_vec(reference_addresses)

11. Now we can loop though each entry of the test set and return the
index of the reference set that it is the closest to. We print off both the
test and reference for each entry. As you can see, we have great
results on this generated dataset:

for i in range(n):
    test_address_entry = test_data[i][0]
    test_zip_entry = [[test_data[i][1]]]
    
    # Create sparse address vectors
    test_address_repeated = [test_address_entry] * n
    sparse_test_set = 
sparse_from_word_vec(test_address_repeated)
    
    feeddict={test_address: sparse_test_set,
               test_zip: test_zip_entry,
               ref_address: sparse_ref_set,
               ref_zip: reference_zips}
    best_match = sess.run(top_match_index, 
feed_dict=feeddict)



    best_street = reference_addresses[best_match]
    [best_zip] = reference_zips[0][best_match]
    [[test_zip_]] = test_zip_entry
    print('Address: '' + str(test_address_entry) + '', '' + 
str(test_zip_))
    print('Match  : '' + str(best_street) + '', '' + 
str(best_zip))

12. This results in the following output:

Address: 8659 beker ln, 65463
Match  : 8659 baker ln, 65463
Address: 1048 eanal ln, 65681
Match  : 1048 canal ln, 65681
Address: 1756 vaker st, 65983
Match  : 1756 baker st, 65983
Address: 900 abbjy pass, 65983
Match  : 900 abbey pass, 65983
Address: 5025 canal rd, 65463
Match  : 5025 canal rd, 65463
Address: 6814 elh st, 65154
Match  : 6814 elm st, 65154
Address: 3057 cagal ave, 65463
Match  : 3057 canal ave, 65463
Address: 7776 iaker ln, 65681
Match  : 7776 baker ln, 65681
Address: 5167 caker rd, 65154
Match  : 5167 baker rd, 65154
Address: 8765 donnor st, 65154
Match  : 8765 donner st, 65154

How it works…
One of the hard things to figure out in address matching problems like this
is the value of the weights and how to scale the distances. This may take
some exploration and insight into the data itself. Also, when dealing with
addresses we may consider different components than we did here. We
may consider the street number a separate component from the street
address, or even have other components, such as city and state. When
dealing with numerical address components, note that they can be treated



as numbers (with a numerical distance) or as characters (with an edit
distance). It is up to you to choose how. Also note that we might consider
using an edit distance with the zip code if we think that typos in the zip
code come from human entry and not, say, computer mapping errors.

To get a feel for how typos affect the results, we encourage the reader to
change the typo function to make more typos or more frequent typos and
increase the dataset's size to see how well this algorithm works.



Using Nearest Neighbors for Image
Recognition
Getting ready
Nearest neighbors can also be used for image recognition. The Hello
World of image recognition datasets is the MNIST handwritten digit
dataset. Since we will be using this dataset for various neural network
image recognition algorithms in later chapters, it will be great to compare
the results to a non-neural network algorithm.

The MNIST digit dataset is composed of thousands of labeled images that
are 28x28 pixels in size. Although this is considered to be a small image, it
has a total of 784 pixels (or features) for the nearest neighbor algorithm.
We will compute the nearest neighbor prediction for this categorical
problem by considering the mode prediction of the nearest k neighbors
(k=4 in this example).

How to do it…
1. We start by loading the necessary libraries. Note that we will also

import the Python Image Library (PIL) to be able to plot a sample
of the predicted outputs. And TensorFlow has a built-in method to load
the MNIST dataset that we will use:

import random
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from PIL import Image
from tensorflow.examples.tutorials.mnist import input_data

2. Now we start a graph session and load the MNIST data in a one hot
encoded form:

sess = tf.Session()



mnist = input_data.read_data_sets("MNIST_data/"", 
one_hot=True)

Note

One hot encoding is a numerical representation of categorical values
that are better suited for numerical computations. Here we have 10
categories (numbers 0-9), and represent them as a 0-1 vector of length
10. For example, the '0' category is denoted by the vector
1,0,0,0,0,0,0,0,0,0, the 1 vector is denoted by 0,1,0,0,0,0,0,0,0,0, and
so on.

3. Because the MNIST dataset is large and computing the distances
between 784 features on tens of thousands of inputs would be
computationally hard, we will sample a smaller set of images to train
on. Also, we choose a test set number that is divisible by six six only
for plotting purposes, as we will plot the last batch of six images to see
a sample of the results:

train_size = 1000
test_size = 102
rand_train_indices = 
np.random.choice(len(mnist.train.images), train_size, 
replace=False)
rand_test_indices = np.random.choice(len(mnist.test.images), 
test_size, replace=False)
x_vals_train = mnist.train.images[rand_train_indices]
x_vals_test = mnist.test.images[rand_test_indices]
y_vals_train = mnist.train.labels[rand_train_indices]
y_vals_test = mnist.test.labels[rand_test_indices]

4. We declare our k value and batch size:

k = 4
batch_size=6

5. Now we initialize our placeholders that we will feed in the graph:

x_data_train = tf.placeholder(shape=[None, 784], 
dtype=tf.float32)
x_data_test = tf.placeholder(shape=[None, 784], 



dtype=tf.float32)
y_target_train = tf.placeholder(shape=[None, 10], 
dtype=tf.float32)
y_target_test = tf.placeholder(shape=[None, 10], 
dtype=tf.float32)

6. We declare our distance metric. Here we will use the L1 metric
(absolute value):

distance = tf.reduce_sum(tf.abs(tf.sub(x_data_train, 
tf.expand_dims(x_data_test,1))), reduction_indices=2)

Note

Note that we can also make our distance function use the L2 distance
by using the following code instead: distance =
tf.sqrt(tf.reduce_sum(tf.square(tf.sub(x_data_train,
tf.expand_dims(x_data_test,1))), reduction_indices=1))

7. Now we find the top k images that are the closest and predict the
mode. The mode will be performed on one hot encoded indices and
counting which occurs the most:

top_k_xvals, top_k_indices = tf.nn.top_k(tf.neg(distance), 
k=k)
prediction_indices = tf.gather(y_target_train, top_k_indices)
count_of_predictions = tf.reduce_sum(prediction_indices, 
reduction_indices=1)
prediction = tf.argmax(count_of_predictions, dimension=1)

8. We can now loop through our test set, compute the predictions, and
store them:

num_loops = int(np.ceil(len(x_vals_test)/batch_size))
test_output = []
actual_vals = []
for i in range(num_loops):
    min_index = i*batch_size
    max_index = min((i+1)*batch_size,len(x_vals_train))
    x_batch = x_vals_test[min_index:max_index]
    y_batch = y_vals_test[min_index:max_index]
    predictions = sess.run(prediction, feed_dict=
{x_data_train: x_vals_train, x_data_test: x_batch,



                                         y_target_train: 
y_vals_train, y_target_test: y_batch})
    test_output.extend(predictions)
    actual_vals.extend(np.argmax(y_batch, axis=1))

9. Now that we have saved the actual and predicted output, we can
calculate the accuracy. This will change due to our random sampling
of the test/training datasets, but we should end up with accuracies of
around 80% to 90%:

accuracy = sum([1./test_size for i in range(test_size) if 
test_output[i]==actual_vals[i]])
print('Accuracy on test set: '' + str(accuracy))
Accuracy on test set: 0.8333333333333325

10. Here is the code to plot the last batch results:

actuals = np.argmax(y_batch, axis=1)
Nrows = 2
Ncols = 3
for i in range(len(actuals)):
    plt.subplot(Nrows, Ncols, i+1)
    plt.imshow(np.reshape(x_batch[i], [28,28]), 
cmap='Greys_r'')
    plt.title('Actual: '' + str(actuals[i]) + '' Pred: '' + 
str(predictions[i]), fontsize=10)
    frame = plt.gca()
    frame.axes.get_xaxis().set_visible(False)
    frame.axes.get_yaxis().set_visible(False)



Figure 4: The last batch of six images we ran our nearest neighbor
prediction on. We can see that we do not get all of the images exactly

correct

How it works…
Given enough computation time and computational resources, we could
have made the test and training sets bigger. This probably would have
increased our accuracy, and also is a common way to prevent overfitting.
Also, this algorithm warrants further exploration on the ideal k value to
choose. The k value would be chosen after a set of cross-validation
experiments on the dataset.

There's more…
We can also use the nearest neighbor algorithm here for evaluating unseen
numbers from the user as well. Please see the online repository for a way
to use this model to evaluate user input digits here:
https://github.com/nfmcclure/tensorflow_cookbook.

In this chapter, we've explored how to use kNN algorithms for regression
and classification. We've talked about the different usage of distance
functions and how to mix them together. We encourage the reader to
explore different distance metrics, weights, and k values to optimize the
accuracy of these methods.

https://github.com/nfmcclure/tensorflow_cookbook


Chapter 6. Neural Networks
In this chapter, we will introduce neural networks and how to implement
them in TensorFlow. Most of the subsequent chapters will be based on
neural networks, so learning how to use them in TensorFlow is very
important. We will start by introducing basic concepts of neural
networking and work up to multilayer networks. In the last section, we will
create a neural network that learns to play Tic Tac Toe.

In this chapter, we'll cover the following recipes:
Implementing Operational Gates
Working with Gates and Activation Functions
Implementing a One-Layer Neural Network
Implementing Different Layers
Using Multilayer Networks
Improving Predictions of Linear Models
Learning to Play Tic Tac Toe

The reader can find all the code from this chapter online, at
https://github.com/nfmcclure/tensorflow_cookbook.

Introduction
Neural networks are currently breaking records in tasks such as image and
speech recognition, reading handwriting, understanding text, image
segmentation, dialog systems, autonomous car driving, and so much more.
While some of these aforementioned tasks will be covered in later
chapters, it is important to introduce neural networks as an easy-to-
implement machine learning algorithm, so that we can expand on it later.

The concept of a neural network has been around for decades. However, it
only recently gained traction computationally because we now have the
computational power to train large networks because of advances in

https://github.com/nfmcclure/tensorflow_cookbook


processing power, algorithm efficiency, and data sizes.

A neural network is basically a sequence of operations applied to a matrix
of input data. These operations are usually collections of additions and
multiplications followed by applications of non-linear functions. One
example that we have already seen is logistic regression, the last section in
Chapter 3, Linear Regression. Logistic regression is the sum of the partial
slope-feature products followed by the application of the sigmoid function,
which is non-linear. Neural networks generalize this a bit more by allowing
any combination of operations and non-linear functions, which includes
the applications of absolute value, maximum, minimum, and so on.

The important trick with neural networks is called 'backpropagation'. Back
propagation is a procedure that allows us to update the model variables
based on the learning rate and the output of the loss function. We used
back propagation to update our model variables in the Chapter 3, Linear
Regression and Chapter 4, and the Support Vector Machine.

Another important feature to take note of in neural networks is the non-
linear activation function. Since most neural networks are just
combinations of addition and multiplication operations, they will not be
able to model non-linear datasets. To address this issue, we have used the
non-linear activation functions in the neural networks. This will allow the
neural network to adapt to most non-linear situations.

It is important to remember that, like most of the algorithms we have seen
so far, neural networks are sensitive to the hyper-parameters that we
choose. In this chapter, we will see the impact of different learning rates,
loss functions, and optimization procedures.

Note

There are more resources for learning about neural networks that are more
in-depth and detailed.



The seminal paper describing back propagation is Efficient BackProp by
Yann LeCun and others. The PDF is located here:
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf.

CS231, Convolutional Neural Networks for Visual Recognition, by
Stanford University, class resources available here:
http://cs231n.stanford.edu/.

CS224d, Deep Learning for Natural Language Processing, by Stanford
University, class resources available here:http://cs224d.stanford.edu/.

Deep Learning, a book by the MIT Press. Goodfellow and others, 2016.
Located here: http://www.deeplearningbook.org.

There is an online book called Neural Networks and Deep Learning by
Michael Nielsen, located here:
http://neuralnetworksanddeeplearning.com/.

For a more pragmatic approach and introduction to neural networks,
Andrej Karpathy has written a great summary and JavaScript examples
called A Hacker's Guide to Neural Networks. The write-up is located here:
http://karpathy.github.io/neuralnets/.

Another site that summarizes some good notes on deep learning is called
Deep Learning for Beginners by Ian Goodfellow, Yoshua Bengio, and
Aaron Courville. This web page can be found here:
http://randomekek.github.io/deep/deeplearning.html.

http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf
http://cs231n.stanford.edu/
http://cs224d.stanford.edu/
http://www.deeplearningbook.org
http://neuralnetworksanddeeplearning.com/
http://karpathy.github.io/neuralnets/
http://randomekek.github.io/deep/deeplearning.html


Implementing Operational Gates
One of the most fundamental concepts of neural networks is an operation
known as an operational gate. In this section, we will start with a
multiplication operation as a gate and then we will consider nested gate
operations.

Getting ready
The first operational gate we will implement looks like f(x)=a.x. To
optimize this gate, we declare the a input as a variable and the x input as a
placeholder. This means that TensorFlow will try to change the a value and
not the x value. We will create the loss function as the difference between
the output and the target value, which is 50.

The second, nested operational gate will be f(x)=a.x+b. Again, we will
declare a and b as variables and x as a placeholder. We optimize the output
toward the target value of 50 again. The interesting thing to note is that the
solution for this second example is not unique. There are many
combinations of model variables that will allow the output to be 50. With
neural networks, we do not care as much for the values of the intermediate
model variables, but place more emphasis on the desired output.

Think of the operations as operational gates on our computational graph.
Here is a figure depicting the two examples:



Figure 1: Two operational gate examples in this section.

How to do it…
To implement the first operational f(x)=a.x in TensorFlow and train the
output toward the value of 50, follow these steps:
1. We start off by loading TensorFlow and creating a graph session:

import tensorflow as tf
sess = tf.Session()



2. Now, we declare our model variable, input data, and placeholder. We
make our input data equal to the value 5, so that the multiplication
factor to get 50 will be 10 (that is, 5X10=50):

a = tf.Variable(tf.constant(4.))
x_val = 5.
x_data = tf.placeholder(dtype=tf.float32)

3. Next we add the operation to our computational graph:

multiplication = tf.mul(a, x_data)

4. We will declare the loss function as the L2 distance between the
output and the desired target value of 50:

loss = tf.square(tf.sub(multiplication, 50.))

5. Now we initialize our model variable and declare our optimizing
algorithm as the standard gradient descent:

init = tf.initialize_all_variables()
sess.run(init)
my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)

6. We can now optimize our model output towards the desired value of
50. We do this by continually feeding in the input value of 5 and back
propagating the loss to update the model variable towards the value of
10:

print('Optimizing a Multiplication Gate Output to 50.')
for i in range(10):
    sess.run(train_step, feed_dict={x_data: x_val})
    a_val = sess.run(a)
    mult_output = sess.run(multiplication, feed_dict={x_data: 
x_val})
print(str(a_val) + ' * ' + str(x_val) + ' = ' + 
str(mult_output))

7. This results in the following output:

Optimizing a Multiplication Gate Output to 50.
7.0 * 5.0 = 35.0



8.5 * 5.0 = 42.5
9.25 * 5.0 = 46.25
9.625 * 5.0 = 48.125
9.8125 * 5.0 = 49.0625
9.90625 * 5.0 = 49.5312
9.95312 * 5.0 = 49.7656
9.97656 * 5.0 = 49.8828
9.98828 * 5.0 = 49.9414
9.99414 * 5.0 = 49.9707

8. Next, we will do the same with a two-nested operations, f(x)=a.x+b.
9. We will start in exactly same way as the preceding example, except

now we'll initialize two model variables, a and b:

from tensorflow.python.framework import ops
ops.reset_default_graph()
sess = tf.Session()

a = tf.Variable(tf.constant(1.))
b = tf.Variable(tf.constant(1.))
x_val = 5.
x_data = tf.placeholder(dtype=tf.float32)

two_gate = tf.add(tf.mul(a, x_data), b)

loss = tf.square(tf.sub(two_gate, 50.))

my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step = my_opt.minimize(loss)

init = tf.initialize_all_variables()
sess.run(init)

10. We now optimize the model variables to train the output towards the
target value of 50:

print('\nOptimizing Two Gate Output to 50.')
for i in range(10):
    # Run the train step
    sess.run(train_step, feed_dict={x_data: x_val})
    # Get the a and b values
    a_val, b_val = (sess.run(a), sess.run(b))
    # Run the two-gate graph output



    two_gate_output = sess.run(two_gate, feed_dict={x_data: 
x_val})
    print(str(a_val) + ' * ' + str(x_val) + ' + ' + 
str(b_val) + ' = ' + str(two_gate_output))

11. This results in the following output:

Optimizing Two Gate Output to 50.
5.4 * 5.0 + 1.88 = 28.88
7.512 * 5.0 + 2.3024 = 39.8624
8.52576 * 5.0 + 2.50515 = 45.134
9.01236 * 5.0 + 2.60247 = 47.6643
9.24593 * 5.0 + 2.64919 = 48.8789
9.35805 * 5.0 + 2.67161 = 49.4619
9.41186 * 5.0 + 2.68237 = 49.7417
9.43769 * 5.0 + 2.68754 = 49.876
9.45009 * 5.0 + 2.69002 = 49.9405
9.45605 * 5.0 + 2.69121 = 49.9714

Note

It is important to note here that the solution to the second example is
not unique. This does not matter as much in neural networks, as all
parameters are adjusted towards reducing the loss. The final solution
here will depend on the initial values of a and b. If these were
randomly initialized, instead of to the value of 1, we would see
different ending values for the model variables for each iteration.

How it works…
We achieved the optimization of a computational gate via TensorFlow's
implicit back propagation. TensorFlow keeps track of our model's
operations and variable values and makes adjustments in respect of our
optimization algorithm specification and the output of the loss function.

We can keep expanding the operational gates, while keeping track of
which inputs are variables and which inputs are data. This is important to
keep track of, because TensorFlow will change all variables to minimize
the loss, but not the data, which is declared as placeholders.



The implicit ability to keep track of the computational graph and update
the model variables automatically with every training step is one of the
great features of TensorFlow and what makes it so powerful.



Working with Gates and
Activation Functions
Now that we can link together operational gates, we will want to run the
computational graph output through an activation function. Here we
introduce common activation functions.

Getting ready
In this section, we will compare and contrast two different activation
functions, the sigmoid and the rectified linear unit (ReLU). Recall that
the two functions are given by the following equations:

In this example, we will create two one-layer neural networks with the
same structure except one will feed through the sigmoid activation and one
will feed through the ReLU activation. The loss function will be governed
by the L2 distance from the value 0.75. We will randomly pull batch data
from a normal distribution (Normal(mean=2, sd=0.1)), and optimize the
output towards 0.75.

How to do it…
1. We'll start by loading the necessary libraries and initializing a graph.

This is also a good point to bring up how to set a random seed with
TensorFlow. Since we will be using a random number generator from
NumPy and TensorFlow, we need to set a random seed for both. With
the same random seeds set, we should be able to replicate:



import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
sess = tf.Session()
tf.set_random_seed(5)
np.random.seed(42)

2. Now we'll declare our batch size, model variables, data, and a
placeholder for feeding the data in. Our computational graph will
consist of feeding in our normally distributed data into two similar
neural networks that differ only by the activation function at the end:

batch_size = 50
a1 = tf.Variable(tf.random_normal(shape=[1,1]))
b1 = tf.Variable(tf.random_uniform(shape=[1,1]))
a2 = tf.Variable(tf.random_normal(shape=[1,1]))
b2 = tf.Variable(tf.random_uniform(shape=[1,1]))
x = np.random.normal(2, 0.1, 500)
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)

3. Next, we'll declare our two models, the sigmoid activation model and
the ReLU activation model:

sigmoid_activation = tf.sigmoid(tf.add(tf.matmul(x_data, a1), 
b1))
relu_activation = tf.nn.relu(tf.add(tf.matmul(x_data, a2), 
b2))

4. The loss functions will be the average L2 norm between the model
output and the value of 0.75:

loss1 = tf.reduce_mean(tf.square(tf.sub(sigmoid_activation, 
0.75)))
loss2 = tf.reduce_mean(tf.square(tf.sub(relu_activation, 
0.75)))

5. Now we declare our optimization algorithm and initialize our variables:

my_opt = tf.train.GradientDescentOptimizer(0.01)
train_step_sigmoid = my_opt.minimize(loss1)
train_step_relu = my_opt.minimize(loss2)
init = tf.initialize_all_variables()
sess.run(init)



6. Now we'll loop through our training for 750 iterations for both models.
We will also save the loss output and the activation output values for
plotting after:

loss_vec_sigmoid = []
loss_vec_relu = []
activation_sigmoid = []
activation_relu = []
for i in range(750):
    rand_indices = np.random.choice(len(x), size=batch_size)
    x_vals = np.transpose([x[rand_indices]])
    sess.run(train_step_sigmoid, feed_dict={x_data: x_vals})
    sess.run(train_step_relu, feed_dict={x_data: x_vals})

    loss_vec_sigmoid.append(sess.run(loss1, feed_dict=
{x_data: x_vals}))
    loss_vec_relu.append(sess.run(loss2, feed_dict={x_data: 
x_vals}))    

activation_sigmoid.append(np.mean(sess.run(sigmoid_activation
, feed_dict={x_data: x_vals})))
activation_relu.append(np.mean(sess.run(relu_activation, 
feed_dict={x_data: x_vals})))

7. The following is the code to plot the loss and the activation outputs:

plt.plot(activation_sigmoid, 'k-', label='Sigmoid 
Activation')
plt.plot(activation_relu, 'r--', label='Relu Activation')
plt.ylim([0, 1.0])
plt.title('Activation Outputs')
plt.xlabel('Generation')
plt.ylabel('Outputs')
plt.legend(loc='upper right')
plt.show()
plt.plot(loss_vec_sigmoid, 'k-', label='Sigmoid Loss')
plt.plot(loss_vec_relu, 'r--', label='Relu Loss')
plt.ylim([0, 1.0])
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.legend(loc='upper right')
plt.show()



Figure 2: Computational graph outputs from the network with the
sigmoid activation and a network with the ReLU activation.

The two neural networks work with similar architecture and target (0.75)
with two different activation functions, sigmoid and ReLU. It is important
to notice how much quicker the ReLU activation network converges to the
desired target of 0.75 than sigmoid:

Figure 3: This figure depicts the loss value of the sigmoid and the ReLU



activation networks. Notice how extreme the ReLU loss is at the
beginning of the iterations.

How it works…
Because of the form of the ReLU activation function, it returns the value
of zero much more often than the sigmoid function. We consider this
behavior as a type of sparsity. This sparsity results in a speed up of
convergence, but a loss of controlled gradients. On the other hand, the
sigmoid function has very well-controlled gradients and does not risk the
extreme values that the ReLU activation does:

Activation function Advantages Disadvantages

Sigmoid Less extreme outputs Slower convergence

ReLU Converges quicker Extreme output values possible

There's more…
In this section, we compared the ReLU activation function and the sigmoid
activation for neural networks. There are many other activation functions
that are commonly used for neural networks, but most fall into one of two
categories: the first category contains functions that are shaped like the
sigmoid function (arctan, hypertangent, heavyside step, and so on) and the
second category contains functions that are shaped like the ReLU function
(softplus, leaky ReLU, and so on). Most of what was discussed in this
section about comparing the two functions will hold true for activations in
either category. However, it is important to note that the choice of the
activation function has a big impact on the convergence and output of the
neural networks.



Implementing a One-Layer Neural
Network
We have all the tools to implement a neural network that operates on real
data. We will create a neural network with one layer that operates on the
Iris dataset.

Getting ready
In this section, we will implement a neural network with one hidden layer.
It will be important to understand that a fully connected neural network is
based mostly on matrix multiplication. As such, the dimensions of the data
and matrix are very important to get lined up correctly.

Since this is a regression problem, we will use the mean squared error as
the loss function.

How to do it…
1. To create the computational graph, we'll start by loading the necessary

libraries:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets

2. Now we'll load the Iris data and store the pedal length as the target
value. Then we'll start a graph session:

iris = datasets.load_iris()
x_vals = np.array([x[0:3] for x in iris.data])
y_vals = np.array([x[3] for x in iris.data])
sess = tf.Session()

3. Since the dataset is of a smaller size, we want to set a seed to make the
results reproducible:



seed = 2
tf.set_random_seed(seed)
np.random.seed(seed)

4. To prepare the data, we'll create a 80-20 train-test split and normalize
the x features to be between 0 and 1 via min-max scaling:

train_indices = np.random.choice(len(x_vals), 
round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - 
set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]
def normalize_cols(m):
    col_max = m.max(axis=0)
    col_min = m.min(axis=0)
    return (m-col_min) / (col_max - col_min)

x_vals_train = np.nan_to_num(normalize_cols(x_vals_train))
x_vals_test = np.nan_to_num(normalize_cols(x_vals_test))

5. Now we will declare the batch size and placeholders for the data and
target:

batch_size = 50
x_data = tf.placeholder(shape=[None, 3], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

6. The important part is to declare our model variables with the
appropriate shape. We can declare the size of our hidden layer to be
any size we wish; here we set it to have five hidden nodes:

hidden_layer_nodes = 5
A1 = tf.Variable(tf.random_normal(shape=
[3,hidden_layer_nodes]))
b1 = tf.Variable(tf.random_normal(shape=
[hidden_layer_nodes]))
A2 = tf.Variable(tf.random_normal(shape=
[hidden_layer_nodes,1]))
b2 = tf.Variable(tf.random_normal(shape=[1]))

7. We'll now declare our model in two steps. The first step will be



creating the hidden layer output and the second will be creating the
final output of the model:

Note

As a note, our model goes from (three features) (five hidden nodes)
(one output value).

hidden_output = tf.nn.relu(tf.add(tf.matmul(x_data, A1), b1))
final_output = tf.nn.relu(tf.add(tf.matmul(hidden_output, 
A2),
b2))

8. Here is our mean squared error as a loss function:

loss = tf.reduce_mean(tf.square(y_target - final_output))

9. Now we'll declare our optimizing algorithm and initialize our variables:

my_opt = tf.train.GradientDescentOptimizer(0.005)
train_step = my_opt.minimize(loss)
init = tf.initialize_all_variables()
sess.run(init)

10. Next we loop through our training iterations. We'll also initialize two
lists that we can store our train and test loss. In every loop we also
want to randomly select a batch from the training data for fitting to the
model:

# First we initialize the loss vectors for storage.
loss_vec = []
test_loss = []
for i in range(500):
    # First we select a random set of indices for the batch.
    rand_index = np.random.choice(len(x_vals_train), 
size=batch_size)
    # We then select the training values
    rand_x = x_vals_train[rand_index]
    rand_y = np.transpose([y_vals_train[rand_index]])
    # Now we run the training step
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    # We save the training loss



    temp_loss = sess.run(loss, feed_dict={x_data: rand_x, 
y_target: rand_y})
    loss_vec.append(np.sqrt(temp_loss))

    # Finally, we run the test-set loss and save it.
    test_temp_loss = sess.run(loss, feed_dict={x_data: 
x_vals_test, y_target: np.transpose([y_vals_test])})
    test_loss.append(np.sqrt(test_temp_loss))
    if (i+1)%50==0:
        print('Generation: ' + str(i+1) + '. Loss = ' + 
str(temp_loss))

11. And here is how we can plot the losses with matplotlib:

plt.plot(loss_vec, 'k-', label='Train Loss')
plt.plot(test_loss, 'r--', label='Test Loss')
plt.title('Loss (MSE) per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.legend(loc='upper right')
plt.show()

Figure 4: We plot the loss (MSE) of the train and test sets. Notice that
we are slightly overfitting the model after 200 generations, as the test
MSE does not drop any further, but the training MSE does continue

to drop.



How it works…
To visualize our model as a neural network diagram, refer to the following
figure:

Figure 5: Here is a visualization of our neural network that has five
nodes in the hidden layer. We are feeding in three values, the sepal length
(S.L), the sepal width (S.W.), and the pedal length (P.L.). The target will
be the petal width. In total, there will be 26 total variables in the model.

There's more…
Note that we can identify when the model starts overfitting on the training
data from viewing the loss function on the test and train sets. We can
also see that the train set loss is much less smooth than the test set. This
is because of two reasons: the first is that we are using a smaller batch size
than the test set, although not by much, and the second is that we are
training on the train set and the test set does not impact the variables of the



model.



Implementing Different Layers
It is important to know how to implement different layers. In the prior
recipe, we implemented fully connected layers. We will expand our
knowledge of various layers in this recipe.

Getting ready
We have explored how to connect between data inputs and a fully
connected hidden layer. There are more types of layers that are built-in
functions inside TensorFlow. The most popular layers that are used are
convolutional layers and maxpool layers. We will show you how to create
and use such layers with input data and with fully connected data. First we
will look at how to use these layers on one-dimensional data, and then on
two-dimensional data.

While neural networks can be layered in any fashion, one of the most
common uses is to use convolutional layers and fully connected layers to
first create features. If we have too many features, it is common to have a
maxpool layer. After these layers, non-linear layers are commonly
introduced as activation functions. Convolutional neural networks (CNNs),
which we will consider in Chapter 8, Convolutional Neural Networks,
usually have the form Convolutional, maxpool, activation, convolutional,
maxpool, activation, and so on.

How to do it…
We will first look at one-dimensional data. We generate a random array of
data for this task:
1. We'll start by loading the libraries we need and starting a graph

session:

import tensorflow as tf
import numpy as np



sess = tf.Session()

2. Now we can initialize our data (NumPy array of length 25) and create
the placeholder that we will feed it through:

data_size = 25
data_1d = np.random.normal(size=data_size)
x_input_1d = tf.placeholder(dtype=tf.float32, shape=
[data_size])

3. We will now define a function that will make a convolutional layer.
Then we will declare a random filter and create the convolutional
layer:

Note

Note that many of TensorFlow's layer functions are designed to deal
with 4D data (4D = [batch size, width, height, channels]). We will
need to modify our input data and the output data to extend or
collapse the extra dimensions needed. For our example data, we have
a batch size of 1, a width of 1, a height of 25, and a channel size of 1.
To expand dimensions, we use the expand_dims() function, and to
collapse dimensions, we use the squeeze() function. Also note that we
can calculate the output dimensions of convolutional layers from the
formula output_size=(W-F+2P)/S+1, where W is the input size, F is the
filter size, P is the padding size, and S is the stride size.

def conv_layer_1d(input_1d, my_filter):
    # Make 1d input into 4d
    input_2d = tf.expand_dims(input_1d, 0)
    input_3d = tf.expand_dims(input_2d, 0)
    input_4d = tf.expand_dims(input_3d, 3)
    # Perform convolution
    convolution_output = tf.nn.conv2d(input_4d, 
filter=my_filter, strides=[1,1,1,1], padding="VALID")
    # Now drop extra dimensions
    conv_output_1d = tf.squeeze(convolution_output)
    return(conv_output_1d)

my_filter = tf.Variable(tf.random_normal(shape=[1,5,1,1]))



my_convolution_output = conv_layer_1d(x_input_1d, my_filter)

4. TensorFlow's activation functions will act element-wise by default.
This means we just have to call our activation function on the layer of
interest. We do this by creating an activation function and then
initializing it on the graph:

def activation(input_1d):
    return(tf.nn.relu(input_1d))
my_activation_output = activation(my_convolution_output)

5. Now we'll declare a maxpool layer function. This function will create a
maxpool on a moving window across our one-dimensional vector. For
this example, we will initialize it to have a width of 5:

Note

TensorFlow's maxpool arguments are very similar to the convolutional
layer. While it does not have a filter, it does have a size, stride, and
padding option. Since we have a window of 5 with valid padding (no

zero padding), then our output array will have 4 or  less
entries.

def max_pool(input_1d, width):
    # First we make the 1d input into 4d.
    input_2d = tf.expand_dims(input_1d, 0)
    input_3d = tf.expand_dims(input_2d, 0)
    input_4d = tf.expand_dims(input_3d, 3)
    # Perform the max pool operation
    pool_output = tf.nn.max_pool(input_4d, ksize=[1, 1, 
width, 1], strides=[1, 1, 1, 1], padding='VALID')
    pool_output_1d = tf.squeeze(pool_output)
    return(pool_output_1d)
my_maxpool_output = max_pool(my_activation_output, width=5)

6. The final layer that we will connect is the fully connected layer. We
want to create a versatile function that inputs a 1D array and outputs
the number of values indicated. Also remember that to do matrix
multiplication with a 1D array, we must expand the dimensions into
2D:



def fully_connected(input_layer, num_outputs):
    # Create weights
    weight_shape = tf.squeeze(tf.pack([tf.shape(input_layer), 
[num_outputs]]))
    weight = tf.random_normal(weight_shape, stddev=0.1)
    bias = tf.random_normal(shape=[num_outputs])
    # Make input into 2d
    input_layer_2d = tf.expand_dims(input_layer, 0)
    # Perform fully connected operations
    full_output = tf.add(tf.matmul(input_layer_2d, weight), 
bias)
    # Drop extra dimensions
    full_output_1d = tf.squeeze(full_output)
    return(full_output_1d)

my_full_output = fully_connected(my_maxpool_output, 5)

7. Now we'll initialize all the variables and run the graph and print the
output of each of the layers:

init = tf.initialize_all_variables()
sess.run(init)
feed_dict = {x_input_1d: data_1d}
# Convolution Output
print('Input = array of length 25'')
print('Convolution w/filter, length = 5, stride size = 1, 
results in an array of length 21:'')
print(sess.run(my_convolution_output, feed_dict=feed_dict))
# Activation Output
print('\nInput = the above array of length 21'')
print('ReLU element wise returns the array of length 21:'')
print(sess.run(my_activation_output, feed_dict=feed_dict))
# Maxpool Output
print('\nInput = the above array of length 21'')
print('MaxPool, window length = 5, stride size = 1, results 
in the array of length 17:'')
print(sess.run(my_maxpool_output, feed_dict=feed_dict))
# Fully Connected Output
print('\nInput = the above array of length 17'')
print('Fully connected layer on all four rows with five 
outputs:'')
print(sess.run(my_full_output, feed_dict=feed_dict))

8. This results in the following output:



Input = array of length 25
Convolution w/filter, length = 5, stride size = 1, results in 
an array of length 21:
[-0.91608119  1.53731811 -0.7954089   0.5041104   1.88933098 
 -1.81099761  0.56695032  1.17945457 -0.66252393 -1.90287709
  0.87184119  0.84611893 -5.25024986 -0.05473572  2.19293165
 -4.47577858 -1.71364677  3.96857905 -2.0452652  -1.86647367
 -0.12697852]
Input = the above array of length 21
ReLU element wise returns the array of length 21:
[ 0.          1.53731811  0.          0.5041104   1.88933098
  0.          0.          1.17945457  0.          0.         
  0.87184119  0.84611893  0.          0.          2.19293165
  0.          0.          3.96857905  0.          0.        
  0.         ]
Input = the above array of length 21
MaxPool, window length = 5, stride size = 1, results in the 
array of length 17:
[ 1.88933098  1.88933098  1.88933098  1.88933098  1.88933098 
  1.17945457  1.17945457  1.17945457  0.87184119  0.87184119 
  2.19293165  2.19293165  2.19293165  3.96857905  3.96857905   
  3.96857905  3.96857905]
Input = the above array of length 17
Fully connected layer on all four rows with five outputs:
[ 1.23588216 -0.42116445  1.44521213  1.40348077 -0.79607368]

Note

One-dimensional data is very important to consider for neural
networks. Time series, signal processing, and some text embeddings
are considered to be one-dimensional and are frequently used in neural
networks.

We will now consider the same types of layers in an equivalent order but
for two-dimensional data:
1. We will start by clearing and resetting the computational graph:

ops.reset_default_graph()
sess = tf.Session()



2. First of all, we will initialize our input array to be a 10x10 matrix, and
then we will initialize a placeholder for the graph with the same shape:

data_size = [10,10]
data_2d = np.random.normal(size=data_size)
x_input_2d = tf.placeholder(dtype=tf.float32, 
shape=data_size)

3. Just as in the one-dimensional example, we declare a convolutional
layer function. Since our data has a height and width already, we just
need to expand it in two dimensions (a batch size of 1, and a channel
size of 1) so that we can operate on it with the conv2d() function. For
the filter, we will use a random 2x2 filter, stride two in both directions,
and use valid padding (no zero padding). Because our input matrix is
10x10, our convolutional output will be 5x5:

def conv_layer_2d(input_2d, my_filter):
    # First, change 2d input to 4d
    input_3d = tf.expand_dims(input_2d, 0)
    input_4d = tf.expand_dims(input_3d, 3)
    # Perform convolution
    convolution_output = tf.nn.conv2d(input_4d, 
filter=my_filter, strides=[1,2,2,1], padding="VALID")
    # Drop extra dimensions
    conv_output_2d = tf.squeeze(convolution_output)
    return(conv_output_2d)

my_filter = tf.Variable(tf.random_normal(shape=[2,2,1,1]))
my_convolution_output = conv_layer_2d(x_input_2d, my_filter)

4. The activation function works on an element-wise basis, so now we
can create an activation operation and initialize it on the graph:

def activation(input_2d):
    return(tf.nn.relu(input_2d))
my_activation_output = activation(my_convolution_output)

5. Our maxpool layer is very similar to the one-dimensional case except
we have to declare a width and height for the maxpool window. Just
like our convolutional 2D layer, we only have to expand our into in
two dimensions this time:



def max_pool(input_2d, width, height):
    # Make 2d input into 4d
    input_3d = tf.expand_dims(input_2d, 0)
    input_4d = tf.expand_dims(input_3d, 3)
    # Perform max pool
    pool_output = tf.nn.max_pool(input_4d, ksize=[1, height, 
width, 1], strides=[1, 1, 1, 1], padding='VALID')
    # Drop extra dimensions
    pool_output_2d = tf.squeeze(pool_output)
    return(pool_output_2d)

my_maxpool_output = max_pool(my_activation_output, width=2, 
height=2)

6. Our fully connected layer is very similar to the one-dimensional
output. We should also note here that the 2D input to this layer is
considered as one object, so we want each of the entries connected to
each of the outputs. In order to accomplish this, we fully flatten out
the two-dimensional matrix and then expand it for matrix
multiplication:

def fully_connected(input_layer, num_outputs):
    # Flatten into 1d
    flat_input = tf.reshape(input_layer, [-1])
    # Create weights
    weight_shape = tf.squeeze(tf.pack([tf.shape(flat_input), 
[num_outputs]]))
    weight = tf.random_normal(weight_shape, stddev=0.1)
    bias = tf.random_normal(shape=[num_outputs])
    # Change into 2d
    input_2d = tf.expand_dims(flat_input, 0)
    # Perform fully connected operations
    full_output = tf.add(tf.matmul(input_2d, weight), bias)
    # Drop extra dimensions
    full_output_2d = tf.squeeze(full_output)
    return(full_output_2d)

my_full_output = fully_connected(my_maxpool_output, 5)

7. We'll now initialize our variables and create a feed dictionary for our
operations:



init = tf.initialize_all_variables()
sess.run(init)

feed_dict = {x_input_2d: data_2d}

8. And here is how we can see the outputs for each of the layers:

# Convolution Output
print('Input = [10 X 10] array'')
print('2x2 Convolution, stride size = [2x2], results in the 
[5x5] array:'')
print(sess.run(my_convolution_output, feed_dict=feed_dict))
# Activation Output
print('\nInput = the above [5x5] array'')
print('ReLU element wise returns the [5x5] array:'')
print(sess.run(my_activation_output, feed_dict=feed_dict))
# Max Pool Output
print('\nInput = the above [5x5] array'')
print('MaxPool, stride size = [1x1], results in the [4x4] 
array:'')
print(sess.run(my_maxpool_output, feed_dict=feed_dict))
# Fully Connected Output
print('\nInput = the above [4x4] array'')
print('Fully connected layer on all four rows with five 
outputs:'')
print(sess.run(my_full_output, feed_dict=feed_dict))

9. This results in the following output:

Input = [10 X 10] array
2x2 Convolution, stride size = [2x2], results in the [5x5] 
array:
[[ 0.37630892 -1.41018617 -2.58821273 -0.32302785  
1.18970704]
 [-4.33685207  1.97415686  1.0844903  -1.18965471  
0.84643292]
 [ 5.23706436  2.46556497 -0.95119286  1.17715418  4.1117816 
]
 [ 5.86972761  1.2213701   1.59536231  2.66231227  
2.28650784]
 [-0.88964868 -2.75502229  4.3449688   2.67776585 
-2.23714781]]
Input = the above [5x5] array
ReLU element wise returns the [5x5] array:



[[ 0.37630892  0.          0.          0.          
1.18970704]
 [ 0.          1.97415686  1.0844903   0.          
0.84643292]
 [ 5.23706436  2.46556497  0.          1.17715418  4.1117816 
]
 [ 5.86972761  1.2213701   1.59536231  2.66231227  
2.28650784]
 [ 0.          0.          4.3449688   2.67776585  0.        
]]
Input = the above [5x5] array
MaxPool, stride size = [1x1], results in the [4x4] array:
[[ 1.97415686  1.97415686  1.0844903   1.18970704]
 [ 5.23706436  2.46556497  1.17715418  4.1117816 ]
 [ 5.86972761  2.46556497  2.66231227  4.1117816 ]
 [ 5.86972761  4.3449688   4.3449688   2.67776585]]
Input = the above [4x4] array
Fully connected layer on all four rows with five outputs:
[-0.6154139  -1.96987963 -1.88811922  0.20010889  0.32519674]

How it works…
We can now see how to use the convolutional and maxpool layers in
TensorFlow with one-dimensional and two-dimensional data. Regardless of
the shape of the input, we ended up with the same size output. This is
important to illustrate the flexibility of neural network layers. This section
should also impress upon us again the importance of shapes and sizes in
neural network operations.



Using a Multilayer Neural
Network
We will now apply our knowledge of different layers to real data with
using a multilayer neural network on the Low Birthweight dataset.

Getting ready
Now that we know how to create neural networks and work with layers,
we will apply this methodology towards predicting the birthweight in the
low birthweight dataset. We'll create a neural network with three hidden
layers. The low- birthweight dataset includes the actual birthweight and an
indicator variable if the birthweight is above or below 2,500 grams. In this
example, we'll make the target the actual birthweight (regression) and then
see what the accuracy is on the classification at the end, and let's see if our
model can identify if the birthweight will be <2,500 grams.

How to do it…
1. First we'll start by loading the libraries and initializing our

computational graph:

import tensorflow as tf
import matplotlib.pyplot as plt
import requests
import numpy as np
sess = tf.Session()

2. Now we'll load the data from the website using the requests module.
After this, we will split the data into the features of interest and the
target value:

birthdata_url = 
'https://www.umass.edu/statdata/statdata/data/lowbwt.dat'
birth_file = requests.get(birthdata_url)
birth_data = birth_file.text.split('\r\n')[5:]



birth_header = [x for x in birth_data[0].split(' ') if 
len(x)>=1]
birth_data = [[float(x) for x in y.split(' ') if len(x)>=1] 
for y in birth_data[1:] if len(y)>=1]
y_vals = np.array([x[10] for x in birth_data])
cols_of_interest = ['AGE', 'LWT', 'RACE', 'SMOKE', 'PTL', 
'HT', 'UI', 'FTV']
x_vals = np.array([[x[ix] for ix, feature in 
enumerate(birth_header) if feature in cols_of_interest] for x 
in birth_data])

3. To help with repeatability, we set the random seed for both NumPy
and TensorFlow. Then we declare our batch size:

seed = 3
tf.set_random_seed(seed)
np.random.seed(seed)
batch_size = 100

4. Next we'll split the data into an 80-20 train-test split. After this, we
will normalize our input features to be between zero and one with a
min-max scaling:

train_indices = np.random.choice(len(x_vals), round(len(x_
vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - 
set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

def normalize_cols(m):
    col_max = m.max(axis=0)
    col_min = m.min(axis=0)
    return (m-col_min) / (col_max - col_min)

x_vals_train = np.nan_to_num(normalize_cols(x_vals_train))
x_vals_test = np.nan_to_num(normalize_cols(x_vals_test))

Note



Normalizing input features is a common feature transformation, and
especially useful for neural networks. It will help convergence if our
data is centered near zero to one for the activation functions to
operate on.

5. Since we will have multiple layers that have similar initialized
variables, we will create a function to initialize both the weights and
the bias:

def init_weight(shape, st_dev):
    weight = tf.Variable(tf.random_normal(shape, 
stddev=st_dev))
    return(weight)

def init_bias(shape, st_dev):
    bias = tf.Variable(tf.random_normal(shape, 
stddev=st_dev))
    return(bias)

6. We'll initialize our placeholders next. There will be eight input features
and one output, the birthweight in grams:

x_data = tf.placeholder(shape=[None, 8], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

7. The fully connected layer will be used three times for all three hidden
layers. To prevent repeated code, we will create a layer function to
use when we initialize our model:

def fully_connected(input_layer, weights, biases):
    layer = tf.add(tf.matmul(input_layer, weights), biases)
    return(tf.nn.relu(layer))

8. We'll now create our model. For each layer (and output layer), we will
initialize a weight matrix, bias matrix, and the fully connected layer.
For this example, we will use hidden layers of sizes 25, 10, and 3:

Note

The model that we are using will have 522 variables to fit. To arrive at



this number, we can see that between the data and the first hidden
layer we have 8*25+25=225 variables. If we continue in this way and
add them up, we'll have 225+260+33+4=522 variables. This is
significantly larger than the nine variables that we used in the logistic
regression model on this data.

# Create second layer (25 hidden nodes)
weight_1 = init_weight(shape=[8, 25], st_dev=10.0)
bias_1 = init_bias(shape=[25], st_dev=10.0)
layer_1 = fully_connected(x_data, weight_1, bias_1)

# Create second layer (10 hidden nodes)
weight_2 = init_weight(shape=[25, 10], st_dev=10.0)
bias_2 = init_bias(shape=[10], st_dev=10.0)
layer_2 = fully_connected(layer_1, weight_2, bias_2)

# Create third layer (3 hidden nodes)
weight_3 = init_weight(shape=[10, 3], st_dev=10.0)
bias_3 = init_bias(shape=[3], st_dev=10.0)
layer_3 = fully_connected(layer_2, weight_3, bias_3)
# Create output layer (1 output value)

weight_4 = init_weight(shape=[3, 1], st_dev=10.0) 
bias_4 = init_bias(shape=[1], st_dev=10.0)
final_output = fully_connected(layer_3, weight_4, bias_4)

9. We'll now use the L1 loss function (absolute value), declare our
optimizer (Adam optimization), and initialize our variables:

loss = tf.reduce_mean(tf.abs(y_target - final_output))
my_opt = tf.train.AdamOptimizer(0.05)
train_step = my_opt.minimize(loss)
init = tf.initialize_all_variables()
sess.run(init)

Note

While the learning rate we use here for the Adam optimization
function is 0.05, there is research that suggests a lower learning rate
consistently produces better results. For this recipe, we use a larger



learning rate because of the consistency of the data and the need for
quick convergence.

10. Next we will train our model for 200 iterations. We'll also include code
that will store the train and test loss, select a random batch size, and
print the status every 25 generations:

# Initialize the loss vectors
loss_vec = []
test_loss = []
for i in range(200):
    # Choose random indices for batch selection
    rand_index = np.random.choice(len(x_vals_train), 
size=batch_size)
    # Get random batch
    rand_x = x_vals_train[rand_index]
    rand_y = np.transpose([y_vals_train[rand_index]])
    # Run the training step
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    # Get and store the train loss
    temp_loss = sess.run(loss, feed_dict={x_data: rand_x, 
y_target: rand_y})
    loss_vec.append(temp_loss)
    # Get and store the test loss
    test_temp_loss = sess.run(loss, feed_dict={x_data: 
x_vals_test, y_target: np.transpose([y_vals_test])})
    test_loss.append(test_temp_loss)
    if (i+1)%25==0:
        print('Generation: ' + str(i+1) + '. Loss = ' + 
str(temp_loss))

11. This results in the following output:

Generation: 25. Loss = 5922.52
Generation: 50. Loss = 2861.66
Generation: 75. Loss = 2342.01
Generation: 100. Loss = 1880.59
Generation: 125. Loss = 1394.39
Generation: 150. Loss = 1062.43
Generation: 175. Loss = 834.641
Generation: 200. Loss = 848.54



12. Here is a snippet of code that plots the train and test loss with
matplotlib:

plt.plot(loss_vec, 'k-', label='Train Loss')
plt.plot(test_loss, 'r--', label='Test Loss')
plt.title('Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.legend(loc='upper right')
plt.show()

Figure 6: Here we plot the train and test loss for our neural network
that we trained to predict the birthweight in grams. Notice that only

after about 30 generations we have arrived at a good model.

13. Now we want to compare our birthweight results to our prior logistic
results. In logistic linear regression (see the Implementing Logistic
Regression recipe in Chapter 3, Linear Regression), we achieved
around 60% accuracy after thousands of iterations. To compare this
with what we have done here, we will output the train/test regression
results and turn them into classification results by creating an indicator
if they are above or below 2,500 grams. Here is the code to arrive find
out what this model's accuracy is likely to be:



actuals = np.array([x[1] for x in birth_data])
test_actuals = actuals[test_indices]
train_actuals = actuals[train_indices]
test_preds = [x[0] for x in sess.run(final_output, feed_dict=
{x_data: x_vals_test})]
train_preds = [x[0] for x in sess.run(final_output, 
feed_dict={x_data: x_vals_train})]
test_preds = np.array([1.0 if x<2500.0 else 0.0 for x in 
test_preds])
train_preds = np.array([1.0 if x<2500.0 else 0.0 for x in 
train_preds])
# Print out accuracies
test_acc = np.mean([x==y for x,y in zip(test_preds, 
test_actuals)])
train_acc = np.mean([x==y for x,y in zip(train_preds, 
train_actuals)])
print('On predicting the category of low birthweight from 
regression output (<2500g):'')
print('Test Accuracy: {}''.format(test_acc))
print('Train Accuracy: {}''.format(train_acc))

14. This results in the following output:

Test Accuracy: 0.5526315789473685
Train Accuracy: 0.6688741721854304

How it works…
In this recipe, we created a regression neural network with three fully
connected hidden layers to predict the birthweight of the low-birthweight
data set. When comparing this to a logistic output to predict above or
below 2,500 grams, we achieved similar results and achieved them in
fewer generations. In the next recipe, we will try to improve our logistic
regression by making it a multiple-layer logistic-type neural network.



Improving the Predictions of
Linear Models
In the prior recipes, we have noted that the number of parameters we are
fitting far exceeds the equivalent linear models. In this recipe, we will
attempt to improve our logistic model of low birthweight with using a
neural network.

Getting ready
For this recipe, we will load the low birth-weight data and use a neural
network with two hidden fully connected layers with sigmoid activations
to fit the probability of a low birth-weight.

How to do it
1. We start by loading the libraries and initializing our computational

graph:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import requests
sess = tf.Session()

2. Now we will load, extract, and normalize our data just like as in the
prior recipe, except that we are going to using the low birthweight
indicator variable as our target instead of the actual birthweight:

birthdata_url = 
'https://www.umass.edu/statdata/statdata/data/lowbwt.dat''
birth_file = requests.get(birthdata_url)
birth_data = birth_file.text.split('\r\n'')[5:]
birth_header = [x for x in birth_data[0].split(' '') if 
len(x)>=1]
birth_data = [[float(x) for x in y.split(' '') if len(x)>=1] 
for y in birth_data[1:] if len(y)>=1]



y_vals = np.array([x[1] for x in birth_data])
x_vals = np.array([x[2:9] for x in birth_data])
train_indices = np.random.choice(len(x_vals), 
round(len(x_vals)*0.8), replace=False)
test_indices = np.array(list(set(range(len(x_vals))) - 
set(train_indices)))
x_vals_train = x_vals[train_indices]
x_vals_test = x_vals[test_indices]
y_vals_train = y_vals[train_indices]
y_vals_test = y_vals[test_indices]

def normalize_cols(m):
    col_max = m.max(axis=0)
    col_min = m.min(axis=0)
    return (m-col_min) / (col_max - col_min)

x_vals_train = np.nan_to_num(normalize_cols(x_vals_train))
x_vals_test = np.nan_to_num(normalize_cols(x_vals_test))

3. Next we'll declare our batch size and our placeholders for the data:

batch_size = 90
x_data = tf.placeholder(shape=[None, 7], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

4. Just as before, we will declare functions that initialize a variable and a
layer in our model. To create a better logistic function, we need to
create a function that returns a logistic layer on an input layer. In other
words, we will just use a fully connected layer and return a sigmoid
element-wise for each layer. It is important to remember that our loss
function will have the final sigmoid included, so we want to specify on
our last layer that we will not return the sigmoid of the output:

def init_variable(shape):
    return(tf.Variable(tf.random_normal(shape=shape)))
# Create a logistic layer definition
def logistic(input_layer, multiplication_weight, bias_weight, 
activation = True):
    linear_layer = tf.add(tf.matmul(input_layer, 
multiplication_weight), bias_weight)

    if activation:



        return(tf.nn.sigmoid(linear_layer))
    else:
        return(linear_layer)

5. Now we will declare three layers (two hidden layers and an output
layer). We will start by initializing a weight and bias matrix for each
layer and defining the layer operations:

# First logistic layer (7 inputs to 14 hidden nodes)
A1 = init_variable(shape=[7,14])
b1 = init_variable(shape=[14])
logistic_layer1 = logistic(x_data, A1, b1)
# Second logistic layer (14 hidden inputs to 5 hidden nodes)
A2 = init_variable(shape=[14,5])
b2 = init_variable(shape=[5])
logistic_layer2 = logistic(logistic_layer1, A2, b2)
# Final output layer (5 hidden nodes to 1 output)
A3 = init_variable(shape=[5,1])
b3 = init_variable(shape=[1])
final_output = logistic(logistic_layer2, A3, b3, 
activation=False)

6. Next we declare our loss function (cross-entropy) and optimization
algorithm, and initialize the variables:

# Create loss function
loss = 
tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits( 
final_output, y_target))
# Declare optimizer
my_opt = tf.train.AdamOptimizer(learning_rate = 0.002)
train_step = my_opt.minimize(loss)
# Initialize variables
init = tf.initialize_all_variables()
sess.run(init)

Note

Cross-entropy is a way to measure distances between probabilities.
Here we want to measure the difference between certainty (0 or 1)
and our model probability (0<x<1). TensorFlow implements cross
entropy with the sigmoid function built in. Also, it is important as part



of the hyperparameter tuning to find the best loss function, learning
rate, and optimization algorithm for the problem at hand. For brevity
in this recipe, we do not include hyperparameter tuning.

7. In order to evaluate and compare our model to prior models, we want
to create a prediction and accuracy operation on the graph. This will
allow us to feed in the whole test set and determine the accuracy:

prediction = tf.round(tf.nn.sigmoid(final_output))
predictions_correct = tf.cast(tf.equal(prediction, y_target), 
tf.float32)
accuracy = tf.reduce_mean(predictions_correct)

8. Now we are ready to start our training loop. We will train for 1500
generations and save the model loss and train/test accuracies for
plotting later:

# Initialize loss and accuracy vectors
loss_vec = []
train_acc = []
test_acc = []
for i in range(1500):
    # Select random indicies for batch selection
    rand_index = np.random.choice(len(x_vals_train), 
size=batch_size)
    # Select batch
    rand_x = x_vals_train[rand_index]
    rand_y = np.transpose([y_vals_train[rand_index]])
    # Run training step
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    # Get training loss
    temp_loss = sess.run(loss, feed_dict={x_data: rand_x, 
y_target: rand_y})
    loss_vec.append(temp_loss)
    # Get training accuracy
    temp_acc_train = sess.run(accuracy, feed_dict={x_data: 
x_vals_
train, y_target: np.transpose([y_vals_train])})
    train_acc.append(temp_acc_train)
    # Get test accuracy
    temp_acc_test = sess.run(accuracy, feed_dict={x_data: 



x_vals_
test, y_target: np.transpose([y_vals_test])})
    test_acc.append(temp_acc_test)
    if (i+1)%150==0:
        print('Loss = '' + str(temp_loss))

9. This results in the following output:

Loss = 0.696393
Loss = 0.591708
Loss = 0.59214
Loss = 0.505553
Loss = 0.541974
Loss = 0.512707
Loss = 0.590149
Loss = 0.502641
Loss = 0.518047
Loss = 0.502616

10. The following code blocks illustrate how to plot the cross entropy loss
and the train and test set accuracies with matplotlib:

# Plot loss over time
plt.plot(loss_vec, 'k-'')
plt.title('Cross Entropy Loss per Generation'')
plt.xlabel('Generation'')
plt.ylabel('Cross Entropy Loss'')
plt.show()
# Plot train and test accuracy
plt.plot(train_acc, 'k-'', label=''Train Set Accuracy'')
plt.plot(test_acc, 'r--'', label=''Test Set Accuracy'')
plt.title('Train and Test Accuracy'')
plt.xlabel('Generation'')
plt.ylabel('Accuracy'')
plt.legend(loc='lower right'')
plt.show()



Figure 7: Training loss over 1,500 iterations.

Within approximately 50 generations, we have reached a good model. As
we continue to train, we can see that very little is gained over the
remaining iterations:

Figure 8: Accuracy for the train set and test set.



Here we can see that we arrived at a good model very quickly.

How it works…
When considering using neural networks to model data, we have to
consider the advantages and disadvantages. While our model has
converged faster than prior models and is maybe a bit more accurate in
some cases, this comes with a price: we are training many more model
variables and have a greater chance of overfitting. To see overfitting
occurring, we look at the accuracy of the test and train sets and see the
accuracy of the training set continue to increase slightly, while the
accuracy on the test set stays the same or even decreases slightly.

To combat underfitting, we can increase our model depth or train the
model for more iterations. To address overfitting, we can add more data or
add regularization techniques to our model.

It is also important to note that our model variables are not as interpretable
as a linear model. Neural network models have coefficients that are harder
to interpret than linear models as it pertains to explaining the significance
of features in the model.



Learning to Play Tic Tac Toe
To show how adaptable neural networks can be, we will attempt to use a
neural network to learn the optimal moves of Tic Tac Toe. We will
approach this knowing that Tic Tac Toe is a deterministic game and that
the optimal moves are already known.

Getting ready
To train our model, we will have a list of board positions followed by the
best optimal response for a number of different boards. We can reduce the
amount of boards to train on by considering only board positions that are
different with respect to symmetries. The non-identity transformations of a
Tic Tac Toe board are a rotation (either direction) by 90 degrees, 180
degrees, 270 degrees, a horizontal reflection, and a vertical reflection.
Given this idea, we will use a shortlist of boards with the optimal move,
apply two random transformations, and feed that into our neural network
to learn.

Note

Since tic-tac-toe is a deterministic game, it is worth noting that whoever
goes first should either win or draw. We will hope for a model that can
respond to our moves optimally and result in a draw.

If we annotate Xs by 1, Os by -1, and empty spaces by zero, then the
following shows us how we can consider a board position and optimal
move as a row of data:



Figure 9: Here we illustrate how to consider a board and optimal move as
a row of data. Note that X = 1, O = -1, and empty spaces are 0, and we

start indexing at 0.

In addition to the model loss, to check how our model is performing, we
will do two things. The first check we will perform is to remove a position
and optimal move row from our training set. This will allow us to see
whether the neural network model can generalize out to a move it hasn't
seen before. The second method we will take to evaluate our model is to
actually play a game against it at the end.

The list of possible boards and optimal moves can be found on the GitHub



directory for this recipe here:
https://github.com/nfmcclure/tensorflow_cookbook/tree/master/06_Neural_Networks/08_Learning_Tic_Tac_Toe

How to do it…
1. We will start by loading the necessary libraries for this script:

import tensorflow as tf
import matplotlib.pyplot as plt
import csv
import random
import numpy as np
import random

2. Next we declare our batch size for training our model:

batch_size = 50

3. To make visualizing the boards a bit easier, we will create a function
that outputs the Tic Tac Toe boards with Xs and Os:

def print_board(board):
    symbols = ['O',' ','X']
    board_plus1 = [int(x) + 1 for x in board]
    print(' ' + symbols[board_plus1[0]] + ' | ' + 
symbols[board_plus1[1]] + ' | ' + symbols[board_plus1[2]])
    print('___________')
    print(' ' + symbols[board_plus1[3]] + ' | ' + 
symbols[board_plus1[4]] + ' | ' + symbols[board_plus1[5]])
    print('___________')
    print(' ' + symbols[board_plus1[6]] + ' | ' + 
symbols[board_plus1[7]] + ' | ' + symbols[board_plus1[8]])

4. Now we have to create a function that will return a new board and
optimal response position under a transformation:

def get_symmetry(board, response, transformation):
    '''
    :param board: list of integers 9 long:
     opposing mark = -1
     friendly mark = 1
     empty space = 0
    :param transformation: one of five transformations on a 

https://github.com/nfmcclure/tensorflow_cookbook/tree/master/06_Neural_Networks/08_Learning_Tic_Tac_Toe


board:
     rotate180, rotate90, rotate270, flip_v, flip_h
    :return: tuple: (new_board, new_response)
    '''

    if transformation == 'rotate180':
        new_response = 8 - response
        return(board[::-1], new_response)

    elif transformation == 'rotate90':
        new_response = [6, 3, 0, 7, 4, 1, 8, 5, 
2].index(response)
        tuple_board = list(zip(*[board[6:9], board[3:6], 
board[0:3]]))
        return([value for item in tuple_board for value in 
item], new_response)

    elif transformation == 'rotate270':
        new_response = [2, 5, 8, 1, 4, 7, 0, 3, 
6].index(response)
        tuple_board = list(zip(*[board[0:3], board[3:6], 
board[6:9]]))[::-1]
        return([value for item in tuple_board for value in 
item], new_response)

    elif transformation == 'flip_v':
        new_response = [6, 7, 8, 3, 4, 5, 0, 1, 
2].index(response)
        return(board[6:9] +  board[3:6] + board[0:3], 
new_response)

    elif transformation == 'flip_h':
    # flip_h = rotate180, then flip_v
        new_response = [2, 1, 0, 5, 4, 3, 8, 7, 
6].index(response)
        new_board = board[::-1]
        return(new_board[6:9] +  new_board[3:6] + 
new_board[0:3], new_response)

    else:
        raise ValueError('Method not implmented.')

5. The list of boards and their optimal response is in a .csv file in the



directory. We will create a function that will load the file with the f
boards and responses and store it as a list of tuples:

def get_moves_from_csv(csv_file):
    '''
    :param csv_file: csv file location containing the boards 
w/ responses
    :return: moves: list of moves with index of best response
    '''
    moves = []
    with open(csv_file, 'rt') as csvfile:
        reader = csv.reader(csvfile, delimiter=',')
        for row in reader:
            moves.append(([int(x) for x in 
row[0:9]],int(row[9])))
    return(moves)

6. Now we'll tie everything together to create a function that will return a
randomly transformed board and response:

def get_rand_move(moves, rand_transforms=2):
    # This function performs random transformations on a 
board.
    (board, response) = random.choice(moves)
    possible_transforms = ['rotate90', 'rotate180', 
'rotate270', 'flip_v', 'flip_h']
    for i in range(rand_transforms):
        random_transform = random.choice(possible_transforms)
        (board, response) = get_symmetry(board, response, 
random_transform)
    return(board, response)

7. Next we'll initialize our graph session, load our data, and create a
training set:

sess = tf.Session()
moves = get_moves_from_csv('base_tic_tac_toe_moves.csv')
# Create a train set:
train_length = 500
train_set = []
for t in range(train_length):
    train_set.append(get_rand_move(moves))



8. Remember that we want to remove one board and optimal response
from our training set to see whether the model can generalize out to
make the best move. The best move for the following board will be to
play at index number six:

test_board = [-1, 0, 0, 1, -1, -1, 0, 0, 1]
train_set = [x for x in train_set if x[0] != test_board]

9. We can now create functions to create our model variables and our
model operations. Note that we do not include the softmax()
activation function in the model because it is included in the loss
function:

def init_weights(shape):
    return(tf.Variable(tf.random_normal(shape)))

def model(X, A1, A2, bias1, bias2):
    layer1 = tf.nn.sigmoid(tf.add(tf.matmul(X, A1), bias1))
    layer2 = tf.add(tf.matmul(layer1, A2), bias2)
    return(layer2)

10. Now we will declare our placeholders, variables, and model:

X = tf.placeholder(dtype=tf.float32, shape=[None, 9])
Y = tf.placeholder(dtype=tf.int32, shape=[None])
A1 = init_weights([9, 81])
bias1 = init_weights([81])
A2 = init_weights([81, 9])
bias2 = init_weights([9])
model_output = model(X, A1, A2, bias1, bias2)

11. Next we'll declare our loss function, which will be the average
softmax of the final output logits. Then we will declare our training
step and optimizer. We also need to create a prediction operation if we
want to be able to play against our model in the future:

loss = tf.reduce_mean( 
tf.nn.sparse_softmax_cross_entropy_with_logits(model_output, 
Y))
train_step = 
tf.train.GradientDescentOptimizer(0.025).minimize(loss)
prediction = tf.argmax(model_output, 1)



12. We can now initialize our variables and loop through the training of
our neural network:

# Initialize variables
init = tf.initialize_all_variables()
sess.run(init)
loss_vec = []
for i in range(10000):
    # Select random indices for batch
    rand_indices = np.random.choice(range(len(train_set)), 
batch_size, replace=False)
    # Get batch
    batch_data = [train_set[i] for i in rand_indices]
    x_input = [x[0] for x in batch_data]
    y_target = np.array([y[1] for y in batch_data])
    # Run training step
    sess.run(train_step, feed_dict={X: x_input, Y: y_target})
    # Get training loss
    temp_loss = sess.run(loss, feed_dict={X: x_input, Y: 
y_target})
    loss_vec.append(temp_loss)
    if i%500==0:
        print('iteration ' + str(i) + ' Loss: ' + 
str(temp_loss))

13. Here is code to plot the loss over the model training:

plt.plot(loss_vec, 'k-', label='Loss')
plt.title('Loss (MSE) per Generation')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()



Figure 10: Tic-Tac-Toe train set loss over 10,000 iterations.

Here we plot the loss over the training steps:
1. To test the model, we see how it performs on the test board that we

removed from the training set. We are hoping that the model can
generalize and predict the optimal index for moving, which will be the
index six. Most of the time, the model will succeed here:

test_boards = [test_board]
feed_dict = {X: test_boards}
logits = sess.run(model_output, feed_dict=feed_dict)
predictions = sess.run(prediction, feed_dict=feed_dict)
print(predictions)

2. This results in the following output:

[6]

3. In order to evaluate our model, we planned to play against our trained
model. To do this, we have to create a function that will check for a
win. This way, our program will know when to stop asking for more
moves:



def check(board):
    wins = [[0,1,2], [3,4,5], [6,7,8], [0,3,6], [1,4,7], 
[2,5,8], [0,4,8], [2,4,6]]
    for i in range(len(wins)):
        if board[wins[i][0]]==board[wins[i]
[1]]==board[wins[i][2]]==1.:
            return(1)
        elif board[wins[i][0]]==board[wins[i]
[1]]==board[wins[i][2]]==-1.:
            return(1)
    return(0)

4. Now we can loop through and play a game with our model. We start
with a blank board (all zeros), and then we ask the user to input an
index (0-8) of where to play and then feed that into the model for a
prediction. For the model's move, we take the largest available
prediction that is also an open space. A sample game is shown at the
end. From this game, we can see that our model is not perfect:

game_tracker = [0., 0., 0., 0., 0., 0., 0., 0., 0.]
win_logical = False
num_moves = 0
while not win_logical:
    player_index = input('Input index of your move (0-8): ')
    num_moves += 1
    # Add player move to game
    game_tracker[int(player_index)] = 1.
    
    # Get model's move by first getting all the logits for 
each index
    [potential_moves] = sess.run(model_output, feed_dict={X: 
[game_tracker]})
    # Now find allowed moves (where game tracker values = 
0.0)
    allowed_moves = [ix for ix,x in enumerate(game_tracker) 
if x==0.0]
    # Find best move by taking argmax of logits if they are 
in allowed moves
    model_move = np.argmax([x if ix in allowed_moves else 
-999.0 for ix,x in enumerate(potential_moves)])
    
    # Add model move to game



    game_tracker[int(model_move)] = -1.
    print('Model has moved')
    print_board(game_tracker)
    # Now check for win or too many moves
    if check(game_tracker)==1 or num_moves>=5:
        print('Game Over!')
        win_logical = True

5. This results in the following interactive output:

Input index of your move (0-8): 4
Model has moved
 O |   |  
___________
   | X |  
___________
   |   |  

Input index of your move (0-8): 6
Model has moved
 O |   |  
___________
   | X |  
___________
 X |   | O

Input index of your move (0-8): 2
Model has moved
 O |   | X
___________
 O | X |  
___________
 X |   | O
Game Over!

How it works…
We trained a neural network to play tic-tac-toe by feeding in board
positions, a nine-dimensional vector, and predicted the optimal response.
We only had to feed in a few possible Tic Tac Toe boards and apply
random transformations to each board to increase the training set size.



To test our algorithm, we removed all instances of one specific board and
saw whether our model could generalize to predict the optimal response.
Finally, we also played a sample game against our model. While it is not
perfect yet, we could still try different architectures and training
procedures to improve it.



Chapter 7. Natural Language
Processing
Here we will cover an introduction to working with text in TensorFlow. We
start by introducing how word embeddings work and using the bag of
words method, then we move on to implementing more advanced
embeddings such as Word2vec and Doc2vec:

Working with bag of words
Implementing TF-IDF
Working with Skip-gram Embeddings
Working with CBOW Embeddings
Making Predictions with Word2vec
Using Doc2vec for Sentiment Analysis

As a note, the reader may find all the code for this chapter online at
https://github.com/nfmcclure/tensorflow_cookbook.

Introduction
Up to this point, we have only considered machine learning algorithms that
mostly operate on numerical inputs. If we want to use text, we must find a
way to convert the text into numbers. There are many ways to do this and
we will explore a few common ways this is achieved.

If we consider the sentence TensorFlow makes machine learning easy, we
could convert the words to numbers in the order that we observe them.
This would make the sentence become 1 2 3 4 5. Then when we see a new
sentence, machine learning is easy, we can translate this as 3 4 0 5,
denoting words we haven't seen with an index of zero. With these two
examples, we have limited our vocabulary to six numbers. With large
texts, we can choose how many words we want to keep, and usually keep

https://github.com/nfmcclure/tensorflow_cookbook


the most frequent words, labeling everything else with the index of zero.

If the word learning has a numerical value of 4, and the word makes has a
numerical value of 2, then it would be natural to assume that learning is
twice makes. Since we do not want this type of numerical relationship
between words, we assume these numbers represent categories and not
relational numbers.

Another problem is that these two sentences are of different sizes. Each
observation we make (sentences in this case) needs to have the same size
input to the model we wish to create. To get around this, we create each
sentence into a sparse vector that has the value of one in a specific index if
that word occurs in that index:

TensorFlow makes machine learning easy

1 2 3 4 5

 first_sentence = [0,1,1,1,1,1]

machine learning is easy

3 4 0 5

second_sentence = [1,0,0,1,1,1]

A disadvantage to this method is that we lose any indication of word order.
The two sentences TensorFlow makes machine learning easy and machine
learning makes TensorFlow easy would result in the same sentence vector.

It is also worthwhile to note that the length of these vectors is equal to the
size of our vocabulary that we pick. It is common to pick a very large
vocabulary, so these sentence vectors can be very sparse. This type of
embedding that we have covered in this introduction is called bag of
words. We will implement this in the next section.



Another drawback is that the words is and TensorFlow have the same
numerical index value of one. We can imagine that the word is might be
less important than the occurrence of the word TensorFlow.

We will explore different types of embeddings in this chapter that attempt
to address these ideas, but first we start with an implementation of bag of
words.



Working with bag of words
We start by showing how to work with a bag of words embedding in
TensorFlow. This mapping is what we introduced in the introduction. Here
we show how to use this type of embedding to do spam prediction.

Getting ready
To illustrate how to use bag of words with a text dataset, we will use a
spam-ham phone text database from the UCI machine learning data
repository (https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection).
This is a collection of phone text messages that are spam or not-spam
(ham). We will download this data, store it for future use, and then
proceed with the bag of words method to predict whether a text is spam or
not. The model that will operate on the bag of words will be a logistic
model with no hidden layers. We will use stochastic training, with batch
size of one, and compute the accuracy on a held-out test set at the end.

How to do it…
For this example, we will start by getting the data, normalizing and splitting
the text, running it through an embedding function, and training the logistic
function to predict spam:
1. The first task will be to import the necessary libraries for this task.

Among the usual libraries, we will need a .zip file library to unzip the
data from the UCI machine learning website we retrieve it from:

import tensorflow as tf
import matplotlib.pyplot as plt
import os
import numpy as np
import csv
import string
import requests
import io

https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection


from zipfile import ZipFile
from tensorflow.contrib import learn
sess = tf.Session()

2. Instead of downloading the text data every time the script is run, we
will save it and check whether the file has been saved before. This
prevents us from repeatedly downloading the data over and over if we
want to change the script parameters. After downloading, we will
extract the input and target data and change the target to be 1 for
spam and 0 for ham:

save_file_name = os.path.join('temp','temp_spam_data.csv')
if os.path.isfile(save_file_name):
    text_data = []
    with open(save_file_name, 'r') as temp_output_file:
        reader = csv.reader(temp_output_file)
        for row in reader:
            text_data.append(row)
else:
    zip_url = 'http://archive.ics.uci.edu/ml/machine-
learning-databases/00228/smsspamcollection.zip'
    r = requests.get(zip_url)
    z = ZipFile(io.BytesIO(r.content))
    file = z.read('SMSSpamCollection')
    # Format Data
    text_data = file.decode()
    text_data = text_data.encode('ascii',errors='ignore')
    text_data = text_data.decode().split('\n')
    text_data = [x.split('\t') for x in text_data if 
len(x)>=1]
    
    # And write to csv
    with open(save_file_name, 'w') as temp_output_file:
        writer = csv.writer(temp_output_file)
        writer.writerows(text_data)
texts = [x[1] for x in text_data]
target = [x[0] for x in text_data]
# Relabel 'spam' as 1, 'ham' as 0
target = [1 if x=='spam' else 0 for x in target]

3. To reduce the potential vocabulary size, we normalize the text. To do
this, we remove the influence of capitalization and numbers in the



text. Use the following code:

# Convert to lower case
texts = [x.lower() for x in texts]
# Remove punctuation
texts = [''.join(c for c in x if c not in string.punctuation) 
for x in texts]
# Remove numbers
texts = [''.join(c for c in x if c not in '0123456789') for x 
in texts]
# Trim extra whitespace
texts = [' '.join(x.split()) for x in texts]

4. We must also determine the maximum sentence size. To do this, we
look at a histogram of text lengths in the data set. We see that a good
cut-off might be around 25 words. Use the following code:

# Plot histogram of text lengths
text_lengths = [len(x.split()) for x in texts]
text_lengths = [x for x in text_lengths if x < 50]
plt.hist(text_lengths, bins=25)
plt.title('Histogram of # of Words in Texts')
sentence_size = 25
min_word_freq = 3

Figure 1: A histogram of the number of words in each text in our
data. We use this to establish a maximum length of words to consider
in each text. We set this as 25 words, but it can easily be set as 30 or



40 as well.

5. TensorFlow has a built-in processing tool for determining vocabulary
embedding, called VocabularyProcessor(), under the
learn.preprocessing library:

vocab_processor = 
learn.preprocessing.VocabularyProcessor(sentence_size, 
min_frequency=min_word_freq)
vocab_processor.fit_transform(texts)
embedding_size = len(vocab_processor.vocabulary_)

6. Now we will split the data into a train and test set:

train_indices = np.random.choice(len(texts), 
round(len(texts)*0.8), replace=False)
test_indices = np.array(list(set(range(len(texts))) - 
set(train_indices)))
texts_train = [x for ix, x in enumerate(texts) if ix in 
train_indices]
texts_test = [x for ix, x in enumerate(texts) if ix in 
test_indices]
target_train = [x for ix, x in enumerate(target) if ix in 
train_indices]
target_test = [x for ix, x in enumerate(target) if ix in 
test_indices]

7. Next we declare the embedding matrix for the words. Sentence words
will be translated into indices. These indices will be translated into
one-hot-encoded vectors that we can create with an identity matrix,
which will be the size of our word embeddings. We will use this matrix
to look up the sparse vector for each word and add them together for
the sparse sentence vector. Use the following code:

identity_mat = tf.diag(tf.ones(shape=[embedding_size]))

8. Since we will end up doing logistic regression to predict the probability
of spam, we need to declare our logistic regression variables. Then we
declare our data placeholders as well. It is important to note that the
x_data input placeholder should be of integer type because it will be



used to look up the row index of our identity matrix and TensorFlow
requires that lookup to be an integer:

A = tf.Variable(tf.random_normal(shape=[embedding_size,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))
# Initialize placeholders
x_data = tf.placeholder(shape=[sentence_size], 
dtype=tf.int32)
y_target = tf.placeholder(shape=[1, 1], dtype=tf.float32)

9. Now we use TensorFlow's embedding lookup function that will map
the indices of the words in the sentence to the one-hot-encoded
vectors of our identity matrix. When we have that matrix, we create
the sentence vector by summing up the aforementioned word vectors.
Use the following code:

x_embed = tf.nn.embedding_lookup(identity_mat, x_data)
x_col_sums = tf.reduce_sum(x_embed, 0)

10. Now that we have our fixed-length sentence vectors for each
sentence, we want to perform logistic regression. To do this, we will
need to declare the actual model operations. Since we are doing this
one data point at a time (stochastic training), we will expand the
dimensions of our input and perform linear regression operations on it.
Remember that TensorFlow has a loss function that includes the
sigmoid function, so we do not need to include it in our output here:

x_col_sums_2D = tf.expand_dims(x_col_sums, 0)
model_output = tf.add(tf.matmul(x_col_sums_2D, A), b)

11. We now declare the loss function, prediction operation, and
optimization function for training the model. Use the following code:

loss = 
tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(model_
output, y_target))
# Prediction operation
prediction = tf.sigmoid(model_output)
# Declare optimizer
my_opt = tf.train.GradientDescentOptimizer(0.001)
train_step = my_opt.minimize(loss)



12. Next we initialize our graph variables before we start the training
generations:

init = tf.initialize_all_variables()
sess.run(init)

13. Now we start the iteration over the sentences. TensorFlow's
vocab_processor.fit() function is a generator that operates one
sentence at a time. We will use this to our advantage to do stochastic
training on our logistic model. To get a better idea of the accuracy
trend, we keep a trailing average of the past 50 training steps. If we
just plotted the current one, we would either see 1 or 0 depending on
whether we predicted that training data point correctly or not. Use the
following code:

loss_vec = []
train_acc_all = []
train_acc_avg = []
for ix, t in 
enumerate(vocab_processor.fit_transform(texts_train)):
    y_data = [[target_train[ix]]]
    
    sess.run(train_step, feed_dict={x_data: t, y_target: 
y_data})
    
    temp_loss = sess.run(loss, feed_dict={x_data: t, 
y_target: y_data})
    loss_vec.append(temp_loss)
    
    if (ix+1)%10==0:
        print('Training Observation #' + str(ix+1) + ': Loss 
= ' + str(temp_loss))
        
    # Keep trailing average of past 50 observations accuracy
    # Get prediction of single observation
    [[temp_pred]] = sess.run(prediction, feed_dict={x_data:t, 
y_target:y_data})
    # Get True/False if prediction is accurate
    train_acc_temp = target_train[ix]==np.round(temp_pred)
    train_acc_all.append(train_acc_temp)
    if len(train_acc_all) >= 50:



        train_acc_avg.append(np.mean(train_acc_all[-50:]))

14. This results in the following output:

Starting Training Over 4459 Sentences.
Training Observation #10: Loss = 5.45322
Training Observation #20: Loss = 3.58226
Training Observation #30: Loss = 0.0
Training Observation #4430: Loss = 1.84636
Training Observation #4440: Loss = 1.46626e-05
Training Observation #4450: Loss = 0.045941

15. To get the test set accuracy, we repeat the preceding process, but only
on the prediction operation, not the training operation with the test
texts:

print('Getting Test Set Accuracy')
test_acc_all = []
for ix, t in 
enumerate(vocab_processor.fit_transform(texts_test)):
    y_data = [[target_test[ix]]]
    
    if (ix+1)%50==0:
        print('Test Observation #' + str(ix+1))    
    
    # Keep trailing average of past 50 observations accuracy
    # Get prediction of single observation
    [[temp_pred]] = sess.run(prediction, feed_dict={x_data:t, 
y_target:y_data})
    # Get True/False if prediction is accurate
    test_acc_temp = target_test[ix]==np.round(temp_pred)
    test_acc_all.append(test_acc_temp)
print('\nOverall Test Accuracy: 
{}'.format(np.mean(test_acc_all)))
Getting Test Set Accuracy For 1115 Sentences.
Test Observation #10
Test Observation #20
Test Observation #30
Test Observation #1000
Test Observation #1050
Test Observation #1100
Overall Test Accuracy: 0.8035874439461883



How it works…
For this example, we worked with the spam-ham text data from the UCI
machine learning repository. We used TensorFlow's vocabulary processing
functions to create a standardized vocabulary to work with and created
sentence vectors which were the sum of each text's word vectors. We used
this sentence vector in logistic regression and obtained about an 80%
accuracy model to predict a text being spam.

There's more…
It is worthwhile to mention the motivation of limiting the sentence (or text)
size. In this example, we limited the text size to 25 words. This is a
common practice with bag of words because it limits the effect of text
length on the prediction. You can imagine that if we find a word, meeting
for example, that is predictive of a text being ham (not spam), then a spam
message might get through by putting in many occurrences of that word at
the end.

In fact, this is a common problem with imbalanced target data. Imbalanced
data might occur in this situation, since spam may be hard to find and ham
may be easy to find. Because of this fact, our vocabulary that we create
might be heavily skewed toward words represented in the ham part of our
data (more ham means more words are represented in ham than spam). If
we allow unlimited lengths of texts, then spammers might take advantage
of this and create very long texts, which have a higher probability of
triggering non-spam word factors in our logistic model.

In the next section, we attempt to tackle this problem in a better way by
using the frequency of word occurrence to determine the values of the
word embeddings.



Implementing TF-IDF
Since we can choose the embedding for each word, we might decide to
change the weighting on certain words. One such strategy is to upweight
useful words and downweight overly common or too rare words. The
embedding we will explore in this recipe is an attempt to achieve this.

Getting ready
TF-IDF is an acronym that stands for Text Frequency – Inverse
Document Frequency. This term is essentially the product of text
frequency and inverse document frequency for each word.

In the prior recipe, we introduced the bag of words methodology, which
assigned a value of one for every occurrence of a word in a sentence. This
is probably not ideal as each category of sentence (spam and ham for the
prior recipe example) most likely has the same frequency of the, and, and
other words, whereas words such as viagra and sale probably should have
increased importance in figuring out whether or not the text is spam.

We first want to take into consideration the word frequency. Here we
consider the frequency with which a word occurs in an individual entry.
The purpose of this part (TF) is to find terms that appear to be important in
each entry:

But words such as the and and may appear very frequently in every entry.
We want to down weight the importance of these words, so we can
imagine that multiplying the above text frequency (TF) by the inverse of
the whole document frequency might help find important words. But since



a collection of texts (a corpus) may be quite large, it is common to take the
logarithm of the inverse document frequency. This leaves us with the
following formula for TF-IDF for each word in each document entry:

Here  is the word frequency by document, and  is the total
frequency of such words across all documents. We can imagine that high
values of TF-IDF might indicate words that are very important to
determining what a document is about.

Creating the TF-IDF vectors requires us to load all the text into memory
and count the occurrences of each word before we can start training our
model. Because of this, it is not implemented fully in TensorFlow, so we
will use scikit-learn for creating our TF-IDF embedding, but use
TensorFlow to fit the logistic model.

How to do it…
1. We start by loading the necessary libraries, and this time we are

loading the Scikit-learn TF-IDF preprocessing library for our texts. Use
the following code:

import tensorflow as tf
import matplotlib.pyplot as plt
import csv
import numpy as np
import os
import string
import requests
import io
import nltk
from zipfile import ZipFile
from sklearn.feature_extraction.text import TfidfVectorizer



2. We start a graph session and declare our batch size and maximum
feature size for our vocabulary:

sess = tf.Session()
batch_size= 200
max_featurtes = 1000

3. Next we load the data, either from the Web or from our temp data
folder if we have saved it before. Use the following code:

save_file_name = os.path.join('temp','temp_spam_data.csv')
if os.path.isfile(save_file_name):
    text_data = []
    with open(save_file_name, 'r') as temp_output_file:
        reader = csv.reader(temp_output_file)
        for row in reader:
            text_data.append(row)
else:
    zip_url = 'http://archive.ics.uci.edu/ml/machine-
learning-databases/00228/smsspamcollection.zip'
    r = requests.get(zip_url)
    z = ZipFile(io.BytesIO(r.content))
    file = z.read('SMSSpamCollection')
    # Format Data
    text_data = file.decode()
    text_data = text_data.encode('ascii',errors='ignore')
    text_data = text_data.decode().split('\n')
    text_data = [x.split('\t') for x in text_data if 
len(x)>=1]
    
    # And write to csv
    with open(save_file_name, 'w') as temp_output_file:
        writer = csv.writer(temp_output_file)
        writer.writerows(text_data)
texts = [x[1] for x in text_data]
target = [x[0] for x in text_data]
# Relabel 'spam' as 1, 'ham' as 0
target = [1. if x=='spam' else 0. for x in target]

4. Just like in the prior recipe, we will decrease our vocabulary size by
converting everything to lowercase, removing punctuation, and getting
rid of numbers:



# Lower case
texts = [x.lower() for x in texts]
# Remove punctuation
texts = [''.join(c for c in x if c not in string.punctuation) 
for x in texts]
# Remove numbers
texts = [''.join(c for c in x if c not in '0123456789') for x 
in texts]
# Trim extra whitespace
texts = [' '.join(x.split()) for x in texts]

5. In order to use scikt-learn's TF-IDF processing functions, we have to
tell it how to tokenize our sentences. By this, we just mean how to
break up a sentence into the corresponding words. A great tokenizer is
already built for us in the nltk package that does a great job of
breaking up sentences into the corresponding words:

def tokenizer(text):
    words = nltk.word_tokenize(text)
    return words
# Create TF-IDF of texts
tfidf = TfidfVectorizer(tokenizer=tokenizer, 
stop_words='english', max_features=max_features)
sparse_tfidf_texts = tfidf.fit_transform(texts)

6. Next we break up our data set into a train and test set. Use the
following code:

train_indices = np.random.choice(sparse_tfidf_texts.shape[0], 
round(0.8*sparse_tfidf_texts.shape[0]), replace=False)3test_
indices = 
np.array(list(set(range(sparse_tfidf_texts.shape[0])) - 
set(train_indices)))
texts_train = sparse_tfidf_texts[train_indices]
texts_test = sparse_tfidf_texts[test_indices]
target_train = np.array([x for ix, x in enumerate(target) if 
ix in train_indices])
target_test = np.array([x for ix, x in enumerate(target) if 
ix in test_indices])

7. Now we can declare our model variables for logistic regression and
our data placeholders:



A = tf.Variable(tf.random_normal(shape=[max_features,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))
# Initialize placeholders
x_data = tf.placeholder(shape=[None, max_features], 
dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

8. We can now declare the model operations and the loss function.
Remember that the sigmoid part of the logistic regression is in our loss
function. Use the following code:

model_output = tf.add(tf.matmul(x_data, A), b)
loss = 
tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(model_
output, y_target))

9. We add a prediction and accuracy function to the graph so that we can
see the accuracy of the train and test set as our model is training:

prediction = tf.round(tf.sigmoid(model_output))
predictions_correct = tf.cast(tf.equal(prediction, y_target), 
tf.float32)
accuracy = tf.reduce_mean(predictions_correct)

10. We declare an optimizer and initialize our graph variables next:

my_opt = tf.train.GradientDescentOptimizer(0.0025)
train_step = my_opt.minimize(loss)
# Intitialize Variables
init = tf.initialize_all_variables()
sess.run(init)

11. We now train our model over 10,000 generations and record the
test/train loss and accuracy every 100 generations and print out the
status every 500 generations. Use the following code:

train_loss = []
test_loss = []
train_acc = []
test_acc = []
i_data = []
for i in range(10000):
    rand_index = np.random.choice(texts_train.shape[0], 



size=batch_size)
    rand_x = texts_train[rand_index].todense()
    rand_y = np.transpose([target_train[rand_index]])
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    
    # Only record loss and accuracy every 100 generations
    if (i+1)%100==0:
        i_data.append(i+1)
        train_loss_temp = sess.run(loss, feed_dict={x_data: 
rand_x, y_target: rand_y})
        train_loss.append(train_loss_temp)
        
        test_loss_temp = sess.run(loss, feed_dict={x_data: 
texts_test.todense(), y_target: np.transpose([target_test])})
        test_loss.append(test_loss_temp)
        
        train_acc_temp = sess.run(accuracy, feed_dict=
{x_data: rand_x, y_target: rand_y})
        train_acc.append(train_acc_temp)
    
        test_acc_temp = sess.run(accuracy, feed_dict={x_data: 
texts_test.todense(), y_target: np.transpose([target_test])})
        test_acc.append(test_acc_temp)
    if (i+1)%500==0:
        acc_and_loss = [i+1, train_loss_temp, test_loss_temp, 
train_acc_temp, test_acc_temp]
        acc_and_loss = [np.round(x,2) for x in acc_and_loss]
        print('Generation # {}. Train Loss (Test Loss): 
{:.2f} ({:.2f}). Train Acc (Test Acc): {:.2f} 
({:.2f})'.format(*acc_and_loss))

12. This results in the following output:

Generation # 500. Train Loss (Test Loss): 0.69 (0.73). Train 
Acc (Test Acc): 0.62 (0.57)
Generation # 1000. Train Loss (Test Loss): 0.62 (0.63). Train 
Acc (Test Acc): 0.68 (0.66)
...
Generation # 9500. Train Loss (Test Loss): 0.39 (0.45). Train 
Acc (Test Acc): 0.89 (0.85)
Generation # 10000. Train Loss (Test Loss): 0.48 (0.45). 
Train Acc (Test Acc): 0.84 (0.85)



13. And here is the code to plot the accuracy and loss for both the train
and test set:

Figure 2: Cross entropy loss for our logistic spam model built off of
TF-IDF values.

Figure 3: Train and test set accuracy for the logistic spam model
built off TF-IDF values.



How it works…
Using TF-IDF values for the model has increased our prediction over the
prior bag of words model from 80% accuracy to almost 90% accuracy. We
achieved this by using scikit-learn's TF-IDF vocabulary processing
functions and using those TF-IDF values for the logistic regression.

There's more…
While we might have addressed the issue of word importance, we have not
addressed the issue of word ordering. Both bag of words and TF-IDF have
no features that take into account word ordering in a sentence. We will
attempt to address this in the next few sections, which will introduce us to
Word2vec techniques.



Working with Skip-gram
Embeddings
In the prior recipes, we dictated our textual embeddings before training the
model. With neural networks, we can make the embedding values part of
the training procedure. The first such method we will explore is called
skip-gram embedding.

Getting ready
Prior to this recipe, we have not considered the order of words to be
relevant in creating word embeddings. In early 2013, Tomas Mikolov and
other researchers at Google authored a paper about creating word
embeddings that addresses this issue (https://arxiv.org/abs/1301.3781), and
they named their method Word2vec.

The basic idea is to create word embeddings that capture the relational
aspect of words. We seek to understand how various words are related to
each other. Some examples of how these embeddings might behave are as
follows:

king – man + woman = queen

India pale ale – hops + malt = stout

We might achieve such numerical representation of words if we only
consider their positional relationship to each other. If we could analyze a
large enough source of coherent documents, we might find that the words
king, man, and queen are mentioned closely to each other in our texts. If
we also know that man and woman are related in a different way, then we
might conclude that man is to king as woman is to queen, and so on.

To go about finding such an embedding, we will use a neural network that

https://arxiv.org/abs/1301.3781


predicts surrounding words giving an input word. We could, just as easily,
switch that and try to predict a target word given a set of surrounding
words, but we will start with the prior method. Both are variations of the
Word2vec procedure. But the prior method of predicting the surrounding
words (the context) from a target word is called the skip-gram model. In
the next recipe, we will implement the other method, predicting the target
word from the context, which is called the continuous bag of words
(CBOW) method:

Figure 4: An illustration of the skip-gram implementations of Word2vec.
The skip-gram predicts a window of context from the target word (window

size of 1 on each side).



For this recipe, we will implement the skip-gram model on a set of movie
review data from Cornell University
(http://www.cs.cornell.edu/people/pabo/movie-review-data/). The CBOW
method will be implemented in the next recipe.

How to do it…
For this recipe, we will create several helper functions: functions that will
load the data, normalize the text, generate the vocabulary, and generate
data batches. Only after all this will we then start training our word
embeddings. To be clear, we are not predicting any target variables, but we
will be fitting the word embeddings instead:
1. We load the necessary libraries and start a graph session:

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import random
import os
import string
import requests
import collections
import io
import tarfile
import urllib.request
from nltk.corpus import stopwords
sess = tf.Session()

2. We declare some model parameters. We will look at 50 pairs of word
embeddings at a time (batch size). The embedding size of each word
will be a vector of length 200, and we will only consider the 10,000
most frequent words (every other word will be classified as unknown).
We will train for 50,000 generations and print out the loss every 500.
Then we declare a num_sampled variable that we will use in the loss
function (explained later), and we also declare our skip-gram window
size. Here we set our window size to two, so we will look at the

http://www.cs.cornell.edu/people/pabo/movie-review-data/


surrounding two words on each side of the target. We set our
stopwords from the Python package nltk. We also want a way to
check how our word embeddings are performing, so we choose some
common movie review words and we will print out the nearest
neighbor words from these every 2,000 iterations:

batch_size = 50
embedding_size = 200
vocabulary_size = 10000
generations = 50000
print_loss_every = 500
num_sampled = int(batch_size/2)
window_size = 2
stops = stopwords.words('english')
print_valid_every = 2000
valid_words = ['cliche', 'love', 'hate', 'silly', 'sad']

3. Next we declare our data loading function, which checks to make sure
we have not downloaded the data before it downloads, or it will load
the data from the disk if we have it saved before. Use the following
code:

def load_movie_data():
    save_folder_name = 'temp'
    pos_file = os.path.join(save_folder_name, 'rt-
polarity.pos')
    neg_file = os.path.join(save_folder_name, 'rt-
polarity.neg')
    # Check if files are already downloaded
    if os.path.exists(save_folder_name):
        pos_data = []
        with open(pos_file, 'r') as temp_pos_file:
            for row in temp_pos_file:
                pos_data.append(row)
        neg_data = []
        with open(neg_file, 'r') as temp_neg_file:
            for row in temp_neg_file:
                neg_data.append(row)
    else: # If not downloaded, download and save
        movie_data_url = 
'http://www.cs.cornell.edu/people/pabo/movie-review-data/rt-



polaritydata.tar.gz'
        stream_data = urllib.request.urlopen(movie_data_url)
        tmp = io.BytesIO()
        while True:
            s = stream_data.read(16384)
            if not s:  
                break
            tmp.write(s)
            stream_data.close()
            tmp.seek(0)
        tar_file = tarfile.open(fileobj=tmp, mode="r:gz")
        pos = tar_file.extractfile('rt-polaritydata/rt-
polarity.pos')
        neg = tar_file.extractfile('rt-polaritydata/rt-
polarity.neg')
        # Save pos/neg reviews
        pos_data = []
        for line in pos:
            pos_data.append(line.decode('ISO-8859-
1').encode('ascii',errors='ignore').decode())
        neg_data = []
        for line in neg:
            neg_data.append(line.decode('ISO-8859-
1').encode('ascii',errors='ignore').decode())
        tar_file.close()
        # Write to file
        if not os.path.exists(save_folder_name):
            os.makedirs(save_folder_name)
        # Save files
        with open(pos_file, "w") as pos_file_handler:
            pos_file_handler.write(''.join(pos_data))
        with open(neg_file, "w") as neg_file_handler:
            neg_file_handler.write(''.join(neg_data))
    texts = pos_data + neg_data
    target = [1]*len(pos_data) + [0]*len(neg_data)
    return(texts, target)
texts, target = load_movie_data()

4. Next we create a normalization function for text. This function will
input a list of strings and apply lowercasing, remove punctuation,
remove numbers, trip extra whitespace, and remove stop words. Use
the following code:



def normalize_text(texts, stops):
    # Lower case
    texts = [x.lower() for x in texts]
    # Remove punctuation
    texts = [''.join(c for c in x if c not in 
string.punctuation) for x in texts]
    # Remove numbers
    texts = [''.join(c for c in x if c not in '0123456789') 
for x in texts]
    # Remove stopwords
    texts = [' '.join([word for word in x.split() if word not 
in (stops)]) for x in texts]
    # Trim extra whitespace
    texts = [' '.join(x.split()) for x in texts]
    
    return(texts)
texts = normalize_text(texts, stops)

5. To make sure that all our movie reviews are informative, we should
make sure they are long enough to contain important word
relationships. We arbitrarily set this to three or more words:

target = [target[ix] for ix, x in enumerate(texts) if 
len(x.split()) > 2]
texts = [x for x in texts if len(x.split()) > 2]

6. To build our vocabulary, we create a function that creates a dictionary
of words with their count, and any word that is uncommon enough to
not make our vocabulary size cut-off, we label as 'RARE'. Use the
following code:

def build_dictionary(sentences, vocabulary_size):
    # Turn sentences (list of strings) into lists of words
    split_sentences = [s.split() for s in sentences]
    words = [x for sublist in split_sentences for x in 
sublist]
    # Initialize list of [word, word_count] for each word, 
starting with unknown
    count = [['RARE', -1]]
    # Now add most frequent words, limited to the N-most 
frequent (N=vocabulary size)
count.extend(collections.Counter(words).most_common(vocabular
y_size-1))



    # Now create the dictionary
    word_dict = {}
    # For each word, that we want in the dictionary, add it, 
then make it the value of the prior dictionary length
    for word, word_count in count:
        word_dict[word] = len(word_dict)
    return(word_dict)

7. We need a function that will convert a list of sentences into lists of
word indices that we can pass into our embedding lookup function.
Use the following code:

def text_to_numbers(sentences, word_dict):
    # Initialize the returned data
    data = []
    for sentence in sentences:
        sentence_data = []
        # For each word, either use selected index or rare 
word index
        for word in sentence:
            if word in word_dict:
                word_ix = word_dict[word]
            else:
                word_ix = 0
            sentence_data.append(word_ix)
        data.append(sentence_data)
    return(data)

8. Now we can actually create our dictionary and transform our list of
sentences into lists of word indices:

word_dictionary = build_dictionary(texts, vocabulary_size)
word_dictionary_rev = dict(zip(word_dictionary.values(), 
word_dictionary.keys()))
text_data = text_to_numbers(texts, word_dictionary)

9. From the preceding word dictionary, we can look up the index for the
validation words we choose in step 2. Use the following code:

valid_examples = [word_dictionary[x] for x in valid_words]

10. We now create a function that will return our skip-gram batches. We
want to train on pairs of words where one word is the training input



(from the target word at the center of our window) and the other word
is selected from the window. For example, the sentence the cat in the
hat may result in (input, output) pairs such as the following: (the, in),
(cat, in), (the, in), (hat, in), if in was the target word, and we had a
window size of two in each direction:

def generate_batch_data(sentences, batch_size, window_size, 
method='skip_gram'):
    # Fill up data batch
    batch_data = []
    label_data = []
    while len(batch_data) < batch_size:
        # select random sentence to start
        rand_sentence = np.random.choice(sentences)
        # Generate consecutive windows to look at
        window_sequences = [rand_sentence[max((ix-
window_size),0):(ix+window_size+1)] for ix, x in 
enumerate(rand_sentence)]
        # Denote which element of each window is the center 
word of interest
        label_indices = [ix if ix<window_size else 
window_size for ix,x in enumerate(window_sequences)]
        
        # Pull out center word of interest for each window 
and create a tuple for each window
        if method=='skip_gram':
            batch_and_labels = [(x[y], x[:y] + x[(y+1):]) for 
x,y in zip(window_sequences, label_indices)]
            # Make it in to a big list of tuples (target 
word, surrounding word)
            tuple_data = [(x, y_) for x,y in batch_and_labels 
for y_ in y]
        else:
            raise ValueError('Method {} not implmented 
yet.'.format(method))
            
        # extract batch and labels
        batch, labels = [list(x) for x in zip(*tuple_data)]
        batch_data.extend(batch[:batch_size])
        label_data.extend(labels[:batch_size])
    # Trim batch and label at the end
    batch_data = batch_data[:batch_size]



    label_data = label_data[:batch_size]
    
    # Convert to numpy array
    batch_data = np.array(batch_data)
    label_data = np.transpose(np.array([label_data]))
    
    return(batch_data, label_data)

11. We can now initialize our embedding matrix, and declare our
placeholders and our embedding lookup function. Use the following
code:

embeddings = tf.Variable(tf.random_uniform([vocabulary_size, 
    embedding_size], -1.0, 1.0))
# Create data/target placeholders
x_inputs = tf.placeholder(tf.int32, shape=[batch_size])
y_target = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

# Lookup the word embedding:
embed = tf.nn.embedding_lookup(embeddings, x_inputs)

12. The loss function should be something such as a softmax, which
calculates the loss on predicting the wrong word category. But since
our target has 10,000 different categories, it is very sparse. This
sparsity causes problems fitting or converging for a model. To tackle
this, we use a loss function called noise-contrastive error (NCE). This
NCE loss function turns our problem into a binary prediction, by
predicting the word class versus random noise predictions. The
num_sampled parameter is how much of the batch to turn into random
noise:

nce_weights = 
tf.Variable(tf.truncated_normal([vocabulary_size, 
    embedding_size], stddev=1.0 / np.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
loss = tf.reduce_mean(tf.nn.nce_loss(nce_weights, nce_biases, 
embed, 
    y_target, num_sampled, vocabulary_size))

13. Now we need to create a way to find nearby words to our validation



words. We will do this by computing the cosine similarity between the
validation set and all of our word embeddings, then we can print out
the closest set of words for each validation word. Use the following
code:

norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, 
keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = 
tf.nn.embedding_lookup(normalized_embeddings, valid_dataset)
similarity = tf.matmul(valid_embeddings, 
normalized_embeddings, transpose_b=True)

14. We now declare our optimizer function, and initialize our model
variables:

optimizer = 
tf.train.GradientDescentOptimizer(learning_rate=1.0).minimize
(loss)
init = tf.initialize_all_variables()
sess.run(init)

15. Now we can train our embeddings and print off the loss and the closest
words to our validation set during training. Use the following code:

loss_vec = []
loss_x_vec = []
for i in range(generations):
    batch_inputs, batch_labels = 
generate_batch_data(text_data, batch_size, window_size)
    feed_dict = {x_inputs : batch_inputs, y_target : 
batch_labels}
    # Run the train step
    sess.run(optimizer, feed_dict=feed_dict)
    # Return the loss
    if (i+1) % print_loss_every == 0:
        loss_val = sess.run(loss, feed_dict=feed_dict)
        loss_vec.append(loss_val)
        loss_x_vec.append(i+1)
        print("Loss at step {} : {}".format(i+1, loss_val))
      
    # Validation: Print some random words and top 5 related 



words
    if (i+1) % print_valid_every == 0:
        sim = sess.run(similarity, feed_dict=feed_dict)
        for j in range(len(valid_words)):
            valid_word = 
word_dictionary_rev[valid_examples[j]]
            top_k = 5 # number of nearest neighbors
            nearest = (-sim[j, :]).argsort()[1:top_k+1]
            log_str = "Nearest to {}:".format(valid_word)
            for k in range(top_k):
                close_word = word_dictionary_rev[nearest[k]]
                log_str = "%s %s," % (log_str, close_word)
            print(log_str)

16. This results in the following output:

Loss at step 500 : 13.387781143188477
Loss at step 1000 : 7.240757465362549
Loss at step 49500 : 0.9395825862884521
Loss at step 50000 : 0.30323168635368347
Nearest to cliche: walk, intrigue, brim, eileen, dumber,
Nearest to love: plight, fiction, complete, lady, bartleby,
Nearest to hate: style, throws, players, fearlessness, 
astringent,
Nearest to silly: delivers, meow, regain, nicely, anger,
Nearest to sad: dizzying, variety, existing, environment, 
tunney,

How it works…
We have trained a Word2vec model, via the skip-gram method, on a
corpus of movie review data. We downloaded the data, converted the
words to an index with a dictionary, and used those index numbers as an
embedding lookup, which we trained so that nearby words could be
predictive of each other.

There's more…
At first glance, we might expect the set of nearby words to the validation
set to be synonyms. This is not quite the case because very rarely do



synonyms actually appear next to each other in sentences. What we are
really getting at is predicting which words are in proximity to each other in
our data set. We hope that using an embedding like this would make
prediction easier.

In order to use these embeddings, we must make them reusable and save
them. We do this in the next recipe by implementing the CBOW
embeddings.



Working with CBOW Embeddings
In this recipe we will implement the CBOW method of word2vec. It is
very similar to the skip-gram method, except we are predicting a single
target word from a surrounding window of context words.

Getting ready
In this recipe, we will implement the CBOW method of Word2vec. It is
very similar to the skip-gram method, except we are predicting a single
target word from a surrounding window of context words.

In the prior example, we treated each combination of window and target as
a group of paired inputs and outputs, but with CBOW we will add the
surrounding window embeddings together to get one embedding to predict
the target word embedding:



Figure 5: A depiction of how the CBOW embedding data is created out of
a window on an example sentence (window size = 1 on each side).

Most of the code will stay the same, except we will need to change how
we create the embeddings and how we generate the data from the
sentences.

To make the code easier to read, we have moved all the major functions to
a separate file, called text_helpers.py, in the same directory. This
function holds the data loading, text normalization, dictionary creation,
and batch generation functions. These functions are exactly as they appear



in the Working with Skip-gram Embeddings recipe, except where noted.

How to do it…
1. We start by loading the necessary libraries, including the

aforementioned text_helpers.py script, where we put our functions
for text loading and manipulation. We then start a graph session:

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import random
import os
import pickle
import string
import requests
import collections
import io
import tarfile
import urllib.request
import text_helpers
from nltk.corpus import stopwords
sess = tf.Session()

2. We want to make sure that our temporary data and parameter saving
folder exists before we start saving to it. Use the following code:

# Make a saving directory if it doesn't exist
data_folder_name = 'temp'
if not os.path.exists(data_folder_name):
    os.makedirs(data_folder_name)

3. We declare the parameters of our model, which will be similar to the
skip-gram method in the prior recipe:

# Declare model parameters
batch_size = 500
embedding_size = 200
vocabulary_size = 2000
generations = 50000
model_learning_rate = 0.001
num_sampled = int(batch_size/2
window_size = 3



# Add checkpoints to training
save_embeddings_every = 5000
print_valid_every = 5000
print_loss_every = 100
# Declare stop words
stops = stopwords.words('english')
# We pick some test words. We are expecting synonyms to 
appear
valid_words = ['love', 'hate', 'happy', 'sad', 'man', 
'woman']

4. We have moved over the data loading and text normalization functions
to a separate file that we imported at the start, so we can call them
now. We also want only reviews that have three or more words in
them. Use the following code:

texts, target = 
text_helpers.load_movie_data(data_folder_name)
texts = text_helpers.normalize_text(texts, stops)
# Texts must contain at least 3 words
target = [target[ix] for ix, x in enumerate(texts) if 
len(x.split()) > 2]
texts = [x for x in texts if len(x.split()) > 2]

5. Now we create our vocabulary dictionary that will help us to look up
words. We also need a reverse dictionary that looks up words from
indices when we want to print out the nearest words to our validation
set:

word_dictionary = text_helpers.build_dictionary(texts, 
vocabulary_size)
word_dictionary_rev = dict(zip(word_dictionary.values(), 
word_dictionary.keys()))
text_data = text_helpers.text_to_numbers(texts, 
word_dictionary)
# Get validation word keys
valid_examples = [word_dictionary[x] for x in valid_words]

6. Next we initialize the word embeddings that we want to fit and declare
the model data placeholders. Use the following code:

embeddings = tf.Variable(tf.random_uniform([vocabulary_size, 



embedding_size], -1.0, 1.0))
# Create data/target placeholders
x_inputs = tf.placeholder(tf.int32, shape=[batch_size, 
2*window_size])
y_target = tf.placeholder(tf.int32, shape=[batch_size, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

7. We can now create how we want to deal with the word embeddings.
Since the CBOW model adds up the embeddings of the context
window, we create a loop and add up all of the embeddings in the
window:

# Lookup the word embeddings and
# Add together window embeddings:
embed = tf.zeros([batch_size, embedding_size])
for element in range(2*window_size):
    embed += tf.nn.embedding_lookup(embeddings, x_inputs[:, 
element])

8. We use the NCE loss function that TensorFlow has built in because
our categorical output is too sparse for the softmax to converge, as
follows:

# NCE loss parameters
nce_weights = 
tf.Variable(tf.truncated_normal([vocabulary_size, 
embedding_size], stddev=1.0 / np.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
# Declare loss function (NCE)
loss = tf.reduce_mean(tf.nn.nce_loss(nce_weights, nce_biases, 
embed, 
y_target, num_sampled, vocabulary_size))

9. Just like in the skip-gram recipe, we will use cosine similarity to print
off the nearest words to our validation word data set to get an idea of
how our embeddings are working. Use the following code:

norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, 
keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = 
tf.nn.embedding_lookup(normalized_embeddings, valid_dataset)



similarity = tf.matmul(valid_embeddings, 
normalized_embeddings, transpose_b=True)

10. To save our embeddings, we must load the TensorFlow train.Saver
method. This method defaults to saving the whole graph, but we can
give it an argument just to save the embedding variable, and we can
also give it a specific name. Here we give it the same name as the
variable name in our graph:

saver = tf.train.Saver({"embeddings": embeddings})

11. We now declare an optimizer function and initialize our model
variables. Use the following code:

optimizer = 
tf.train.GradientDescentOptimizer(learning_rate=model_learnin
g_rate).minimize(loss)
init = tf.initialize_all_variables()
sess.run(init)

12. Finally, we can loop across our training step and print out the loss, and
save the embeddings and dictionary when we specify:

loss_vec = []
loss_x_vec = []
for i in range(generations):
    batch_inputs, batch_labels = 
text_helpers.generate_batch_data(text_data, batch_size, 
window_size, method='cbow')
    feed_dict = {x_inputs : batch_inputs, y_target : 
batch_labels}
    # Run the train step
    sess.run(optimizer, feed_dict=feed_dict)
    # Return the loss
    if (i+1) % print_loss_every == 0:
        loss_val = sess.run(loss, feed_dict=feed_dict)
        loss_vec.append(loss_val)
        loss_x_vec.append(i+1)
        print('Loss at step {} : {}'.format(i+1, loss_val))
      
    # Validation: Print some random words and top 5 related 
words
    if (i+1) % print_valid_every == 0:



        sim = sess.run(similarity, feed_dict=feed_dict)
        for j in range(len(valid_words)):
            valid_word = 
word_dictionary_rev[valid_examples[j]]
            top_k = 5 # number of nearest neighbors
            nearest = (-sim[j, :]).argsort()[1:top_k+1]
            log_str = "Nearest to {}:".format(valid_word)
            for k in range(top_k):
                close_word = word_dictionary_rev[nearest[k]]
                print_str = '{} {},'.format(log_str, 
close_word)
            print(print_str)
            
    # Save dictionary + embeddings
    if (i+1) % save_embeddings_every == 0:
        # Save vocabulary dictionary
        with 
open(os.path.join(data_folder_name,'movie_vocab.pkl'), 'wb') 
as f:
            pickle.dump(word_dictionary, f)
        
        # Save embeddings
        model_checkpoint_path = 
os.path.join(os.getcwd(),data_folder_name,'cbow_movie_embeddi
ngs.ckpt')
        save_path = saver.save(sess, model_checkpoint_path)
        print('Model saved in file: {}'.format(save_path))

13. This results in the following output:

Loss at step 100 : 62.04829025268555
Loss at step 200 : 33.182334899902344
Loss at step 49900 : 1.6794960498809814
Loss at step 50000 : 1.5071022510528564
Nearest to love: clarity, cult, cliched, literary, memory,
Nearest to hate: bringing, gifted, almost, next, wish,
Nearest to happy: ensemble, fall, courage, uneven, girls,
Nearest to sad: santa, devoid, biopic, genuinely, becomes,
Nearest to man: project, stands, none, soul, away,
Nearest to woman: crush, even, x, team, ensemble,
Model saved in file: .../temp/cbow_movie_embeddings.ckpt

14. All but one of the functions in the text_helpers.py file have functions
that come directly from the prior recipe. We make a slight addition to



the generate_batch_data() function by adding a 'cbow' method as
follows:

elif method=='cbow':
    batch_and_labels = [(x[:y] + x[(y+1):], x[y]) for x,y in 
zip(window_sequences, label_indices)]
    # Only keep windows with consistent 2*window_size
    batch_and_labels = [(x,y) for x,y in batch_and_labels if 
len(x)==2*window_size]
    batch, labels = [list(x) for x in zip(*batch_and_labels)]

How it works…
This recipe, Word2vec embeddings via CBOW, works very similarly to
creating the embeddings like we did with skip-gram. The main difference is
how we generate the data and combine the embeddings.

For this recipe, we loaded the data, normalized the text, created a
vocabulary dictionary, used the dictionary to look up embeddings,
combined the embeddings, and trained a neural network to predict the
target word.

There's more…
It is worthwhile to note that the CBOW method trains on a summed-up
embedding of the surrounding window to predict the target word. One
effect of this is that the CBOW method of word2vec has a smoothing
effect that the skip-gram method does not and it is reasonable to think that
this might be preferred for smaller textual data sets.



Making Predictions with Word2vec
In this recipe, we use the previously learned embedding strategies to
perform classification.

Getting ready
Now that we have created and saved CBOW word embeddings, we need
to use them to make sentiment predictions on the movie data set. In this
recipe, we will learn how to load and use prior-trained embeddings and use
these embeddings to perform sentiment analysis by training a logistic linear
model to predict a good or bad review.

Sentiment analysis is a really hard task to do because human language
makes it very hard to grasp the subtleties and nuances of the true meaning.
Sarcasm, jokes, and ambiguous references all make the task exponentially
harder. We will create a simple logistic regression on the movie review
data set to see whether we can get any information out of the CBOW
embeddings we created and saved in the prior recipe. Since the focus of
this recipe is in the loading and usage of saved embeddings, we will not
pursue more complicated models.

How to do it…
1. We begin by loading the necessary libraries and starting a graph

session:

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import random
import os
import pickle
import string
import requests
import collections



import io
import tarfile
import urllib.request
import text_helpers
from nltk.corpus import stopwords
sess = tf.Session()

2. Now we declare the model parameters. We should note that the
embedding size should be the same as the embedding size we used to
create the prior CBOW embeddings. Use the following code:

embedding_size = 200
vocabulary_size = 2000
batch_size = 100
max_words = 100
stops = stopwords.words('english')

3. We load and transform the text data from our text_helpers.py file we
have created. Use the following code:

data_folder_name = 'temp'
texts, target = 
text_helpers.load_movie_data(data_folder_name)
# Normalize text
print('Normalizing Text Data')
texts = text_helpers.normalize_text(texts, stops)
# Texts must contain at least 3 words
target = [target[ix] for ix, x in enumerate(texts) if 
len(x.split()) > 2]
texts = [x for x in texts if len(x.split()) > 2]

train_indices = np.random.choice(len(target), 
round(0.8*len(target)), replace=False)
test_indices = np.array(list(set(range(len(target))) - 
set(train_indices)))
texts_train = [x for ix, x in enumerate(texts) if ix in 
train_indices]
texts_test = [x for ix, x in enumerate(texts) if ix in 
test_indices]
target_train = np.array([x for ix, x in enumerate(target) if 
ix in train_indices])
target_test = np.array([x for ix, x in enumerate(target) if 
ix in test_indices])



4. We now load our word dictionary we created while fitting the CBOW
embeddings. This is important to load so that we have the same exact
mapping from word to embedding index, as follows:

dict_file = os.path.join(data_folder_name, 'movie_vocab.pkl')
word_dictionary = pickle.load(open(dict_file, 'rb'))

5. We can now convert our loaded sentence data to a numerical numpy
array with our word dictionary:

text_data_train = 
np.array(text_helpers.text_to_numbers(texts_train, 
word_dictionary))
text_data_test = 
np.array(text_helpers.text_to_numbers(texts_test, 
word_dictionary))

6. Since movie reviews are of different lengths, we standardize them to
be all the same length, and in our case we set it to 100 words. If a
review has less than 100 words, we will pad it with zeros. Use the
following code:

text_data_train = np.array([x[0:max_words] for x in [y+
[0]*max_words for y in text_data_train]])
text_data_test = np.array([x[0:max_words] for x in [y+
[0]*max_words for y in text_data_test]])

7. Now we declare our model variables and placeholders for the logistic
regression. Use the following code:

A = tf.Variable(tf.random_normal(shape=[embedding_size,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))
# Initialize placeholders
x_data = tf.placeholder(shape=[None, max_words], 
dtype=tf.int32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)

8. In order for TensorFlow to restore our prior-trained embeddings, we
must first give the saver method a variable to restore into, so we create
a embedding variable that is of the same shape as the embeddings we
will load:



embeddings = tf.Variable(tf.random_uniform([vocabulary_size, 
embedding_size], -1.0, 1.0))

9. Now we put our embedding lookup function on the graph and take the
average embeddings of all the words in the sentence. Use the following
code:

embed = tf.nn.embedding_lookup(embeddings, x_data)
# Take average of all word embeddings in documents
embed_avg = tf.reduce_mean(embed, 1)

10. Next, we declare our model operations and our loss function,
remembering that our loss function has the sigmoid operation built in
already, as follows:

model_output = tf.add(tf.matmul(embed_avg, A), b)
# Declare loss function (Cross Entropy loss)
loss = 
tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(model_
output, y_target))

11. Now we add prediction and accuracy functions to the graph so that
we can evaluate the accuracy as the model is training. Use the
following code:

prediction = tf.round(tf.sigmoid(model_output))
predictions_correct = tf.cast(tf.equal(prediction, y_target), 
tf.float32)
accuracy = tf.reduce_mean(predictions_correct)

12. We declare an optimizer function and initialize the following model
variables:

my_opt = tf.train.AdagradOptimizer(0.005)
train_step = my_opt.minimize(loss)
init = tf.initialize_all_variables()
sess.run(init)

13. Now that we have a random initialized embedding, we can tell the
Saver method to load our prior CBOW embeddings into our
embedding variable. Use the following code:

model_checkpoint_path = 



os.path.join(data_folder_name,'cbow_movie_embeddings.ckpt')
saver = tf.train.Saver({"embeddings": embeddings})
saver.restore(sess, model_checkpoint_path)

14. Now we can start the training generations. Note that every 100
generations, we save the training and test loss and accuracy. We will
only print out the model status every 500 generations. Use the
following code:

train_loss = []
test_loss = []
train_acc = []
test_acc = []
i_data = []
for i in range(10000):
    rand_index = np.random.choice(text_data_train.shape[0], 
size=batch_size)
    rand_x = text_data_train[rand_index]
    rand_y = np.transpose([target_train[rand_index]])
    sess.run(train_step, feed_dict={x_data: rand_x, y_target: 
rand_y})
    
    # Only record loss and accuracy every 100 generations
    if (i+1)%100==0:
        i_data.append(i+1)
        train_loss_temp = sess.run(loss, feed_dict={x_data: 
rand_x, y_target: rand_y})
        train_loss.append(train_loss_temp)
        
        test_loss_temp = sess.run(loss, feed_dict={x_data: 
text_data_test, y_target: np.transpose([target_test])})
        test_loss.append(test_loss_temp)
        
        train_acc_temp = sess.run(accuracy, feed_dict=
{x_data: rand_x, y_target: rand_y})
        train_acc.append(train_acc_temp)
        test_acc_temp = sess.run(accuracy, feed_dict={x_data: 
text_data_test, y_target: np.transpose([target_test])})
        test_acc.append(test_acc_temp)
    if (i+1)%500==0:
        acc_and_loss = [i+1, train_loss_temp, test_loss_temp, 
train_acc_temp, test_acc_temp]
        acc_and_loss = [np.round(x,2) for x in acc_and_loss]



        print('Generation # {}. Train Loss (Test Loss): 
{:.2f} ({:.2f}). Train Acc (Test Acc): {:.2f} 
({:.2f})'.format(*acc_and_loss))

15. This results in the following output:

Generation # 500. Train Loss (Test Loss): 0.70 (0.71). Train 
Acc (Test Acc): 0.52 (0.48)
Generation # 1000. Train Loss (Test Loss): 0.69 (0.72). Train 
Acc (Test Acc): 0.56 (0.47)
...
Generation # 9500. Train Loss (Test Loss): 0.69 (0.70). Train 
Acc (Test Acc): 0.57 (0.55)
Generation # 10000. Train Loss (Test Loss): 0.70 (0.70). 
Train Acc (Test Acc): 0.59 (0.55)

16. Here is the code to plot the training and test loss and accuracy that we
saved every 100 generations. Use the following code:

# Plot loss over time
plt.plot(i_data, train_loss, 'k-', label='Train Loss')
plt.plot(i_data, test_loss, 'r--', label='Test Loss', 
linewidth=4)
plt.title('Cross Entropy Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Cross Entropy Loss')
plt.legend(loc='upper right')
plt.show()
# Plot train and test accuracy
plt.plot(i_data, train_acc, 'k-', label='Train Set Accuracy')
plt.plot(i_data, test_acc, 'r--', label='Test Set Accuracy', 
linewidth=4)
plt.title('Train and Test Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.legend(loc='lower right')
plt.show()



Figure 6: Here we observe the train and test loss over 10,000
generations.

Figure 7: We can observe that the train and test set accuracy is
slowly improving over 10,000 generations. It is worthwhile to note

that this model performs very poorly and is only slightly better than a
random predictor.



How it works…
We loaded our prior CBOW embeddings, and performed logistic regression
on the average embedding of a review. The important methods to note here
are how we load model variables from the disk onto already initialized
variables in our current model. We also have to remember to store and
load our vocabulary dictionary that was created prior to training the
embeddings. It is very important to have the same mapping from words to
embedding indices when using the same embedding.

There's more…
We can see we almost achieve a 60% accuracy on predicting the
sentiment. For example, it is a hard task to know the meaning behind the
word great; it could be used in a negative or positive context within the
review.

To tackle this problem, we want to somehow create embeddings for the
documents themselves that can address the sentiment issue. Usually, a
whole review is positive or a whole review is negative. We can use this to
our advantage in the Using Doc2vec for sentiment analysis recipe.



Using Doc2vec for Sentiment
Analysis
Now that we know how to train word embeddings, we can also extend
those methodologies to have a document embedding. We explore how to
do this in this recipe with TensorFlow.

Getting ready
In the prior sections about Word2vec methods, we have managed to
capture positional relationships between words. What we have not done is
capture the relationship of words to the document (or movie review) that
they come from. One extension of Word2vec that captures a document
effect is called Doc2vec.

The basic idea of Doc2vec is to introduce document embedding, along
with the word embeddings that may help to capture the tone of the
document. For example, just knowing that the words movie and love are
nearby to each other may not help us determine the sentiment of the
review. The review may be talking about how they love the movie or how
they do not love the movie. But if the review is long enough and more
negative words are found in the document, maybe we can pick up on an
overall tone that may help us predict the next words.

Doc2vec simply adds an additional embedding matrix for the documents
and uses a window of words plus the document index to predict the next
word. All word windows in a document have the same document index. It
is worthwhile to mention that it is important to think about how we will
combine the document embedding and the word embeddings. We combine
the word embeddings in the word window by taking the sum and there are
two main ways to combine these embeddings with the document
embedding. Commonly, the document embedding is either added to the



word embeddings, or concatenated to the end of the word embeddings. If
we add the two embeddings, we limit the document embedding size to be
the same size as the word embedding size. If we concatenate, we lift that
restriction, but increase the number of variables that the logistic regression
must deal with. For illustrative purposes, we show how to deal with
concatenation in this recipe. But in general, for smaller datasets, addition is
the better choice.

The first step will be to fit both the document and word embeddings on the
whole corpus of movie reviews, then we perform a train-test split, train a
logistic model, and see whether we can improve upon the accuracy of
predicting the review sentiment.

How to do it…
1. We start by loading the necessary libraries and starting a graph session,

as follows:

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import random
import os
import pickle
import string
import requests
import collections
import io
import tarfile
import urllib.request
import text_helpers
from nltk.corpus import stopwords
sess = tf.Session()

2. We load the movie review corpus, just as we have done in the prior
two recipes. Use the following code:

data_folder_name = 'temp'
if not os.path.exists(data_folder_name):
    os.makedirs(data_folder_name)



texts, target = 
text_helpers.load_movie_data(data_folder_name)

3. We declare the model parameters. See the following:

batch_size = 500
vocabulary_size = 7500
generations = 100000
model_learning_rate = 0.001
embedding_size = 200   # Word embedding size
doc_embedding_size = 100   # Document embedding size
concatenated_size = embedding_size + doc_embedding_size
num_sampled = int(batch_size/2)
window_size = 3       # How many words to consider to the 
left.
# Add checkpoints to training
save_embeddings_every = 5000
print_valid_every = 5000
print_loss_every = 100
# Declare stop words
stops = stopwords.words('english')
# We pick a few test words.
valid_words = ['love', 'hate', 'happy', 'sad', 'man', 
'woman']

4. We normalize the movie reviews and make sure that each movie
review is larger than the desired window size. Use the following code:

texts = text_helpers.normalize_text(texts, stops)
# Texts must contain at least as much as the prior window 
size
target = [target[ix] for ix, x in enumerate(texts) if 
len(x.split()) 
> window_size]
texts = [x for x in texts if len(x.split()) > window_size]     
assert(len(target)==len(texts))

5. Now we create our word dictionary. It is important to note that we do
not have to create a document dictionary. The document indices will
be just the index of the document; each document will have a unique
index. See the following code:

word_dictionary = text_helpers.build_dictionary(texts, 



vocabulary_size)
word_dictionary_rev = dict(zip(word_dictionary.values(), 
word_dictionary.keys()))
text_data = text_helpers.text_to_numbers(texts, 
word_dictionary)
# Get validation word keys
valid_examples = [word_dictionary[x] for x in valid_words]

6. Next we define our word embeddings and document embeddings.
Then we declare our noise-contrastive loss parameters. Use the
following code:

embeddings = tf.Variable(tf.random_uniform([vocabulary_size, 
embedding_size], -1.0, 1.0))
doc_embeddings = tf.Variable(tf.random_uniform([len(texts), 
doc_embedding_size], -1.0, 1.0))
# NCE loss parameters
nce_weights = 
tf.Variable(tf.truncated_normal([vocabulary_size, 
concatenated_size],
                                               stddev=1.0 / 
np.sqrt(concatenated_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))

7. We now declare our placeholders for the Doc2vec indices and target
word index. Note that the size of the input indices is the window size
plus one. This is because every data window we generate will have an
additional document index with it, as follows:

x_inputs = tf.placeholder(tf.int32, shape=[None, window_size 
+ 1])
y_target = tf.placeholder(tf.int32, shape=[None, 1])
valid_dataset = tf.constant(valid_examples, dtype=tf.int32)

8. Now we have to create our embedding function that adds together the
word embeddings and then concatenates the document embedding at
the end. Use the following code:

embed = tf.zeros([batch_size, embedding_size])
for element in range(window_size):
    embed += tf.nn.embedding_lookup(embeddings, x_inputs[:, 
element])



doc_indices = tf.slice(x_inputs, [0,window_size],
[batch_size,1])
doc_embed = 
tf.nn.embedding_lookup(doc_embeddings,doc_indices)
# concatenate embeddings
final_embed = tf.concat(1, [embed, tf.squeeze(doc_embed)])

9. We also need to declare the cosine distance from a set of validation
words that we can print out every so often to observe the progress of
our Doc2vec model. See the following code:

loss = tf.reduce_mean(tf.nn.nce_loss(nce_weights, nce_biases,  
final_embed, y_target, num_sampled, vocabulary_size))
                                     
# Create optimizer
optimizer = 
 tf.train.GradientDescentOptimizer(learning_rate=model_learni
ng_rate)
train_step = optimizer.minimize(loss)

10. We also need to declare the cosine distance from a set of validation
words that we can print out every so often to observe the progress of
our Doc2vec model. Use the following code:

norm = tf.sqrt(tf.reduce_sum(tf.square(embeddings), 1, 
keep_dims=True))
normalized_embeddings = embeddings / norm
valid_embeddings = 
tf.nn.embedding_lookup(normalized_embeddings, 
valid_dataset)
similarity = tf.matmul(valid_embeddings, 
normalized_embeddings, 
transpose_b=True)

11. To save our embeddings for later, we create a model saver function.
Then we can initialize the variables, the last step before we commence
training on the word embeddings:

saver = tf.train.Saver({"embeddings": embeddings, 
"doc_embeddings": 
doc_embeddings})
init = tf.initialize_all_variables()
sess.run(init)



Test
loss_vec = []
loss_x_vec = []
for i in range(generations):
    batch_inputs, batch_labels = 
text_helpers.generate_batch_data(text_data, batch_size,
                                                                  
window_size, method='doc2vec')
    feed_dict = {x_inputs : batch_inputs, y_target : 
batch_labels}

    # Run the train step
    sess.run(train_step, feed_dict=feed_dict)

    # Return the loss
    if (i+1) % print_loss_every == 0:
        loss_val = sess.run(loss, feed_dict=feed_dict)
        loss_vec.append(loss_val)
        loss_x_vec.append(i+1)
        print('Loss at step {} : {}'.format(i+1, loss_val))
      
    # Validation: Print some random words and top 5 related 
words
    if (i+1) % print_valid_every == 0:
        sim = sess.run(similarity, feed_dict=feed_dict)
        for j in range(len(valid_words)):
            valid_word = 
word_dictionary_rev[valid_examples[j]]
            top_k = 5 # number of nearest neighbors
            nearest = (-sim[j, :]).argsort()[1:top_k+1]
            log_str = "Nearest to {}:".format(valid_word)
            for k in range(top_k):
                close_word = word_dictionary_rev[nearest[k]]
                log_str = '{} {},'.format(log_str, 
close_word)
            print(log_str)
            
    # Save dictionary + embeddings
    if (i+1) % save_embeddings_every == 0:
        # Save vocabulary dictionary
        with 
open(os.path.join(data_folder_name,'movie_vocab.pkl'), 'wb') 
as f:



            pickle.dump(word_dictionary, f)
        
        # Save embeddings
        model_checkpoint_path = 
os.path.join(os.getcwd(),data_folder_name,'doc2vec_movie_embe
ddings.ckpt')
        save_path = saver.save(sess, model_checkpoint_path)
       print('Model saved in file: {}'.format(save_path))

12. This results in the following output:

Loss at step 100 : 126.176816940307617
Loss at step 200 : 89.608322143554688
Loss at step 99900 : 17.733346939086914
Loss at step 100000 : 17.384489059448242
Nearest to love: ride, with, by, its, start,
Nearest to hate: redundant, snapshot, from, performances, 
extravagant,
Nearest to happy: queen, chaos, them, succumb, elegance,
Nearest to sad: terms, pity, chord, wallet, morality,
Nearest to man: of, teen, an, our, physical,
Nearest to woman: innocuous, scenes, prove, except, lady,
Model saved in file: /.../temp/doc2vec_movie_embeddings.ckpt

13. Now that we have trained the Doc2vec embeddings, we can use these
embeddings in a logistic regression to predict the review sentiment.
First we set some parameters for the logistic regression. Use the
following code:

max_words = 20 # maximum review word length
logistic_batch_size = 500 # training batch size

14. We now split the data set into a train and test set:

train_indices = np.sort(np.random.choice(len(target), 
round(0.8*len(target)), replace=False))
test_indices = np.sort(np.array(list(set(range(len(target))) 
– 
set(train_indices))))
texts_train = [x for ix, x in enumerate(texts) if ix in 
train_indices]
texts_test = [x for ix, x in enumerate(texts) if ix in 
test_indices]
target_train = np.array([x for ix, x in enumerate(target) if 



ix in train_indices])
target_test = np.array([x for ix, x in enumerate(target) if 
ix in test_indices])

15. Next we convert the reviews to numerical word indices and pad or
crop each review to be 20 words, as follows:

text_data_train = 
np.array(text_helpers.text_to_numbers(texts_train, 
word_dictionary))
text_data_test = 
np.array(text_helpers.text_to_numbers(texts_test, 
word_dictionary))
# Pad/crop movie reviews to specific length
text_data_train = np.array([x[0:max_words] for x in [y+
[0]*max_words 
for y in text_data_train]])
text_data_test = np.array([x[0:max_words] for x in [y+
[0]*max_words 
for y in text_data_test]])

16. Now we declare the parts of the graph that pertain to the logistic
regression model. We add the data placeholders, the variables, model
operations, and the loss function as follows:

# Define Logistic placeholders
log_x_inputs = tf.placeholder(tf.int32, shape=[None, 
max_words + 1])
log_y_target = tf.placeholder(tf.int32, shape=[None, 1])
A = tf.Variable(tf.random_normal(shape=
[concatenated_size,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))

# Declare logistic model (sigmoid in loss function)
model_output = tf.add(tf.matmul(log_final_embed, A), b)

# Declare loss function (Cross Entropy loss)
logistic_loss = 
tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(model_
output, 
tf.cast(log_y_target, tf.float32)))

17. We need to create another embedding function. The embedding



function in the first half is trained on a smaller window of three words
(and a document index) to predict the next word. Here we will do the
same but with the 20-word review. Use the following code:

# Add together element embeddings in window:
log_embed = tf.zeros([logistic_batch_size, embedding_size])
for element in range(max_words):
    log_embed += tf.nn.embedding_lookup(embeddings, 
log_x_inputs[:, element])
log_doc_indices = tf.slice(log_x_inputs, [0,max_words],
[logistic_batch_size,1])
log_doc_embed = 
tf.nn.embedding_lookup(doc_embeddings,log_doc_indices)
# concatenate embeddings
log_final_embed = tf.concat(1, [log_embed, 
tf.squeeze(log_doc_embed)])

18. Next we create a prediction function and accuracy method on the
graph so that we can evaluate the performance of the model as we run
through the training generations. Then we declare an optimizing
function and initialize all the variables:

prediction = tf.round(tf.sigmoid(model_output))
predictions_correct = tf.cast(tf.equal(prediction, 
tf.cast(log_y_target, tf.float32)), tf.float32)
accuracy = tf.reduce_mean(predictions_correct)
# Declare optimizer
logistic_opt = 
tf.train.GradientDescentOptimizer(learning_rate=0.01)
logistic_train_step = logistic_opt.minimize(logistic_loss, 
var_list=[A, b])
# Intitialize Variables
init = tf.initialize_all_variables()
sess.run(init)

19. Now we can start the logistic model training:

train_loss = []
test_loss = []
train_acc = []
test_acc = []
i_data = []



for i in range(10000):
    rand_index = np.random.choice(text_data_train.shape[0], 
size=logistic_batch_size)
    rand_x = text_data_train[rand_index]
    # Append review index at the end of text data
    rand_x_doc_indices = train_indices[rand_index]
    rand_x = np.hstack((rand_x, 
np.transpose([rand_x_doc_indices])))
    rand_y = np.transpose([target_train[rand_index]])
    
    feed_dict = {log_x_inputs : rand_x, log_y_target : 
rand_y}
    sess.run(logistic_train_step, feed_dict=feed_dict)
    
    # Only record loss and accuracy every 100 generations
    if (i+1)%100==0:
        rand_index_test = 
np.random.choice(text_data_test.shape[0], 
size=logistic_batch_size)
        rand_x_test = text_data_test[rand_index_test]
        # Append review index at the end of text data
        rand_x_doc_indices_test = 
test_indices[rand_index_test]
        rand_x_test = np.hstack((rand_x_test, 
np.transpose([rand_x_doc_indices_test])))
        rand_y_test = 
np.transpose([target_test[rand_index_test]])
        
        test_feed_dict = {log_x_inputs: rand_x_test, 
log_y_target: rand_y_test}
        
        i_data.append(i+1)
        train_loss_temp = sess.run(logistic_loss, 
feed_dict=feed_
dict)
        train_loss.append(train_loss_temp)
        
        test_loss_temp = sess.run(logistic_loss, 
feed_dict=test_feed_dict)
        test_loss.append(test_loss_temp)
        
        train_acc_temp = sess.run(accuracy, 
feed_dict=feed_dict)



        train_acc.append(train_acc_temp)
    
        test_acc_temp = sess.run(accuracy, 
feed_dict=test_feed_dict)
        test_acc.append(test_acc_temp)
    if (i+1)%500==0:
        acc_and_loss = [i+1, train_loss_temp, test_loss_temp, 
train_acc_temp, test_acc_temp]
        acc_and_loss = [np.round(x,2) for x in acc_and_loss]
        print('Generation # {}. Train Loss (Test Loss): 
{:.2f} ({:.2f}). Train Acc (Test Acc): {:.2f} 
({:.2f})'.format(*acc_and_loss))

20. This results in the following output:

Generation # 500. Train Loss (Test Loss): 5.62 (7.45). Train 
Acc (Test Acc): 0.52 (0.48)
Generation # 10000. Train Loss (Test Loss): 2.35 (2.51). 
Train Acc (Test Acc): 0.59 (0.58)

21. We should also note that we have created a separate data batch
generating method in the text_helpers.generate_batch_data()
function called Doc2vec, which we used in the first part of this recipe
to train the Doc2vec embeddings. Here is the excerpt from that
function that pertains to this method:

def generate_batch_data(sentences, batch_size, window_size, 
method='skip_gram'):
    # Fill up data batch
    batch_data = []
    label_data = []
    while len(batch_data) < batch_size:
        # select random sentence to start
        rand_sentence_ix = 
int(np.random.choice(len(sentences), size=1))
        rand_sentence = sentences[rand_sentence_ix]
        # Generate consecutive windows to look at
        window_sequences = [rand_sentence[max((ix-
window_size),0):(ix+window_size+1)] for ix, x in 
enumerate(rand_sentence)]
        # Denote which element of each window is the center 
word 
f interest



        label_indices = [ix if ix<window_size else 
window_size for ix,x in enumerate(window_sequences)]
        
        # Pull out center word of interest for each window 
and create a tuple for each window
        if method=='skip_gram':
            ...
        elif method=='cbow':
            ...
        elif method=='doc2vec':
            # For doc2vec we keep LHS window only to predict 
target word
            batch_and_labels = 
[(rand_sentence[i:i+window_size], 
rand_sentence[i+window_size]) for i in range(0, 
len(rand_sentence)-window_size)]
            batch, labels = [list(x) for x in 
zip(*batch_and_labels)]
            # Add document index to batch!! Remember that we 
must extract the last index in batch for the doc-index
            batch = [x + [rand_sentence_ix] for x in batch]
        else:
            raise ValueError('Method {} not implmented 
yet.'.format(method))
            
        # extract batch and labels
        batch_data.extend(batch[:batch_size])
        label_data.extend(labels[:batch_size])
    # Trim batch and label at the end
    batch_data = batch_data[:batch_size]
    label_data = label_data[:batch_size]
    
    # Convert to numpy array
    batch_data = np.array(batch_data)
    label_data = np.transpose(np.array([label_data]))
    
    return(batch_data, label_data)

How it works…
In this recipe, we performed two training loops. The first was to fit the
Doc2vec embeddings, and the second loop was to fit the logistic regression



on the movie sentiment.

While we did not increase the sentiment prediction accuracy by much (still
slightly under 60%), we have successfully implemented the concatenation
version of Doc2vec on the movie corpus. To increase our accuracy, we
should try different parameters for the Doc2vec embeddings and possibly
a more complicated model, as logistic regression may not be able to
capture all the non-linear behavior in natural language.



Chapter 8. Convolutional Neural
Networks
Convolutional Neural Networks (CNNs) are responsible for the major
breakthroughs in image recognition made in the past few years. In this
chapter we will cover:

Implementing a Simpler CNN
Implementing an Advanced CNN
Retraining Existing CNN models
Applying Stylenet/Neural-Style
Implementing DeepDream

As a reminder, the reader may find all of the code for this chapter
available online here: https://github.com/nfmcclure/tensorflow_cookbook.

Introduction
In mathematics, a convolution is a function which is applied over the
output of another function. In our case, we will consider applying a matrix
multiplication (filter) across an image. See the following diagram for a
conceptual understanding of how image convolution can work:

https://github.com/nfmcclure/tensorflow_cookbook


Figure 1: How a convolutional filter applied across an image (length by
width by depth) operates to create a new feature layer. Here we have a
2x2 convolutional filter, operating in the valid spaces of the 5x5 input

with stride 1 in both directions. The result is a 4x4 matrix.

Convolutional neural networks also have other operations that fulfill other
necessities, such as introducing non-linearities (ReLU), or aggregating
parameters (maxpool), and other similar operations.The preceding image is



an example of applying a convolution operation on a 5x5 array with the
convolutional filter being a 2x2 matrix. The step size is 1 and we only
consider valid placements. The trainable variables in this operation would
be the 2x2 filter weights. After a convolution, it is common to follow up
with an aggregation operation, like maxpool. The following diagram
provides an example of how maxpool operates:

Figure 2: An example of how a max-pool operation could operate. Here
we have a 2x2 window, operating on the valid spaces of a 4x4 input with

stride 2 in both directions. The result is a 2x2 matrix.

Although we will start by creating our own CNN for image recognition, it
is highly recommended to use existing architectures, as we will do in the
remainder of the chapter.

Note

It is common to take a pre-trained network and retrain it with a new
dataset with a new fully connected layer at the end. This method is very
useful and we will illustrate it in, the Retraining existing CNN models
recipe, where we will retrain an existing architecture to improve on our
CIFAR-10 predictions.



Implementing a Simpler CNN
In this recipe, we will develop a four-layer convolutional neural network to
improve upon our accuracy in predicting the MNIST digits. The first two
convolution layers will each be compromised of Convolution-ReLU-
maxpool operations and the final two layers will be fully connected layers.

Getting ready
To access the MNIST data, TensorFlow has a contrib package that has
great dataset loading functionalities. After we load the data, we will setup
our model variables, create the model, train the model in batches, and then
visualize loss, accuracy, and some sample digits.

How to do it…
1. First, we'll load the necessary libraries and start a graph session:

import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets.mnist 
import read_data_sets
sess = tf.Session()

2. Next, we will load the data and transform the images into 28x28
arrays:

data_dir = 'temp'
mnist = read_data_sets(data_dir)
train_xdata = np.array([np.reshape(x, (28,28)) for x in 
mnist.train.images])
test_xdata = np.array([np.reshape(x, (28,28)) for x in 
mnist.test.images])
train_labels = mnist.train.labels
test_labels = mnist.test.labels

Note



Note that the MNIST data set downloaded here also includes a
validation set. This validation set is the same size as the test set. If
we do any hyperparameter tuning or model selection, it would be wise
to load this in as well for additional testing.

3. Now we'll set the model parameters. Remember that the depth of the
image (number of channels) is 1 because these images are grayscale:

batch_size = 100
learning_rate = 0.005
evaluation_size = 500
image_width = train_xdata[0].shape[0]
image_height = train_xdata[0].shape[1]
target_size = max(train_labels) + 1
num_channels = 1
generations = 500
eval_every = 5
conv1_features = 25
conv2_features = 50
max_pool_size1 = 2
max_pool_size2 = 2
fully_connected_size1 = 100

4. We can now declare our placeholders for the data. We'll declare our
training data variables and our test data variables. We will have
different batch sizes for training and evaluation sizes. You may change
these depending on the physical memory you have available for
training and evaluating:

x_input_shape = (batch_size, image_width, image_height, 
num_channels)
x_input = tf.placeholder(tf.float32, shape=x_input_shape)
y_target = tf.placeholder(tf.int32, shape=(batch_size))
eval_input_shape = (evaluation_size, image_width, 
image_height, num_channels)
eval_input = tf.placeholder(tf.float32, 
shape=eval_input_shape)
eval_target = tf.placeholder(tf.int32, shape=
(evaluation_size))

5. We'll declare our convolution weights and biases with the parameters



we set up in the previous steps:

conv1_weight = tf.Variable(tf.truncated_normal([4, 4, 
num_channels, conv1_features], stddev=0.1, dtype=tf.float32))
conv1_bias = 
tf.Variable(tf.zeros([conv1_features],dtype=tf.float32))
conv2_weight = tf.Variable(tf.truncated_normal([4, 4, 
conv1_features, conv2_features], stddev=0.1, 
dtype=tf.float32))
conv2_bias = 
tf.Variable(tf.zeros([conv2_features],dtype=tf.float32))

6. Next, we are going to declare our fully connected weights and biases
for the last two layers of the model:

resulting_width = image_width // (max_pool_size1 * 
max_pool_size2)
resulting_height = image_height // (max_pool_size1 * 
max_pool_size2)
full1_input_size = resulting_width * 
resulting_height*conv2_features
full1_weight = 
tf.Variable(tf.truncated_normal([full1_input_size, 
fully_connected_size1], stddev=0.1, dtype=tf.float32))
full1_bias = 
tf.Variable(tf.truncated_normal([fully_connected_size1], 
stddev=0.1, dtype=tf.float32))
full2_weight = 
tf.Variable(tf.truncated_normal([fully_connected_size1, 
target_size], stddev=0.1, dtype=tf.float32))
full2_bias = tf.Variable(tf.truncated_normal([target_size], 
stddev=0.1, dtype=tf.float32))

7. Now we'll declare our model. We do this, first, by creating a model
function. Note that the function will look in the global scope for the
layer weights and biases necessary. Also, to get the fully connected
layer to work, we transform the output of the second convolutional
layer to be flat, so we can use it in the fully connected layer:

def my_conv_net(input_data):
    # First Conv-ReLU-MaxPool Layer
    conv1 = tf.nn.conv2d(input_data, conv1_weight, strides=



[1, 1, 1, 1], padding='SAME')
    relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_bias))
    max_pool1 = tf.nn.max_pool(relu1, ksize=[1, 
max_pool_size1, max_pool_size1, 1], strides=[1, 
max_pool_size1, max_pool_size1, 1], padding='SAME')
    # Second Conv-ReLU-MaxPool Layer
    conv2 = tf.nn.conv2d(max_pool1, conv2_weight, strides=[1, 
1, 1, 1], padding='SAME')
    relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_bias))
    max_pool2 = tf.nn.max_pool(relu2, ksize=[1, 
max_pool_size2, max_pool_size2, 1], strides=[1, 
max_pool_size2, max_pool_size2, 1], padding='SAME')
    # Transform Output into a 1xN layer for next fully 
connected layer
    final_conv_shape = max_pool2.get_shape().as_list()
    final_shape = final_conv_shape[1] * final_conv_shape[2] * 
final_conv_shape[3]
    flat_output = tf.reshape(max_pool2, [final_conv_shape[0], 
final_shape])
    # First Fully Connected Layer
    fully_connected1 = 
tf.nn.relu(tf.add(tf.matmul(flat_output, full1_weight), 
full1_bias))
    # Second Fully Connected Layer
    final_model_output = tf.add(tf.matmul(fully_connected1, 
full2_weight), full2_bias)
    return(final_model_output)

8. Next, we can declare the model on the training and test data:

model_output = my_conv_net(x_input)
test_model_output = my_conv_net(eval_input)

9. The loss function we will use is the softmax function. We use a sparse
softmax because our predictions will be only one category and not
multiple categories. We are also going to use a loss function that
operates on logits and not the scaled probabilities:

loss = 
tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits
(model_output, y_target))

10. Next, we'll create a training and test_prediction function. Then, we



will also create an accuracy function to determine how accurate the
model is on each batch:

prediction = tf.nn.softmax(model_output)
test_prediction = tf.nn.softmax(test_model_output)
# Create accuracy function
def get_accuracy(logits, targets):
    batch_predictions = np.argmax(logits, axis=1)
    num_correct = np.sum(np.equal(batch_predictions, 
targets))
return(100. * num_correct/batch_predictions.shape[0])

11. Now we can create the optimizer function, declare the training step
and initialize all the model variables:

my_optimizer = tf.train.MomentumOptimizer(learning_rate, 0.9)
train_step = my_optimizer.minimize(loss)
# Initialize Variables
init = tf.initialize_all_variables()
sess.run(init)

12. We can now start training our model. We loop through the data in
randomly chosen batches. Every so often, we choose to evaluate the
model on the train and test batches and record the accuracy and loss.
We can see that, after 500 generations, we quickly achieve 96%-97%
accuracy on the test data:

train_loss = []
train_acc = []
test_acc = []
for i in range(generations):
    rand_index = np.random.choice(len(train_xdata), 
size=batch_size)
    rand_x = train_xdata[rand_index]
    rand_x = np.expand_dims(rand_x, 3)
    rand_y = train_labels[rand_index]
    train_dict = {x_input: rand_x, y_target: rand_y}
    sess.run(train_step, feed_dict=train_dict)
    temp_train_loss, temp_train_preds = sess.run([loss, 
prediction], feed_dict=train_dict)
    temp_train_acc = get_accuracy(temp_train_preds, rand_y)
    if (i+1) % eval_every == 0:



        eval_index = np.random.choice(len(test_xdata), 
size=evaluation_size)
        eval_x = test_xdata[eval_index]
        eval_x = np.expand_dims(eval_x, 3)
        eval_y = test_labels[eval_index]
        test_dict = {eval_input: eval_x, eval_target: eval_y}
        test_preds = sess.run(test_prediction, 
feed_dict=test_dict)
        temp_test_acc = get_accuracy(test_preds, eval_y)
        # Record and print results
        train_loss.append(temp_train_loss)
        train_acc.append(temp_train_acc)
        test_acc.append(temp_test_acc)
        acc_and_loss = [(i+1), temp_train_loss, 
temp_train_acc, temp_test_acc]
        acc_and_loss = [np.round(x,2) for x in acc_and_loss]

13. This results in the following output:

print('Generation # {}. Train Loss: {:.2f}. Train Acc (Test 
Acc): {:.2f} ({:.2f})'.format(*acc_and_loss))
Generation # 5. Train Loss: 2.37. Train Acc (Test Acc): 7.00 
(9.80)
Generation # 10. Train Loss: 2.16. Train Acc (Test Acc): 
31.00 (22.00)
Generation # 15. Train Loss: 2.11. Train Acc (Test Acc): 
36.00 (35.20)
Generation # 490. Train Loss: 0.06. Train Acc (Test Acc): 
98.00 (97.40)
Generation # 495. Train Loss: 0.10. Train Acc (Test Acc): 
98.00 (95.40)
Generation # 500. Train Loss: 0.14. Train Acc (Test Acc): 
98.00 (96.00)

14. Here is the code to plot the loss and accuracies using Matplotlib:

eval_indices = range(0, generations, eval_every)
# Plot loss over time
plt.plot(eval_indices, train_loss, 'k-')
plt.title('Softmax Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Softmax Loss')
plt.show()
# Plot train and test accuracy



plt.plot(eval_indices, train_acc, 'k-', label='Train Set 
Accuracy')
plt.plot(eval_indices, test_acc, 'r--', label='Test Set 
Accuracy')
plt.title('Train and Test Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')

plt.legend(loc='lower right')
plt.show()

Figure 3: The left plot is the train and test set accuracy across our
500 training generations. The right plot is the softmax loss value over

500 generations.

15. If we want to plot a sample of the latest batch results, here is the code
to plot a sample of six of the latest results:

# Plot the 6 of the last batch results:
actuals = rand_y[0:6]
predictions = np.argmax(temp_train_preds,axis=1)[0:6]
images = np.squeeze(rand_x[0:6])
Nrows = 2
Ncols = 3
for i in range(6):
    plt.subplot(Nrows, Ncols, i+1)
    plt.imshow(np.reshape(images[i], [28,28]), 



cmap='Greys_r')
    plt.title('Actual: ' + str(actuals[i]) + ' Pred: ' + 
str(predictions[i]),fontsize=10)
    frame = plt.gca()
    frame.axes.get_xaxis().set_visible(False)
    frame.axes.get_yaxis().set_visible(False)

Figure 4: A plot of six random images with the actual and predicted
values in the title. The lower right picture was predicted to be a '3',

when in fact it is a '1'.

How it works…
We increased our performance on the MNIST dataset and built a model
that quickly achieves about 97% accuracy while training from scratch. Our
first two layers are a combination of convolutions, ReLU, and maxpooling.
The second two layers are fully connected layers. We trained in batches of
size 100 and looked at the accuracy and loss across the generations we
trained. Finally, we also plotted six random digits and the
predictions/actuals for each.

A convolutional neural network does very well with image recognition.
Part of the reason for this is that the convolutional layer creates its own
low-level features that are activated when they come across part of the



image that is important. This type of model creates features on its own and
uses them for prediction.

There's more…
CNN models have made vast strides in the past few years in image
recognition. There are many novel ideas being explored and new
architectures are discovered very frequently. A great repository of papers
in this field is a repository website called Arxiv.org (https://arxiv.org/),
which is created and maintained by Cornell University. Arxiv.org includes
some very recent papers in many fields, including computer science and
computer science subfields like Computer Vision and Image Recognition
(https://arxiv.org/list/cs.CV/recent).

See also
There are other great resources for learning about convolutional neural
networks. Here is a list of some great resources:

Stanford University has a great wiki at:
http://scarlet.stanford.edu/teach/index.php/An_Introduction_to_Convolutional_Neural_Networks
Deep Learning by Michael Nielsen, at:
http://neuralnetworksanddeeplearning.com/chap6.html
An Introduction to Convolutional Neural Networks by Jianxin Wu at:
http://cs.nju.edu.cn/wujx/paper/CNN.pdf

https://arxiv.org/
https://arxiv.org/list/cs.CV/recent
http://scarlet.stanford.edu/teach/index.php/An_Introduction_to_Convolutional_Neural_Networks
http://neuralnetworksanddeeplearning.com/chap6.html
http://cs.nju.edu.cn/wujx/paper/CNN.pdf


Implementing an Advanced CNN
It is important to be able to extend CNN models for image recognition so
that we understand how to increase the depth of the network. This may
increase the accuracy of our predictions if we have enough data.
Extending the depth of CNN networks is done in a standard fashion: we
just repeat the convolution, maxpool, ReLU series until we are satisfied
with the depth. Many of the more accurate image recognition networks
operate in this fashion.

Getting ready
In this recipe, we will implement a more advanced method of reading
image data and use a larger CNN to do image recognition on the CIFAR10
dataset (https://www.cs.toronto.edu/~kriz/cifar.html). This dataset has
60,000 32x32 images that fall into exactly one of ten possible classes. The
potential classes for the images are airplane, automobile, bird, cat, deer,
dog, frog, horse, ship, and truck. You can also refer to the first bullet point
of the See also section.

Most image datasets will be too large to fit into memory. What we can do
with TensorFlow is set up an image pipeline to read in a batch at a time
from a file. We do this by essentially setting up an image reader and then
creating a batch queue that operates on the image reader.

Also, with image recognition data, it is common to randomly perturb the
image before sending it through for training. Here, we will randomly crop,
flip, and change the brightness.

This recipe is an adapted version of the official TensorFlow CIFAR-10
tutorial, which is available under the See also section at the end of this
chapter. We have condensed the tutorial into one script and will go through
it line-by-line and explain all the code that is necessary. We also revert
some constants and parameters to the original cited paper values, which

https://www.cs.toronto.edu/~kriz/cifar.html


we will point out in the following appropriated steps.

How to do it…
1. To start with, we load the necessary libraries and start a graph session:

import os
import sys
import tarfile
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from six.moves import urllib
sess = tf.Session()

2. Now we'll declare some of the model parameters. Our batch size will
be 128 (for train and test). We will output a status every 50
generations and run for a total of 20,000 generations. Every 500
generations, we'll evaluate on a batch of the test data. We'll then
declare some image parameters, height and width, and what size the
random cropped images will take. There are three channels (red,
green, and blue), and we have ten different targets. Then, we'll declare
where we will store the data and image batches from the queue:

batch_size = 128
output_every = 50
generations = 20000
eval_every = 500
image_height = 32
image_width = 32
crop_height = 24
crop_width = 24
num_channels = 3
num_targets = 10
data_dir = 'temp'
extract_folder = 'cifar-10-batches-bin'

3. It is recommended to lower the learning rate as we progress towards a
good model, so we will exponentially decrease the learning rate: the
initial learning rate will be set at 0.1, and we will exponentially
decrease it by a factor of 10% every 250 generations. The exact



formula will be given by  where x is the current generation
number. The default is for this to continually decrease, but TensorFlow
does accept a staircase argument which only updates the learning
rate:

learning_rate = 0.1
lr_decay = 0.9
num_gens_to_wait = 250.

4. Now we'll set up parameters so that we can read in the binary CIFAR-
10 images:

image_vec_length = image_height * image_width * num_channels
record_length = 1 + image_vec_length

5. Next, we'll set up the data directory and the URL to download the
CIFAR-10 images, if we don't have them already:

data_dir = 'temp'
if not os.path.exists(data_dir):
    os.makedirs(data_dir)
cifar10_url = 'http://www.cs.toronto.edu/~kriz/cifar-10-
binary.tar.gz'
data_file = os.path.join(data_dir, 'cifar-10-binary.tar.gz')
if not os.path.isfile(data_file):
    # Download file
    filepath, _ = urllib.request.urlretrieve(cifar10_url, 
data_file, progress)
    # Extract file
    tarfile.open(filepath, 'r:gz').extractall(data_dir)

6. We'll set up the record reader and return a randomly distorted image
with the following read_cifar_files() function. First, we need to
declare a record reader object that will read in a fixed length of bytes.
After we read the image queue, we'll split apart the image and label.
Finally, we will randomly distort the image with TensorFlow's built in
image modification functions:

def read_cifar_files(filename_queue, distort_images = True):
    reader = 
tf.FixedLengthRecordReader(record_bytes=record_length)



    key, record_string = reader.read(filename_queue)
    record_bytes = tf.decode_raw(record_string, tf.uint8)
    # Extract label
    image_label = tf.cast(tf.slice(record_bytes, [0], [1]), 
tf.int32)
    # Extract image
    image_extracted = tf.reshape(tf.slice(record_bytes, [1], 
[image_vec_length]), [num_channels, image_height, 
image_width])
    # Reshape image
    image_uint8image = tf.transpose(image_extracted, [1, 2, 
0])
    reshaped_image = tf.cast(image_uint8image, tf.float32)
    # Randomly Crop image
    final_image = 
tf.image.resize_image_with_crop_or_pad(reshaped_image, 
crop_width, crop_height)
    if distort_images:
        # Randomly flip the image horizontally, change the 
brightness and contrast
        final_image = 
tf.image.random_flip_left_right(final_image)
        final_image = 
tf.image.random_brightness(final_image,max_delta=63)
        final_image = 
tf.image.random_contrast(final_image,lower=0.2, upper=1.8)
   # Normalize whitening
    final_image = tf.image.per_image_whitening(final_image)
    return(final_image, image_label)

7. Now we'll declare a function that will populate our image pipeline for
the batch processor to use. We first need to set up the file list of
images we want to read through, and to define how to read them with
an input producer object, created through prebuilt TensorFlow
functions. The input producer can be passed into the reading function
that we created in the preceding step, read_cifar_files(). We'll then
set a batch reader on the queue, shuffle_batch():

def input_pipeline(batch_size, train_logical=True):
    if train_logical:
        files = [os.path.join(data_dir, extract_folder, 
'data_batch_{}.bin'.format(i)) for i in range(1,6)]



    else:
        files = [os.path.join(data_dir, extract_folder, 
'test_batch.bin')]
    filename_queue = tf.train.string_input_producer(files)
    image, label = read_cifar_files(filename_queue)

    min_after_dequeue = 1000
    capacity = min_after_dequeue + 3 * batch_size
    example_batch, label_batch = 
tf.train.shuffle_batch([image, label], batch_size, capacity, 
min_after_dequeue)
    return(example_batch, label_batch)

Note

It is important to set the min_after_dequeue properly. This parameter
is responsible for setting the minimum size of an image buffer for
sampling. The official TensorFlow documentation recommends setting
it to (#threads + error margin)*batch_size. Note that setting it to a
larger size results in more uniform shuffling, as it is shuffling from a
larger set of data in the queue, but that more memory will also be used
in the process.

8. Next, we can declare our model function. The model we will use has
two convolutional layers, followed by three fully connected layers. To
make variable declaration easier, we'll start by declaring two variable
functions. The two convolutional layers will create 64 features each.
The first fully connected layer will connect the 2nd convolutional
layer with 384 hidden nodes. The second fully connected operation
will connect those 384 hidden nodes to 192 hidden nodes. The final
hidden layer operation will then connect the 192 nodes to the 10
output classes we are trying to predict. See the following inline
comments marked with #:

def cifar_cnn_model(input_images, batch_size, 
train_logical=True):
    def truncated_normal_var(name, shape, dtype):
        return(tf.get_variable(name=name, shape=shape, 
dtype=dtype, 



initializer=tf.truncated_normal_initializer(stddev=0.05)))
    def zero_var(name, shape, dtype):
        return(tf.get_variable(name=name, shape=shape, 
dtype=dtype, initializer=tf.constant_initializer(0.0)))
    # First Convolutional Layer
    with tf.variable_scope('conv1') as scope:
        # Conv_kernel is 5x5 for all 3 colors and we will 
create 64 features
        conv1_kernel = 
truncated_normal_var(name='conv_kernel1', shape=[5, 5, 3, 
64], dtype=tf.float32)
        # We convolve across the image with a stride size of 
1
        conv1 = tf.nn.conv2d(input_images, conv1_kernel, [1, 
1, 1, 1], padding='SAME')
        # Initialize and add the bias term
        conv1_bias = zero_var(name='conv_bias1', shape=[64], 
dtype=tf.float32)
        conv1_add_bias = tf.nn.bias_add(conv1, conv1_bias)
        # ReLU element wise
        relu_conv1 = tf.nn.relu(conv1_add_bias)
    # Max Pooling
    pool1 = tf.nn.max_pool(relu_conv1, ksize=[1, 3, 3, 1], 
strides=[1, 2, 2, 1],padding='SAME', name='pool_layer1')

    # Local Response Normalization
    norm1 = tf.nn.lrn(pool1, depth_radius=5, bias=2.0, 
alpha=1e-3, beta=0.75, name='norm1')
    # Second Convolutional Layer
    with tf.variable_scope('conv2') as scope:
        # Conv kernel is 5x5, across all prior 64 features 
and we create 64 more features
        conv2_kernel = 
truncated_normal_var(name='conv_kernel2', shape=[5, 5, 64, 
64], dtype=tf.float32)
        # Convolve filter across prior output with stride 
size of 1
        conv2 = tf.nn.conv2d(norm1, conv2_kernel, [1, 1, 1, 
1], padding='SAME')
        # Initialize and add the bias
        conv2_bias = zero_var(name='conv_bias2', shape=[64], 
dtype=tf.float32)
        conv2_add_bias = tf.nn.bias_add(conv2, conv2_bias)



        # ReLU element wise
        relu_conv2 = tf.nn.relu(conv2_add_bias)
    # Max Pooling
    pool2 = tf.nn.max_pool(relu_conv2, ksize=[1, 3, 3, 1], 
strides=[1, 2, 2, 1], padding='SAME', name='pool_layer2')    
     # Local Response Normalization (parameters from paper)
    norm2 = tf.nn.lrn(pool2, depth_radius=5, bias=2.0, 
alpha=1e-3, beta=0.75, name='norm2')
    # Reshape output into a single matrix for multiplication 
for the fully connected layers
    reshaped_output = tf.reshape(norm2, [batch_size, -1])
    reshaped_dim = reshaped_output.get_shape()[1].value

    # First Fully Connected Layer
    with tf.variable_scope('full1') as scope:
        # Fully connected layer will have 384 outputs.
        full_weight1 = 
truncated_normal_var(name='full_mult1', shape=[reshaped_dim, 
384], dtype=tf.float32)
        full_bias1 = zero_var(name='full_bias1', shape=[384], 
dtype=tf.float32)
        full_layer1 = 
tf.nn.relu(tf.add(tf.matmul(reshaped_output, full_weight1), 
full_bias1))
    # Second Fully Connected Layer
    with tf.variable_scope('full2') as scope:
        # Second fully connected layer has 192 outputs.
        full_weight2 = 
truncated_normal_var(name='full_mult2', shape=[384, 192], 
dtype=tf.float32)
        full_bias2 = zero_var(name='full_bias2', shape=[192], 
dtype=tf.float32)
        full_layer2 = 
tf.nn.relu(tf.add(tf.matmul(full_layer1, full_weight2), 
full_bias2))
    # Final Fully Connected Layer -> 10 categories for output 
(num_targets)
    with tf.variable_scope('full3') as scope:
        # Final fully connected layer has 10 (num_targets) 
outputs.
        full_weight3 = 
truncated_normal_var(name='full_mult3', shape=[192, 
num_targets], dtype=tf.float32)



        full_bias3 =  zero_var(name='full_bias3', shape=
[num_targets], dtype=tf.float32)
        final_output = tf.add(tf.matmul(full_layer2, 
full_weight3), full_bias3)

    return(final_output)

Note

Our local response normalization parameters are taken from the paper
and are referenced in See also (3).

9. Now we'll create the loss function. We will use the softmax function
because a picture can only take on exactly one category, so the output
should be a probability distribution over the ten targets:

def cifar_loss(logits, targets):
    # Get rid of extra dimensions and cast targets into 
integers
    targets = tf.squeeze(tf.cast(targets, tf.int32))
    # Calculate cross entropy from logits and targets
    cross_entropy = 
tf.nn.sparse_softmax_cross_entropy_with_logits(logits, 
targets)
    # Take the average loss across batch size
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    return(cross_entropy_mean)

10. Next, we declare our training step. The learning rate will decrease in
an exponential step function:

def train_step(loss_value, generation_num):
    # Our learning rate is an exponential decay (stepped 
down)
    model_learning_rate = 
tf.train.exponential_decay(learning_rate, generation_num, 
num_gens_to_wait, lr_decay, staircase=True)
    # Create optimizer
    my_optimizer = 
tf.train.GradientDescentOptimizer(model_learning_rate)
    # Initialize train step
    train_step = my_optimizer.minimize(loss_value)
    return(train_step)



11. We must also have an accuracy function that calculates the accuracy
across a batch of images. We'll input the logits and target vectors, and
output an averaged accuracy. We can then use this for both the train
and test batches:

def accuracy_of_batch(logits, targets):
    # Make sure targets are integers and drop extra 
dimensions
    targets = tf.squeeze(tf.cast(targets, tf.int32))
    # Get predicted values by finding which logit is the 
greatest
    batch_predictions = tf.cast(tf.argmax(logits, 1), 
tf.int32)
    # Check if they are equal across the batch
    predicted_correctly = tf.equal(batch_predictions, 
targets)
    # Average the 1's and 0's (True's and False's) across the 
batch size
    accuracy = tf.reduce_mean(tf.cast(predicted_correctly, 
tf.float32))
    return(accuracy)

12. Now that we have an imagepipeline function, we can initialize both
the training image pipeline and the test image pipeline:

images, targets = input_pipeline(batch_size, 
train_logical=True)
test_images, test_targets = input_pipeline(batch_size, 
train_logical=False)

13. Next, we'll initialize the model for the training output and the test
output. It is important to note that we must declare
scope.reuse_variables() after we create the training model so that,
when we declare the model for the test network, it will use the same
model parameters:

with tf.variable_scope('model_definition') as scope:
    # Declare the training network model
    model_output = cifar_cnn_model(images, batch_size)
    # Use same variables within scope
    scope.reuse_variables()
    # Declare test model output



    test_output = cifar_cnn_model(test_images, batch_size)

14. We can now initialize our loss and test accuracy functions. Then we'll
declare the generation variable. This variable needs to be declared as
non-trainable, and passed to our training function that uses it in the
learning rate exponential decay calculation:

loss = cifar_loss(model_output, targets)
accuracy = accuracy_of_batch(test_output, test_targets)
generation_num = tf.Variable(0, trainable=False)
train_op = train_step(loss, generation_num)

15. We'll now initialize all of the model's variables and then start the image
pipeline by running the TensorFlow function, start_queue_runners().
When we start the train or test model output, the pipeline will feed
in a batch of images in place of a feed dictionary:

init = tf.initialize_all_variables()
sess.run(init)
tf.train.start_queue_runners(sess=sess)

16. We now loop through our training generations and save the training
loss and the test accuracy:

train_loss = []
test_accuracy = []
for i in range(generations):
    _, loss_value = sess.run([train_op, loss])
    if (i+1) % output_every == 0:
        train_loss.append(loss_value)
        output = 'Generation {}: Loss = {:.5f}'.format((i+1), 
loss_value)
        print(output)
    if (i+1) % eval_every == 0:
        [temp_accuracy] = sess.run([accuracy])
        test_accuracy.append(temp_accuracy)
        acc_output = ' --- Test Accuracy= 
{:.2f}%.'.format(100.*temp_accuracy)
        print(acc_output)

17. This results in the following output:

Generation 19500: Loss = 0.04461



 --- Test Accuracy = 80.47%.
Generation 19550: Loss = 0.01171
Generation 19600: Loss = 0.06911
Generation 19650: Loss = 0.08629
Generation 19700: Loss = 0.05296
Generation 19750: Loss = 0.03462
Generation 19800: Loss = 0.03182
Generation 19850: Loss = 0.07092
Generation 19900: Loss = 0.11342
Generation 19950: Loss = 0.08751
Generation 20000: Loss = 0.02228
 --- Test Accuracy = 83.59%.

18. Finally, here is some matplotlib code that will plot the loss and test
accuracy over the course of the training:

eval_indices = range(0, generations, eval_every)
output_indices = range(0, generations, output_every)
# Plot loss over time
plt.plot(output_indices, train_loss, 'k-')
plt.title('Softmax Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('Softmax Loss')
plt.show()
# Plot accuracy over time
plt.plot(eval_indices, test_accuracy, 'k-')
plt.title('Test Accuracy')
plt.xlabel('Generation')
plt.ylabel('Accuracy')
plt.show()



Figure 5: The training loss is on the left and the test accuracy is on
the right. For the CIFAR-10 image recognition CNN, we were able to

achieve a model that reaches around 75% accuracy on the test set.

How it works…
After we downloaded the CIFAR-10 data, we established an image
pipeline instead of using a feed dictionary. For more information on the
image pipeline, please see the official TensorFlow CIFAR-10 tutorials. We
used this train and test pipeline to try to predict the correct category of the
images. By the end, the model had achieved around 75% accuracy on the
test set.

See also
For more information about the CIFAR-10 dataset, please see
Learning Multiple Layers of Features from Tiny Images, Alex
Krizhevsky, 2009. https://www.cs.toronto.edu/~kriz/learning-features-
2009-TR.pdf
To see original TensorFlow code, visit
https://github.com/tensorflow/tensorflow/tree/r0.11/tensorflow/models/image/cifar10
For more on local response normalization, please see, ImageNet
Classification with Deep Convolutional Neural Networks,
Krizhevsky, A., et. al. 2012. http://papers.nips.cc/paper/4824-
imagenet-classification-with-deepconvolutional-neural-networks

https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://github.com/tensorflow/tensorflow/tree/r0.11/tensorflow/models/image/cifar10
http://papers.nips.cc/paper/4824-imagenet-classification-with-deepconvolutional-neural-networks


Retraining Existing CNNs models
Training a new image recognition from scratch requires a lot of time and
computational power. If we can take a prior trained network and retrain it
with our images, it could save us computational time. For this recipe, we
will show how to use a pre-trained TensorFlow image recognition model
and fine-tune it to work on a different set of images.

Getting ready
Training a new image recognition from scratch requires a lot of time and
computational power. If we can take a prior trained network and retrain it
with our images, it could save us computational time. The idea is to reuse
the weights and structure of a prior model from the convolutional layers
and retrain the fully connected layers at the top of the network.

TensorFlow has created a tutorial about training on top of existing CNN
models (refer to the first bullet point of the See also section). In this
recipe, we will illustrate how to use the same methodology for CIFAR-10.
The CNN network we are going to employ uses a very popular
architecture called Inception. The Inception CNN model was created by
Google and has performed very well in many image recognition
benchmarks. For details, see the paper referenced in the second bullet
point of See also section.

The main Python script we will cover shows how to download the CIFAR-
10 image data and automatically separate, label, and save the images into
the ten classes in each of the train and test folders. After that, we will
reiterate how to train the network on our images.

How to do it…
1. We'll start by loading the necessary libraries for downloading,

unzipping, and saving the CIFAR-10 images:



import os
import tarfile
import _pickle as cPickle
import numpy as np
import urllib.request
import scipy.misc

2. We now declare the CIFAR-10 data link and make the temporary
directory we will store the data in. We'll also declare the ten categories
to reference for saving the images later on:

cifar_link = 'https://www.cs.toronto.edu/~kriz/cifar-10-
python.tar.gz'
data_dir = 'temp'
if not os.path.isdir(data_dir):
    os.makedirs(data_dir)
objects = ['airplane', 'automobile', 'bird', 'cat', 'deer', 
'dog', 'frog', 'horse', 'ship', 'truck']

3. Now we'll download the CIFAR-10 .tar data file, and un-tar the file:

target_file = os.path.join(data_dir, 'cifar-10-
python.tar.gz')
if not os.path.isfile(target_file):
    print('CIFAR-10 file not found. Downloading CIFAR data 
(Size = 163MB)')
    print('This may take a few minutes, please wait.')
    filename, headers = 
urllib.request.urlretrieve(cifar_link, target_file)
# Extract into memory
tar = tarfile.open(target_file)
tar.extractall(path=data_dir)
tar.close()

4. We now create the necessary folder structure for training. The
temporary directory will have two folders, train_dir and
validation_dir. In each of these folders, we will create the ten sub-
folders for each category:

# Create train image folders
train_folder = 'train_dir'
if not os.path.isdir(os.path.join(data_dir, train_folder)):
    for i in range(10):



        folder = os.path.join(data_dir, train_folder, 
objects[i])
        os.makedirs(folder)
# Create test image folders
test_folder = 'validation_dir'
if not os.path.isdir(os.path.join(data_dir, test_folder)):
    for i in range(10):
        folder = os.path.join(data_dir, test_folder, 
objects[i])
        os.makedirs(folder)

5. In order to save the images, we will create a function that will load
them from memory and store them in an image dictionary:

def load_batch_from_file(file):
    file_conn = open(file, 'rb')
    image_dictionary = cPickle.load(file_conn, 
encoding='latin1')
    file_conn.close()
    return(image_dictionary)

6. With the above dictionary, we will save each of the files in the correct
location with the following function:

def save_images_from_dict(image_dict, folder='data_dir'):

    for ix, label in enumerate(image_dict['labels']):
        folder_path = os.path.join(data_dir, folder, 
objects[label])
        filename = image_dict['filenames'][ix]
        #Transform image data
        image_array = image_dict['data'][ix]
        image_array.resize([3, 32, 32])
        # Save image
        output_location = os.path.join(folder_path, filename)
        
scipy.misc.imsave(output_location,image_array.transpose())

7. With the preceding functions, we can loop through the downloaded
data files and save each image to the correct location:

data_location = os.path.join(data_dir, 'cifar-10-batches-py')
train_names = ['data_batch_' + str(x) for x in range(1,6)]
test_names = ['test_batch']



# Sort train images
for file in train_names:
    print('Saving images from file: {}'.format(file))
    file_location = os.path.join(data_dir, 'cifar-10-batches-
py', file)
    image_dict = load_batch_from_file(file_location)
    save_images_from_dict(image_dict, folder=train_folder)
# Sort test images
for file in test_names:
    print('Saving images from file: {}'.format(file))
    file_location = os.path.join(data_dir, 'cifar-10-batches-
py', file)
    image_dict = load_batch_from_file(file_location)
    save_images_from_dict(image_dict, folder=test_folder)

8. The last part of our script creates the label file, and this is the last
piece of information that we will need. This file will let us interpret the
outputs as labels instead of the numerical indices:

cifar_labels_file = 
os.path.join(data_dir,'cifar10_labels.txt')
print('Writing labels file, {}'.format(cifar_labels_file))
with open(cifar_labels_file, 'w') as labels_file:
    for item in objects:
        labels_file.write("{}\n".format(item))

9. When the above script is run, it will download the images and sort
them into the correct folder structure that the TensorFlow retraining
tutorial expects. Once we have done this, we just follow the tutorial
accordingly. First we should clone the tutorial repository:

git clone 
https://github.com/tensorflow/models/tree/master/inception/in
ception

10. In order to use a prior trained model, we must download the network
weights and apply it to our model:

me@computer:~$ curl -O 
http://download.tensorflow.org/models/image/imagenet/inceptio
n-v3-2016-03-01.tar.gz
me@computer:~$ tar xzf inception-v3-2016-03-01.tar.gz



11. Now that we have the images in the correct folder structure, we have
to turn them into a TFRecords object. We do this by running the
following commands:

me@computer:~$ python3 data/build_image_data.py
--train_directory="temp/train_dir/"
--validation_directory="temp/validation_dir"
--output_directory="temp/" --
labels_file="temp/cifar10_labels.txt"

12. Now we'll train the model using bazel, setting the parameter ' to true.
This script outputs the loss every 10 generations. We can kill this
process at any time and the model output will be in the folder
temp/training_results. We can load the model from this folder for
evaluation:

me@computer:~$ bazel-bin/inception/flowers_train
--train_dir="temp/training_results" --
data_dir="temp/data_dir"
--pretrained_model_checkpoint_path="model.ckpt-157585"
--fine_tune=True --initial_learning_rate=0.001
--input_queue_memory_factor=1

13. This should result in output similar to the following:

2016-09-18 12:16:32.563577: step 1290, loss = 2.02 (1.2 
examples/sec; 26.965 sec/batch)
2016-09-18 12:25:41.316540: step 1300, loss = 2.01 (1.2 
examples/sec; 26.357 sec/batch)

How it works…
The official TensorFlow tutorial for training on top of a pre-trained CNN
requires a folder setup that we created from the CIFAR-10 data. We then
converted the data into the required TFRecords format and started training
the model. Remember that we are fine-tuning the model and retraining the
fully connected layers at the top to fit our 10-category data.

See also



Official Tensorflow Inception-v3 tutorial:
https://github.com/tensorflow/models/tree/master/inception
Googlenet Inception-v3 paper: https://arxiv.org/abs/1512.00567

https://github.com/tensorflow/models/tree/master/inception
https://arxiv.org/abs/1512.00567


Applying Stylenet/Neural-Style
Once we have an image recognition CNN trained, we can use the network
itself for some interesting data and image processing. Stylenet is a
procedure that attempts to learn an image style from one picture and apply
it to a second picture while keeping the second image structure (or
content). This may be possible if we can find intermediate CNN nodes that
correlate strongly with a style separately from the content of the image.

Getting ready
Stylenet is a procedure that takes two images and applies the style of one
image to the content of the second image. It is based on a famous paper in
2015, A Neural Algorithm of Artistic Style (refer to the first bullet point
under See also section). The authors found a property of some CNNs
where intermediate layers exist that seem to encode the style of a picture
and some encode the content of the picture. To this end, if we train the
style layers on the style picture and the content layers on the original
image, and back-propagate those calculated losses, we can change the
original image to be more like the style image.

In order to accomplish this, we will download the recommended network
from the paper, called the imagenet-vgg-19. There is also an imagenet-vgg-
16 network that works as well, but the paper recommends imagenet-vgg-
19.

How to do it…
1. First, we'll download the pretrained network in *.mat format. The mat

format is a matlab object, and the scipy package in Python has a
method that can read it. The link to download the mat object is here.
We save this model in the same folder our Python script is for
reference:

http://www.vlfeat.org/matconvnet/models/beta16/imagenet-vgg-



verydeep-19.mat

2. We'll start our Python script by loading the necessary libraries:

import os
import scipy.misc
import numpy as np
import tensorflow as tf

3. Then we can start a graph session and declare the locations of our two
images: the original image and the style image. For our purposes, we
will use the cover image of this book for the original image; for the
style image, we will use Starry Night by Vincent van Gough. Feel free
to use any two pictures you want here. If you choose to use these
pictures, they are available on the book's github site,
https://github.com/nfmcclure/tensorflow_cookbook (Navigate
tostyelnet section):

sess = tf.Session()
original_image_file = 'temp/book_cover.jpg'
style_image_file = 'temp/starry_night.jpg'

4. We'll set some parameters for our model: the location of the mat file,
weights, the learning rate, number of generations, and how frequently
we should output the intermediate image. For the weights, it helps to
highly weight the style image over the original image. These
hyperparameters should be tuned for changes in the desired result:

vgg_path ='imagenet-vgg-verydeep-19.mat'
original_image_weight = 5.0
style_image_weight = 200.0
regularization_weight = 50.0
learning_rate = 0.1
generations = 10000
output_generations = 500

5. Now we'll load the two images with scipy and change the style image
to fit the original image dimensions:

original_image = scipy.misc.imread(original_image_file)
style_image = scipy.misc.imread(style_image_file)

https://github.com/nfmcclure/tensorflow_cookbook


# Get shape of target and make the style image the same
target_shape = original_image.shape
style_image = scipy.misc.imresize(style_image, 
target_shape[1] / style_image.shape[1])

6. From the paper, we can define the layers in order of how they
appeared. We'll use the author's naming convention:

vgg_layers = ['conv1_1', 'relu1_1',
'conv1_2', 'relu1_2', 'pool1',
'conv2_1', 'relu2_1',
'conv2_2', 'relu2_2', 'pool2',
'conv3_1', 'relu3_1',
'conv3_2', 'relu3_2',
'conv3_3', 'relu3_3',
'conv3_4', 'relu3_4', 'pool3',
'conv4_1', 'relu4_1',
'conv4_2', 'relu4_2',
'conv4_3', 'relu4_3',
'conv4_4', 'relu4_4', 'pool4',
'conv5_1', 'relu5_1',
'conv5_2', 'relu5_2',
'conv5_3', 'relu5_3',
'conv5_4', 'relu5_4']

7. Now we'll define a function that will extract the parameters from the
mat file:

def extract_net_info(path_to_params):
    vgg_data = scipy.io.loadmat(path_to_params)
    normalization_matrix = vgg_data['normalization'][0][0][0]
    mat_mean = np.mean(normalization_matrix, axis=(0,1))
    network_weights = vgg_data['layers'][0]
    return(mat_mean, network_weights)

8. From the loaded weights and the layer definitions, we can recreate
the network in TensorFlow with the following function. We'll loop
through each layer and assign the corresponding function with
appropriate weights and biases, where applicable:

def vgg_network(network_weights, init_image):
    network = {}
    image = init_image



    for i, layer in enumerate(vgg_layers):
        if layer[1] == 'c':
            weights, bias = network_weights[i][0][0][0][0]
            weights = np.transpose(weights, (1, 0, 2, 3))
            bias = bias.reshape(-1)
            conv_layer = tf.nn.conv2d(image, 
tf.constant(weights), (1, 1, 1, 1), 'SAME')
            image = tf.nn.bias_add(conv_layer, bias)
        elif layer[1] == 'r':
            image = tf.nn.relu(image)
        else:
            image = tf.nn.max_pool(image, (1, 2, 2, 1), (1, 
2, 2, 1), 'SAME')
        network[layer] = image
    return(network)

9. The paper recommends a few strategies of assigning intermediate
layers to the original and style images. While we should keep relu4_2
for the original image, we can try different combinations of the other
reluX_1 layer outputs for the style image:

original_layer = 'relu4_2'
style_layers = ['relu1_1', 'relu2_1', 'relu3_1', 'relu4_1', 
'relu5_1']

10. Next, we'll run the above function to get the weights and mean. We'll
also change the image shapes to have four dimensions by adding a
dimension of size one to the beginning. TensorFlow's image operations
act on four dimensions, so we must add the batch-size dimension:

normalization_mean, network_weights = 
extract_net_info(vgg_path)
shape = (1,) + original_image.shape
style_shape = (1,) + style_image.shape
original_features = {}
style_features = {}

11. Next, we declare the image placeholder and create the network with
that placeholder:

image = tf.placeholder('float', shape=shape)
vgg_net = vgg_network(network_weights, image)



12. We now normalize the original image matrix and run it through the
network:

original_minus_mean = original_image - normalization_mean
original_norm = np.array([original_minus_mean])
original_features[original_layer] = 
sess.run(vgg_net[original_layer],
feed_dict={image: original_norm})

13. We repeat the same procedure with each of the style layers that we
chose in Step 9:

image = tf.placeholder('float', shape=style_shape)
vgg_net = vgg_network(network_weights, image)
style_minus_mean = style_image - normalization_mean
style_norm = np.array([style_minus_mean])
for layer in style_layers:
    layer_output = sess.run(vgg_net[layer], feed_dict={image: 
style_norm})
    layer_output = np.reshape(layer_output, (-1, 
layer_output.shape[3]))
    style_gram_matrix = np.matmul(layer_output.T, 
layer_output) / layer_output.size
    style_features[layer] = style_gram_matrix

14. In order to create the combined image, we'll start with random noise
and run it through the network:

initial = tf.random_normal(shape) * 0.05
image = tf.Variable(initial)
vgg_net = vgg_network(network_weights, image)

15. We now declare the first loss, the loss on the original image. We use
the size-normalized l2-loss between the output of the normalized
original image from step 12 and the output of the layer designated to
represent the original content from step 9:

original_loss = original_image_weight * (2 * 
tf.nn.l2_loss(vgg_net[original_layer] - 
original_features[original_layer]) 
/original_features[original_layer].size)

16. Now we calculate the same type of loss for each style layer:



style_loss = 0
style_losses = []
for style_layer in style_layers:
    layer = vgg_net[style_layer]
    feats, height, width, channels = [x.value for x in 
layer.get_shape()]
    size = height * width * channels
    features = tf.reshape(layer, (-1, channels))
    style_gram_matrix = tf.matmul(tf.transpose(features), 
features) / size
    style_expected = style_features[style_layer]
    style_losses.append(2 * tf.nn.l2_loss(style_gram_matrix - 
style_expected) / style_expected.size)
style_loss += style_image_weight * 
tf.reduce_sum(style_losses)

17. The third loss term is called the total variation loss. This comes from
calculating the total variation. It is similar to total variation denoising,
in that true images have very low local variation, and images with high
noise have high local variation. The key term in the following code is
the second_term_numerator, which subtracts off nearby pixels. Images
with high noise will have high differences and we can treat this as a
loss function to minimize:

total_var_x = 
sess.run(tf.reduce_prod(image[:,1:,:,:].get_shape()))
total_var_y = 
sess.run(tf.reduce_prod(image[:,:,1:,:].get_shape()))
first_term = regularization_weight * 2
second_term_numerator = tf.nn.l2_loss(image[:,1:,:,:] - 
image[:,:shape[1]-1,:,:])
second_term = second_term_numerator / total_var_y
third_term = (tf.nn.l2_loss(image[:,:,1:,:] - 
image[:,:,:shape[2]-1,:]) / total_var_x)
total_variation_loss = first_term * (second_term + 
third_term)

18. The total loss we want to minimize is the combined original, style, and
total variation loss:

loss = original_loss + style_loss + total_variation_loss



19. We next declare our optimizer and training step and initialize all the
variables in the model.

optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_step = optimizer.minimize(loss)
sess.run(tf.initialize_all_variables())

20. We now loop through our training generations and print a status
update every so often and save the temporary image. We'll save the
temporary image because it is hard to determine how far to run this
algorithm as it can vary, depending on the images chosen. It is best to
err on the larger generation size, and stop when a temporary image
appears to be a good stopping point:

for i in range(generations):
    sess.run(train_step)
    # Print update and save temporary output
    if (i+1) % output_generations == 0:
        print('Generation {} out of {}'.format(i + 1, 
generations))
        image_eval = sess.run(image)
        best_image_add_mean = image_eval.reshape(shape[1:]) + 
normalization_mean
        output_file = 'temp_output_{}.jpg'.format(i)
        scipy.misc.imsave(output_file, best_image_add_mean)

21. At the end of the algorithm, we'll save the final output:

image_eval = sess.run(image)
best_image_add_mean = image_eval.reshape(shape[1:]) + 
normalization_mean
output_file = 'final_output.jpg'
scipy.misc.imsave(output_file, best_image_add_mean)



Figure 6: Using the stylenet algorithm to combine the book cover
image with Starry Night. Note that different style emphases can be

used by changing the weighting at the beginning of the script.

How it works…
We first loaded the two images, then loaded the pre-trained network
weights and assigned layers to the original and style images. We calculated
three loss functions: an original image loss, a style loss, and a total
variation loss. Then we trained random noise pictures to have the style of
the style image and the content of the original image.



See also
A Neural Algorithm of Artistic Style by Gatys, Ecker, Bethge. 2015.
https://arxiv.org/abs/1508.06576.

https://arxiv.org/abs/1508.06576


Implementing DeepDream
Another usage of trained CNNs is exploiting the fact that some of the
intermediate nodes detect features of labels (e.g. a cat ear or a feather of a
bird). Using this fact, we can find ways to transform any image to reflect
those node features of any node we choose. For this recipe, we will go
through the DeepDream tutorial on TensorFlow's website. But for this
recipe, we will go through the essential parts in much more detail. The
hope is that we can prepare the reader to use the DeepDream algorithm for
exploration of CNNs and features created in such CNNs.

Getting ready
TensorFlow's official tutorials show how to implement DeepDream through
a script (refer to the first bullet point of the See also section). The purpose
of this recipe is to go through the script they provide and explain each line.
While the tutorial is great, there are some parts that are skippable and
some parts that could use more explanation. We hope to provide a more
detailed line-by-line explanation. We also change the code to be Python 3
compliant where necessary.

How to do it…
1. In order to get started with DeepDream, we need to download the

GoogleNet, which is CNN trained on CIFAR-1000:

me@computer:~$ wget 
https://storage.googleapis.com/download.tensorflow.org/models
/inception5h.zip 
me@computer:~$ unzip inception5h.zip

2. First, we'll start by loading the necessary libraries and starting a graph
session:

import os
import matplotlib.pyplot as plt
import numpy as np



import PIL.Image
import tensorflow as tf
from io import BytesIO
graph = tf.Graph()
sess = tf.InteractiveSession(graph=graph)

3. We now declare the location of the unzipped model parameters (from
step 1) and load the parameters into a TensorFlow graph:

# Model location
model_fn = 'tensorflow_inception_graph.pb'
# Load graph parameters
with tf.gfile.FastGFile(model_fn, 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())

4. We create a placeholder for the input, save the imagenet mean value
of 117.0, and then we import the graph definition with the normalized
placeholder:

# Create placeholder for input
t_input = tf.placeholder(np.float32, name='input')
# Imagenet average bias to subtract off images
imagenet_mean = 117.0
t_preprocessed = tf.expand_dims(t_input-imagenet_mean, 0)
tf.import_graph_def(graph_def, {'input':t_preprocessed})

5. Next, we will import the convolutional layers to visualize and use for
DeepDream processing later:

# Create a list of layers that we can refer to later
layers = [op.name for op in graph.get_operations() if 
op.type=='Conv2D' and 'import/' in op.name]
# Count how many outputs for each layer
feature_nums = 
[int(graph.get_tensor_by_name(name+':0').get_shape()[-1]) for 
name in layers]

6. Now we will pick a layer to visualize. We can pick others by name as
well. We choose to look at feature number 139. The image starts with
random noise:

layer = 'mixed4d_3x3_bottleneck_pre_relu'



channel = 139
img_noise = np.random.uniform(size=(224,224,3)) + 100.0

7. We declare a function that will plot an image array:

def showarray(a, fmt='jpeg'):
    # First make sure everything is between 0 and 255
    a = np.uint8(np.clip(a, 0, 1)*255)
    # Pick an in-memory format for image display
    f = BytesIO()
    # Create the in memory image
    PIL.Image.fromarray(a).save(f, fmt)
    # Show image
    plt.imshow(a)

8. We'll shorten some repetitive code by creating a function that retrieves
a layer by name from the graph:

def T(layer):
#Helper for getting layer output tensor
    return graph.get_tensor_by_name("import/%s:0"%layer)

9. The next function we will create is a wrapper function for creating
placeholders according to the arguments we specify:

# The following function returns a function wrapper that will 
create the placeholder
# inputs of a specified dtype
def tffunc(*argtypes):
'''Helper that transforms TF-graph generating function into a 
regular one.
    See "resize" function below.
'''
    placeholders = list(map(tf.placeholder, argtypes))
    def wrap(f):
        out = f(*placeholders)
        def wrapper(*args, **kw):
            return out.eval(dict(zip(placeholders, args)), 
session=kw.get('session'))
        return wrapper
    return wrap

10. We also need a function that resizes an image to a size specification.
We do this with TensorFlow's built in image linear interpolation



function, tf.image.resize.bilinear():

# Helper function that uses TF to resize an image
def resize(img, size):
    img = tf.expand_dims(img, 0)
    # Change 'img' size by linear interpolation
    return tf.image.resize_bilinear(img, size)[0,:,:,:]

11. Now we need a way to update the source image to be more like a
feature we select. We do this by specifying how the gradient on the
image is calculated. We define a function that will calculate gradients
on subregions (tiles) over the image to make the calculations quicker.
In order to prevent a tiled output, we will randomly shift, or roll, the
image in the x and y direction, which will smooth out the tiling effect.

def calc_grad_tiled(img, t_grad, tile_size=512):
'''Compute the value of tensor t_grad over the image in a 
tiled way.
    Random shifts are applied to the image to blur tile 
boundaries over 
    multiple iterations.'''
    # Pick a subregion square size
    sz = tile_size
    # Get the image height and width
    h, w = img.shape[:2]
    # Get a random shift amount in the x and y direction
    sx, sy = np.random.randint(sz, size=2)
    # Randomly shift the image (roll image) in the x and y 
directions
    img_shift = np.roll(np.roll(img, sx, 1), sy, 0)
    # Initialize the while image gradient as zeros
    grad = np.zeros_like(img)
    # Now we loop through all the sub-tiles in the image
    for y in range(0, max(h-sz//2, sz),sz):
        for x in range(0, max(w-sz//2, sz),sz):
            # Select the sub image tile
            sub = img_shift[y:y+sz,x:x+sz]
            # Calculate the gradient for the tile
            g = sess.run(t_grad, {t_input:sub})
            # Apply the gradient of the tile to the whole 
image gradient
            grad[y:y+sz,x:x+sz] = g



    # Return the gradient, undoing the roll operation
    return np.roll(np.roll(grad, -sx, 1), -sy, 0)

12. Now we can declare our DeepDream function. The objective of our
algorithm is the mean of the feature we select. The loss operates on
gradients, which will depend on the distance between the input image
and the selected feature. The strategy is to separate the image into
high and low frequency, and calculate gradients on the low part. The
resulting high frequency image is split up again and the processes is
repeated. The set of the original image and the low frequency images
are called octaves. For each pass, we calculate the gradients and apply
them to the images:

def render_deepdream(t_obj, img0=img_noise,
                     iter_n=10, step=1.5, octave_n=4, 
octave_scale=1.4):
    # defining the optimization objective, the objective is 
the mean of the feature
    t_score = tf.reduce_mean(t_obj)
    # Our gradients will be defined as changing the t_input 
to get closer tothe values of t_score.  Here, t_score is the 
mean of the feature we select.
    # t_input will be the image octave (starting with the 
last)
    t_grad = tf.gradients(t_score, t_input)[0] # behold the 
power of automatic differentiation!
    # Store the image
    img = img0
    # Initialize the image octave list
    octaves = []
    # Since we stored the image, we need to only calculate n-
1 octaves
    for i in range(octave_n-1):
        # Extract the image shape
        hw = img.shape[:2]
        # Resize the image, scale by the octave_scale (resize 
by linear interpolation)
        lo = resize(img, 
np.int32(np.float32(hw)/octave_scale))
        # Residual is hi.  Where residual = image - (Resize 
lo to be hw-shape)



        hi = img-resize(lo, hw)
        # Save the lo image for re-iterating
        img = lo
        # Save the extracted hi-image
        octaves.append(hi)

    # generate details octave by octave
    for octave in range(octave_n):
        if octave>0:
            # Start with the last octave
            hi = octaves[-octave]
            #
            img = resize(img, hi.shape[:2])+hi
        for i in range(iter_n):
            # Calculate gradient of the image.
            g = calc_grad_tiled(img, t_grad)
            # Ideally, we would just add the gradient, g, but
            # we want do a forward step size of it ('step'),
            # and divide it by the avg. norm of the gradient, 
so
            # we are adding a gradient of a certain size each 
step.
            # Also, to make sure we aren't dividing by zero, 
we add 1e-7.
            img += g*(step / (np.abs(g).mean()+1e-7))
            print('.',end = '')
        showarray(img/255.0)

13. With all the function setup we have done, we now can perform the
DeepDream algorithm.

# Run Deep Dream
if __name__=="__main__":
    # Create resize function that has a wrapper that creates 
specified placeholder types
    resize = tffunc(np.float32, np.int32)(resize)

    # Open image
    img0 = PIL.Image.open('book_cover.jpg')
    img0 = np.float32(img0)
    # Show Original Image
    showarray(img0/255.0)
    # Create deep dream



    render_deepdream(T(layer)[:,:,:,139], img0, iter_n=15)
    sess.close()

Figure 7: The cover of the book, run through the deep dream
algorithm with feature layer numbers 50, 110, 100, and 139.

There's more…
We urge the reader to visit the official DeepDream tutorials for more
reference and also to visit the original Google research blog post on
DeepDream (refer to the second bullet point of the See also section).

See also



The TensorFlow tutorial on DeepDream:
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/deepdream
The original Google research blog post on DeepDream:
https://research.googleblog.com/2015/06/inceptionism-going-deeper-
into-neural.html

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/tutorials/deepdream
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html


Chapter 9. Recurrent Neural
Networks
In this chapter, we will cover recurrent neural networks (RNNs) and
how to implement them in TensorFlow. We will start by demonstrating how
to use an RNN to predict spam.We will then introduce a variant of RNNs
for creating Shakespeare text.We will finish by creating an RNN sequence-
to-sequence model to translate from English to German:

Implementing RNNs for Spam Prediction
Implementing an LSTM Model
Stacking multiple LSTM Layers
Creating Sequence-to-Sequence Models
Training a Siamese Similarity Measure

As a note, all the code to this chapter can be found online at
https://github.com/nfmcclure/tensorflow_cookbook.

Introduction
Of all the machine-learning algorithms we have considered thus far, none
have considered data as a sequence.To take sequence data into account,
we extend neural networks that store outputs from prior iterations. This
type of neural network is called a recurrent neural network
(RNN).Consider the fully connected network formulation:

Here, the weights are given by Amultiplied by the input layer, x, and then
run through an activation function, , which gives the output layer, y.If we

https://github.com/nfmcclure/tensorflow_cookbook


have a sequence of input data, , we can adapt the fully
connected layer to take prior inputs into account, as follows:

On top of this recurrent iteration to get the next input, we want to get the
probability distribution output, as follows:

Once we have a full sequence output, , we can consider the
target a number or category by just considering the last output.See the
following figure for how a general architecture might work:



Figure 1: To predict a single number, or a category, we take a sequence
of inputs (tokens) and consider the final output as the predicted output.

We can also consider the sequence itself as an output, as a sequence-to-
sequence model:



Figure 2: To predict a sequence, we may also feed the outputs back into
the model to generate multiple outputs.

For arbitrarily long sequences, training with the back-propagation
algorithm creates long time-dependent gradients.Because of this, there
exists a vanishing or exploding gradient problem. Later in this chapter,
we will explore a solution to this problem by expanding the RNN cell into
what is called a Long Short Term Memory(LSTM) cell.The main idea is
that the LSTM cell introduces another operation, called gates, which
controls the flow of information through the sequence. We will go over the
details in a later chapters.

Note

When dealing with RNN models for NLP, encoding is a term used to
describe the process of converting data (words or characters in NLP) into
numerical RNN features. The term decoding is the process of converting
the RNN numerical features into output words or characters.



Implementing RNN for Spam
Prediction
To start we will apply the standard RNN unit to predict a singular
numerical output.

Getting ready
In this recipe, we will implement a standard RNN in TensorFlow to predict
whether or not a text message is spam or ham. We will use the SMS spam-
collection dataset from the ML repository at UCI.The architecture we will
use for prediction will be an input RNN sequence from the embedded text,
and we will take the last RNN output as a prediction of spam or ham (1 or
0).

How to do it…
1. We start by loading the libraries necessary for this script:

import os
import re
import io
import requests
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from zipfile import ZipFile

2. Next we start a graph session and set the RNN model parameters. We
will run the data through 20 epochs, in batch sizes of 250.The
maximum length of each text we will consider is 25 words; we will cut
longer texts to 25 or zero pad shorter texts.The RNN will be of size 10
units.We will only consider words that appear at least 10 times in our
vocabulary, and every word will be embedded in a trainable vector of
size 50.The dropout rate will be a placeholder that we can set at 0.5
during training time or 1.0 during evaluation:



sess = tf.Session()
epochs = 20
batch_size = 250
max_sequence_length = 25
rnn_size = 10
embedding_size = 50
min_word_frequency = 10
learning_rate = 0.0005
dropout_keep_prob = tf.placeholder(tf.float32)

3. Now we get the SMS text data.First, we check if it was already
downloaded and, if so, read in the file.Otherwise, we download the
data and save it:

data_dir = 'temp'
data_file = 'text_data.txt'
if not os.path.exists(data_dir):
    os.makedirs(data_dir)
if not os.path.isfile(os.path.join(data_dir, data_file)):
    zip_url = 'http://archive.ics.uci.edu/ml/machine-
learning-databases/00228/smsspamcollection.zip'
    r = requests.get(zip_url)
    z = ZipFile(io.BytesIO(r.content))
    file = z.read('SMSSpamCollection')
    # Format Data
    text_data = file.decode()
    text_data = text_data.encode('ascii',errors='ignore')
    text_data = text_data.decode().split('\n')
    # Save data to text file
    with open(os.path.join(data_dir, data_file), 'w') as 
file_conn:
        for text in text_data:
            file_conn.write("{}\n".format(text))
else:
    # Open data from text file
    text_data = []
    with open(os.path.join(data_dir, data_file), 'r') as 
file_conn:
        for row in file_conn:
            text_data.append(row)
    text_data = text_data[:-1]
text_data = [x.split('\t') for x in text_data if len(x)>=1]
[text_data_target, text_data_train] = [list(x) for x in 



zip(*text_data)]

4. To reduce our vocabulary, we will clean the input texts by removing
special characters, extra white space, and putting everything in
lowercase:

def clean_text(text_string):
    text_string = re.sub(r'([^\s\w]|_|[0-9])+', '', 
text_string)
    text_string = " ".join(text_string.split())
    text_string = text_string.lower()
    return(text_string)
# Clean texts
text_data_train = [clean_text(x) for x in text_data_train]

Note

Note that our cleaning step removes special characters. As an
alternative, we could also have replaced them with a space. Ideally,
this depends on the formatting of the dataset.

5. Now we process the texts with a built-in vocabulary processor
function from TensorFlow.This will convert a text to an appropriate list
of indices:

vocab_processor = 
tf.contrib.learn.preprocessing.VocabularyProcessor(max_sequen
ce_length,min_frequency=min_word_frequency)
text_processed = 
np.array(list(vocab_processor.fit_transform(text_data_train))
)

6. Next we shuffle the data to randomize the data:

text_processed = np.array(text_processed)
text_data_target = np.array([1 if x=='ham' else 0 for x in 
text_data_target])
shuffled_ix = 
np.random.permutation(np.arange(len(text_data_target)))
x_shuffled = text_processed[shuffled_ix]
y_shuffled = text_data_target[shuffled_ix]

7. We also split the data into an 80-20 train-test dataset:



ix_cutoff = int(len(y_shuffled)*0.80)
x_train, x_test = x_shuffled[:ix_cutoff], 
x_shuffled[ix_cutoff:]
y_train, y_test = y_shuffled[:ix_cutoff], 
y_shuffled[ix_cutoff:]
vocab_size = len(vocab_processor.vocabulary_)
print("Vocabulary Size: {:d}".format(vocab_size))
print("80-20 Train Test split: {:d} -- 
{:d}".format(len(y_train), len(y_test)))

Note

For this recipe, we will not be doing any hyperparameter tuning. If the
reader goes in this direction, remember to split up the dataset into
train-test-valid sets before proceeding. A good option for this is the
Scikit-learn function model_selection.train_test_split().

8. Next we declare the graph placeholders.The x-input will be a
placeholder of size [None, max_sequence_length], which will be the
batch size by the maximum allowed word length of the text
messages.The y-output placeholder is just an integer, 0 or 1, or ham or
spam:

x_data = tf.placeholder(tf.int32, [None, 
max_sequence_length])
y_output = tf.placeholder(tf.int32, [None])

9. We now create our embedding matrix and embedding lookup
operation for the x-input data:

embedding_mat = tf.Variable(tf.random_uniform([vocab_size, 
embedding_size], -1.0, 1.0))
embedding_output = tf.nn.embedding_lookup(embedding_mat, 
x_data)

10. We declare our model as follows.First we initialize a type of RNN cell
to use (RNN of size 10).Then we create the RNN sequence by making
it a dynamic RNN.We then add dropout to the RNN:

cell = tf.nn.rnn_cell.BasicRNNCell(num_units = rnn_size)
output, state = tf.nn.dynamic_rnn(cell, embedding_output, 



dtype=tf.float32)
output = tf.nn.dropout(output, dropout_keep_prob)

Note

Note, that the dynamic RNN allows for variable length
sequences.Even though we are using a fixed sequence length in this
example, it is usually preferred to use the dynamic_rnn in TensorFlow
for two main reasons.The main reason is that, in practice, the dynamic
RNN actually runs computationally faster and that, if we choose, we
can run sequences of different lengths through the RNN.

11. Now to get our predictions, we have to rearrange the RNN and slice
off the last output:

output = tf.transpose(output, [1, 0, 2])
last = tf.gather(output, int(output.get_shape()[0]) - 1)

12. To finish the RNN prediction, we convert from the rnn_size output to
the two-category output via a fully connected network layer:

weight = tf.Variable(tf.truncated_normal([rnn_size, 2], 
stddev=0.1))
bias = tf.Variable(tf.constant(0.1, shape=[2]))
logits_out = tf.nn.softmax(tf.matmul(last, weight) + bias)

13. We declare our loss function next.Remember that with using the
sparse_softmax function from TensorFlow, the targets have to be
integer indices (of type int), and the logits have to be floats:

losses = 
tf.nn.sparse_softmax_cross_entropy_with_logits(logits_out, 
y_output)
loss = tf.reduce_mean(losses)

14. We also need an accuracy function so that we can compare the
algorithm on the test and train set:

accuracy = 
tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits_out, 1), 
tf.cast(y_output, tf.int64)), tf.float32))



15. Next we create the optimization function and initialize the model
variables:

optimizer = tf.train.RMSPropOptimizer(learning_rate)
train_step = optimizer.minimize(loss)
init = tf.initialize_all_variables()
sess.run(init)

16. Now we can start looping through our data and training the
model.When looping through the data multiple times, it is good
practice to shuffle the data every epoch to prevent over-training:

train_loss = []
test_loss = []
train_accuracy = []
test_accuracy = []
# Start training
for epoch in range(epochs):
    # Shuffle training data
    shuffled_ix = 
np.random.permutation(np.arange(len(x_train)))
    x_train = x_train[shuffled_ix]
    y_train = y_train[shuffled_ix]
    num_batches = int(len(x_train)/batch_size) + 1
    for i in range(num_batches):
        # Select train data
        min_ix = i * batch_size
        max_ix = np.min([len(x_train), ((i+1) * batch_size)])
        x_train_batch = x_train[min_ix:max_ix]
        y_train_batch = y_train[min_ix:max_ix]

        # Run train step
        train_dict = {x_data: x_train_batch, y_output: 
y_train_batch, dropout_keep_prob:0.5}
        sess.run(train_step, feed_dict=train_dict)

    # Run loss and accuracy for training
    temp_train_loss, temp_train_acc = sess.run([loss, 
accuracy], feed_dict=train_dict)
    train_loss.append(temp_train_loss)
    train_accuracy.append(temp_train_acc)

    # Run Eval Step



    test_dict = {x_data: x_test, y_output: y_test, 
dropout_keep_prob:1.0}
    temp_test_loss, temp_test_acc = sess.run([loss, 
accuracy], feed_dict=test_dict)
    test_loss.append(temp_test_loss)
    test_accuracy.append(temp_test_acc)
    print('Epoch: {}, Test Loss: {:.2}, Test Acc: 
{:.2}'.format(epoch+1, temp_test_loss, temp_test_acc))

17. This results in the following output:

Vocabulary Size: 933
80-20 Train Test split: 4459 -- 1115
Epoch: 1, Test Loss: 0.59, Test Acc: 0.83
Epoch: 2, Test Loss: 0.58, Test Acc: 0.83
Epoch: 19, Test Loss: 0.46, Test Acc: 0.86
Epoch: 20, Test Loss: 0.46, Test Acc: 0.86

18. Here is the code to plot the train/test loss and accuracy:

epoch_seq = np.arange(1, epochs+1)
plt.plot(epoch_seq, train_loss, 'k--', label='Train Set')
plt.plot(epoch_seq, test_loss, 'r-', label='Test Set')
plt.title('Softmax Loss')
plt.xlabel('Epochs')
plt.ylabel('Softmax Loss')
plt.legend(loc='upper left')
plt.show()
# Plot accuracy over time
plt.plot(epoch_seq, train_accuracy, 'k--', label='Train Set')
plt.plot(epoch_seq, test_accuracy, 'r-', label='Test Set')
plt.title('Test Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend(loc='upper left')
plt.show()

How it works…
In this recipe, we created an RNN to category model to predict if an SMS
text is spam or ham.We achieved about 86% accuracy on the test set.Here
are the plots of accuracy and loss on both the test and training sets:



Figure 3: The accuracy (left) and loss (right) of the train and test sets.

There's more…
It is highly recommended to go through the training dataset multiple times
for sequential data (and is also recommended for non-sequential data,
too).Each pass through the data is called an epoch.Also, it is very common
and highly recommended to shuffle the data before each epoch.



Implementing an LSTM Model
We will extend our RNN model to be able to use longer sequences by
introducing the LSTM unit in this recipe.

Getting ready
Long Short Term Memory(LSTM) is a variant of the traditional
RNN.LSTM is a way to address the vanishing/exploding gradient problem
that variable length RNNs have.To address this issue, LSTM cells
introduce an internal forget gate,which can modify a flow of information
from one cell to the next. To conceptualize how this works, we will walk
through an unbiased version of LSTM one equation at a time.The first step
is the same as for the regular RNN:

In order to figure out which values we want to forget or pass through, we
will evaluate candidate values as follows.These values are often referred to
as the memory cells:

Now we modify the candidate memory cells by a forget matrix, which is
calculated as follows:



We now combine the forget memory with the prior memory step and add it
to the candidate memory cells to arrive at the new memory values:

Now we combine everything to get the output of the cell:

Then, for the next iteration, we update h as follows:

The idea with LSTM is to have a self-regulating flow of information
through the cells that can be forgotten or modified based on the
informationinput to the cell.

Note

One great thing about using TensorFlow here is that we do not have to
keep track of these operations and their corresponding back propagation
attributes.TensorFlow will keep track of these and update the model
variables here automatically, according to the gradients specified by our
loss function, optimizer, and learning rates.

For this recipe, we will use a sequence RNN with LSTM cells to try to
predict the next words, trained on the works of Shakespeare.To test how
we are doing, we will feed the model candidate phrases, such as, thou art
more, and see if the model can attempt to figure out what words should



follow the phrase.

How to do it…
1. To start, we load the necessary libraries for the script:

import os
import re
import string
import requests
import numpy as np
import collections
import random
import pickle
import matplotlib.pyplot as plt
import tensorflow as tf

2. Next, we start a graph session and set the RNN parameterssess =
tf.Session()

# Set RNN Parameters
min_word_freq = 5
rnn_size = 128
epochs = 10
batch_size = 100
learning_rate = 0.001
training_seq_len = 50 
embedding_size = rnn_size
save_every = 500
eval_every = 50
prime_texts = ['thou art more', 'to be or not to', 'wherefore 
art thou']

3. We set up the data and model folders and filenames, along with
declaring punctuation to remove.We will want to keep hyphens and
apostrophes because Shakespeare uses them frequently to combine
words and syllables:

data_dir = 'temp'
data_file = 'shakespeare.txt'
model_path = 'shakespeare_model'
full_model_dir = os.path.join(data_dir, model_path)
# Declare punctuation to remove, everything except hyphens 



and apostrophes
punctuation = string.punctuation
punctuation = ''.join([x for x in punctuation if x not in ['-
', "'"]])

4. Next we get the data. If the data file doesn't exist, we download
andsave the Shakespeare text. If it does exist, we load the data:

if not os.path.exists(full_model_dir):
    os.makedirs(full_model_dir)
# Make data directory
if not os.path.exists(data_dir):
    os.makedirs(data_dir)
print('Loading Shakespeare Data')
# Check if file is downloaded.
if not os.path.isfile(os.path.join(data_dir, data_file)):
    print('Not found, downloading Shakespeare texts from 
www.gutenberg.org')
    shakespeare_url = 
'http://www.gutenberg.org/cache/epub/100/pg100.txt'
    # Get Shakespeare text
    response = requests.get(shakespeare_url)
    shakespeare_file = response.content
    # Decode binary into string
    s_text = shakespeare_file.decode('utf-8')
    # Drop first few descriptive paragraphs.
    s_text = s_text[7675:]
    # Remove newlines
    s_text = s_text.replace('\r\n', '')
    s_text = s_text.replace('\n', '')

    # Write to file
    with open(os.path.join(data_dir, data_file), 'w') as 
out_conn:
        out_conn.write(s_text)
else:
    # If file has been saved, load from that file
    with open(os.path.join(data_dir, data_file), 'r') as 
file_conn:
        s_text = file_conn.read().replace('\n', '')

5. We clean the Shakespeare text by removing punctuation and extra
whitespace:



s_text = re.sub(r'[{}]'.format(punctuation), ' ', s_text)
s_text = re.sub('\s+', ' ', s_text ).strip().lower()

6. We now deal with creating the Shakespeare vocabulary to use.We
create a function that will return the two dictionaries (word to index,
and index to word) with words that appear more than a specified
frequency:

def build_vocab(text, min_word_freq):
    word_counts = collections.Counter(text.split(' '))
    # limit word counts to those more frequent than cutoff
    word_counts = {key:val for key, val in 
word_counts.items() if val>min_word_freq}
    # Create vocab --> index mapping
    words = word_counts.keys()
    vocab_to_ix_dict = {key:(ix+1) for ix, key in 
enumerate(words)}
    # Add unknown key --> 0 index
    vocab_to_ix_dict['unknown']=0
    # Create index --> vocab mapping
    ix_to_vocab_dict = {val:key for key,val in 
vocab_to_ix_dict.items()}

    return(ix_to_vocab_dict, vocab_to_ix_dict)
ix2vocab, vocab2ix = build_vocab(s_text, min_word_freq)
vocab_size = len(ix2vocab) + 1

Note

Note that when dealing with text, we have to be careful indexing
words with the value of zero. We should save the zero value for
padding, and potentially for unknown words as well.

7. Now that we have our vocabulary, we turn the Shakespeare text into
an array of indices:

s_text_words = s_text.split(' ')
s_text_ix = []
for ix, x in enumerate(s_text_words):
    try:
        s_text_ix.append(vocab2ix[x])
    except:



        s_text_ix.append(0)
s_text_ix = np.array(s_text_ix)

8. In this recipe, we will show how to create a model in a class
object.This will be helpful for us, because we would like to use the
same model (with the same weights) to train on batches and to
generate text from sample text.This will prove hard to do without a
class with an internal sampling method.Ideally, this class code should
sit in a separate Python file,which we can import at the beginning of
this script:

class LSTM_Model():
    def __init__(self, rnn_size, batch_size, learning_rate,
                 training_seq_len, vocab_size, infer =False):
        self.rnn_size = rnn_size
        self.vocab_size = vocab_size
        self.infer = infer
        self.learning_rate = learning_rate

        if infer:
            self.batch_size = 1
            self.training_seq_len = 1
        else:
            self.batch_size = batch_size
            self.training_seq_len = training_seq_len

        self.lstm_cell = 
tf.nn.rnn_cell.BasicLSTMCell(rnn_size)
        self.initial_state = 
self.lstm_cell.zero_state(self.batch_size, tf.float32)

        self.x_data = tf.placeholder(tf.int32, 
[self.batch_size, self.training_seq_len])
        self.y_output = tf.placeholder(tf.int32, 
[self.batch_size, self.training_seq_len])

        with tf.variable_scope('lstm_vars'):
            # Softmax Output Weights
            W = tf.get_variable('W', [self.rnn_size, 
self.vocab_size], tf.float32, tf.random_normal_initializer())
            b = tf.get_variable('b', [self.vocab_size], 
tf.float32, tf.constant_initializer(0.0))



            # Define Embedding
            embedding_mat = tf.get_variable('embedding_mat', 
[self.vocab_size, self.rnn_size], tf.float32, 
tf.random_normal_initializer())

            embedding_output = 
tf.nn.embedding_lookup(embedding_mat, self.x_data)
            rnn_inputs = tf.split(1, self.training_seq_len, 
embedding_output)
            rnn_inputs_trimmed = [tf.squeeze(x, [1]) for x in 
rnn_inputs]

        # If we are inferring (generating text), we add a 
'loop' function
        # Define how to get the i+1 th input from the i th 
output
        def inferred_loop(prev, count):
            prev_transformed = tf.matmul(prev, W) + b
            prev_symbol = 
tf.stop_gradient(tf.argmax(prev_transformed, 1))
            output = tf.nn.embedding_lookup(embedding_mat, 
prev_symbol)
            return(output)

        decoder = tf.nn.seq2seq.rnn_decoder
        outputs, last_state = decoder(rnn_inputs_trimmed,
                                      self.initial_state,
                                      self.lstm_cell,
                                      
loop_function=inferred_loop if infer else None)
        # Non inferred outputs
        output = tf.reshape(tf.concat(1, outputs), [-1, 
self.rnn_size])
        # Logits and output
        self.logit_output = tf.matmul(output, W) + b
        self.model_output = tf.nn.softmax(self.logit_output)

        loss_fun = tf.nn.seq2seq.sequence_loss_by_example
        loss = loss_fun([self.logit_output],
[tf.reshape(self.y_output, [-1])],
                [tf.ones([self.batch_size * 
self.training_seq_len])],



                self.vocab_size)
        self.cost = tf.reduce_sum(loss) / (self.batch_size * 
self.training_seq_len)
        self.final_state = last_state
        gradients, _ = 
tf.clip_by_global_norm(tf.gradients(self.cost, 
tf.trainable_variables()), 4.5)
        optimizer = 
tf.train.AdamOptimizer(self.learning_rate)
        self.train_op = 
optimizer.apply_gradients(zip(gradients, 
tf.trainable_variables()))

    def sample(self, sess, words=ix2vocab, vocab=vocab2ix, 
num=10, prime_text='thou art'):
        state = sess.run(self.lstm_cell.zero_state(1, 
tf.float32))
        word_list = prime_text.split()
        for word in word_list[:-1]:
            x = np.zeros((1, 1))
            x[0, 0] = vocab[word]
            feed_dict = {self.x_data: x, 
self.initial_state:state}
            [state] = sess.run([self.final_state], 
feed_dict=feed_dict)
        out_sentence = prime_text
        word = word_list[-1]
        for n in range(num):
            x = np.zeros((1, 1))
            x[0, 0] = vocab[word]
            feed_dict = {self.x_data: x, 
self.initial_state:state}
            [model_output, state] = 
sess.run([self.model_output, self.final_state], 
feed_dict=feed_dict)
            sample = np.argmax(model_output[0])
            if sample == 0:
                break
            word = words[sample]
            out_sentence = out_sentence + ' ' + word
        return(out_sentence)

9. Now we will declare the LSTM model as well as the test model. We



will do this within a variable scope and tell the scope that we will
reuse the variables for the test LSTM model:

with tf.variable_scope('lstm_model') as scope:
    # Define LSTM Model
    lstm_model = LSTM_Model(rnn_size, batch_size, 
learning_rate,
                     training_seq_len, vocab_size)
    scope.reuse_variables()
    test_lstm_model = LSTM_Model(rnn_size, batch_size, 
learning_rate,
                     training_seq_len, vocab_size, 
infer=True)

10. We create a saving operation, as well as splitting up the input text into
equal batch-size chunks.Then we will initialize the variables of the
model:

saver = tf.train.Saver()
# Create batches for each epoch
num_batches = int(len(s_text_ix)/(batch_size * 
training_seq_len)) + 1
# Split up text indices into subarrays, of equal size
batches = np.array_split(s_text_ix, num_batches)
# Reshape each split into [batch_size, training_seq_len]
batches = [np.resize(x, [batch_size, training_seq_len]) for x 
in batches]
# Initialize all variables
init = tf.initialize_all_variables()
sess.run(init)

11. We can now iterate through our epochs, shuffling the data before each
epoch starts.The target for our data is just the same data, but shifted
by one value (using thenumpy.roll() function):

train_loss = []
iteration_count = 1

for epoch in range(epochs):
    # Shuffle word indices
    random.shuffle(batches)
    # Create targets from shuffled batches



    targets = [np.roll(x, -1, axis=1) for x in batches]
    # Run a through one epoch
    print('Starting Epoch #{} of {}.'.format(epoch+1, 
epochs))
    # Reset initial LSTM state every epoch
    state = sess.run(lstm_model.initial_state)
    for ix, batch in enumerate(batches):
        training_dict = {lstm_model.x_data: batch, 
lstm_model.y_output: targets[ix]}
        c, h = lstm_model.initial_state
        training_dict[c] = state.c
        training_dict[h] = state.h

        temp_loss, state, _ = sess.run([lstm_model.cost, 
lstm_model.final_state, lstm_model.train_op], 
feed_dict=training_dict)
        train_loss.append(temp_loss)

        # Print status every 10 gens
        if iteration_count % 10 == 0:
            summary_nums = (iteration_count, epoch+1, ix+1, 
num_batches+1, temp_loss)
            print('Iteration: {}, Epoch: {}, Batch: {} out of 
{}, Loss: {:.2f}'.format(*summary_nums))

        # Save the model and the vocab
        if iteration_count % save_every == 0:
            # Save model
            model_file_name = os.path.join(full_model_dir, 
'model')
            saver.save(sess, model_file_name, global_step = 
iteration_count)
            print('Model Saved To: 
{}'.format(model_file_name))
            # Save vocabulary
            dictionary_file = os.path.join(full_model_dir, 
'vocab.pkl')
            with open(dictionary_file, 'wb') as 
dict_file_conn:
                pickle.dump([vocab2ix, ix2vocab], 
dict_file_conn)

        if iteration_count % eval_every == 0:



            for sample in prime_texts:
                print(test_lstm_model.sample(sess, ix2vocab, 
vocab2ix, num=10, prime_text=sample))

        iteration_count += 1

12. This results in the following output:

Loading Shakespeare Data
Cleaning Text
Building Shakespeare Vocab
Vocabulary Length = 8009
Starting Epoch #1 of 10.
Iteration: 10, Epoch: 1, Batch: 10 out of 182, Loss: 10.37
Iteration: 20, Epoch: 1, Batch: 20 out of 182, Loss: 9.54
...
Iteration: 1790, Epoch: 10, Batch: 161 out of 182, Loss: 5.68
Iteration: 1800, Epoch: 10, Batch: 171 out of 182, Loss: 6.05
thou art more than i am a
to be or not to the man i have
wherefore art thou art of the long
Iteration: 1810, Epoch: 10, Batch: 181 out of 182, Loss: 5.99

13. And finally, here is how we plot the training loss over the epochs.

plt.plot(train_loss, 'k-')
plt.title('Sequence to Sequence Loss')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()



Figure 4: The sequence-to-sequence loss over all generations of the
model.

How it works…
In this example, we built an RNN model with LSTM units to predict the
next word, based on Shakespearean vocabulary.There are a few things that
could be done to improve the model, maybe increasing the sequence size,
having a decaying learning rate, or training the model for more epochs.

There's more…
For sampling, we implemented a greedy sampler.Greedy samplers can get
stuck repeating the same phrases over and over. For example, it may get
stuck saying for the for the for the….To prevent this, we could also
implement a more random way of sampling words, maybe by doing a
weighted sampler based on the logits or probability distribution of the
output.



Stacking multiple LSTM Layers
Just like we can increase the depth of neural networks or CNNs, we can
increase the depth of RNN networks. In this recipe we apply a three layer
deep LSTM to improve our Shakespeare language generation.

Getting ready
We can increase the depth of recurrent neural networks by stacking them
on top of each other. Essentially, we will be taking the target outputs and
feeding them into another network.To get an idea of how this might work
for just two layers, see the following figure:

Figure 5: In the preceding figures, we have extended the one-layer RNNs
to have two layers. For the original one-layer versions, see the figures in

the prior chapter introduction.

TensorFlow allows easy implementation of multiple layers with a
MultiRNNCell() function that accepts a list of RNN cells.With this
behavior, it is easy to create a multi-layer RNN from one cell in Python



with MultiRNNCell([rnn_cell]*num_layers).

For this recipe, we will perform the same Shakespeare prediction that we
performed in the previous recipe.There will be two changes:the first
change will be having a three-stacked LSTM model instead of only one
layer.The second change will be doing character-level predictions instead
of words.Doing character-level predictions will greatly decrease our
potential vocabulary to only 40 characters (26 letters, 10 numbers, 1
whitespace, and 3 special characters).

How to do it…
Instead of relisting all the same code, we will illustrate where our code in
this section will differ from the previous section.For the full code, please
see the GitHub repository at
https://github.com/nfmcclure/tensorflow_cookbook:
1. We first need to set the number of layers for the model.We put this as

a parameter at the beginning of our script, with the other model
parameters:

num_layers = 3
min_word_freq = 5
rnn_size = 128
epochs = 10

2. The first major change is that we will load, process, and feed the text
by characters, not by words. In order to accomplish this, after our
cleaning of the text, we can separate the whole text by characters with
Python's list() command:

s_text = re.sub(r'[{}]'.format(punctuation), ' ', s_text)
s_text = re.sub('\s+', ' ', s_text ).strip().lower()
# Split up by characters
char_list = list(s_text)

3. We now need to change our LSTM model to have multiple layers.We
take in the num_layers variable and create a multiple layer RNN

https://github.com/nfmcclure/tensorflow_cookbook


model with TensorFlow's MultiRNNCell() function, as shown here:

class LSTM_Model():
    def __init__(self, rnn_size, num_layers, batch_size, 
learning_rate,
                 training_seq_len, vocab_size, 
infer_sample=False):
        self.rnn_size = rnn_size
        self.num_layers = num_layers
        self.vocab_size = vocab_size
        self.infer_sample = infer_sample
        self.learning_rate = learning_rate
…

        self.lstm_cell = 
tf.nn.rnn_cell.BasicLSTMCell(rnn_size)
        self.lstm_cell = 
tf.nn.rnn_cell.MultiRNNCell([self.lstm_cell] * 
self.num_layers)
        self.initial_state = 
self.lstm_cell.zero_state(self.batch_size, tf.float32)

        self.x_data = tf.placeholder(tf.int32, 
[self.batch_size, self.training_seq_len])
        self.y_output = tf.placeholder(tf.int32, 
[self.batch_size, self.training_seq_len])

Note

Note that TensorFlow's MultiRNNCell() function accepts a list of RNN
cells.In this project, the RNN layers are all the same, but you can
make a list of whichever RNN layers you would like to stack on top of
each other.

4. Everything else is essentially the same.Here we can see some of the
training output:

Building Shakespeare Vocab by Characters
Vocabulary Length = 40
Starting Epoch #1 of 10
Iteration: 9430, Epoch: 10, Batch: 889 out of 950, Loss: 1.54
Iteration: 9440, Epoch: 10, Batch: 899 out of 950, Loss: 1.46



Iteration: 9450, Epoch: 10, Batch: 909 out of 950, Loss: 1.49
thou art more than the 
to be or not to the serva
wherefore art thou dost thou
Iteration: 9460, Epoch: 10, Batch: 919 out of 950, Loss: 1.41
Iteration: 9470, Epoch: 10, Batch: 929 out of 950, Loss: 1.45
Iteration: 9480, Epoch: 10, Batch: 939 out of 950, Loss: 1.59
Iteration: 9490, Epoch: 10, Batch: 949 out of 950, Loss: 1.42

5. Here is a sample of the final text output:

thou art more fancy with
to be or not to be for be
wherefore art thou art thou

6. Finally, here is how we plot the training loss over the generations:

plt.plot(train_loss, 'k-')
plt.title('Sequence to Sequence Loss')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()

Figure 6: A plot of the training loss versus generations for the
multiple-layer LSTM Shakespeare model.



How it works…
TensorFlow makes it easy to extendan RNN layer to multiple layers with
just a list of RNN cells.For this recipe, we used the same Shakespeare data
as the previous recipe, but processed it by characters instead of words.We
fed this through a triple-layered LSTM model to generate Shakespeare
text.We can see that after only 10 epochs, we were able to generate
archaic English lik words.



Creating Sequence-to-Sequence
Models
Since every RNN unit we use also has an output, we can train RNN
sequences to predict other sequences of variable length. For this recipe, we
will take advantage of this fact to create an English to German translation
model.

Getting ready
For this recipe, we will attempt to build a language translation model to
translate from English to German.

TensorFlow has a built-in model class for sequence-to-sequence
training.We will illustrate how to train and use it on downloaded English–
German sentences.The data we will use comes from a compiled ZIP file at
http://www.manythings.org/, which compiles the data from the Tatoeba
Project (http://tatoeba.org/home).This data is a tab-delimited English–
German sentence translation. For example, a row might contain the
sentence, hello. /t hallo.The data contains thousands of sentences of
various lengths.

How to do it…
1. We start by loading the necessary libraries and starting a graph session:

import os
import string
import requests
import io
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from zipfile import ZipFile
from collections import Counter

http://www.manythings.org/
http://tatoeba.org/home


from tensorflow.models.rnn.translate import seq2seq_model
sess = tf.Session()

2. Now we set the model parameters.We set the learning rate to be
0.1.Here, we will also decay the learning rate by 1% every 100
generations.This will help fine-tune the model in later generations.We
set a cut-off for the maximum gradient size for the parameters as
well.We use an RNN size of 500, and limit the English and German
vocabulary to be the most frequent 10,000 words.We will lowercase
both vocabularies and remove punctuation.We also normalize the
German vocabulary by changing the umlauts (ä,ë,ï,ö, and ü) and
eszetts (ß) to be alpha-numeric:

learning_rate = 0.1
lr_decay_rate = 0.99
lr_decay_every = 100
max_gradient = 5.0
batch_size = 50
num_layers = 3
rnn_size = 500
layer_size = 512
generations = 10000
vocab_size = 10000
save_every = 1000
eval_every = 500
output_every = 50
punct = string.punctuation
data_dir = 'temp'
data_file = 'eng_ger.txt'
model_path = 'seq2seq_model'
full_model_dir = os.path.join(data_dir, model_path)

3. We now set up three English phrases to test the translation model and
see how it is performing:

test_english = ['hello where is my computer',
                'the quick brown fox jumped over the lazy 
dog',
                'is it going to rain tomorrow']

4. Next we create the model directories.We then check if the data has



been downloaded, and either download and save it or load it from the
file:

if not os.path.exists(full_model_dir):
    os.makedirs(full_model_dir)
# Make data directory
if not os.path.exists(data_dir):
    os.makedirs(data_dir)
print('Loading English-German Data')
# Check for data, if it doesn't exist, download it and save 
it
if not os.path.isfile(os.path.join(data_dir, data_file)):
    print('Data not found, downloading Eng-Ger sentences from 
www.manythings.org')
    sentence_url = 'http://www.manythings.org/anki/deu-
eng.zip'
    r = requests.get(sentence_url)
    z = ZipFile(io.BytesIO(r.content))
    file = z.read('deu.txt')
    # Format Data
    eng_ger_data = file.decode()
    eng_ger_data = 
eng_ger_data.encode('ascii',errors='ignore')
    eng_ger_data = eng_ger_data.decode().split('\n')
    # Write to file
    with open(os.path.join(data_dir, data_file), 'w') as 
out_conn:
        for sentence in eng_ger_data:
            out_conn.write(sentence + '\n')
else:
    eng_ger_data = []
    with open(os.path.join(data_dir, data_file), 'r') as 
in_conn:
        for row in in_conn:
            eng_ger_data.append(row[:-1])

5. We process the data by removing the punctuation, splitting the English
and German sentences, and lowercasing all of them:

eng_ger_data = [''.join(char for char in sent if char not in 
punct) for sent in eng_ger_data]
# Split each sentence by tabs    
eng_ger_data = [x.split('\t') for x in eng_ger_data if 



len(x)>=1]
[english_sentence, german_sentence] = [list(x) for x in 
zip(*eng_ger_data)]
english_sentence = [x.lower().split() for x in 
english_sentence]
german_sentence = [x.lower().split() for x in 
german_sentence]

6. Now we create the English and German vocabulary, picking the top
10,000 most common words in each. The rest of te words will be
labeled as 0, for unknown. This is sometimes not a limiting factor, as
most of the infrequent words are all proper pronouns (names and
places):

all_english_words = [word for sentence in english_sentence 
for word in sentence]
all_english_counts = Counter(all_english_words)
eng_word_keys = [x[0] for x in 
all_english_counts.most_common(vocab_size-1)] #-1 because 
0=unknown is also in there
eng_vocab2ix = dict(zip(eng_word_keys, range(1,vocab_size)))
eng_ix2vocab = {val:key for key, val in eng_vocab2ix.items()}
english_processed = []
for sent in english_sentence:
    temp_sentence = []
    for word in sent:
        try:
            temp_sentence.append(eng_vocab2ix[word])
        except:
            temp_sentence.append(0)
    english_processed.append(temp_sentence)
all_german_words = [word for sentence in german_sentence for 
word in sentence]
all_german_counts = Counter(all_german_words)
ger_word_keys = [x[0] for x in 
all_german_counts.most_common(vocab_size-1)]
ger_vocab2ix = dict(zip(ger_word_keys, range(1,vocab_size)))
ger_ix2vocab = {val:key for key, val in ger_vocab2ix.items()}
german_processed = []
for sent in german_sentence:
    temp_sentence = []
    for word in sent:



        try:
            temp_sentence.append(ger_vocab2ix[word])
        except:
            temp_sentence.append(0)
    german_processed.append(temp_sentence)

7. We also have to process the test vocabulary and change the test
sentences we have chosen to vocabulary indices:

test_data = []
for sentence in test_english:
    temp_sentence = []
    for word in sentence.split(' '):
        try:
            temp_sentence.append(eng_vocab2ix[word])
        except:
            # Use '0' if the word isn't in our vocabulary
            temp_sentence.append(0)
    test_data.append(temp_sentence)

8. Since some of the sentences are very short and some are very long, we
will want to create separate modes for sentences that are different
lengths. A reason to do this is to minimize the effect thepadding
character has on shorter sentences. One way to do this is tobucket the
data into similar sized buckets. We have chosen the following cut-offs
for the buckets in order to have a similar amount of sentences in each
bucket:

x_maxs = [5, 7, 11, 50]
y_maxs = [10, 12, 17, 60]
buckets = [x for x in zip(x_maxs, y_maxs)]
bucketed_data = [[] for _ in range(len(x_maxs))]
for eng, ger in zip(english_processed, german_processed):
    for ix, (x_max, y_max) in buckets:
        if (len(eng) <= x_max) and (len(ger) <= y_max):
            bucketed_data[ix].append([eng, ger])
            break

9. Now we use TensorFlow's built in sequence-to-sequence model with
our parameters, to create a function that will be used to create a
trainable model and a testable model that share the same variables:



def translation_model(sess, input_vocab_size, 
output_vocab_size,
                      buckets, rnn_size, num_layers, 
max_gradient,
                      learning_rate, lr_decay_rate, 
forward_only):
    model = seq2seq_model.Seq2SeqModel(
          input_vocab_size,
          output_vocab_size,
          buckets,
          rnn_size,
          num_layers,
          max_gradient,
          batch_size,
          learning_rate,
          lr_decay_rate,
          forward_only=forward_only,
          dtype=tf.float32)
    return(model)

10. We set a variable scope and create our trainable model, then tell
TensorFlow to reuse the variables in that scope, and create the test
model, which will have a batch size of 1:

input_vocab_size = vocab_size
output_vocab_size = vocab_size
with tf.variable_scope('translate_model') as scope:
    translate_model = translation_model(sess, vocab_size, 
vocab_size,
                                        buckets, rnn_size, 
num_layers,
                                        max_gradient, 
learning_rate,
                                        lr_decay_rate, False)
    #Reuse the variables for the test model
    scope.reuse_variables()
    test_model = translation_model(sess, vocab_size, 
vocab_size,
                                   buckets, rnn_size, 
num_layers,
                                   max_gradient, 
learning_rate,
                                   lr_decay_rate, True)



    test_model.batch_size = 1

11. Next we initialize the variables in the model:

init = tf.initialize_all_variables()
sess.run(init)

12. Finally, we can train our sequence-to-sequence model by caling the
step function for every generation. TensorFlow's sequence-to-
sequence model has a get_batch() function that will retrieve abatch
of sentences from a given bucket index. We also decay the learning
rate, save the model, and evaluate on the test sentences when
appropriate:

train_loss = []
for i in range(generations):
    rand_bucket_ix = np.random.choice(len(bucketed_data))

    model_outputs = translate_model.get_batch(bucketed_data, 
rand_bucket_ix)
    encoder_inputs, decoder_inputs, target_weights = 
model_outputs

    # Get the (gradient norm, loss, and outputs)
    _, step_loss, _ = translate_model.step(sess, 
encoder_inputs, decoder_inputs, target_weights, 
rand_bucket_ix, False)

    # Output status
    if (i+1) % output_every == 0:
        train_loss.append(step_loss)
        print('Gen #{} out of {}. Loss: {:.4}'.format(i+1, 
generations, step_loss))

    # Check if we should decay the learning rate
    if (i+1) % lr_decay_every == 0:
        sess.run(translate_model.learning_rate_decay_op)

    # Save model
    if (i+1) % save_every == 0:
        print('Saving model to {}.'.format(full_model_dir))
        model_save_path = os.path.join(full_model_dir, 
"eng_ger_translation.ckpt")



        translate_model.saver.save(sess, model_save_path, 
global_step=i)

    # Eval on test set
    if (i+1) % eval_every == 0:
        for ix, sentence in enumerate(test_data):
            # Find which bucket sentence goes in
            bucket_id = next(index for index, val in 
enumerate(x_maxs) if val>=len(sentence))
            # Get RNN model outputs
            encoder_inputs, decoder_inputs, target_weights = 
test_model.get_batch(
                {bucket_id: [(sentence, [])]}, bucket_id)
            # Get logits
            _, test_loss, output_logits = 
test_model.step(sess, encoder_inputs, decoder_inputs, 
target_weights, bucket_id, True)
            ix_output = [int(np.argmax(logit, axis=1)) for 
logit in output_logits]
            # If there is a 0 symbol in outputs end the 
output there.
            ix_output = ix_output[0:[ix for ix, x in 
enumerate(ix_output+[0]) if x==0][0]]
            # Get german words from indices
            test_german = [ger_ix2vocab[x] for x in 
ix_output]
            print('English: {}'.format(test_english[ix]))
            print('German: {}'.format(test_german))

13. This results in the following output:

Gen #0 out of 10000. Loss: 7.377
Gen #9800 out of 10000. Loss: 3.875
Gen #9850 out of 10000. Loss: 3.748
Gen #9900 out of 10000. Loss: 3.615
Gen #9950 out of 10000. Loss: 3.889
Gen #10000 out of 10000. Loss: 3.071
Saving model to temp/seq2seq_model.
English: hello where is my computer
German: ['wo', 'ist', 'mein', 'ist']
English: the quick brown fox jumped over the lazy dog
German: ['die', 'alte', 'ist', 'von', 'mit', 'hund', 'zu']
English: is it going to rain tomorrow
German: ['ist', 'es', 'morgen', 'kommen']



14. Here is the matplotlib code to plot the training loss that we saved on
regular intervals:

loss_generations = [i for i in range(generations) if 
i%output_every==0]
plt.plot(loss_generations, train_loss, 'k-')
plt.title('Sequence to Sequence Loss')
plt.xlabel('Generation')
plt.ylabel('Loss')
plt.show()

Figure 7: Here, we plot the training loss over the course of 10,000
generations of training the English–German sequence-to-sequence

model.

How it works…
For this recipe, we used TensorFlow's built in sequence-to-sequence model
to translate from English to German.

As we did not get perfect translations on ou test sentences, there is room
for improvement. If we trained for longer, and potentially combined some
buckets (for larger training data in each bucket), we might be able to



improve our translations.

There's more…
There are other similar bilingual sentence datasets hosted on the
manythings website (http://www.manythings.org/anki/).Feel free to
substitute any language dataset that appeals to you.

http://www.manythings.org/anki/


Training a Siamese Similarity
Measure
A great property of RNN models, as compared to many other models, is
that they can deal with sequences of various lengths. Taking advantage of
this fact and that they can generalize to sequences not seen before, we can
create a way to measure how similar sequences of inputs are to each other.
In this recipe, we will train a Siamese similarity RNN to measure the
similarity between addresses for record matching.

Getting ready
In this recipe, we will build a bidirectional RNN model that feeds into a
fully connected layer that outputs a fixed length numerical vector. We
create a bidirectional RNN layer for both input addresses and feed the
outputs into a fully connected layer that outputs a fixed length numerical
vector (length 100). We then compare the two vector outputs with the
cosine distance, which is bounded between -1 and 1. We denote input data
to be similar with a target of 1, and different with a target of -1. The
predictions of the cosine distance is just the sign of the output (negative
means dissimilar, positive means similar). We can use this network to do
record matching by taking the reference address that scores the highest on
the cosine distance from the query address. See the following network
architecture diagram:



Figure 8: Siamese RNN similarity model architecture.

What is also great about this model, is that it accepts inputs that it has not
seen before and can compare them with an output of -1 to 1. We will show
this in the code by picking a test address that the model has not seen
before and see if it can match it to a similar address.

How to do it…
1. We start by loading the necessary libraries and starting a graph session:

import os
import random
import string
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
sess = tf.Session()

2. We now set the model parameters as follows:

batch_size = 200
n_batches = 300
max_address_len = 20
margin = 0.25



num_features = 50
dropout_keep_prob = 0.8

3. Next, we create the Siamese RNN similarity model class as follows:

def snn(address1, address2, dropout_keep_prob,
        vocab_size, num_features, input_length):

    # Define the siamese double RNN with a fully connected 
layer at the end
    def siamese_nn(input_vector, num_hidden):
        cell_unit = tf.nn.rnn_cell.BasicLSTMCell

        # Forward direction cell
        lstm_forward_cell = cell_unit(num_hidden, 
forget_bias=1.0)
        lstm_forward_cell = 
tf.nn.rnn_cell.DropoutWrapper(lstm_forward_cell, 
output_keep_prob=dropout_keep_prob)

        # Backward direction cell
        lstm_backward_cell = cell_unit(num_hidden, 
forget_bias=1.0)
        lstm_backward_cell = 
tf.nn.rnn_cell.DropoutWrapper(lstm_backward_cell, 
output_keep_prob=dropout_keep_prob)

        # Split title into a character sequence
        input_embed_split = tf.split(1, input_length, 
input_vector)
        input_embed_split = [tf.squeeze(x, squeeze_dims=[1]) 
for x in input_embed_split]

        # Create bidirectional layer
        outputs, _, _ = 
tf.nn.bidirectional_rnn(lstm_forward_cell,
                                                
lstm_backward_cell,
                                                
input_embed_split,
                                                
dtype=tf.float32)
        # Average The output over the sequence
        temporal_mean = tf.add_n(outputs) / input_length



        # Fully connected layer
        output_size = 10
        A = tf.get_variable(name="A", shape=[2*num_hidden, 
output_size],
                            dtype=tf.float32,
                            
initializer=tf.random_normal_initializer(stddev=0.1))
        b = tf.get_variable(name="b", shape=[output_size], 
dtype=tf.float32,
                            
initializer=tf.random_normal_initializer(stddev=0.1))

        final_output = tf.matmul(temporal_mean, A) + b
        final_output = tf.nn.dropout(final_output, 
dropout_keep_prob)

        return(final_output)

    with tf.variable_scope("siamese") as scope:
            output1 = siamese_nn(address1, num_features)
            # Declare that we will use the same variables on 
the second string
            scope.reuse_variables()
            output2 = siamese_nn(address2, num_features)

    # Unit normalize the outputs
    output1 = tf.nn.l2_normalize(output1, 1)
    output2 = tf.nn.l2_normalize(output2, 1)
    # Return cosine distance
    #   in this case, the dot product of the norms is the 
same.
    dot_prod = tf.reduce_sum(tf.mul(output1, output2), 1)

    return(dot_prod)

Note

Note the usage of a variable scope to share parameters between the
two parts of the Siamese network for the two address inputs. Also note
that the cosine distance is achieved by the dot product of the



normalized vectors.
4. Now we will declare our prediction function, which is just the sign of

the cosine distance as follows:

def get_predictions(scores):
    predictions = tf.sign(scores, name="predictions")
    return(predictions)

5. Now we will declare our loss function as described before. Remember
that we want to leave a margin (similar to a SVM model) for error. We
will also have a loss term for true positives and true negatives. Use the
following code for the loss:

def loss(scores, y_target, margin):
    # Calculate the positive losses
    pos_loss_term = 0.25 * tf.square(tf.sub(1., scores))
    pos_mult = tf.cast(y_target, tf.float32)

    # Make sure positive losses are on similar strings
    positive_loss = tf.mul(pos_mult, pos_loss_term)

    # Calculate negative losses, then make sure on dissimilar 
strings
    neg_mult = tf.sub(1., tf.cast(y_target, tf.float32))

    negative_loss = neg_mult*tf.square(scores)

    # Combine similar and dissimilar losses
    loss = tf.add(positive_loss, negative_loss)

    # Create the margin term.  This is when the targets are 
0., and the scores are less than m, return 0.

    # Check if target is zero (dissimilar strings)
    target_zero = tf.equal(tf.cast(y_target, tf.float32), 0.)
    # Check if cosine outputs is smaller than margin
    less_than_margin = tf.less(scores, margin)
    # Check if both are true
    both_logical = tf.logical_and(target_zero, 
less_than_margin)
    both_logical = tf.cast(both_logical, tf.float32)
    # If both are true, then multiply by (1-1)=0.



    multiplicative_factor = tf.cast(1. - both_logical, 
tf.float32)
    total_loss = tf.mul(loss, multiplicative_factor)

    # Average loss over batch
    avg_loss = tf.reduce_mean(total_loss)
    return(avg_loss)

6. We declare an accuracy function as follows:

def accuracy(scores, y_target):
    predictions = get_predictions(scores)
    correct_predictions = tf.equal(predictions, y_target)
    accuracy = tf.reduce_mean(tf.cast(correct_predictions, 
tf.float32))
    return(accuracy)

7. We will create similar addresses by creating a typo in an address. We
will denote these addresses (reference address and typo address) as
similar:

def create_typo(s):
    rand_ind = random.choice(range(len(s)))
    s_list = list(s)
    s_list[rand_ind]=random.choice(string.ascii_lowercase + 
'0123456789')
    s = ''.join(s_list)
    return(s)

8. The data that we will generate will be random combinations of street
numbers, street names, and street suffixes. The names and suffixes are
from the following lists:

street_names = ['abbey', 'baker', 'canal', 'donner', 'elm', 
'fifth', 'grandvia', 'hollywood', 'interstate', 'jay', 
'kings']
street_types = ['rd', 'st', 'ln', 'pass', 'ave', 'hwy', 
'cir', 'dr', 'jct']

9. We generate test queries and references as follows:

test_queries = ['111 abbey ln', '271 doner cicle',
                '314 king avenue', 'tensorflow is fun']
test_references = ['123 abbey ln', '217 donner cir', '314 



kings ave', '404 hollywood st', 'tensorflow is so fun']

Note

Note the last query and reference are not any addresses that the model
will have seen before, but we hope that they will be what the model
sees as most similar at the end.

10. We will now define how to generate a batch of data. Our batch of data
will be half similar addresses (reference address and a typo address)
and half dissimilar addresses. We generate the dissimilar addresses by
taking half of the address list and shifting the targets by one position
(with the function numpy.roll()):

def get_batch(n):
    # Generate a list of reference addresses with similar 
addresses that have
    # a typo.
    numbers = [random.randint(1, 9999) for i in range(n)]
    streets = [random.choice(street_names) for i in range(n)]
    street_suffs = [random.choice(street_types) for i in 
range(n)]
    full_streets = [str(w) + ' ' + x + ' ' + y for w,x,y in 
zip(numbers, streets, street_suffs)]
    typo_streets = [create_typo(x) for x in full_streets]
    reference = [list(x) for x in zip(full_streets, 
typo_streets)]

    # Shuffle last half of them for training on dissimilar 
addresses
    half_ix = int(n/2)
    bottom_half = reference[half_ix:]
    true_address = [x[0] for x in bottom_half]
    typo_address = [x[1] for x in bottom_half]
    typo_address = list(np.roll(typo_address, 1))
    bottom_half = [[x,y] for x,y in zip(true_address, 
typo_address)]
    reference[half_ix:] = bottom_half

    # Get target similarities (1's for similar, -1's for non-
similar)
    target = [1]*(n-half_ix) + [-1]*half_ix



    reference = [[x,y] for x,y in zip(reference, target)]
    return(reference)

11. Next, we will define our address vocabulary and how to one-hot-
encode the addresses to indices:

vocab_chars = string.ascii_lowercase + '0123456789 '
vocab2ix_dict = {char:(ix+1) for ix, char in 
enumerate(vocab_chars)}
vocab_length = len(vocab_chars) + 1

# Define vocab one-hot encoding
def address2onehot(address,
                   vocab2ix_dict = vocab2ix_dict,
                   max_address_len = max_address_len):
    # translate address string into indices
    address_ix = [vocab2ix_dict[x] for x in list(address)]

    # Pad or crop to max_address_len
    address_ix = (address_ix + [0]*max_address_len)
[0:max_address_len]
    return(address_ix)

12. After dealing with the vocabulary, we will start declaring our model
placeholders and the embedding lookup. For the embedding lookup,
we will be using one-hot-encoded embedding by using an identity
matrix as the lookup matrix. Use the following code:

address1_ph = tf.placeholder(tf.int32, [None, 
max_address_len], name="address1_ph")
address2_ph = tf.placeholder(tf.int32, [None, 
max_address_len], name="address2_ph")
y_target_ph = tf.placeholder(tf.int32, [None], 
name="y_target_ph")
dropout_keep_prob_ph = tf.placeholder(tf.float32, 
name="dropout_keep_prob")

# Create embedding lookup
identity_mat = tf.diag(tf.ones(shape=[vocab_length]))
address1_embed = tf.nn.embedding_lookup(identity_mat, 
address1_ph)
address2_embed = tf.nn.embedding_lookup(identity_mat, 
address2_ph)



13. We will now declare the model, accuracy, loss, and prediction
operations as follows:

# Define Model
text_snn = model.snn(address1_embed, address2_embed, 
dropout_keep_prob_ph,
                     vocab_length, num_features, 
max_address_len)
# Define Accuracy
batch_accuracy = model.accuracy(text_snn, y_target_ph)
# Define Loss
batch_loss = model.loss(text_snn, y_target_ph, margin)
# Define Predictions
predictions = model.get_predictions(text_snn)

14. Finally, before we can start training, we add the optimization and
initialization operations to the graph as follows:

# Declare optimizer
optimizer = tf.train.AdamOptimizer(0.01)
# Apply gradients
train_op = optimizer.minimize(batch_loss)
# Initialize Variables
init = tf.global_variables_initializer()
sess.run(init)

15. We will now iterate through the training generations and keep track of
the loss and accuracy:

train_loss_vec = []
train_acc_vec = []
for b in range(n_batches):
    # Get a batch of data
    batch_data = get_batch(batch_size)
    # Shuffle data
    np.random.shuffle(batch_data)
    # Parse addresses and targets
    input_addresses = [x[0] for x in batch_data]
    target_similarity = np.array([x[1] for x in batch_data])
    address1 = np.array([address2onehot(x[0]) for x in 
input_addresses])
    address2 = np.array([address2onehot(x[1]) for x in 
input_addresses])



    train_feed_dict = {address1_ph: address1,
                       address2_ph: address2,
                       y_target_ph: target_similarity,
                       dropout_keep_prob_ph: 
dropout_keep_prob}

    _, train_loss, train_acc = sess.run([train_op, 
batch_loss, batch_accuracy],
                                        
feed_dict=train_feed_dict)
    # Save train loss and accuracy
    train_loss_vec.append(train_loss)
    train_acc_vec.append(train_acc)

16. After training, we now process the testing queries and references to
see how the model can perform:

test_queries_ix = np.array([address2onehot(x) for x in 
test_queries])
test_references_ix = np.array([address2onehot(x) for x in 
test_references])
num_refs = test_references_ix.shape[0]
best_fit_refs = []
for query in test_queries_ix:
    test_query = np.repeat(np.array([query]), num_refs, 
axis=0)
    test_feed_dict = {address1_ph: test_query,
                      address2_ph: test_references_ix,
                      y_target_ph: target_similarity,
                      dropout_keep_prob_ph: 1.0}
    test_out = sess.run(text_snn, feed_dict=test_feed_dict)
    best_fit = test_references[np.argmax(test_out)]
    best_fit_refs.append(best_fit)
print('Query Addresses: {}'.format(test_queries))
print('Model Found Matches: {}'.format(best_fit_refs))

17. This results in the following output:

Query Addresses: ['111 abbey ln', '271 doner cicle', '314 
king avenue', 'tensorflow is fun']
Model Found Matches:['123 abbey ln', '217 donner cir', '314 
kings ave', 'tensorflow is so fun']



There's more…
We can see from the test queries and references, that the model not only
was able to identify the correct reference addresses, it was also able to
generalize to a non-address phrase. We can also see how the model
performed by looking at the loss and accuracy during training:

Figure 9: The accuracy and loss for the Siamese RNN similarity model
during training.

Notice that we did not have a designated test set for this exercise. The
reason is because of how we generated the data. We created a batch
function that creates new batch data every time it is called so the model is



always seeing new data. Because of this, we can use the batch loss and
accuracy as proxies to the test loss and accuracies. But this is never true
with a finite set of real data, as we would always have to have a train and
test set to judge the performance of the model.



Chapter 10. Taking TensorFlow to
Production
In this chapter, we will cover the following topics:

Implementing Unit Tests
Using Multiple Executors
Parallelizing TensorFlow
Taking TensorFlow to Production
Productionalizing TensorFlow – An Example

Introduction
Up to this point, we have covered how to train and evaluate various
models in TensorFlow. In this chapter, we will show how to write code that
is ready for production usage. There are various definitions of production-
ready code but, for us, production code will be defined as code that has
unit tests, separates the training and evaluation code, and efficiently saves
and loads various needed parts of the data pipeline and created graph
session.

Note

The Python scripts provided in this chapter should be run from the
command line. This allows tests to be run, and device placements to be
logged to the screen.



Implementing unit tests
Testing code results in faster prototyping, more efficient debugging, faster
changing, and makes it easier to share code. There are easy ways to
implement unit tests in TensorFlow that we will cover in this recipe.

Getting ready
When programming a TensorFlow model, it will help to have unit tests to
check the functionality of the program. This helps us because, when we
want to make changes to a program unit, tests will make sure that those
changes do not break the model in unknown ways. In this recipe, we will
create a simple CNN network that relies on the MNIST data. With it, we
will implement three different types of unit test to illustrate how to write
them in TensorFlow.

Note

Note that Python has a great testing library called Nose. TensorFlow also
has built-in testing functions, and we will illustrate how these make it
easier to test the value of tensor objects without having to evaluate the
values in a session.
1. We start by loading the necessary libraries and formatting the data:

import numpy as np
import tensorflow as tf
from tensorflow.contrib.learn.python.learn.datasets.mnist 
import read_data_sets
from tensorflow.python.framework import ops
ops.reset_default_graph()
# Start a graph session
sess = tf.Session()
# Load data
data_dir = 'temp'
mnist = read_data_sets(data_dir)
# Convert images into 28x28 (they are downloaded as 1x784)



train_xdata = np.array([np.reshape(x, (28,28)) for x in 
mnist.train.images])
test_xdata = np.array([np.reshape(x, (28,28)) for x in 
mnist.test.images])
# Convert labels into one-hot encoded vectors
train_labels = mnist.train.labels
test_labels = mnist.test.labels
# Set model parameters
batch_size = 100
learning_rate = 0.005
evaluation_size = 100
image_width = train_xdata[0].shape[0]
image_height = train_xdata[0].shape[1]
target_size = max(train_labels) + 1
num_channels = 1 # greyscale = 1 channel
generations = 100
eval_every = 5
conv1_features = 25
conv2_features = 50
max_pool_size1 = 2 # NxN window for 1st max pool layer
max_pool_size2 = 2 # NxN window for 2nd max pool layer
fully_connected_size1 = 100
dropout_prob = 0.75

2. We then declare our placeholders, variables, and model formulation:

# Declare model placeholders
x_input_shape = (batch_size, image_width, image_height, 
num_channels)
x_input = tf.placeholder(tf.float32, shape=x_input_shape)
y_target = tf.placeholder(tf.int32, shape=(batch_size))
eval_input_shape = (evaluation_size, image_width, 
image_height, num_channels)
eval_input = tf.placeholder(tf.float32, 
shape=eval_input_shape)
eval_target = tf.placeholder(tf.int32, shape=
(evaluation_size))
dropout = tf.placeholder(tf.float32, shape=())
# Declare model parameters
conv1_weight = tf.Variable(tf.truncated_normal([4, 4, 
num_channels, conv1_features],
                                               stddev=0.1, 
dtype=tf.float32))
conv1_bias = tf.Variable(tf.zeros([conv1_features], 



dtype=tf.float32))
conv2_weight = tf.Variable(tf.truncated_normal([4, 4, 
conv1_features, conv2_features],
                                               stddev=0.1, 
dtype=tf.float32))
conv2_bias = tf.Variable(tf.zeros([conv2_features], 
dtype=tf.float32))
# fully connected variables
resulting_width = image_width // (max_pool_size1 * 
max_pool_size2)
resulting_height = image_height // (max_pool_size1 * 
max_pool_size2)
full1_input_size = resulting_width * resulting_height * 
conv2_features
full1_weight = 
tf.Variable(tf.truncated_normal([full1_input_size, 
fully_connected_size1],
                          stddev=0.1, dtype=tf.float32))
full1_bias = 
tf.Variable(tf.truncated_normal([fully_connected_size1], 
stddev=0.1, dtype=tf.float32))
full2_weight = 
tf.Variable(tf.truncated_normal([fully_connected_size1, 
target_size],
                                               stddev=0.1, 
dtype=tf.float32))
full2_bias = tf.Variable(tf.truncated_normal([target_size], 
stddev=0.1, dtype=tf.float32))
# Initialize Model Operations
def my_conv_net(input_data):
    # First Conv-ReLU-MaxPool Layer
    conv1 = tf.nn.conv2d(input_data, conv1_weight, strides=
[1, 1, 1, 1], padding='SAME')
    relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_bias))
    max_pool1 = tf.nn.max_pool(relu1, ksize=[1, 
max_pool_size1, max_pool_size1, 1],
                               strides=[1, max_pool_size1, 
max_pool_size1, 1], padding='SAME')
    # Second Conv-ReLU-MaxPool Layer
    conv2 = tf.nn.conv2d(max_pool1, conv2_weight, strides=[1, 
1, 1, 1], padding='SAME')
    relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_bias))
    max_pool2 = tf.nn.max_pool(relu2, ksize=[1, 



max_pool_size2, max_pool_size2, 1],
                               strides=[1, max_pool_size2, 
max_pool_size2, 1], padding='SAME')
    # Transform Output into a 1xN layer for next fully 
connected layer
    final_conv_shape = max_pool2.get_shape().as_list()
    final_shape = final_conv_shape[1] * final_conv_shape[2] * 
final_conv_shape[3]
    flat_output = tf.reshape(max_pool2, [final_conv_shape[0], 
final_shape])
    # First Fully Connected Layer
    fully_connected1 = 
tf.nn.relu(tf.add(tf.matmul(flat_output, full1_weight), 
full1_bias))
    # Second Fully Connected Layer
    final_model_output = tf.add(tf.matmul(fully_connected1, 
full2_weight), full2_bias)

    # Add dropout
    final_model_output = tf.nn.dropout(final_model_output, 
dropout)

    return(final_model_output)
model_output = my_conv_net(x_input)
test_model_output = my_conv_net(eval_input)

3. Next we create our loss function, prediction, and accuracy operations.
Then we initialize the model variables:

# Declare Loss Function (softmax cross entropy)
loss = 
tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits
(model_output, y_target))
# Create a prediction function
prediction = tf.nn.softmax(model_output)
test_prediction = tf.nn.softmax(test_model_output)
# Create accuracy function
def get_accuracy(logits, targets):
    batch_predictions = np.argmax(logits, axis=1)
    num_correct = np.sum(np.equal(batch_predictions, 
targets))
    return(100. * num_correct/batch_predictions.shape[0])
# Create an optimizer



my_optimizer = tf.train.MomentumOptimizer(learning_rate, 0.9)
train_step = my_optimizer.minimize(loss)
# Initialize Variables
init = tf.initialize_all_variables()
sess.run(init)

4. For our first unit test, we use the tf.test.TestCase class and create a
way to test the values of a placeholder (or variable). For this test case,
we make sure that the dropout probability (for keeping) is greater than
0.25, so that the model is not changed to attempt to train on more than
75% dropout:

# Check values of tensors!
class drop_out_test(tf.test.TestCase):
    # Make sure that we don't drop too much
    def dropout_greaterthan(self):
        with self.test_session():
          self.assertGreater(dropout.eval(), 0.25)

5. Next, we will test that our accuracy function is behaving properly. We
will create a sample array of probabilities and what we expect, and
make sure that the test accuracy returns 100%:

# Test accuracy function
class accuracy_test(tf.test.TestCase):
    # Make sure accuracy function behaves correctly
    def accuracy_exact_test(self):
        with self.test_session():
            test_preds = [[0.9, 0.1],[0.01, 0.99]]
            test_targets = [0, 1]
            test_acc = get_accuracy(test_preds, test_targets)
            self.assertEqual(test_acc.eval(), 100.)

6. We can also make sure that a tensor is the shape that we expect. Next,
we test that the model output is the expected shape of batch_size by
target_size:

# Test tensorshape
class shape_test(tf.test.TestCase):
    # Make sure our model output is size [batch_size, 
num_classes]
    def output_shape_test(self):



        with self.test_session():
            numpy_array = np.ones([batch_size, target_size])
            self.assertShapeEqual(numpy_array, model_output)

7. To perform these tests, we just put in the following command,
followed by our training loop (or the rest of our program):

# Perform unit tests
tf.test.main()
# Start training loop
for i in range(generations):
    ...

8. If we run the program on the command line, we get the following
output:

$python3 implementing_unit_tests.py
Ran 3 tests in 0.000s
OK

9. The full program can be found on the book's GitHub repository at
https://github.com/nfmcclure/tensorflow_cookbook/.

How it works…
We implemented three types of unit tests, tensor values, operations
outputs, and tensor shapes. There are more types of unit test functions for
TensorFlow, and they can be found here:
https://www.tensorflow.org/versions/master/api_docs/python/test.html.

Remember that a unit test helps us assure that code will function as
expected, provide confidence in sharing code, and make reproducibility
more accessible.

https://github.com/nfmcclure/tensorflow_cookbook/
https://www.tensorflow.org/versions/master/api_docs/python/test.html


Using Multiple Executors
It should be apparent to the reader that there are many features of
TensorFlow and computational graphs that lend itself naturally to being
computed in parallel. The computational graph can be broken up on
different processors as well as processing different batches. We will
address how to access different processors on the same machine in this
recipe.

Getting ready
For this recipe, we will show how to access multiple devices on the same
system and train on them. This is a very common occurrence, as along
with a CPU, a machine may have one or more GPUs that can share the
computationl load. If TensorFlow can access these devices, it will
automatically distribute the computations to the multiple devices via a
greedy process. But TensorFlow also allows the program to specify which
operations will be on which devices via namescope placement.

In order to access GPU devices, the GPU version of TensorFlow must be
installed. To install the GPU version of TensorFlow, visit
https://www.tensorflow.org/versions/master/get_started/os_setup.html#download-
and-setup and follow the instructions for your specific system. Be aware
that the GPU versions of TensorFlow require CUDA to use the GPU.

In this recipe, we will show you a range of commands that will allow you
to access the various devices on your system, and find out which devices
TensorFlow is using.

How to do it…
1. In order to find out what devices TensorFlow is using for which

operations, we can set a config in the Session parameters that sets
log_device_placement to True. When we run the script from the

https://www.tensorflow.org/versions/master/get_started/os_setup.html#download-and-setup


command line, we will see specific device placements as the output:

import tensorflow as tf
sess = 
tf.Session(config=tf.ConfigProto(log_device_placement=True))
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], 
name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], 
name='b')
c = tf.matmul(a, b)
# Runs the op.
print(sess.run(c))

2. From the terminal, run the following command:

$python3 using_multiple_devices.py
Device mapping: no known devices.
I tensorflow/core/common_runtime/direct_session.cc:175] 
Device mapping:
MatMul: /job:localhost/replica:0/task:0/cpu:0
I tensorflow/core/common_runtime/simple_placer.cc:818] 
MatMul: /job:localhost/replica:0/task:0/cpu:0
b: /job:localhost/replica:0/task:0/cpu:0
I tensorflow/core/common_runtime/simple_placer.cc:818] b: 
/job:localhost/replica:0/task:0/cpu:0
a: /job:localhost/replica:0/task:0/cpu:0
I tensorflow/core/common_runtime/simple_placer.cc:818] a: 
/job:localhost/replica:0/task:0/cpu:0
[[ 22.  28.]
 [ 49.  64.]]

3. Sometimes, we would like to make sure TensorFlow is deciding the
placements. This is useful when loading a prior saved model that had
hard placements assigned in the graph and our machine has different
devices to those the graph would have. We can set soft placements in
the configuration as follows:

config = tf.ConfigProto()
config.allow_soft_placement = True
sess_soft = tf.Session(config=config)

4. When using GPUs, TensorFlow automatically takes up a large portion
of the GPU memory. While this is usually desired, we can take steps to



be more careful with the GPU memory allocation. While TensorFlow
never releases GPU memory, we can slowly grow GPU memory
allocation to the maximum limit (only when needed) by setting a GPU
memory growth option as follows:

config.gpu_options.allow_growth = True
sess_grow = tf.Session(config=config)

5. If we want to put a hard limit on the percentage of GPU memory used
by TensorFlow, we can use the config setting
per_process_gpu_memory_fraction:

config.gpu_options.per_process_gpu_memory_fraction = 0.4
sess_limited = tf.Session(config=config)

6. Sometimes, we would like to write robust code that can determine if it
is running with the GPU available or not. TensorFlow has a built-in
function that can test this. This is helpful if we want to write code that
can take advantage of the GPU when it is available and assign specific
operations to it:

if tf.test.is_built_with_cuda():

7. We may wish to assign specific operations, say to the GPU. Here is an
example of code that does some simple calculations and assigns them
to the main CPU, and the two auxiliary GPUs:

with tf.device('/cpu:0'):
a = tf.constant([1.0, 3.0, 5.0], shape=[1, 3])
    b = tf.constant([2.0, 4.0, 6.0], shape=[3, 1])

    with tf.device('/gpu:0'):
        c = tf.matmul(a,b)
        c = tf.reshape(c, [-1])

    with tf.device('/gpu:1'):
        d = tf.matmul(b,a)
        flat_d = tf.reshape(d, [-1])

    combined = tf.mul(c, flat_d)
print(sess.run(combined))



How it works…
When we want to specify particular devices on our machine for
TensorFlow operations, we will need to know how TensorFlow refers to
such devices. Device names in TensorFlow follow the following
conventions:

Device Device name

Main CPU /cpu:0

Second CPU /cpu:1

Main GPU /gpu:0

Second GPU /gpu:1

Third GPU /gpu:2

There's more…
Running TensorFlow in the cloud is getting easier and easier. Many cloud
computation service providers offer GPU instances that have a main CPU
and a powerful GPU alongside it. Amazon Web Services (AWS) has G
instances and P2 instances that allow usage of powerful GPUs that offer
great speedup for TensorFlow processes. There are even AWS Machine
Images (AMIs) that you can select for free that will boot up a selected
instance with the GPU instance of TensorFlow installed.



Parallelizing TensorFlow
To extend our reach for parallelizing TensorFlow, we can also perform
separate operations of our graph on entirely different machines in a
distributed manner. This recipe will show us how that is achieved.

Getting ready
A few months after the release of TensorFlow, Google released
TensorFlow Distributed. This was a big upgrade to the TensorFlow
ecosystem, allowing a TensorFlow cluster to be set up (separate worker
machines), to share the computational task of training and evaluating
models. Using TensorFlow Distributed is as easy as setting up some
parameters for workers and then assigning different jobs to different
workers.

In this recipe, we will set up two local workers and assign them different
jobs.

How to do it…
1. To start, we load TensorFlow and define our two local workers with a

configuration dictionary file (ports 2222 and 2223):

import tensorflow as tf
# Cluster for 2 local workers (tasks 0 and 1):
cluster = tf.train.ClusterSpec({'local': ['localhost:2222', 
'localhost:2223']})

2. Now we join the two workers into the server and label them with task
numbers:

server = tf.train.Server(cluster, job_name="local", 
task_index=0)
server = tf.train.Server(cluster, job_name="local", 
task_index=1)

3. Now we will have each worker do a task. The first worker will



initialize two matrices (each 25 by 25). The second worker will sum all
the elements. Then we auto assign the sum of the two sums and print
the output:

mat_dim = 25
matrix_list = {}
with tf.device('/job:local/task:0'):
    for i in range(0, 2):
        m_label = 'm_{}'.format(i)
        matrix_list[m_label] = tf.random_normal([mat_dim, 
mat_dim])
# Have each worker calculate the sums
sum_outs = {}
with tf.device('/job:local/task:1'):
    for i in range(0, 2):
        A = matrix_list['m_{}'.format(i)]
        sum_outs['m_{}'.format(i)] = tf.reduce_sum(A)
    # Sum all the sums
    summed_out = tf.add_n(list(sum_outs.values()))
with tf.Session(server.target) as sess:
    result = sess.run(summed_out)
    print('Summed Values:{}'.format(result))

4. Now we can run the following at the command prompt:

$ python3 parallelizing_tensorflow.py
I 
tensorflow/core/distributed_runtime/rpc/grpc_channel.cc:197] 
Initialize GrpcChannelCache for job local -> {0 -> 
localhost:2222, 1 -> localhost:2223}
I 
tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:20
6] Started server with target: grpc://localhost:2222
I 
tensorflow/core/distributed_runtime/rpc/grpc_channel.cc:197] 
Initialize GrpcChannelCache for job local -> {0 -> 
localhost:2222, 1 -> localhost:2223}
I 
tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:20
6] Started server with target: grpc://localhost:2223
I tensorflow/core/distributed_runtime/master_session.cc:928] 
Start master session 252bb6f530553002 with config: 
Summed Values:-21.12611198425293



How it works…
Using TensorFlow Distributed is quite easy. We just have to assign the
worker IPs to the server with names. Then we can manually assign or auto
assign operations to the workers.



Taking TensorFlow to Production
If we want to use our machine learning scripts in a production setting,
there are some points to consider for best practices. Here, we will help to
point out some best practices.

Getting ready
In this recipe, we want to summarize and condense various tips for
bringing TensorFlow to production. We will cover how to best save and
load vocabularies, graphs, variables, and model checkpoints. We will also
talk about how to use TensorFlow's command-line argument parser and
change the logging verbosity of TensorFlow.

How to do it…
1. When running a TensorFlow program, we may want to be sure that no

other graph session is already in memory, or that we clear the graph
session every time while debugging a program. We can accomplish this
as follows:

from tensorflow.python.framework import ops
ops.reset_default_graph()

2. When dealing with text (or any data pipeline), we need to be sure that
we save how we process the data, so that we can process future
evaluation data the same way. If we are dealing with text, we need to
be sure we can save and load the vocabulary dictionary. See the
following code for an example of saving the vocabulary dictionary
with the JSON library:

import json
word_list = ['to', 'be', 'or', 'not', 'to', 'be']
vocab_list = list(set(word_list))
vocab2ix_dict = dict(zip(vocab_list, range(len(vocab_list))))
ix2vocab_dict = {val:key for key,val in 
vocab2ix_dict.items()}



# Save vocabulary
import json
with open('vocab2ix_dict.json', 'w') as file_conn:
    json.dump(vocab2ix_dict, file_conn)
# Load vocabulary
with open('vocab2ix_dict.json', 'r') as file_conn:
    vocab2ix_dict = json.load(file_conn)

Note

We saved the vocabulary dictionary here in a JSON format. We can
also save it in a text file, CSV, or even a binary format. If the
vocabulary is large, a binary file is preferred. Look into using the
pickle library to create a pkl binary file. Be aware though that pickle
files do not translate well between library and Python versions.

3. To save the model graph and variables, we create a Saver() operation
and add that to the graph. It is recommended that the model is saved
on a regular basis during training. See the following example code for
saving the model regularly:

# After model declaration, add a saving operations
saver = tf.train.Saver()
# Then during training, save every so often, referencing the 
training generation
for i in range(generations):
    ...
    if i%save_every == 0:
        saver.save(sess, 'my_model', global_step=step)
# Can also save only specific variables:
saver = tf.train.Saver({"my_var": my_variable})

Note

Note that the Saver() operation also takes other parameters. As shown
previously, it can take a dictionary of variables and tensors to save
specific elements. It also can take checkpoint_every_n_hours, which
performs the saving operation on a regular time basis, instead of a
generation basis. By default, the saving operation only keeps the last
five model saves (for space considerations). This can be changed with



the max_to_keep option (default is 5).
4. Before saving a model, be sure to name important operations of the

model. TensorFlow does not have an easy way to load specific
placeholders, operations, or variables if they do not have a name. Most
operations and functions in TensorFlow accept a name argument:

conv_weights = tf.Variable(tf.random_normal(), 
name='conv_weights')
loss = tf.reduce_mean(... , name='loss')

5. TensorFlow also makes it easy to perform arg-parsing on the command
line with the tf.apps.flags library. With these functions, we can
define command-line arguments that are strings, floats, integers, or
Booleans as shown here. With these flag definitions, we can just run
tf.app.run() and this will run the main() function with these flag
arguments:

tf.app.flags.DEFINE_string("worker_locations", "", "List of 
worker addresses.")
tf.app.flags.DEFINE_float('learning_rate', 0.01, 'Initial 
learning rate.')
tf.app.flags.DEFINE_integer('generations', 1000, 'Number of 
training generations.')
tf.app.flags.DEFINE_boolean('run_unit_tests', False, 'If 
true, run tests.')
# Need to define a 'main' function for the app to run
def main(_):
    worker_ips = FLAGS.worker_locations.split(",")
    learning_rate = FLAGS.learning_rate
    generations = FLAGS.generations
    run_unit_tests = FLAGS.run_unit_tests
# Run the Tensorflow app
if __name__ == "__main__":
    tf.app.run()

6. TensorFlow has built-in logging that we can set the level parameter for.
The levels we can set it at are DEBUG, INFO, WARN, ERROR, and FATAL.
The default is WARN:

tf.logging.set_verbosity(tf.logging.WARN)



# WARN is the default value, but to see more information, you 
can set it to
#    INFO or DEBUG
tf.logging.set_verbosity(tf.logging.DEBUG)

How it works…
Here we provide tips for creating production level code in TensorFlow. We
want to introduce these concepts of app-flags, model saving, and logging
so that users can consistently write code with these tools and understand
when they see these tools in other code. There are many other ways to
write good production code, but a full example will be shown in the next
recipe.



Productionalizing TensorFlow – An
Example
A good practice for productionalizing machine learning models is to
separate the training and evaluation programs. Here, we illustrate an
evaluation script expanded to include a unit test, model saving and loading,
and evaluation.

Getting ready
For this recipe, we will show how to implement an evaluation script, using
the above production criteria. The code actually consists of a training
script and an evaluation script, but for this recipe, we will only show the
evaluation script. As a reminder, both scripts can been seen in the online
GitHub repository, https://github.com/nfmcclure/tensorflow_cookbook/.

For the example, we will implement the first RNN example from Chapter
9, Recurrent Neural Networks, which attempts to predict if a text message
is spam or ham. We will assume the RNN model is trained and saved,
along with the vocabulary.

How to do it…
1. We start by loading the necessary libraries and declaring the

TensorFlow application flags:

import os
import re
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
ops.reset_default_graph()
tf.app.flags.DEFINE_string("storage_folder", "temp", "Where 
to store model and data.")
tf.app.flags.DEFINE_string('model_file', False, 'Model file 

https://github.com/nfmcclure/tensorflow_cookbook/


location.')
tf.app.flags.DEFINE_boolean('run_unit_tests', False, 'If 
true, run tests.')
FLAGS = tf.app.flags.FLAGS

2. We next declare a text cleaning function. This will be the same
cleaning function used in the training script:

def clean_text(text_string):
    text_string = re.sub(r'([^\s\w]|_|[0-9])+', '', 
text_string)
    text_string = "".join(text_string.split())
    text_string = text_string.lower()
    return(text_string)

3. Now we can load the vocabulary processing function:

def load_vocab():
    vocab_path = os.path.join(FLAGS.storage_folder, "vocab")
    vocab_processor = 
tf.contrib.learn.preprocessing.VocabularyProcessor.restore(vo
cab_path)
    return(vocab_processor)

4. Now that we have a way to clean the text, and have a vocab
processor, we can combine these to create a data-processing pipeline
for a given text:

def process_data(input_data, vocab_processor):
    input_data = clean_text(input_data)
    input_data = input_data.split()
    processed_input = 
np.array(list(vocab_processor.transform(input_data)))
    return(processed_input)

5. Next, we need a way to get data to evaluate. For this purpose, we will
ask the user to type text onto the screen. Then we process the text and
return the processed text:

def get_input_data():
    input_text = input("Please enter a text message to 
evaluate: ")
    vocab_processor = load_vocab()



    return(process_data(input_text, vocab_processor))

Note

For this example, we have created evaluation data by asking the user
to type it in. While many applications will get data by being supplied a
file or an API request, we can change this input data function
accordingly.

6. For a unit test, we will make sure that our text cleaning function
behaves properly:

class clean_test(tf.test.TestCase):
    # Make sure cleaning function behaves correctly
    def clean_string_test(self):
        with self.test_session():
            test_input = '--Tensorflow\'s so Great! Don\t you 
think so?   '
            test_expected = 'tensorflows so great don you 
think so'
            test_out = clean_text(test_input)
            self.assertEqual(test_expected, test_out)

7. Now that we have our model and data, we can run the main function.
The main function will get the data, set up the graph, load the
variables, feed in the processed data, and print the output:

def main(args):
    # Get flags
    storage_folder = FLAGS.storage_folder
    # Get user input text
    x_data = get_input_data()

    # Load model
    graph = tf.Graph()
    with graph.as_default():
        sess = tf.Session()
        with sess.as_default():
            # Load the saved meta graph and restore variables
            saver = tf.train.import_meta_graph("
{}.meta".format(os.path.join(storage_folder, "model.ckpt")))
            saver.restore(sess, os.path.join(storage_folder, 



"model.ckpt"))
            # Get the placeholders from the graph by name
            x_data_ph = 
graph.get_operation_by_name("x_data_ph").outputs[0]
            dropout_keep_prob = 
graph.get_operation_by_name("dropout_keep_prob").outputs[0]
            probability_outputs = 
graph.get_operation_by_name("probability_outputs").outputs[0]
            # Make the prediction
            eval_feed_dict = {x_data_ph: x_data, 
dropout_keep_prob: 1.0}
            probability_prediction = 
sess.run(tf.reduce_mean(probability_outputs, 0), 
eval_feed_dict)

            # Print output (Or save to file or DB 
connection?)
            print('Probability of Spam: 
{:.4}'.format(probability_prediction[1]))

8. And here is how the main() function or unit tests get run:

if __name__ == "__main__":
    if FLAGS.run_unit_tests:
        # Perform unit tests
        tf.test.main()
    else:
        # Run evaluation
        tf.app.run()

How it works…
For the evaluation of the model, we were able to load the command-line
arguments with TensorFlow's app flags, load the model and vocabulary
processor, and then we were able to run the processed data through the
model and make a prediction.

Remember to run this script through the command line, and check that the
training script is run before to create the model and vocabulary dictionary.



Chapter 11. More with TensorFlow
In this chapter, we'll cover the following recipes:

Visualizing graphs in Tensorboard
Working with a Genetic Algorithm
Clustering Using K-Means
Solving a System of ODEs

All the code that appears in this chapter is available online at
https://github.com/nfmcclure/tensorflow_cookbook.

Introduction
Throughout this book, we have seen that TensorFlow is capable of
implementing many models, but there is more that TensorFlow can do, and
this chapter will show you a few of those things. We'll start by showing
how to use the various aspects of Tensorboard, a capability that comes
with TensorFlow that allows us to visualize summary metrics, graphs, and
images even while our model is training. The remaining recipes in the
chapter will show how to use TensorFlow's group() function to do
stepwise updates. This function will allow us to implement a genetic
algorithm, perform k-means clustering, and even solve a system of ODEs.

https://github.com/nfmcclure/tensorflow_cookbook


Visualizing graphs in Tensorboard
Monitoring and troubleshooting machine learning algorithms can be a
daunting task. Especially if you have to wait a long time for the training to
complete before you know the results. To work around this, TensorFlow
includes a computational graph visualization tool called Tensorboard. With
Tensorboard, we can visualize and graph important values (loss, accuracy,
batch training time, and so on) even during training.

Getting ready
To illustrate the various ways we can use Tensorboard, we will
reimplement the linear regression model from The TensorFlow way of
linear regressionrecipe in Chapter 3, Linear Regression. We'll generate
linear data with errors, and use TensorFlow loss and backpropagation to fit
a line to the data. We will show how to monitor numerical values,
histograms of sets of values, andhow to create an image in Tensorboard.

How to do it…
1. First,we'll load the libraries necessary for the script:

import os
import io
import time
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf

2. We'll now initialize a session and create a summary writer that can
write Tensorboard summaries to a Tensorboard folder:

sess = tf.Session()
# Create a visualizer object
summary_writer = tf.train.SummaryWriter('tensorboard', 
tf.get_default_graph())

3. We need to make sure that the Tensorboard folder exists for the



summary writer to write the Tensorboard logs:

if not os.path.exists('tensorboard'):
    os.makedirs('tensorboard')

4. We'll now set the model parameters and generate the linear data for
the model. Note that our true slope is 2, and we will visualize the
changing slope over time and see it approach the true value:

batch_size = 50
generations = 100
# Create sample input data
x_data = np.arange(1000)/10.
true_slope = 2.
y_data = x_data * true_slope + np.random.normal(loc=0.0, 
scale=25, size=1000)

5. Next, we'll split the dataset into a train and test set:

train_ix = np.random.choice(len(x_data), 
size=int(len(x_data)*0.9), replace=False)
test_ix = np.setdiff1d(np.arange(1000), train_ix)
x_data_train, y_data_train = x_data[train_ix], 
y_data[train_ix]
x_data_test, y_data_test = x_data[test_ix], y_data[test_ix]

6. Now we can create the placeholders, variables, model operations, loss
and optimizing operations:

x_graph_input = tf.placeholder(tf.float32, [None])
y_graph_input = tf.placeholder(tf.float32, [None])
# Declare model variables
m = tf.Variable(tf.random_normal([1], dtype=tf.float32), 
name='Slope')
# Declare model
output = tf.mul(m, x_graph_input, 
name='Batch_Multiplication')
# Declare loss function (L1)
residuals = output - y_graph_input
l2_loss = tf.reduce_mean(tf.abs(residuals), name="L2_Loss")
# Declare optimization function
my_optim = tf.train.GradientDescentOptimizer(0.01)
train_step = my_optim.minimize(l2_loss)



7. We can now create a Tensorboard operation that will summarize a
scalar value. The scalar value that we will summarize is the slope
estimate of the model:

with tf.name_scope('Slope_Estimate'):
    tf.scalar_summary('Slope_Estimate', tf.squeeze(m))

8. Another summary we can add to Tensorboard is a histogram summary,
which inputs multiple values in a tensor and outputs graphs and
histograms:

with tf.name_scope('Loss_and_Residuals'):
    tf.histogram_summary('Histogram_Errors', l2_loss)
    tf.histogram_summary('Histogram_Residuals', residuals)

9. After creating these summary operations, we need to create a
summary merging operation that will combine all the summaries, and
then we can initialize the model variables:

summary_op = tf.merge_all_summaries()
# Initialize Variables
init = tf.initialize_all_variables()
sess.run(init)

10. Now we can train the linear model, and write summaries every
generation:

for i in range(generations):
    batch_indices = np.random.choice(len(x_data_train), 
size=batch_size)
    x_batch = x_data_train[batch_indices]
    y_batch = y_data_train[batch_indices]
    _, train_loss, summary = sess.run([train_step, l2_loss, 
summary_op],
                             feed_dict={x_graph_input: 
x_batch,
                                        y_graph_input: 
y_batch})

    test_loss, test_resids = sess.run([l2_loss, residuals], 
feed_dict={x_graph_input: x_data_test,
                                                                       



y_graph_input: y_data_test})

    if (i+1)%10==0:
        print('Generation {} of {}. Train Loss: {:.3}, Test 
Loss: {:.3}.'.format(i+1, generations, train_loss, 
test_loss))

    log_writer = tf.train.SummaryWriter('tensorboard')
    log_writer.add_summary(summary, i)

11. In order to put the final graph of the linear fit with the data points in
Tensorboard, we have to create the graph image in protobuff format.
To start this, we will create a function that outputs a protobuff graph:

def gen_linear_plot(slope):
    linear_prediction = x_data * slope
    plt.plot(x_data, y_data, 'b.', label='data')
    plt.plot(x_data, linear_prediction, 'r-', linewidth=3, 
label='predicted line')
    plt.legend(loc='upper left')
    buf = io.BytesIO()
    plt.savefig(buf, format='png')
    buf.seek(0)
    return(buf)

12. Now we can create and add the protobuff image to Tensorboard:

slope = sess.run(m)
plot_buf = gen_linear_plot(slope[0])
# Convert PNG buffer to TF image
image = tf.image.decode_png(plot_buf.getvalue(), channels=4)
# Add the batch dimension
image = tf.expand_dims(image, 0)
# Add image summary
image_summary_op = tf.image_summary("Linear Plot", image)
image_summary = sess.run(image_summary_op)
log_writer.add_summary(image_summary, i)
log_writer.close()

Note

Be careful writing image summaries too often to Tensorboard. For
example, if we were to write an image summary every generation for



10,000 generations, that would generate 10,000 images worth of
summary data. This can eat up disk space very quickly.



There's more…
Be sure to run the preceding script from the command line:

$ python3 using_tensorboard.py

Run the command: $tensorboard --logdir="tensorboard"   Then 
navigate to http://127.0.0.0:6006
Generation 10 of 100. Train Loss: 20.4, Test Loss: 20.5.
Generation 20 of 100. Train Loss: 17.6, Test Loss: 20.5.
Generation 90 of 100. Train Loss: 20.1, Test Loss: 20.5.
Generation 100 of 100. Train Loss: 19.4, Test Loss: 20.5.

We'll then run the preceding specified command to start Tensorboard:

$ tensorboard --logdir="tensorboard"
Starting TensorBoard b'29' on port 6006
(You can navigate to http://127.0.1.1:6006)

Here is a sample of what we can see in Tensorboard:



Figure 1: The scalar value, our slope estimate, visualized in Tensorboard.

Here, we can see a plot over the 100 generations of our scalar summary,
the slope estimate. We can see that it does, in fact, approach the true value
of 2:



Figure 2: Here we visualize histograms of the errors and residuals for
our model.

The preceding graph shows one way to view histogram summaries, which
can be viewed as multiple line graphs:



Figure 3: An inserted picture in Tensorboard.

Here is the final fit and data point graph that we put in protobuff format
and inserted into an image summary in Tensorboard.



Working with a Genetic Algorithm
TensorFlow can also be used to update any iterative algorithm that we can
express in a computational graph. One such iterative algorithm is a genetic
algorithm, an optimization procedure.

Getting ready
In this recipe, we will illustrate how to implement a simple genetic
algorithm. Genetic algorithms are a way to optimize over any parameter
space (discrete, continuous, smooth, non-smooth, and so on.). The idea is
to create a population of randomly initialized solutions, and apply
selection, recombination, and mutation to generate new (and potentially
better) child solutions. The whole idea rests on the fact that we can
calculate the 'fitness' of an individual solution by seeing how well that
individual solves the problem.

Generally, the outline for a genetic algorithm is to start with a randomly
initialized population, rank them in terms of their fitness, and select the top
fit individuals to randomly recombine (or cross over) to create new child
solutions. These child solutions are then mutated slightly, to generate new
and unseen improvements, and then added back into the parent
population. After we have combined the children and parents, we repeat
the whole process again.

Stopping criteria for genetic algorithms vary, but for our purposes we will
just iterate for a fixed amount of generations. We could also stop when our
best fit individual achieves a desired level of fitness or when the maximum
fitness does not change after so many generations.

For this recipe, we will keep it simple to illustrate how to do this in
TensorFlow. The problem we will be solving is to generate an individual
(an array of 50 floating point numbers) that is the closest to the ground



truth function, . The fitness will be the negative of the mean
squared error (higher is better) between the individual and the ground
truth.

How to do it…
1. We'll start by loading the necessary libraries for the script:

import os
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf

2. Next, we'll set the parameters of the genetic algorithm. Here, we will
have 100 individuals, each with a length of 50. The selection
percentage will be 20% (keeping the top 20 individuals). The mutation
will be set to be the inverse of the number of features, a common
place to start for the mutation. This means that we expect one feature
per child solution to change. We will run the genetic algorithm for 200
generations:

pop_size = 100
features = 50
selection = 0.2
mutation = 1./ features
generations = 200
num_parents = int(pop_size*selection)
num_children = pop_size - num_parents

3. We'll initialize the graph session and create the ground truth function,
which we will use to quickly calculate the fitness:

sess = tf.Session()
# Create ground truth
truth = np.sin(2*np.pi*(np.arange(features, 
dtype=np.float32))/features)

4. Next we'llinitialize the population as a TensorFlow variable with a
random normal input:

population = tf.Variable(np.random.randn(pop_size, features), 



dtype=tf.float32)

5. We can now create the placeholders for the genetic algorithm. The
placeholders are for the ground truth and also for data that will change
for every generation. Since we want the crossover places between
parents to change and the mutation probabilities/values to change,
those will be the placeholders in our model:

truth_ph = tf.placeholder(tf.float32, [1, features])
crossover_mat_ph = tf.placeholder(tf.float32, [num_children, 
features])
mutation_val_ph = tf.placeholder(tf.float32, [num_children, 
features])

6. Now we will calculate the population fitness (negative mean squared
error), and find the top performing individuals:

fitness = -tf.reduce_mean(tf.square(tf.sub(population, 
truth_ph)), 1)
top_vals, top_ind = tf.nn.top_k(fitness, k=pop_size)

7. For results and plotting purposes, we also want to retrieve the best fit
individual in the population:

best_val = tf.reduce_min(top_vals)
best_ind = tf.arg_min(top_vals, 0)
best_individual = tf.gather(population, best_ind)

8. Next, we sort the parent population and slice off the top performing
individuals to make them parents for the next generation:

population_sorted = tf.gather(population, top_ind)
parents = tf.slice(population_sorted, [0, 0], [num_parents, 
features])

9. Now we'll create the children by creating two parent matrices that are
randomly shuffled. Then we multiple and add the parent matrices by
the crossover matrix of 1s and zeros that we will generate each
generation for the placeholders:

# Indices to shuffle-gather parents
rand_parent1_ix = np.random.choice(num_parents, num_children)



rand_parent2_ix = np.random.choice(num_parents, num_children)
# Gather parents by shuffled indices, expand back out to 
pop_size too
rand_parent1 = tf.gather(parents, rand_parent1_ix)
rand_parent2 = tf.gather(parents, rand_parent2_ix)
rand_parent1_sel = tf.mul(rand_parent1, crossover_mat_ph)
rand_parent2_sel = tf.mul(rand_parent2, tf.sub(1., 
crossover_mat_ph))
children_after_sel = tf.add(rand_parent1_sel, 
rand_parent2_sel)

10. The last steps are to mutate the children, which we will do by adding a
random normal amount to approximately 1/feature fraction of entries
in the children matrix and concatenate this matrix back into the parent
population:

mutated_children = tf.add(children_after_sel, 
mutation_val_ph)
# Combine children and parents into new population
new_population = tf.concat(0, [parents, mutated_children])

11. The final step in our model is to use TensorFlow's group() operation to
assign the new population to the old population variable:

step = tf.group(population.assign(new_population))

12. We can now initialize the model variables:

init = tf.initialize_all_variables()
sess.run(init)

13. Finally, we loop through the generations, recreating the random
crossover and mutation matrices and updating the population each
generation:

for i in range(generations):
    # Create cross-over matrices for plugging in.
    crossover_mat = np.ones(shape=[num_children, features])
    crossover_point = np.random.choice(np.arange(1, features-
1, step=1), num_children)
    for pop_ix in range(num_children):
        crossover_mat[pop_ix,0:crossover_point[pop_ix]]=0.
    # Generate mutation probability matrices



    mutation_prob_mat = np.random.uniform(size=[num_children, 
features])
    mutation_values = np.random.normal(size=[num_children, 
features])
    mutation_values[mutation_prob_mat >= mutation] = 0

    # Run GA step
    feed_dict = {truth_ph: truth.reshape([1, features]),
                 crossover_mat_ph: crossover_mat,
                 mutation_val_ph: mutation_values}
    step.run(feed_dict, session=sess)
    best_individual_val = sess.run(best_individual, 
feed_dict=feed_dict)

    if i % 5 == 0:
       best_fit = sess.run(best_val, feed_dict = feed_dict)
       print('Generation: {}, Best Fitness (lowest MSE): 
{:.2}'.format(i, -best_fit))

14. This results in the following output:

Generation: 0, Best Fitness (lowest MSE): 1.5
Generation: 5, Best Fitness (lowest MSE): 0.83
Generation: 10, Best Fitness (lowest MSE): 0.55
Generation: 185, Best Fitness (lowest MSE): 0.085
Generation: 190, Best Fitness (lowest MSE): 0.15
Generation: 195, Best Fitness (lowest MSE): 0.083

How it works…
In this recipe, we have shown you how to use TensorFlow to run a simple
genetic algorithm. To verify that it is working, we can also look at the most
fit individual solution and the ground truth on a plot:



Figure 4: A plot of the ground truth and the best fit individual after 200
generations. We can see that the best fit individual is very close to the

ground truth.

There's more…
There are many variations to genetic algorithms. We can have two parent
populations with two different fitness criteria (for example, lowest MSE
and smoothness). We could impose restrictions on the mutation values to
not be greater than 1 or less than -1. There are many different changes we
could make, and these changes vary greatly, depending on the problem we
are trying to optimize. For this contrived problem, the fitness was easily
calculated, but for most genetic algorithms, calculating the fitness is an
arduous task. For example, if we wanted to use a genetic algorithm to
optimize the architecture of a convolutional neural network, we could
have an individual be an array of parameters. The parameters could stand
for the filter sizes, stride sizes, and so on of each convolutional layer. The
fitness of such an individual would be the accuracy of classification after a
fixed amount of iterations through a dataset. If we have 100 individuals in
this population, we would have to evaluate 100 different CNN models for
each generation. This is very computationally intense.



Before using a genetic algorithm to solve your problem, it is wise to figure
out how long it takes to calculate the fitness of an individual. If this
operation is time-consuming, genetic algorithms may not be the best tool to
use.



Clustering Using K-Means
TensorFlow can also be used to implement iterative clustering algorithms
such as k-means. In this recipe, we show an example of using k-means on
the iris dataset.

Getting ready
Almost all of the machine learning models we have explored in this book
have been supervised models. TensorFlow is ideal for these types of
problems. But we can also implement unsupervised models if we wish. As
an example, this recipe will implement k-means clustering.

The dataset we will implement clustering on is the iris dataset. One of the
reasons this is a good dataset is because we already know there are three
different targets (three types of iris flowers). This gives us a leg up on
knowing that we are looking for three different clusters in the data.

We will cluster the iris dataset into three groups, and then compare the
accuracy of these clusters against the real labels.

How to do it…
1. To start, we load the necessary libraries. We are also loading some

PCA tools from sklearn so that we can change the resulting data from
four dimensions to two dimensions for visualization purposes:

import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from sklearn import datasets
from scipy.spatial import cKDTree
from sklearn.decomposition import PCA
from sklearn.preprocessing import scale

2. Westart a graph session and load the iris dataset:



sess = tf.Session()
iris = datasets.load_iris()
num_pts = len(iris.data)
num_feats = len(iris.data[0])

3. We'll now set the groups, generations, and create the variables we
need for the graph:

k=3 
generations = 25
data_points = tf.Variable(iris.data)
cluster_labels = tf.Variable(tf.zeros([num_pts], 
dtype=tf.int64))

4. The next variables we need are the centroids for each group. We will
initialize the centroids for the k-means algorithm by randomly
choosing three different points of the iris dataset:

rand_starts = 
np.array([iris.data[np.random.choice(len(iris.data))] for _ 
in range(k)])
centroids = tf.Variable(rand_starts)

5. Now we need to calculate the distances between each of the data
points and each of the centroids. We do this by expanding the
centroids into a matrix and the same for the data points. We'll then
calculate the Euclidean distances between the two matrices:

centroid_matrix = tf.reshape(tf.tile(centroids, [num_pts, 
1]), [num_pts, k, num_feats])
point_matrix = tf.reshape(tf.tile(data_points, [1, k]), 
[num_pts, k, num_feats])
distances = tf.reduce_sum(tf.square(point_matrix - 
centroid_matrix), reduction_indices=2)

6. The centroid assignment is then the closest centroid (smallest distance)
to each data point:

centroid_group = tf.argmin(distances, 1)

7. Now we have to calculate the group average to get the new centroid:

def data_group_avg(group_ids, data):



    # Sum each group
    sum_total = tf.unsorted_segment_sum(data, group_ids, 3)
    # Count each group
    num_total = tf.unsorted_segment_sum(tf.ones_like(data), 
group_ids, 3)
    # Calculate average
    avg_by_group = sum_total/num_total
    return(avg_by_group)
means = data_group_avg(centroid_group, data_points)
update = tf.group(centroids.assign(means), 
cluster_labels.assign(centroid_group))

8. We next initialize the model variables:

init = tf.initialize_all_variables()
sess.run(init)

9. We'll iterate through the generations and update the centroids for each
group accordingly:

for i in range(generations):
    print('Calculating gen {}, out of {}.'.format(i, 
generations))
    _, centroid_group_count = sess.run([update, 
centroid_group])
    group_count = []
    for ix in range(k):
        group_count.append(np.sum(centroid_group_count==ix))
    print('Group counts: {}'.format(group_count))

10. This results in the following output:

Calculating gen 0, out of 25.
Group counts: [50, 28, 72]
Calculating gen 1, out of 25.
Group counts: [50, 35, 65]
Calculating gen 23, out of 25.
Group counts: [50, 38, 62]
Calculating gen 24, out of 25.
Group counts: [50, 38, 62]

11. To verify our clustering, we can use the clusters to make predictions.
We now see how many data points are in a similar cluster of same
iris species:



[centers, assignments] = sess.run([centroids, 
cluster_labels])
def most_common(my_list):
    return(max(set(my_list), key=my_list.count))
label0 = most_common(list(assignments[0:50]))
label1 = most_common(list(assignments[50:100]))
label2 = most_common(list(assignments[100:150]))
group0_count = np.sum(assignments[0:50]==label0)
group1_count = np.sum(assignments[50:100]==label1)
group2_count = np.sum(assignments[100:150]==label2)
accuracy = (group0_count + group1_count + group2_count)/150.
print('Accuracy: {:.2}'.format(accuracy))

12. This results in the following output:

Accuracy: 0.89

13. To visually see our groupings and if they have indeed separated out the
iris species, we will transform the four dimensions to two dimensions
using PCA, and plot the data points and groups. After the PCA
decomposition, we create predictions on a grid of x-y values for
plotting a color graph:

pca_model = PCA(n_components=2)
reduced_data = pca_model.fit_transform(iris.data)
# Transform centers
reduced_centers = pca_model.transform(centers)
# Step size of mesh for plotting
h = .02
x_min, x_max = reduced_data[:, 0].min() - 1, reduced_data[:, 
0].max() + 1
y_min, y_max = reduced_data[:, 1].min() - 1, reduced_data[:, 
1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), 
np.arange(y_min, y_max, h)) 
# Get k-means classifications for the grid points
xx_pt = list(xx.ravel())
yy_pt = list(yy.ravel())
xy_pts = np.array([[x,y] for x,y in zip(xx_pt, yy_pt)])
mytree = cKDTree(reduced_centers)
dist, indexes = mytree.query(xy_pts)
indexes = indexes.reshape(xx.shape)



14. And here is matplotlib code to combine our findings on one graph.
This plotting section of code is heavily adapted from a demo on the
sklearn documentation website (http://scikit-
learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html).

plt.clf()
plt.imshow(indexes, interpolation='nearest',
           extent=(xx.min(), xx.max(), yy.min(), yy.max()),
           cmap=plt.cm.Paired,
           aspect='auto', origin='lower')
# Plot each of the true iris data groups
symbols = ['o', '^', 'D']
label_name = ['Setosa', 'Versicolour', 'Virginica']
for i in range(3):
    temp_group = reduced_data[(i*50):(50)*(i+1)]
    plt.plot(temp_group[:, 0], temp_group[:, 1], symbols[i], 
markersize=10, label=label_name[i])
# Plot the centroids as a white X
plt.scatter(reduced_centers[:, 0], reduced_centers[:, 1],
            marker='x', s=169, linewidths=3,
            color='w', zorder=10)
plt.title('K-means clustering on Iris Dataset\n'
'Centroids are marked with white cross')
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.legend(loc='lower right')
plt.show()

http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html


Figure 5: Figure showing how the unsupervised classification
algorithm of k-means, can be used to group together the three iris

flower species. The three k-means groups are the three shaded
regions, and the three different points (circles, triangles, and

diamonds) are the three true species classification.

There's more…
For this recipe, we clustered the iris dataset into three groups using
TensorFlow. Then we calculated the percentage of data points that fell into
similar groups (89%) and plotted a graph of the resulting k-means groups.
Since k-means as a classification algorithm is locally linear (linear
separator up close), it will be hard to learn the naturally non-linear
boundary between I. versicolour, and I. verginica. But one advantage is
that the k-means algorithm did not need labelled data at all to perform.



Solving a System of ODEs
TensorFlow can be used for many algorithmic implementations and
procedures. A great example of TensorFlow's versatility is implementing an
ODE solver. Solving an ODE numerically is a iterative procedure that can
be easily described in a computational graph. For this recipe, we will solve
the Lotka-Volterra predator-prey system.

Getting ready
This recipe will illustrate how to solve a system of ordinary differential
equations (ODEs). We can use similar methods to the previous two
sections to update values as we iterate through and solve an ODE system.

The ODE system we will consider is the famous Lotka-Volterra predator-
prey system. This system shows how a predator-prey system can be
oscillating, given specific parameters.

The Lotka-Volterra system was published in a paper in 1920 (see also 1).
We will use similar parameters to show that an oscillating system can
occur. Here is the system represented in a mathematically discrete way:

Here, X is the prey and Y will be the predator. We determine which is the
prey and which is the predator by the values of a, b, c, and d: For the prey,



a>0, b<0, and for the predator, c<0, d>0. We will implement this discrete
version in the TensorFlow solution to the system.

How to do it…
1. We'll start by loading the libraries and starting a graph session:

import matplotlib.pyplot as plt
import tensorflow as tf
sess = tf.Session()

2. We then declare our constants and variables in the graph:

x_initial = tf.constant(1.0)
y_initial = tf.constant(1.0)
X_t1 = tf.Variable(x_initial)
Y_t1 = tf.Variable(y_initial)
# Make the placeholders
t_delta = tf.placeholder(tf.float32, shape=())
a = tf.placeholder(tf.float32, shape=())
b = tf.placeholder(tf.float32, shape=())
c = tf.placeholder(tf.float32, shape=())
d = tf.placeholder(tf.float32, shape=())

3. Next, we will implement the prior introduced discrete system and then
update the X and Y populations:

X_t2 = X_t1 + (a * X_t1 + b * X_t1 * Y_t1) * t_delta
Y_t2 = Y_t1 + (c * Y_t1 + d * X_t1 * Y_t1) * t_delta
# Update to New Population
step = tf.group(
  X_t1.assign(X_t2),
  Y_t1.assign(Y_t2))

4. We now initialize the graph and run the discrete ODE system with
specific parameters to illustrate a cyclic behavior:

init = tf.initialize_all_variables()
sess.run(init)
# Run the ODE
prey_values = []
predator_values = []
for i in range(1000):



    # Step simulation (using constants for a known cyclic 
solution)
    step.run({a: (2./3.), b: (-4./3.), c: -1.0, d: 1.0, 
t_delta: 0.01}, session=sess)
    # Store each outcome
    temp_prey, temp_pred = sess.run([X_t1, Y_t1])
    prey_values.append(temp_prey)
    predator_values.append(temp_pred)

Note

A steady state (and cyclic) solution to this specific system, the Lotka-
Volterra equations, very much depends on specific parameters and
population values. We encourage the reader to try different parameters
and values to see what can happen.

5. Now we can plot the predator and prey values:

plt.plot(prey_values, label="Prey")
plt.plot(predator_values, label="Predator")
plt.legend(loc='upper right')
plt.show()

Figure 6: Here we plot the predator and prey values for the ODE
solution. We can see that, indeed, cycles do occur.



How it works…
We used TensorFlow to incrementally solve a discrete version of an ODE
system. For specific parameters, we saw that the predator-prey system can
indeed have cyclic solutions. This would make sense in our system
biologically, because if there are too many predators, the prey start to die
off, and then there is less food for the predators and they will die off, and
so on.

See also
Lotka, A. J., Analytical note on certain rhythmic relations in organic
systems. Proc. Nat. Acad. 6 (1920)
(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1084562/).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1084562/
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