
CHAPTER 13
KEY EQUATIONS AND

CHARTS FOR DESIGNING
MECHANISMS
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FOUR-BAR LINKAGES AND 
TYPICAL INDUSTRIAL APPLICATIONS
All mechanisms can be broken down into equivalent four-bar linkages. They can be considered
to be the basic mechanism and are useful in many mechanical operations.

FOUR-BAR LINKAGES—Two cranks, a
connecting rod and a line between the fixed
centers of the cranks make up the basic
four-bar linkage. Cranks can rotate if A is
smaller than B or C or D. Link motion can
be predicted.

FOUR-BAR LINK WITH SLIDING MEMBER—
One crank is replaced by a circular slot with an
effective crank distance of B.

PARALLEL CRANK—Steam control linkage
assures equal valve openings.

SLOW MOTION LINK—As crank A is
rotated upward it imparts motion to crank B.
When A reaches its dead center position,
the angular velocity of crank B decreases to
zero.

TRAPAZOIDAL LINKAGE—This linkage is
not used for complete rotation but can be
used for special control. The inside moves
through a larger angle than the outside with
normals intersecting on the extension of a
rear axle in a car.

CRANK AND ROCKER—the following
relations must hold for its operation: 
A + B +C > D; A + D + B > C;
A + C – B < D, and C – A + B > D.

NON-PARALLEL EQUAL CRANK—The
centrodes are formed as gears for passing
dead center and they can replace ellipticals.

DOUBLE PARALLEL CRANK MECHA-
NISM—This mechanism forms the basis for
the universal drafting machine.

ISOSCELES DRAG LINKS—This “lazy-tong”
device is made of several isosceles links; it is
used as a movable lamp support.

WATT’S STRAIGHT-LINE MECHANISM—
Point T describes a line perpendicular to the
parallel position of the cranks.

PARALLEL CRANK FOUR-BAR—Both
cranks of the parallel crank four-bar linkage
always turn at the same angular speed, but
they have two positions where the crank can-
not be effective.

DOUBLE PARALLEL CRANK—This mecha-
nism avoids a dead center position by having
two sets of cranks at 90° advancement. The
connecting rods are always parallel.
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STRAIGHT SLIDING LINK—This is the
form in which a slide is usually used to
replace a link. The line of centers and the
crank B are both of infinite length. DRAG LINK—This linkage is used as the

drive for slotter machines. For complete
rotation: B > A + D – C and B < D + C – A.

ROTATING CRANK MECHANISM—This
linkage is frequently used to change a
rotary motion to a swinging movement.

NON-PARALLEL EQUAL CRANK—If crank
A has a uniform angular speed, B will vary.

ELLIPTICAL GEARS—They produce the
same motion as non-parallel equal cranks.

NON-PARALLEL EQUAL CRANK—It is the
same as the first example given but with
crossover points on its link ends.

TREADLE DRIVE—This four-bar linkage is
used in driving grinding wheels and sewing
machines.

DOUBLE LEVER MECHANISM—This
slewing crane can move a load in a hori-
zontal direction by using the D-shaped por-
tion of the top curve.

PANTOGRAPH—The pantograph is a par-
allelogram in which lines through F, G and
H must always intersect at a common point.

ROBERT’S STRAIGHT-LINE MECHA-
NISM—The lengths of cranks A and B
should not be less than 0.6 D; C is one half
of D.

TCHEBICHEFF’S—Links are made in pro-
portion: AB = CD = 20, AD = 16, BC = 8.

PEAUCELLIER’S CELL—When propor-
tioned as shown, the tracing point T forms a
straight line perpendicular to the axis.
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DESIGNING GEARED FIVE-BAR MECHANISMS
Geared five-bar mechanisms offer excellent force-transmission characteristics and can produce
more complex output motions—including dwells—than conventional four-bar mechanisms.

It is often necessary to design a mecha-
nism that will convert uniform input
rotational motion into nonuniform output
rotation or reciprocation. Mechanisms
designed for such purposes are usually
based on four-bar linkages. Those link-
ages produce a sinusoidal output that can
be modified to yield a variety of motions.

Four-bar linkages have their limita-
tions, however. Because they cannot pro-
duce dwells of useful duration, the
designer might have to include a cam
when a dwell is desired, and he might
have to accept the inherent speed restric-
tions and vibration associated with cams.
A further limitation of four-bar linkages
is that only a few kinds have efficient
force-transmission capabilities.

One way to increase the variety of
output motions of a four-bar linkage, and
obtain longer dwells and better force
transmissions, is to add a link. The result-
ing five-bar linkage would become
impractical, however, because it would
then have only two degrees of freedom
and would, consequently, require two
inputs to control the output.

Simply constraining two adjacent
links would not solve the problem. The
five-bar chain would then function effec-
tively only as a four-bar linkage. If, on
the other hand, any two nonadjacent
links are constrained so as to remove
only one degree of freedom, the five-bar
chain becomes a functionally useful
mechanism.

Gearing provides solution. There are
several ways to constrain two non-
adjacent links in a five-bar chain. Some
possibilities include the use of gears,
slot-and-pin joints, or nonlinear band
mechanisms. Of these three possibilities,
gearing is the most attractive. Some prac-
tical gearing systems (Fig. 1) included
paired external gears, planet gears
revolving within an external ring gear,
and planet gears driving slotted cranks.

In one successful system (Fig. 1A)
each of the two external gears has a fixed
crank that is connected to a crossbar by a
rod. The system has been successful in
high-speed machines where it transforms
rotary motion into high-impact linear
motion. The Stirling engine includes a
similar system (Fig. 1B).

In a different system (Fig. 1C) a pin
on a planet gear traces an epicyclic,
three-lobe curve to drive an output crank
back and forth with a long dwell at the

Fig. 1 Five-bar mechanism designs can be based on paired external gears or planetary
gears. They convert simple input motions into complex outputs.
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extreme right-hand position. A slotted
output crank (Fig. 1D) will provide a
similar output.

Two professors of mechanical engi-
neering, Daniel H. Suchora of Youngstown
State University, Youngstown, Ohio, and
Michael Savage of the University of
Akron, Akron, Ohio, studied a variation of
this mechanism in detail.

Five kinematic inversions of this form
(Fig. 2) were established by the two
researchers. As an aid in distinguishing
between the five, each type is named
according to the link which acts as the
fixed link. The study showed that the
Type 5 mechanism would have the great-
est practical value.

In the Type 5 mechanism (Fig. 3A),
the gear that is stationary acts as a sun
gear. The input shaft at Point E drives the
input crank which, in turn, causes the
planet gear to revolve around the sun
gear. Link a2, fixed to the planet, then
drives the output crank, Link a4, by
means of the connecting link, Link a3. At
any input position, the third and fourth
links can be assembled in either of two
distinct positions or “phases” (Fig. 3B).

Variety of outputs. The different kinds
of output motions that can be obtained
from a Type 5 mechanism are based on
the different epicyclic curves traced by
link joint B. The variables that control the
shape of a “B-curve” are the gear ratio
GR (GR = N2/N5), the link ratio a2/a1 and
the initial position of the gear set, 
defined by the initial positions of θ1 and
θ2, designated as θ10 and θ20, respectively.

Typical B-curve shapes (Fig. 4)
include ovals, cusps, and loops. When
the B-curve is oval (Fig. 4B) or semioval
(Fig. 4C), the resulting B-curve is similar
to the true-circle B-curve produced by a
four-bar linkage. The resulting output
motion of Link a4 will be a sinusoidal
type of oscillation, similar to that pro-
duced by a four-bar linkage.

When the B-curve is cusped (Fig.
4A), dwells are obtained. When the B-
curve is looped (Figs. 4D and 4E), a dou-
ble oscillation is obtained.

In the case of the cusped B-curve
(Fig. 4A), dwells are obtained. When the
B-curve is looped (Figs. 4D and 4E), a
double oscillation is obtained.

In the case of the cusped B-curve
(Fig. 4A), by selecting a2 to be equal to
the pitch radius of the planet gear r2, link
joint B becomes located at the pitch cir-
cle of the planet gear. The gear ratio in all
the cases illustrated is unity (GR = 1).

Professors Suchora and Savage ana-
lyzed the different output motions pro-
duced by the geared five-bar mecha-
nisms by plotting the angular position θ4
of the output link a4 of the output link a4
against the angular position of the input
link θ1 for a variety of mechanism con-
figurations (Fig. 5).
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Fig. 2 Five types of geared five-bar mechanisms. A different link acts as the fixed link in
each example. Type 5 might be the most useful for machine design.

Fig. 3 A detailed design of a Type-5 mechanism. The input crank causes the planet gear to
revolve around the sun gear, which is always stationary.
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Designing Geared Five-Bar Mechanisms (continued )

Fig. 4 Typical B-curve shapes obtained from various Type-5 geared five-bar mechanisms. The
shape of the epicyclic curved is changed by the link ratio a2/a1 and other parameters, as described in
the text.
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In three of the four cases illustrated,
GR = 1, although the gear pairs are not
shown. Thus, one input rotation gener-
ates the entire path of the B-curve. Each
mechanism configuration produces a dif-
ferent output.

One configuration (Fig. 5A) produces
an approximately sinusoidal reciprocat-
ing output motion that typically has bet-
ter force-transmission capabilities than
equivalent four-bar outputs. The trans-
mission angle µ should be within 45 to
135º during the entire rotation for best
results.

Another configuration (Fig. 5B) pro-
duces a horizontal or almost-horizontal
portion of the output curve. The output
link, link, a4, is virtually stationary dur-
ing this period of input rotation—from
about 150 to 200º of input rotation θ1 in
the case illustrated. Dwells of longer
duration can be designed.

By changing the gear ratio to 0.5 (Fig.
5C), a complex motion is obtained; two
intermediate dwells occur at cusps 1 and
2 in the path of the B-curve. One dwell,
from θ1 = 80 to 110º, is of good quality.
The dwell from 240 to 330º is actually a
small oscillation.

Dwell quality is affected by the loca-
tion of Point D with respect to the cusp,
and by the lengths of links a3 and a4. It is
possible to design this form of mecha-
nism so it will produce two usable dwells
per rotation of input.

In a double-crank version of the
geared five-bar mechanism (Fig. 5D), the
output link makes full rotations. The out-
put motion is approximately linear, with
a usable intermediate dwell caused by
the cusp in the path of the B-curve.

From this discussion, it’s apparent
that the Type 5 geared mechanism with
GR = 1 offers many useful motions for
machine designers. Professors Suchora
and Savage have derived the necessary
displacement, velocity, and acceleration
equations (see the “Calculating displace-
ment, velocity, and acceleration” box).
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Fig. 5 A variety of output motions can be produced by varying the design of five-bar
geared mechanisms. Dwells are obtainable with proper design. Force transmission is excel-
lent. In these diagrams, the angular position of the output link is plotted against the angular
position of the input link for various five-bar mechanism designs.
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KINEMATICS OF INTERMITTENT MECHANISMS—
THE EXTERNAL GENEVA WHEEL
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One of the most commonly applied
mechanisms for producing intermittent
rotary motion from a uniform input
speed is the external geneva wheel.

The driven member, or star wheel,
contains many slots into which the roller
of the driving crank fits. The number of
slots determines the ratio between dwell
and motion period of the driven shaft.
The lowest possible number of slots is
three, while the highest number is theo-
retically unlimited. In practice, the three-
slot geneva is seldom used because of the
extremely high acceleration values
encountered. Genevas with more than 18
slots are also infrequently used because
they require wheels with comparatively
large diameters.

In external genevas of any number of
slots, the dwell period always exceeds
the motion period. The opposite is true of
the internal geneva. However, for the
spherical geneva, both dwell and motion
periods are 180º.

For the proper operation of the exter-
nal geneva, the roller must enter the slot
tangentially. In other words, the center-
line of the slot and the line connecting
the roller center and crank rotation center
must form a right angle when the roller
enters or leaves the slot.

The calculations given here are based
on the conditions stated here.

Fig. 1 A basic outline drawing for the external geneva wheel. The
symbols are identified for application in the basic equations.

Fig. 2 A schematic drawing of a six-slot geneva wheel. Roller
diameter, dr, must be considered when determining D.
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Consider an external geneva wheel,
shown in Fig. 1, in which

n = number of slots
a = crank radius

From

Fig. 1, b = center distance = 

Let 

Then b = am

It will simplify the development of
the equations of motion to designate the
connecting line of the wheel and crank
centers as the zero line. This is contrary
to the practice of assigning the zero value
of α, representing the angular position of
the driving crank, to that position of the
crank where the roller enters the slot.

Thus, from Fig. 1, the driven crank
radius f at any angle is: 

(1)

f am a

m m

= − +

= + −

( cos ) sin

cos

α α α

α α

2 2 2

21 2

1
180

sin
n

m=

a

n
sin

180
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Fig. 3 A four-slot geneva (A) and an
eight-slot geneva (B). Both have locking
devices.

Fig. 5 Chart for determining the angular velocity of the driven member.

Fig. 4 Chart for determining the angular displacement of the driven member.
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Kinematics of Intermittent Mechanisms (continued )

and the angular displacement β can be
found from:

(2)

A six-slot geneva is shown schemati-
cally in Fig. 2. The outside diameter D of
the wheel (when accounting for the effect
of the roller diameter d) is found to be:

(3)

Differentiating Eq. (2) and dividing
by the differential of time, dt, the angular
velocity of the driven member is:

(4)

where ω represents the constant angular
velocity of the crank.

By differentiation of Eq. (4) the accel-
eration of the driven member is found to
be:

(5)

All notations and principal formulas
are given in Table I for easy reference.
Table II contains all the data of principal
interest for external geneva wheels having
from 3 to 18 slots. All other data can be
read from the charts: Fig. 4 for angular
position, Fig. 5 for angular velocity, and
Fig. 6 for angular acceleration.

d
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m m
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Fig. 6 Chart for determining the angular acceleration of the driven member.
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KINEMATICS OF INTERMITTENT MECHANISMS—
THE INTERNAL GENEVA WHEEL

Where intermittent drives must provide
dwell periods of more than 180º, the
external geneva wheel design is satisfac-
tory and is generally the standard device
employed. But where the dwell period
must be less than 180º, other intermittent
drive mechanisms must be used. The
internal geneva wheel is one way of
obtaining this kind of motion.

The dwell period of all internal
genevas is always smaller than 180º.
Thus, more time is left for the star wheel
to reach maximum velocity, and acceler-
ation is lower. The highest value of angu-
lar acceleration occurs when the roller
enters or leaves the slot. However, the
acceleration occurs when the roller
enters or leaves the slot. However, the
acceleration curve does not reach a peak
within the range of motion of the driven
wheel. The geometrical maximum would
occur in the continuation of the curve.
But this continuation has no significance
because the driven member will have
entered the dwell phase associated with
the high angular displacement of the
driving member.

The geometrical maximum lies in the
continuation of the curve, falling into the
region representing the motion of the
external geneva wheel. This can be seen
by the following considerations of a
crank and slot drive, drawn in Fig. 2.

When the roller crank R rotates, slot
link S will perform an oscillating move-

Fig. 1 A four-slot internal geneva wheel incorporating a locking
mechanism. The basic sketch is shown in Fig. 3.

Fig. 2 Slot-crank motion from A to B represents external geneva
action; from B to A represents internal geneva motion.
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ment, for which the displacement, angu-
lar velocity, and acceleration can be
given in continuous curves.

When the crank R rotates from A to B,
then the slot link S will move from C to
D, exactly reproducing all moving condi-
tions of an external geneva of equal slot
angle. When crank R continues its move-
ment from B back to A, then the slot link
S will move from D back to C, this time
reproducing exactly (though in a mirror
picture with the direction of motion
being reversed) the moving conditions of
an internal geneva.

Therefore, the characteristic curves of
this motion contain both the external and
internal geneva wheel conditions; the
region of the external geneva lies
between A and B, the region of the inter-
nal geneva lies between B and A.

The geometrical maxima of the accel-
eration curves lie only in the region
between A and B, representing that por-
tion of the curves which belongs to the
external geneva.

The principal advantage of the internal
geneva, other than its smooth operation, is
it sharply defined dwell period. A disad-
vantage is the relatively large size of the
driven member, which increases the force
resisting acceleration. Another feature,
which is sometimes a disadvantage, is the
cantilever arrangement of the roller crank
shaft. This shaft cannot be a through shaft
because the crank must be fastened to the
overhanging end of the input shaft.

To simplify the equations, the con-
necting line of the wheel and crank cen-
ters is taken as the zero line. The angular

440

Kinematics of Intermittent Mechanisms (continued )

Fig. 3 A basic outline for developing the equations of the internal
geneva wheel, based on the notations shown.

Fig. 4 A drawing of a six-slot internal geneva wheel. The sym-
bols are identified, and the motion equations are given in Table I.

Fig. 5 Angular displacement of the driven member can be determined from this chart.
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position of the driving crank α is zero
when it is on this line. Then the follow-
ing relations are developed, based on
Fig. 3.

n = number of slots
a = crank radius
b = center distance = 

Let

then; b = am
To find the angular displacement β of

the driven member, the driven crank
radius f is first calculated from:

(1)

and because

it follows:

(2)

From this formula, β, the angular dis-
placement, can be calculated for any
angle α, the angle of the mechanism’s
driving member.

The first derivative of Eq. (2) gives
the angular velocity as:

(3)

where ω designates the uniform speed of
the driving crank shaft, namely:

if p equals its number of revolutions per
minute.

Differentiating Eq. (3) once more
develops the equation for the angular
acceleration:

(4)

The maximum angular velocity
occurs, obviously, at α = 0º. Its value is
found by substituting 0º for α in Eq. (3).
It is:

(5)
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Fig. 6 Angular velocity of the driven member can be determined from this chart.

Fig. 7 Angular acceleration of the driven member can be determined from this chart.
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Kinematics of Intermittent Mechanisms (continued )

The highest value of the acceleration
is found by substituting 180/n + 980 for
α in Eq. (4):

(6)
d

dt m

2

2

2

2 1
β ω

max
=

−

A layout drawing for a six-slot inter-
nal geneva wheel is shown in Fig. 4. All
the symbols in this drawing and through-
out the text are compiled in Table I for
easy reference.

Table II contains all the data of princi-

pal interest on the performance of inter-
nal geneva wheels that have from 3 to 18
slots. Other data can be read from the
charts: Fig. 5 for angular position, Fig. 6
for angular velocity, and Fig. 7 for angu-
lar acceleration.
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EQUATIONS FOR DESIGNING CYCLOID MECHANISMS

Angular displacement 
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The equations for angular displacement,
velocity, and acceleration for a basic
epicyclic drive are given below.
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It is frequently desirable to find points on the planet gear that will describe
approximately straight lines for portions of the output curves. These points will
yield dwell mechanisms. Construction is as follows (see drawing):

1. Draw an arbitrary line PB.
2. Draw its parallel O2A.
3. Draw its perpendicular PA at P. Locate point A.
4. Draw O1A. Locate W1.
5. Draw perpendicular to PW1 at W1 to locate W.
6. Draw a circular with PW as the diameter.

All points on this circle describe curves with portions that are approximately
straight. This circle is also called the inflection circle because all points describe
curves that have a point of inflection at the position illustrated. (The curve pass-
ing through point W is shown.)

This is a special case. Draw a circle with a diameter half that of the gear
(diameter O1P). This is the inflection circle. Any point, such as point W1, will
describe a curve that is almost straight in the vicinity selected. Tangents to the
curves will always pass through the center of the gear, O1 (as shown).

To find the inflection circle for a gear rolling inside a gear:

1. Draw arbitrary line PB from the contact point P.
2. Draw its parallel O2A, and its perpendicular, PA. Locate A.
3. Draw line AO1 through the center of the rolling gear. Locate W1.
4. Draw a perpendicular through W1. Obtain W. Line WP is the diameter of the

inflection circle. Point W1, which is an arbitrary point on the circle, will trace
a curve of repeated almost-straight lines, as shown.
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Fig. 2 Equations for hypocycloid drives.
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DESCRIBING APPROXIMATE STRAIGHT LINES

Fig. 3 A gear rolling on a gear flattens curves.

Fig. 4 A gear rolling on a rack describes vee curves.
Fig. 5 A gear rolling inside a gear describes
a zig-zag.
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By locating the centers of curvature at various points, one can
determine the length of the rocking or reciprocating arm to provide
long dwells.

1. Draw a line through points C and P.
2. Draw a line through points C and O1.
3. Draw a perpendicular to CP at P. This locates point A.
4. Draw line AO2, to locate C0, the center of curvature.

1. Draw extensions of CP and CO1.
2. Draw a perpendicular of PC at P to locate A.
3. Draw AO2 to locate C0 .

444

Equations for Designing Cycloid Mechanisms (continued )

Fig. 6 The center of curvature: a gear rolling
on gear.

DESIGNING FOR DWELLS

Fig. 7 The center of curvature:
a gear rolling on a rack

Construction is similar to that of the previous case.

1. Draw an extension of line CP.
2. Draw a perpendicular at P to locate A.
3. Draw a perpendicular from A to the straight surface to locate C.

Fig. 8 The center of curvature: a gear rolling iside a gear.

Fig. 9 Analytical solutions.

The center of curvature of a gear
rolling on an external gear can be com-
puted directly from the Euler-Savary
equation:

where angle ψ and r locate the position
of C.

By applying this equation twice,
specifically to point O1 and O2, which

1 1
7

r rc
−







=sin ( )ψ constant

have their own centers of rotation, the
following equation is obtained:

or

This is the final design equation. All
factors except rc are known; hence, solv-
ing for rc leads to the location of C0.

1 1 1 1

2 1r r r rc
+ = +







sinψ

1 1
90

1 1

2 1r r r rc
−







= +






sin º sinψ

For a gear rolling inside an internal
gear, the Euler-Savary equation is:

which leads to:

1 1 1 1

2 1r r r rc
− = −







sinψ

1 1
r rc

+






=sinψ constant
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DESIGNING CRANK-AND-ROCKER LINKS 
WITH OPTIMUM FORCE TRANSMISSION
Four-bar linkages can be designed with a minimum of trial and error by a combination of tabular
and iteration techniques.

The determination of optimum crank-
and-rocker linkages has most effectively
been performed on a computer because
of the complexity of the equations and
calculations involved. Thanks to the
work done at Columbia University’s
Department of Mechanical and Nuclear
Engineering, all you need now is a calcu-
lator and the computer-generated tables
presented here. The computations were
done by Mr. Meng-Sang Chew, at the
university.

A crank-and-rocker linkage, ABCD, is
shown in the first figure. The two
extreme positions of the rocker are
shown schematically in the second fig-
ure. Here ψ denotes the rocker swing
angle and φ denotes the corresponding
crank rotation, both measured counter-
clockwise from the extended dead-center
position, AB1C1D.

The problem is to find the proportions
of the crank-and-rocker linkage for a
given rocker swing angle, ψ, a prescribed
corresponding crank rotation, φ, and
optimum force transmission. The latter is
usually defined in terms of the transmis-
sion angle, m, the angle µ between cou-
pler BC extended and rocker CD.

Considering static forces only, the
closer the transmission angle is to 90º,
the greater is the ratio of the driving com-
ponent of the force exerted on the rocker
to the component exerting bearing pres-
sure on the rocker. The control of trans-
mission-angle variation becomes espe-
cially important at high speeds and in
heavy-duty applications.

How to find the optimum. The steps
in the determination of crank-and-rocker
proportions for a given rocker swing
angle, corresponding crank rotation, and
optimum transmission, are:

• Select (ψ, φ) within the following
range:
0º < ψ < 180º
(90º + 1/2 ψ) < φ < (270º + 1/2 ψ)

• Calculate: t = tan 1/2 φ
u = tan 1/2(φ – ψ)
v = tan 1/2 ψ

The optimum solution for the classic four-bar crank-and-rocker mechanism problem can now
be obtained with only the accompanying table and a calculator.

An example in this knee-joint tester designed and built by following the design and calculat-
ing procedures outlined in this article.
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• Using the table, find the ratio λopt of
coupler to crank length that mini-
mizes the transmission-angle devia-
tion from 90º. The most practical
combinations of (ψ, φ) are included
in the table. If the (ψ, φ) combination
is not included, or if φ = 180º, go to
next steps (a,b,c):

• (a) If φ ≠ 180º and (ψ, φ) fall outside
the range given in the table, deter-
mine the arbitrary intermediate value
Q from the equation:
Q3 + 2Q2 – t2Q – (t2/u2)(1 + t2) = 0
where (1/u2 < Q < t2).

This is conveniently accomplished by
numerical iteration:

Set Q t
u1

1
2

2
2

1= +





Calculate Q2, Q3, . . . from the recursion
equation:

Iterate until the ratio [(Qi + 1 – Qi)/Qi ] is
sufficiently small, so that you obtain the
desired number of significant figures.
Then:

λopt = t2/Q

(b) If φ ≠ 180º and the determination of
λopt requires interpolation between two
entries in the table, let Q1 = t2λ2, where λ
corresponds to the nearest entry in the
table, and continue as in (a) above to
determine Q and λopt. Usually one or two
iterations will suffice.

(c) φ = 180º. In this case, a2+ b2 = c2 +
d2; ψ = 2 sin–1 (b/d); and the maximum

Q
Q Q t u t

Q Q ti
i i

i i
+ = + + +

+ −1

2 2 2 2

2
2 1 1

3 4
( ) ( / )( )

( )

deviation, ∆, of the transmission angle
from 90º is equal to sin–1 (ab/cd).

• Determine linkage proportions as fol-
lows:

Then: a = ka′; b = kb′; c = kc′; d = kd′
where k is a scale factor, such that the
length of any one link, usually the crank,
is equal to a design value. The max devi-
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Designing Crank-and-Rocker Links (continued )
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ation, ∆, of the transmission angle from
90º is:

An actual example. A simulator for
testing artificial knee joints, built by the
Department of Orthopedic Surgery,
Columbia University, under the direction
of Dr. N. Eftekhar, is shown schemati-
cally. The drive includes an adjustable
crank-and-rocker, ABCD. The rocker
swing angle ranges from a maximum of
about 48º to a minimum of about one-
third of this value. The crank is 4 in. long
and rotates at 150 rpm. The swing angle
adjustment is obtained by changing the
length of the crank.

sin
( )

º º
º
º

∆

∆

=
± − −

≤ ≤
+ <
− >

a b c d

cd

2 2 2

2
0 90

180
180

 sign if 
 sign if 

φ
φ

Find the proportions of the linkage,
assuming optimum-transmission propor-
tions for the maximum rocker swing
angle, as this represents the most severe
condition. For smaller swing angles, the
maximum transmission-angle deviation
from 90º will be less.

Crank rotation corresponding to 48º
rocker swing is selected at approximately
170º. Using the table, find λopt = 2.6100.
This gives a′ = 1.5382, b′ = 0.40674, 
c′ = 1.0616, and d′ = 1.0218.

For a 4 in. crank, k = 4/0.40674 =
9.8343 and a = 15.127 in., b = 4 in., c =
10.440 in., and d = 10.049 in., which is
very close to the proportions used. The
maximum deviation of the transmission
angle from 90º is 47.98º.

This procedure applies not only for
the transmission optimization of crank-
and-rocker linkages, but also for other
crank-and-rocker design. For example, if
only the rocker swing angle and the cor-
responding crank rotation are prescribed,

the ratio of coupler to crank length is
arbitrary, and the equations can be used
with any value of λ2 within the range
(1, u2t2). The ratio λ can then be tailored
to suit a variety of design requirements,
such as size, bearing reactions, transmis-
sion-angle control, or combinations of
these requirements.

The method also was used to design
dead-center linkages for aircraft landing-
gear retraction systems, and it can be
applied to any four-bar linkage designs
that meet the requirements discussed here.
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DESIGN CURVES AND EQUATIONS 
FOR GEAR-SLIDER MECHANISMS

What is a gear-slider mechanism? It is
little more than a crank-and-slider with
two gears meshed in line with the crank
(Fig. 1). But, because one of the gears
(planet gear, 3) is prevented from rotat-
ing because it is attached to the connect-
ing rod, the output is taken from the sun
gear, not the slider. This produces a vari-
ety of cyclic output motions, depending
on the proportions of the members.

In his investigation of the capabilities
of the mechanism, Professor Preben
Jensen of Bridgeport, Connecticut
derived the equations defining its motion
and acceleration characteristics. He then
devised some variations of his own (Figs.
5 through 8). These, he believes, will
outperform the parent type. Jensen illus-
trated how the output of one of the new
mechanisms, Fig. 8, can come to dead

stop during each cycle, or progressively
oscillate to new positions around the
clock. A machine designer, therefore, can
obtain a wide variety of intermittent
motions from the arrangement and, by
combining two of these units, he can tai-
lor the dwell period of the mechanism to
fit the automatic feed requirements of a
machine.

Fig. 1 A basic gear-slider mechanism. It differs from the better known three-
gear drive because a slider restricts the motion of the planet gear. The output is
taken from the gear, which is concentric with the input shaft, and not from the
slider.

Symbols

L = Length of connecting rod, in.
r3 = radius of gear fixed to connecting rod,

in.
r4 = radius of output gear, in.
R = length of crank, in.
α = angular acceleration of the input

crank, rad/sec2

β = connecting rod displacement, deg
γ = output rotation, deg
θ = input rotation, deg

θo = crank angle rotation during which the
output gear reverses its motion, deg

φ = angle through which the output gear
rotates back

ω = angular velocity of input crank, rad/sec

A single prime mark denotes angular veloc-
ity, rad/sec; double prime marks denote
angular acceleration, rad/sec2.
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The Basic Form

The input motion is to crank 1, and the
output motion is from gear 4. As the
crank rotates, say counterclockwise, it
causes planet gear 3 to oscillate while
following a satellite path around gear 4.
This imparts a varying output motion to
gear 4, which rotates twice in the coun-
terclockwise direction (when r3 = r4) for
every revolution of the input.

Jensen’s equations for angular dis-
placement, velocity, and acceleration of
gear 4, when driven at a speed of ω by
crank 1, are as follows:

Angular Displacement

(1)

where β is computed from the following
relationship (see the list of symbols in
this article):

(2)

Angular Velocity

(3)

where

(4)

Angular Acceleration

(5)

where

(6)

For a constant angular velocity, Eq. 5
becomes

(7)

Design Charts

The equations were solved by Professor
Jensen for various L/R ratios and posi-
tions of the crank angle θ to obtain the
design charts in Figs. 2, 3, and 4. Thus,
for a mechanism with

L = 12 in. r3 = 2.5
R = 4 in. r4 = 1.5
ω = 1000 per second

= radians per second
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Fig. 2 Angular displacement diagram for the connecting rod.

Fig. 3 Angular velocity curves for various crank angles.

Fig. 4 Angular acceleration curves for various crank angles.
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the output velocity at crank angle θ = 60º
can be computed as follows:

L/R = 12/4 = 3

From Fig. 3 β′/ω = 0.175

β′ = 0.175(1000) 
= 175 radians per second

From Eq. 3

γ = 2960 radians per second

Three-Gear Variation

One interesting variation, shown in Fig.
5, is obtained by adding idler gear 5 to
the drive. If gears 3 and 4 are then made
equal in side, output gear 4 will then
oscillate with exactly the same motion as
connecting rod 2.

One use for this linkage, Jensen said,
is in machinery where a sleeve is to ride
concentrically over an input shaft, and
yet must oscillate to provide a reciprocat-
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Gear-Slider Mechanisms (continued )

Fig. 5 Modified gear-slider mechanism.

Fig. 6 A ring-gear and slider mechanism. The ring gear is
the output and it replaces the center gear in Fig. 1.

Fig. 7 A more practical ring-gear and slider arrangement.
The output is now from the smaller gear.

Fig. 8 Jensen’s model of the ring-gear and slider mecha-
nism shown in Fig. 7. A progressive oscillation motion is
obtained by making r4 greater than L-R.

ing motion. The shaft can drive the
sleeve with this mechanism by making
the sleeve part of the output gear.

Internal-Gear Variations

By replacing one of the external gears of
Fig. 1 with an internal one, two mecha-
nisms are obtained (Figs. 6 and 7) which
have wider variable output abilities. But
it is the mechanism in Fig. 7 that inter-
ested Jensen. This could be proportioned
to give either a dwell or a progressive
oscillation, that is, one in which the out-
put rotates forward, say 360º, turns back
to 30º, moves forward 30º, and then pro-
ceeds to repeat the cycle by moving for-
ward again for 360º.

In this mechanism, the crank drives
the large ring gear 3 which is fixed to the
connecting rod 2. Output is from gear 4.
Jensen derived the following equations:

Output Motion

(8)

When r4 = L – R, then ω4 = 0 from
Eq. 8, and the mechanism is propor-
tioned to give instantaneous dwell. To
obtain a progressive oscillation, r4 must

ω ω4
4

4
1= − − −





L R r
Lr

R
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be greater than L – R, as shown in
Jensen’s model (Fig. 8).

If gear 4 turns back and then starts
moving forward again, there must be two
positions where the motion of gear 4 is
zero. Those two mechanisms are sym-
metrical with respect to A0B. If θ0 equals
the crank-angle rotation (of input), dur-
ing which the output gear reverses its
motion, and φ equals the angle through
which gear 4 rotates back, then

(9)

and

(10)

where

(11)

Chart for Proportioning

The chart in Fig. 9 helps proportion the
mechanism of Fig. 8 to provide a specific
kind of progressive oscillation. It is set

sin sinβ θ
0

0

2
= R

L

γ = − −θ θ β0
3

4
0 0

r
r

( )

cos
( )

/
θ0

2 2

4 4

1 2

2 2
= −

+










L R
r R r

up for R equals 1 in. For other values of
R, convert the chart values for r4 propor-
tionally, as shown below.

For example, assume that the output
gear, during each cycle, is to rotate back
9.2º. Thus φ = 9.2º. Also given is R =
0.75 in. and L = 1.5 in. Thus L/R = 2.

From the right side of the chart, go to
the φ-curve for L = 2, then upward to the
θ0-curve for L = 2 in. Read θ0 = 82º at the
left ordinate.

Now return to the second intersection
point and proceed upward to read on the
abscissa scale for L = 2, a value of r4 =
1.5. Since R = 0.75 in., and the chart is
for R 1, convert r4 as follows: r4 = 0.75
(1.5) = 1.13 in.

Thus, if the mechanism is built with an
output gear of radius r4 = 1.13 in., then
during 82º rotation of the crank, the out-
put gear 4 will go back 9.2º. Of course,
during the next 83º, gear 4 will have
reversed back to its initial position—and
then will keep going forward for the
remaining 194º of the crank rotation.

Future Modifications

The mechanism in Fig. 8 is designed to
permit changing the output motion easily
from progressive oscillation to instanta-
neous dwell or nonuniform CW or CCW

rotation. This is accomplished by shifting
the position of the pin which acts as the
sliding piece of the centric slider crank. It
is also possible to use an eccentric slider
crank, a four-bar linkage, or a sliding-
block linkage as the basic mechanism.

Two mechanisms in series will give
an output with either a prolonged dwell
or two separate dwells. The angle
between the separated dwells can be
adjusted during its operation by interpos-
ing a gear differential so that the position
of the output shaft of the first mechanism
can be changed relative to the position of
the input shaft of the second mechanism.

The mechanism can also be improved
by introducing an additional link, B-B0,
to guide pin B along a circular arc instead
of a linear track. This would result in a
slight improvement in the performance
of the mechanism.
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Fig. 9 A chart for proportioning a ring-gear and slider mechanism.
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DESIGNING SNAP-ACTION TOGGLES
Theory, formulas, and design charts are presented for determining 
toggle dimensions to maximize snap-action.

Over-centering toggle mechanisms, as
shown in Fig. 1, are widely used in
mechanical and electrical switches, latch
mechanisms and mechanical overload
controls. These toggles also serve as:
(1) detents (for holding other parts in
selected position); (2) overload devices
in mechanical linkages (they shift to the
opposite position when sufficiently
loaded); and (3) energy-storage devices.

Two applications, shown in Fig. 2,
illustrate the snap-action of a toggle. As
the toggle passes dead center, it is
snapped ahead of the actuating force by
the toggle spring. In most applications,
the objective is to obtain maximum snap-
action.

Snap-action is a function of the elon-
gation per length of the toggle spring as it
moves over dead center. Elongation at
dead center is equal to:

J = K – H (1)

The elongation e in percent of length is
equal to:

e = (100)J/S (2)

Because the resisting force of the
spring increases with elongation but
decreases with an increase in length, the
ratio J/S should be as large as possible
within the capacity of the spring for the
best snap-action performance.

The ratio J/S as a function of angle θ
can be derived as follows:

H = S – S cos ϕ (3)

and

K = A – A cos θ (4)

Substituting Eqs. (3) and (4) into Eq. (1),

J = A(1 – cos θ )
– S(1 – cos ϕ) (5)

or

J/S = (A/S)(1 – cos θ)
– (1 – cos ϕ) (6)

The relationship between θ and φ is:

L = A sin θ = S sin ϕ
or

sin ϕ = (A/S)(sin θ) (7)

By trigonometric identity,

sin θ = (1 – cos2 θ)1/2 (8)

Substituting Eq. (8) into Eq. (7) and
squaring both sides,

sin ϕ = (A/S)2(1 – cos2 θ) (9)

By trigonometric identity,

cos ϕ = (1 – sin2 ϕ)1/2 (10)

Substituting Eq. (9) into Eq. (10),

cos ϕ = [1 – (A/S)2

+(A/S)2 cos2 θ]1/2 (11)

and Eq. (11) into Eq. (6),

J/S = (A/S)(1 – cos θ) – 1
+[1 – (A/S)(1 – cos θ) – 1
–(A/S)2 cos1/2 (12)

Eq. (12) can be considered to have
only three variables: (1) the spring elon-
gation ratio J/S; (2) the toggle arm to
spring length ratio, A/S; and (3) the tog-
gle arm angle θ.

A series of curves are plotted from
Eq. (12) showing the relationship
between J/S and A/S for various angles of
θ. The curves are illustrated in Fig. 3; for
greater accuracy each chart has a differ-
ent vertical scale.

Maximum Snap-Action

Maximum snap-action for a particular
angle occurs when J/S is a maximum.
This can be determined by setting the
first derivative of Eq. (12) equal to zero
and solving for A/S.

Differentiating Eq. (12),

(13)

Setting Eq. (13) Equal to zero and rear-
ranging terms,

(14)

Cross-multiplying, squaring, and simpli-
fying,

(S/A)2 – 1 + cos2 θ =
cos2 θ + 2 cos θ + 1

Reducing,

(S/A)2 = 2 cos θ + 2

and finally simplifying to the following
equation is A/S when J/S is a maximum:

A/S = [2(cos θ + 1)]–1/2 (15)

cos
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/
( / )[( / ) cos ] /

θ
θ

θ

−
−
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− +

1
1

1

2

2 2 1 2
A S

A S S A

d J S
d A S

A S A S
A S A S

( / )
( / )

cos

[ ( / ) ( / )(cos )]
[ ( / ) ( / ) cos ] /

= − +

− +
− +

1

2 2
2 1

2

2 2 2 1 2

θ

θ
θ

The maximum value of J/S can be
determined by substituting Eq. (15) into
Eq. (12):

(16)

which is simplified into the following
expression:

(17)

The locus of points of J/Smax is a
straight line function as shown in Fig. 3.
It can be seen from Eq. (15) that the
value of A/S at J/Smax varies from 0.500
when θ = 0 to 0.707 when θ = 90º. This
relatively small range gives a quick rule-
of-thumb to check if a mechanism has
been designed close to the maximum
snap-action point.

Elongation of the spring, Eq. (2), is
based on the assumption that the spring
is installed in its free length S with no ini-
tial elongation. For a spring with a free
length E smaller than S, the total elonga-
tion in percent when extended to the
dead center position is:

e = 100[(S/E)(1 + J/S) – 1] (18)

The relationship between φ and θ at
the point of maximum snap-action for
any value of θ is:

θ = 2ϕ (19)

This can be proved by substituting Eqs. (9)
and (11) into the trigonometric identity:

cos 2ϕ = cos2 ϕ – sin2 ϕ (20)

and comparing the resulting equation
with one obtained by solving for cos θ in
Eq. (15). This relationship between the
angles is another way to evaluate a tog-
gle mechanism quickly.

Design Procedure

A toggle is usually designed to operate
within certain space limitations. When
the dimensions X and W, as shown in Fig.
4, are known, the angle θ resulting in
maximum snap-action can be determined
as follows:

A sin θ = S sin ϕ = W/2 (21)

Substituting Eq. (19) into Eq. (21),

A sin θ = S sin (θ /2) = W/2 (22)

J S/
[ (cos )]

[ (cos )]max

/

/= − +
+

2 2 1
2 1

1 2

1 2
θ

θ

J S/
cos

[ (cos )]

(cos )
cos

(cos )

max /

/

= −
+

− +

−
+

+
+




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1

1
1
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From Fig. 4:

X = S cos (θ/2) + A – A cos θ (23)

Substituting Eq. (22) into Eq. (23),

(24)

Converting to half-angle functions and
simplifying,

X = W/[2 sin (θ/2) cos (θ/2)] (25)

Using the trigonometric identity,

sin θ = 2 sin (θ/2) cos (θ/2) (26)

X
W

W W

=

+ −

cos( / )
sin( / )

sin
cos
sin

θ
θ

θ
θ

θ

2
2 2

2 2

Eq. (25) becomes:

X = W/sin θ
or

sin θ = W/X (27)

Solving for θ permits the ratios A/S
and J/S to be determined from the charts
in Fig. 3, when using the J/S (max) line.
The values of S and A can then be
obtained from Eq. (22).

It can be seen from Fig. 3 that θ = 90º
results in maximum snap-action.
Substitution of the sin of 90º in Eq. (27)
results in W = X; in other words, the most
efficient space configuration for a toggle
is a square.

EDITOR’S NOTE—In addition to
the toggles discussed here, the term “tog-
gle” is applied to a mechanism contain-
ing two links that line up in a straight line
at one point in their motion, giving a high
mechanical advantage.

Toggles of this kind offer: (1) a high
mechanical advantage, (2) a high veloc-
ity ratio, and (3) a variable mechanical
advantage.
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Fig. 1 The design analysis for a snap-action or over-
centering toggle employing a link and spring. The mechani-
cal view is shown at left, and the kinematic representation
is at right.

Symbols

A = length of toggle arm
S = free length of toggle spring in detented

positions
θ = angle swept by toggle arm moving from

detented to dead center position
ϕ = angle swept by toggle spring in moving

from detented to dead center position
CD = chordal distance between detent points

L = chordal distance between detent point
and dead center

K = height of arc swept by toggle arm
O = pivot point of toggle arm
B = pivot point of toggle spring

Fig. 2 Typical applications of toggles: (A) snap-action switches; (B) ribbon
reversing mechanical for typewriters and calculators. The toggle in (B) is activated
by a lug on the ribbon. As it passes dead center it is snapped ahead of the lug by
the toggle spring, thus shifting the shaft and reversing the direction of the ribbon
before next key is struck.
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Snap-Action Toggles (continued )

Fig. 3 Design charts for evaluat-
ing toggle arm and spring length for
maximum spring elongation. Chart
(B) is an extension of chart (A).

Fig. 4 Designing a toggle to lie within
space boundaries W and X. It can be
shown that for maximum snap-action, sin θ
= X/W.
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FEEDER MECHANISMS FOR ANGULAR MOTIONS
How to use four-bar linkages to generate continuous or intermittent 
angular motions required by feeder mechanisms

In putting feeder mechanisms to work, it is often necessary to
synchronize two sets of angular motions. A four-bar linkage
offers one way. For example, in Fig. 1 two angular motions, φ12
and φ13, must be synchronized with two others, ψ12 and ψ13,
about the given pivot points A0 and B0 and the given crank length
A0A. This means that crank length B0B. must be long enough so
that the resulting four-bar linkage will coordinate angular
motions φ12 and φ13 with ψ12 and ψ13. The procedure is:

1. Obtain point A′2 by revolving A2 about B0 through angle –ψ12
but in the opposite direction.

2. Obtain point A′3 similarly by revolving A3 about B0 through
angle –ψ13.

3. Draw lines A1A′2 and A1A′3 and the perpendicular bisectors of
the lines which intersect at desired point B1.

4. The quadrilateral A0A1B1B0 represents the four-bar linkage
that will produce the required relationship between the
angles φ12, φ13, and ψ12, ψ13.

Three angles with four relative positions can be synchronized
in a similar way. Figure 2 shows how to synchronize angles ψ12,
ψ13,ψ14 with corresponding angles ψ12, ψ13, and ψ14, using
freely chosen pivot points A0 and B0. In this case, crank length
A0A as well as B0B is to be determined, and the procedure is:

1. Locate pivot points A0 and B0 on a line those bisects angle
A3A0A4, the length A0B0 being arbitrary.

2. Measure off 1⁄2 of angle B3B0B4 and with this angle draw
B0A4 which establishes crank length A0A at intersection of
A0A4. This also establishes points A3, A2 and A1.

3. WithB0 as center and B0B4 as radius mark off angles –ψ14,
–ψ13, –ψ12, the negative sign indicating they are in opposite
sense to ψ14, ψ13 and ψ12. This establishes points A′2, A′3 and
A′4, but here A′3 and A′4 coincide because of symmetry of A3
and A4 about A0B0.

4. Draw lines A1A′2 and A1A′4, and the perpendicular bisectors
of these lines, which intersect at the desired point B1.

5. The quadrilateral A0A1B0B1 represents the four-bar linkage
that will produce the required relationship between the
angles φ12, φ13, φ14, and ψ12, ψ13, ψ14.

The illustrations show how these angles must be coordinated
within the given space. In Fig. 3A, input angles of the crank must
be coordinated with the output angles of the forked escapement.
In Fig. 3B, input angles of the crank are coordinated with the out-
put angles of the tilting hopper. In Fig. 3C, the input angles of the
crank are coordinated with the output angles of the segment. In
Fig. 3D, a box on a conveyor is tilted 90º by an output crank,
which is actuated by an input crank through a coupler. Other
mechanisms shown can also coordinate the input and output
angles; some have dwell periods between the cycles, others give
a linear output with dwell periods.

Fig. 1 Four-bar linkage synchronizes two angular movements, φ12
and φ13, with ψ12, and ψ14.

Fig. 2 Three angular positions, φ12, φ13, φ14, are synchronized by
four-bar linkage here with ψ12, ψ13, and ψ14.
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FEEDER MECHANISMS FOR CURVILINEAR MOTIONS
Four-bar linkages can be combined into six, eight, or more 
linkages for the feeder mechanisms in cameras, automatic 
lathes, farm machinery, and torch-cutting machines.

When feeder mechanisms require complex curvilinear motions,
it might be necessary to use compound linkages rather than four
links. However, four-bar linkages can be synthesized to produce
curvilinear motions of various degrees of complexity, and all
possibilities for four-bar linkages should be considered before
selecting more complex linkages.

For example, a camera film-advancing mechanism, Fig. 1,
has a simple four-bar linage with a coupler point d, which gener-
ates a curvilinear and straight-line motion a resembling a D.
Another more complex curvilinear motion, Fig. 2, is also gener-
ated by a coupler point E of a four-bar linkage, which controls an
automatic profile cutter. Four-bar linkages can generate many
different curvilinear motions, as in Fig. 3. Here the points of the
coupler prongs, g1, g2, and g3 on coupler b, and g4 and g5 on cou-
pler e, are chosen so that their motions result in the desired pro-
gressive feeding of straw into a press.

A similar feeding and elevating device is shown in Fig. 4. The
rotating device crank a moves coupler b and swinging lever c,
which actuates the guiding arm f through the link e. The bar h
carries the prone fingers g1 through g7. They generate coupler
curves a1 through a7.

As another practical example, consider the torch-cutting

machine in Fig. 5A designed to cut sheet metal along a curvilin-
ear path a. Here the points A0 and B0 are fixed in the machine,
and the lever A0A1 has an adjustable length to suit the different
curvilinear paths a desired.

The length B1B1 is also fixed. The challenge is to find the
length of the levers A1B1 and E1B1 in the four-bar linkage to give
the desired path a, which is to be traced by the coupler point E on
which the cutting torch is mounted.

The graphical solution for this problem, as shown in Fig. 5B,
requires the selection of the points A1 and E4 so that the distances
A1E1 to A8E8 are equal and the points E1 to E8 lie on the desired
coupler curved a. In this case, only the points E4 to E8 represent
the desired profile to be cut. The correct selection of points A1
and E1 depends upon making the following triangles congruent:

∆ E2A2B01 = ∆ E1A1B02
∆ E3A3B01 = ∆ E1A1B03
∆ E8A8B01 = ∆ E1A1B08

and so on until E8A8B01 = E1A1B08. At the same time, all points
A1 to A8 must lie on the arc having B1 as center.

456

Fig. 3 Input and output angular movements of feeder mechanisms are synchro-
nized by a four-bar linkage. (A) The separate feed for spherical or cylindrical parts on
a conveyor. (B) Group-sorting of spherical parts by the tilting hopper. (C) A separate
feed for spherical or cylindrical parts by gravity. (D) Rectangular parts are turned on a
conveyor. (E) Parts are separated by levers, and the conveyor movement is con-
trolled by a trigger at the right. (F) Bar stock is positioned by the angular oscillation of
an output lever when the input crank is actuated.
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Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5
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Synthesis of an Eight-Bar Linkage

Design a linkage with eight precision points, as shown in Fig. 6.
In this mechanism the curvilinear motion of one four-bar linkage
is coordinated with the angular oscillation of a second four-bar
linkage. The first four-bar linkage consists of AA0BB0 with cou-
pler point E which generates γ with eight precision points E1
through E8 and drives a second four-bar linkage HH0GG0.
Coupler point F generates curve δ with precision points F1
through F8. The coupler points F2, F4, F6, F8 are coincident
because straight links GG0 and GH are in line with one another in
these coupler positions. This is what permits HH0 to oscillate,
despite the continuous motion of the coupler point F. The cou-
pler points F1 coincident with F5, and F3 coincident with F7,
have been chosen so that F1 is the center of a circle k1 and F3 is
the center of a circle k3. These circles are tangent to coupler
curve γ at E1, and E5, E3, and E7, and they indicate the limiting
positions of the second four-bar linkage HH0GG0.

The limiting angular oscillation of HH0, which is one of the
requirements of this mechanism, is represented by positions
H0H1 and H0H3. It oscillates four times for each revolution of the
input crank AA0, and the positions H1 to H8 correspond to input
crank positions A1 to A8.

The synthesis of a compound linkage with dwell periods and
coordinated intermittent motion is shown in Fig. 7. The four-bar
linkage AA0BB0 generates an approximately triangular curve
with coupler point E, which has six precision points E1 through
E6. A linkage that will do this is not unusual and can be readily
proportioned from known methods of four-bar linkage synthesis.
However, the linkage incorporates dwell periods that produce
coordinated intermittent motion with a second four-bar linkage
FF0HB0. Here the tangent arcs k12, k34 and k56 are drawn with EF
as the radius from centers F12, F34 and F56.

These centers establish the circle with F0 as the center and
pivot point for the second four-bar linkage. Each tangent arc
causes a dwell of the link FF0, while AA0 rotates continuously.
Thus, the link FF0, with three rest periods in one revolution, can
produce intermittent curvilinear motion in the second four-bar
linkage FF0HB0. In laying out the center, F0 must be selected so
that the angle EFF0 deviates only slightly from 90º because this
will minimize the required torque that is to be applied at E. The
length of B0H can be customized, and the rest periods at H34, H12
and H56 will correspond to the crank angles φ34, φ12 and φ56.

A compound linkage can also produce a 360º oscillating
motion with a dwell period, as in Fig. 8. The two four-bar link-
ages are AA0BB0 and BB0FF0, and the output coupler curve γ is
traversed only through segment E1, E2. The oscillating motion is
produced by lever HH0, connected to the coupler point by EH.
The fixed point H0 is located within the loop of the coupler curve
γ. The dwell occurs at point H3, which is the center of circular arc
k tangent to the coupler curve γ during the desired dwell period.
In this example, the dwell is made to occur in the middle of the
360º oscillation. The coincident positions H1 and H2 indicate the
limiting positions of the link HH0, and they correspond to the
positions E1 and E2 of the coupler point.

458

Feeder Mechanisms (continued)

Fig. 6

Fig. 7

Fig. 8
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ROBERTS’ LAW HELPS TO FIND 
ALTERNATE FOUR-BAR LINKAGES
The three linkage examples

When a four-bar linkage has been designed or selected from a
catalog to produce a desired coupler curve, it is often found that
one of the pivot points is inconveniently located or that the trans-
mission angles are not suitable. (A coupler curve is produced by
a point on the connecting rod joining the two cranks of the four-
bar linkage). According to Roberts’ Law there are at least two
other four-bar linkages that will generate the same coupler curve.
One of these linkages might be more suitable for the application.

Robert’s Law states that the two alternate linkages are related
to the first by a series of similar triangles. This leads to graphical
solutions; three examples are shown. The first involves similar
triangles, the second is a more convenient step-by-step method,
and the third illustrates the solution of a special case where the
coupler point lies along the connecting rod.

Method of Similar Triangles

Four-bar linkage ABCD in Fig. 1 uses point P, which is actually
an extension of the connecting rod BC, to produce desired curve.
Point E is found by constructing EP parallel to AB, and EA paral-
lel to PB. Then triangle EFP is constructed similar to triangle
BPC. This calls for laying out angles a and β.

Point H is found in a similar way, and point G is located by
drawing GH parallel to FP and GF parallel to HP.

The two alternate linkages to ABCD are GFEA and GHID. All
use point P to produce the desired curve, and given any one of
the three, the other two can be determined.

The Step-by-Step Method

With the similar-triangle method just described, slight errors in
constructing the proper angles lead to large errors in link dimen-
sions. The construction of angles can be avoided by laying off the
link lengths along a straight line.

Thus, linkage ABCD in Fig. 2 is laid off as a straight line from
A to Din Fig. 3. Included in the transfers is point P. Points
EFGHI are quickly found by either extending the original lines
or constructing parallel lines. Fig. 3, which now has all the cor-
rect dimensions of all the links, is placed under a sheet of tracing
paper and, with the aid of a compass, links AB and CD are rotated
(see Fig. 4) so that linkage ABCD is identical to that in Fig. 2.
Links PEF and PHI are rotated parallel to AB and CD, respec-

tively. Completion of the parallelogram gives the two alternate
linkages, AEFG and GHID.

Special Case

It is not uncommon for the coupler point P to lie on a line
through BC, as in Fig. 5. Links EA, EP and ID can be found
quickly by constructing the appropriate parallel lines. Point G is
located by using the proportion: CB:BP = DA:AG. Points H and F
are then located by drawing lines parallel to AB and CD.

Fig. 1 The method of similar
triangles.

Fig. 2, 3, 4 A step-by-step
method.

Fig. 5 This special case
shows the simplicity of applying
Roberts’ Law.
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RATCHET LAYOUT ANALYZED

The ratchet wheel is widely used in
machinery, mainly to transmit intermit-
tent motion or to allow shaft rotation in
one direction only. Ratchet-wheel teeth
can be either on the perimeter of a disk or
on the inner edge of a ring.

The pawl, which engages the ratchet
teeth, is a beam pivoted at one end; the
other end is shaped to fit the ratchet-
tooth flank. Usually, a spring or counter-
weight maintains constant contact
between wheel and pawl.

It is desirable, in most designs, to
keep the spring force low. It should be
just large enough to overcome the sepa-
ration forces—inertia, weight, and pivot
friction. Excess spring force should not
be considered for engaging the pawl and
holding it against the load.

To ensure that the pawl is automati-
cally pulled in and kept in engagement
independently of the spring, a properly
drawn tooth flank is necessary.

The requirement for self-engagement
is:

Neglecting weight and pivot friction:

Pc > µPb

but c/b = r/a = tan φ, and because tan φ is
approximately equal to sin φ:

c/b = r/R

Substituting in term (1)

rR > µ
For steel on steel, dry, µ = 0.15

Therefore, using

r/R = 0.20 to 0.25

the margin of safety is large; the pawl
will slide into engagement easily. For
internal teeth with φ of 30º, c/b is tan 30º
or 0.577, which is larger than µ, and the
teeth are therefore self-engaging.

When laying out the ratchet wheel
and pawl, locate points O, A and O1 on
the same circle. AO and AO1 will then be
perpendicular to one another; this will
ensure that the smallest forces are acting
on the system.

Ratchet and pawl dimensions are gov-
erned by design sizes and stress. If the
tooth, and thus pitch, must be larger than
required to be strong enough, a multiple
pawl arrangement can be used. The
pawls can be arranged so that one of
them will engage the ratchet after a rota-
tion of less than the pitch.

A fine feed can be obtained by placing
many pawls side by side, with the corre-
sponding ratchet wheels uniformly dis-
placed and interconnected.

Pc M Pb P r+ > + +µ µ µ( )1 2 1 1

Pawl in compression has tooth pressure P and
weight of pawl producing a moment that tends to
engage pawl. Friction-force µP and pivot friction
tend to oppose pawl engagement.

Inner teeth allow
compact assembly.

Pawl in tension has the same forces acting
on the unit as other arrangements. The
same layout principles apply.

a = moment arm of wheel
torque

M = moment about O1
caused by weight of
pawl

O1 – O2 = ratchet and pawl pivot
centers respectively

P = tooth pressure = wheel
torque/a

P = load on pivot pin

µ, µ1 = friction coefficients

Other symbols as defined in diagrams.

( )1 2+ µ
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SLIDER-CRANK MECHANISM

The slider crank, an efficient mechanism
for changing reciprocating motion to
rotary motion, is widely used in engines,
pumps, automatic machinery, and
machine tools.

The equations developed here for
finding these factors are in a more sim-
plified form than is generally found in
text books.

SYMBOLS
L = length of connecting rod
R = crank length; radius of crank circle
x = distance from center of crankshaft A

to wrist pin C
x′ = slider velocity (linear velocity of

point C)
x″ = slider acceleration
θ = crank angle measured from dead cen-

ter (when slider is fully extended)
φ = angular position of connecting rod; φ

= 0 when θ = 0
φ′ = connecting-rod angular velocity =

dφ/dt
φ″ = connecting-rod angular acceleration

= d2φ/dl2

ω = constant crank angle velocity

Displacement of slider
x = L cos φ + R cos φ

Also:

Angular velocity of the connecting rod

Linear velocity of the piston

Angular acceleration of the connecting rod

cos sin

( / )cos
[ ( / ) sin ]

sin

( / )sin [( / )

/

/

φ θ

φ = ω θ
θ

ω φ
ω

θ

φ ω θ
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Slider acceleration
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