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Course overview

Each lecture (practcal session) is 2 x 45 minutes long. 15 minute break between each lecture. 

Location: Oort 431

Time:  Thursday at 1:45 - 2.30 pm and 2.45-3.30 pm
In February: 5/2, 12/2, 19/2. 26/2 
In March: 5/3 (guest lecture), 12/3 (practical), 19/3, 26/3 (incl. 1 guest lecture Richard Schilizzi) 
In April: 2/4, 9/4 (guest lecture, polarisation, Marijke Haverkorn), 16/4 (practical), 23/4 (N.B. no 
lectures on 30/4 Konningendag)

In May: 7/5 (guest lecture, HI, Raffaella Morganti, 14/5, (N.B. 21 May public holiday)

N.B. Field trip: visit to ASTRON, Westerbork and Exloo (date: 26 May!!!), no lecture that week. 

Exam: by oral examination of the material - details to follow. 

Course wiki page

www.astron.nl/~mag/dokuwiki/doku.php?id=radio_astronomy_course_description

- this is where you can find the most up-to-date course information - you can also find PDF copies of the 
lecture notes here and the overall content of the course. 
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In Lecture 4, we did not considered 
problems introduced by the distortions 
of the incoming wavefront as it passes 
through the Earth’s atmosphere 
(troposhere and ionosphere). These 
introduce phase errors across the wave 
front that rapidly vary with time and 
across the radio telescope array.

Plane
Wave

“Cloud”

Distorted phase of 
emerging wave front

A
r
r
a
y

Phase stability
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In radio astronomy the atmosphere can be stable over relatively long periods. 

Coherence times (phase change < 1 radian in incoming wavefront) can be as long as ~ 10 minutes at 
cm wavelengths (mainly effected by water vapour in the troposphere) or as short as a few seconds 
at longer metre wavelengths (due to the fluctuations in the ionosphere’s electron content) and 
millimetre/sub-millimetre wavelengths (again the troposphere): 

Typical coherence times are: 

   Frequency         Good      Bad conditions 
 
    151 MHz         3 min          15 sec
    480 MHz       10 min           45 sec
        2 GHz       45 min            3 min
        5 GHz       40 min          10 min 
      22 GHz         3 min          10 secs 
    200 GHz        0.5min            1 sec
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Stability at metre wavelengths is strongly dependent on solar cycle, time of day. 

Next solar maximum is expected to peak in 2011 - sun expected to become active soon - worst 
possible timing for LOFAR! However, the most recent predictions suggest it may be the weakest 
solar maximum for 100 years (fingers crossed!).  
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Atmospheric path lengths

The chemical composition of the troposphere is essentially uniform, with the notable exception of 
water vapor.  The water vapour is not well mixed with the rest of the troposphere and we refer to 
the “dry” and “wet” component. 

The excess path length introduced by the troposhere is: 

     Ltrop ~ 0.228Po +6.3w    (cm)

Po = total atmospheric pressure at surface of Earth millibars
w = water vapour content above array (cm) 

Typical values of L ~ 2 metres (8ns time delay). The dry component depends only on Po  and 
dominates L - however, it can be modeled to ~ 0.05cm. The wet part can only me modeled to ~ 
2cm ==> wet component dominates phase errors. 

Note that the troposphere path length is not a function of frequency (non-dispersive). 

dry cpt wet cpt
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The ionosphere has three main layers (D, E, F) - ionisation state depends on solar uv and changes 
with time of day, season, latitude and solar activity. The excess path length at zenith introduced by 
the ionosphere is proportional to the Vertical Total Electron Content (VTEC): 

      Liono ~ (40.3/ν2) VTEC       (metres)

The TEC (column density) is in units of 1018 m-2 - typical values are ~ 5x1017 m-2 (max, day time), 5 x 
1016 m-2 (min, night). At GHz frequencies Liono ~ metres.  TEC can be monitored via dual frequency GPS 
satellite signals (below). ν is in GHz.

The line of sight TEC goes as cos(ξ):  Liono ~ (40.3/(ν2 cosξ)) TEC => observations of source close 
to the horizon should be avoided. 
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Since phase goes as: Φ ~ 2πντ ~ 2πνL/c .....

For ionosphere, L α ν-2   => Φiono α ν-1

For troposphere, L α ν0   => Φtrop α ν

It turns out that the 
frequency at which 
phase errors are 
minimised is around 1 
GHz (left).  

Φiono α ν-1

Φtrop α ν
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Consider three telescopes observing the same source on the sky. Lets ignore 
small (uncorrelated) thermal noise errors associated with each telescope. Since 
the telescopes are all well separated from each other (e.g. > 1 km) they each 
look through a different part of the Earth’s atmosphere:

Tel 1

Tel 3

Tel 2

Text

Source
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Tel 1

Tel 3

Tel 2

 Φ2

Source

The measured visibility phase on baseline “12” is then:  Φ12 = φ12 + ϕ1 - ϕ2 

where φ12 is the true source visibility on baselines 1-2,  Φ1 are phase offsets introduced by the 
clouds above each telescope. 

 Φ1 ~ 2πντcloud

 Φ3

[1]

cloud
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So: 

      Φ12 = φ12 + ϕ1 - ϕ2 

    Φ23 = φ23 + ϕ2 - ϕ3 

    Φ31 = φ31 + ϕ3 - ϕ1 

Clearly if we add these relations together: 

Φ12 + Φ23 + Φ31 = φ12+φ23 + φ31 +(ϕ1 - ϕ1) +(ϕ2  - ϕ2)+(ϕ3 -ϕ3)
                                  = φ12+φ23 + φ31

[2b]

This formulation of adding together the observed visibility phases together of any 3 telescopes is 
known as forming a “closure triangle”.  [2b] is known as the closure phase for these 3 telescopes. 

      
N.B. the important thing to note is that the closure phase contains information only on the true 
visibility of the source itself, i.e. its brightness distribution - ALL other telescope based errors 
cancel out (e.g. atmosphere, cable lengths, electronics etc.). 
      

[2a]

closure phase

13



The concept of closure phase was first discovered by Roger Jennison:       

The concept of Closure Phase is important not only in radio astronomy but forms the basis for 
ALL interferometry calibration at IR and optical wavelengths. 

Jennison discovered closure phase while performing the first interferometry experiments at Jodrell 
Bank, using the mobile telescope.  The technique made it possible to infer double structure in Cyg-
A.

MNRAS 1958
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For a given array of N telescopes, there are: 

 (N-1)(N-2)/2 independent closure phases   [3]

e.g. for N=4 there are 3 independent closure relations.
      

1 
4 
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2 

1 
4 

3 
2 

1 
4 

3 
2 

1 
4 

3 
2 
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Visibility phase plotted for 3 telescopes of the VLBA (not fully calibrated): 
      

Tells us something 
about the source 

visibility phase, plus 
the atmospheric 
induced phase 

distortions, telescope 
electronic gain 

changes etc. etc. 
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Tells us something 
about the source 

visibility phase, the 
atmospheric induced 

distortions to the 
phase, telescope 
electronic etc. 

Closure phase: tells us 
something 

about the source 
visibility alone!

Closure phase
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So from the closure relations we have (N-1)(N-2)/N good observables (measurements). 

However, there are N telescope unknowns.  We can reduce this to (N-1) unknowns if we make 
one of the telescopes the “reference antenna” (i.e. set the phase error to zero for this telescope).

Note that the ratio of good observables/unknowns (see eqn[3]) is then just: 

    (N-2)/N     [4]

So for N=3 we have only 33% of the information we 
need. 

But for N=27 (the case of the VLA) we have 93% of 
the information we need.

==> in general the reliability of Interferometric images 
favours large-N telescope arrays (e.g. see SKA, ALMA and 
SKA pathfinders) - calibration is more robust and uv-
coverage more complete.
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Even in the case of large-N, some extra a-priori information must be used to make progress, in 
the calibration of interferometry data. In particular, we make a few assumptions: 

(i) the sky is positive 

(ii) the brightness distribution the interferometer is sensitive to is of limited extent. 

With these assumptions in place, we can begin to make progress. 

Recall eqn [1]: 

                Φ12 = φ12 + ϕ1- ϕ2

We can generalise this to: 

   Φij = φij + ϕi - ϕj       for any telescope pair i,j

The phase error associated with telescope j is then, Φj such that: 

   ϕj  = Φij - φij - ϕi 
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For any given array we can, for one of the telescopes in the array (the so-called reference 

telescope), set ϕi = 0. All measurements then become made relative to this telescope. (N.B. one 
consequence of this is that information about absolute position is lost).   

In this case,  

   ϕj  = Φij - φij  [5]

Now the cheeky part - the astronomer guesses what the source looks like, i.e. we define a trial 

map: φijtrial then [5] becomes: 

   ϕj  = Φij - φijtrial  [6]

In this way we can make guestimates of the various telescope based errors. 

Usually the trial model is a simple point source. 

20



This process of estimating the telescope errors is called self-calibration. The “self” refers to the fact 
that we use the source itself (and the associated data) to solve for the telescope errors. See the 
article by Peter Wilkinson for more details (see acknowledgements). 

The entire process of making the best possible image is called “hybrid mapping”. The first 
trial model (usually a point source) provides the first estimate of the telescope errors. Once 
corrections are applied to the telescopes, the first “real” map is produced (e.g. via CLEAN). 
This becomes the new trial map for a new (and hopefully improved) set of telescope corrections. 
A new map is then again produced and this iterative cycle continues until the map (image) no longer 
improves (e.g. the thermal noise in the image does not decrease). 

Trial
map + Data Telescope

corrections

Corrected
Data

New
map-1

New
map-1 + 

Corrected
Data

Further Telescope
corrections

New
map-2

Modified
Corrected

Data

and so it continues... until the map converges. 
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Telescope errors do not only effect the phase of the visibility. The amplitude can also be degraded. 
However, phase errors usually dominate (at least at cm wavelengths where attenuation by the 
atmosphere is a relatively small effect). 

In order to consider how self-calibration can be used to correct for amplitude errors, we must 
use a complex formalism: 

      Vijobs(t) = gi(t) g*j(t) Vijtrue(t)     [7]

where Vij are the measured and true visibilities, and gi(t) g*j(t) are known as the complex gains of 
the telescopes i,j 

The gains contain corrections to both the amplitude and phase of the visibility: 

e.g.  gi(t)=ai(t)eiϕi(t)

In this formalism the observed and true Visibility can be written as: 

    
Vijobs(t) = ai(t) aj(t)ei(ϕi- ϕj) Aij(t)ei φij(t)     [8]         **

Vijtrue(t) = Aij(t) ei φij(t)     [9]
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Note that by taking the ratios of eqns such as [7] we arrive at the “closure quantities”. e.g. 

V12obs(t) = g1(t) g2(t) V12true(t) = a1(t)eiϕ1(t) a2(t)e-iϕ2(t) A12(t) ei φ12(t)

V23obs(t) = g2(t) g3(t) V23true(t) = a2(t)eiϕ2(t) a3(t)e-iϕ3(t) A23(t) ei φ23(t)

V13obs(t) = g1(t) g3(t) V13true(t) = a1(t)eiϕ1(t) a3(t)e-iϕ3(t) A13(t) ei φ13(t)

If we consider the phase terms only and implicitly accept time dependance: 

V12obs V23obs / V13obs = ei(ϕ1-ϕ2+φ12+ ϕ2- ϕ3+ φ23) e-i(ϕ1-ϕ3 + φ13)

              

= ei(φ12+  φ23 - φ13)      [10]   

Note that [10] is just the equivalent of our original closure phase presented in eqn[2b]
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If we consider only the amplitude terms, we can see that for some combination of observed 
visibilities, the amplitude gains will cancel: 

V12obsV34obs/(V13obs V24obs) = A12A34 a1a2a3a4  =  A12A34                                                                          

Such ratios are known as “closure amplitudes” and require at least 4 telescopes to be formed. 

Like closure phases, closure amplitude is a "good observable", since it is not sensitive to 
measurement error.  The closure amplitude and closure phase relations can be exploited in the 
hybrid mapping algorithm (see earlier slides). 

A13A24 a1a2a3a4        A13A24

In the early days of hybrid mapping the closure phases and amplitudes were explicitly used to 
constrain the hybrid mapping process. In the era of the VLA it was no longer computationally 
efficient to calculate all the closure quantities. More sophisticated algorithms were constructed 
but they are all roughly equivalent to the original method. Modern algorithms seek to minimise 
the difference between the observed data and the predicted data:

S = Σij, i<jwij | Vijobs - gig*j Vijtrue|

The wij reflect the fact that some data are higher weighted than other data (e.g. especially for 

VLBI arrays where all the telescopes have different sensitivities).  

[11]

[12]
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Algorithms using eqn [12] seek to minimise S by changing only the N-1 complex gains of the 
telescopes via a least squares approach. This is known as “self-calibration”. In this formulation the 
problem can be considered to be over constrained (there are N(N-1)/2 measurements and only 
(N-1) unknowns). 

The output of the algorithm is a list of telescope corrections (i.e. phase and amplitude = gi(t)) as a 
function of time. 

Note that by only modifying the telescope gains gi (i.e. ai , ϕi) the corrected data is always 
consistent with the closure quantities. 

Hybrid mapping in practice

Here we will try and demonstrate hybrid mapping in practice via a VLBA data set. 

The observing frequency is 327 MHz (as low as the VLBA goes and an area of the spectrum 
that has a lot of RFI, ionospheric disturbances also make it a potentially difficult data set to 
calibrate).

The observing bandwidth is 16 MHz, so the data rate (per telescope) is:

16E6 x 2 (Nyquist sampling) x 2 polarisations x 2-bits = 128 Mbits/sec. 
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The target source is 3C274 (also known as Virgo-A, M87 - AGN - lies only 16 Mpc away):

3C274 - VLA 90cm

3C274 - HST
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Plot of the original data (baselines to PT)
Plot of the antenna phase corrections after self-
cal (LA is the reference antenna)
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Plot of the original data (baselines to PT)
Plot of the data after applying self-cal 
corrections (baselines to PT only shown) - note 
data is now much more coherent.
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First Dirty map: 
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First CLEAN map: 
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Plot of the 2nd round of phase only correction using previous CLEAN map as a model - note the 
corrections are now quite small (most of the corrections were made in the first self-cal). Large 
corrections still seen telescopes with long baselines (MK and SC) - note different scales! 
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The improvement in the maps is also not so impressive: 

rms noise ~ 2.5 mJyrms noise ~ 2.9 mJy

Time to try both amplitude and phase corrections at the same time - next slide:

Aside: all CLEANing presented here was done automatically without windows being set around the 
emission - usually one would set windows but I wanted to see how self-cal/CLEAN would work 
without “human guidance”. 
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Plot of the amplitude telescope gain corrections using last map as a model:
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Image of the first map (phase only corrections), second map (another round of phase 
corrections), third map (amplitude and phase corrections):

rms noise ~ 2.5 mJyrms noise ~ 2.9 mJy

rms noise ~ 1.5 mJy

Application of the first round 
of amplitude telescope gain 
corrections leads to a 
significant improvement in the 
image (left).

Between map 1 and map 3, 
the r.m.s. noise level has 
halved.
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Image of the first, second, third, fourth map..... - note reduction in rms noise levels 

rms noise ~ 0.9 mJy

rms noise ~ 2.5 mJyrms noise ~ 2.9 mJy

rms noise ~ 1.5 mJy
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Plot of the data used to produce map 4 but with the source model (purple line) 
superimposed on the amplitude visibilities (baselines to telescope Pie Town, PT, only shown):  

Clearly still
a lot of bad 
data that 

needs to be 
edited out

Data don’t fit 
- RFI 

correlated on 
this short 
baseline or 
confusing 
source? 
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Plot of the data used to produce map 4 with the source model superimposed on the phase 
visibilities (baselines to telescope Pie Town, PT, only shown):  

Note data 
looks  

noisier on 
the longer 
baselines - 
the source 

is quite 
resolved
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A plot of the uv-data (amplitude) vs baseline length: 

The source is quite 
resolved but there is 
again evidence for 
lots of bad data - 
probably RFI. 

This data set should 
have been edited 
before we tried any 
self-calibration - but I 
really hate editing 
data. 

I cheated at this point 
and clipped the data 
above a certain 
amplitude (see 
dashed line) - really 
not recommended 
unless you are very 
lazy.....
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The new map after clipping out some of the bad data:

Helps a little - small 
reduction in rms 
noise.  

The dynamic range of 
this image 
(peak:noise) is only ~ 
1000:1.

At this stage its 
probably time to stop 
and start again - but 
this time carefully edit 
the data .

rms noise ~ 0.8 mJy

39



3C274 - HST

VLBI has v. high resolution!
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Self-calibration requires the target source to be detected (SNR > 1) within the coherece time, on 
the majority of baselines for reliable telescope corrections and target image to be generated. 

We saw in Lecture 2, (eqn ) that the sensitivity of a single dish is given by: 

Phase referencing

Similarly, for a single interferometer baseline: 

         ΔSij = (SEFDi SEFDj/(2ΔνΔt))1/2       (Jy) [13]

e.g. for the VLBA SEFD = 300 Jy and Δν ~ 128 MHz. For a coherence time,  Δt, of say 2 minutes at 5 
GHz,  ΔSij ~  1.7 mJy. A 7-sigma detection ==> that the source should have an unresolved flux 
density of ~ 10 mJy. 
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Many of the most interesting sources have flux densities that are fainter than 10mJy. 

The technique of Phase Referencing is used to detect these sources: 

Faint Target Source Bright phase calibrator

Observe the target for ~ 4 minutes

θ < ~ 2 deg
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Faint Target Source Bright phase calibrator

Then switch to the brighter phase 
calibrator for ~ 1.5 minutes
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Faint Target Source Bright phase calibrator

Then switch back to the target for 
~ 4 minutes
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Faint Target Source Bright phase calibrator

Then switch to the brighter phase 
calibrator for ~ 1.5 minutes

The telescope corrections determined for the bright calibrator are applied to the target source data.
Phase reference observations specify a “cycle time” (=time on target + time on calibrator). Cycle 
times ~ 8 mins are common at cm wavelengths, but at much higher frequencies cycle times of 0.5 
mins are sometime successfully employed. For short cycle times, the telescopes must be fast movers. 
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bright calibrator
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Faint target 
source -note 
that the data 
looks like pure 
noise! 
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So the idea is to take the telescope corrections (amplitude and phase) determined from self-
calibrating the bright calibrator, and apply them to the faint target. The basic assumption is that for 
sources located in roughly the same region of sky, corrections for one source, also apply to the 
other. 

 

 

Left: phase 
corrections 
determined from the 
calibrator. 

Time

ϕ
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The telescope corrections are interpolated into the periods where the faint target was being 
observed: 

Left: phase 
corrections (including 
interpolated values). 

Note that there are 
some periods where 
it is difficult to follow 
the phase.  

But for most times 
the interpolation 
looks reasonable. 

Aside: You can also 
estimate the 
coherence time of 
the data e.g. ~ 200 
degrees in 20 mins, 
=> coherence time 
of ~ 5 mins.

Time

ϕ
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The technique of phase referencing permits the coherence time of the target data to be extended 
across the entire observation (many hours). This means that the sensitivity of the observations 
continue to scale as (Δt)1/2.

For an interferometer array of N identical telescopes, the noise on a single baseline (see eqn[13]) 
is: 
 

      ΔSij = SEFD/(2ΔνΔt)1/2

Image sensitivity is the standard deviation of N(N-1)/2 samples, each with a standard deviation 

ΔSij . So the r.m.s. noise measured in the image,  ΔI is just: 

      ΔI =      ΔSij/(N(N-1)/2)1/2 = SEFD/(N(N-1)ΔνΔt)1/2

where Δt is now the time spent by the telescope “on-source”. Assuming no losses, then for the 
VLBA, N=10,  Δt = 8hr and taking values as before => ΔI ~ 25 microJy. In practice various losses 
must be taken into account (e.g. electronic losses, digitisation etc) =>  ΔI ~ 40 microJy.

In principle, phase-reference observations with the VLBA can detect sources as faint as 5ΔI ~ 200 
microJy.  More sensitive arrays like the EVN can reach even fainter limits. 

[14]
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Phase reference works 
well in practice. 

The noisy VLBI data 
presented above, 
produced detections of 
faint sub-mJy radio 
sources in the Hubble 
Deep Field (left). 

These images reach 
noise levels of 7 microJy 
using a global VLBI 
array. 
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Wide-field imaging of the full primary beam requires the use of special techniques. 

The first problem is that in Lecture 4, eqn[12]) we showed that:   

Wide-field Imaging & Survey Speed

For non-coplanar arrays w=0. But for 2-D arrays eqn[12] is only strictly valid PROVIDED a small 
region of sky is to be imaged, i.e. that 1/2(x2+y2)w << 1. 

If this is not the case, we introduce a phase error into the data, Δϕ. 

From [12] we can see that the error would be of order:  

      Δϕ = 2π(1/2(x2+y2)w = π(x2+y2)w 
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The maximum value w can ever have is the max baseline 
length:
       

Δϕ = π(x2+y2)Bmax/λ 
      
      = πθ2Bmax/λ
      
      = πθ2 /θbeam

w

θ

e.g. for the VLA (A-array) at 20cm, an 
error of 0.1 radians corresponds to 
sources located 1.3 arcmins from the 
phase centre. 

[15]
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A practical solution is to split the field of 
view up into many 2-D patches - each with 
an appropriate ei2πw correction factor (see 
right). 

Other important effects that limit the 
field of view of an interferoemter array 
include: bandwidth smearing and time 
averaging. 

Bandwidth smearing: 

During correlation, the delay is correct 
for only one particular point on the sky - 
usually the phase centre (where the 
target is located). 

For all other source positions there will 
be an error introduced by applying a 
delay that is strictly only true for the 
phase centre & a particular frequency:

<X>

s s
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From eqn[4] lecture 4, 

Φ = 2πντg 

and 

dΦ = 2πν dτg = (2πν/c)B cos(θ) dθ 

for the worse possible case i.e. longest possible projected baseline: 

dΦ = 2πν dτg = (2πν/c)B dθ 

Another complicating factor is that interferometers observe a range of frequncies simultaneously, Δν: 

P

ν

Telescope passband of bandwidth Δ ν  

ν+Δ ν
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dΦν - dΦν+Δν = 2πB/c (ν+Δν -ν) dθ =  2πB/c Δν dθ

                    =  2πB/(vλ) Δν dθ = 2π (Δν/ν) dθ/θbeam

The term Δν/ν is called the fractional bandwidth. 

In the worst possible case dΦν - dΦν+Δν = 2π and we have complete de-correlation across the band.

Graphically: 

ν

Φν
π

-π

π
= 0 
ie. complete 
decorrelation

[16]
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(Δν/ν) <<  θbeam /dθ

In order to avoid complete decorrelation: 

For θbeam  ~ 1 arcsecond (VLA 20cm, A-array), dθ ~ 15 arcmin

         => Δν/ν << 0.001

For ν = 1400 MHz,   => Δν << 1 MHz. 

Correlators must generate a 
frequency spectrum with very high 
resolution in order to map out 
large fields of view:

P

ν

The telescope 
bandpass is split up 
into many narrow 

frequency channels. 

ν+Δ ν
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Its possible to rigorously show (see TMS and SIRA book) that the relative amplitude of the peak 
response to a point source as a function of distance from the phase centre is given by the following 
function:

 

β = (Δν/ν) dθ/θbeam

So, for a reduction of < ~10% due to bandwidth 
smearing, β ~ 0.7 (see figure left). 

For the global VLBI array, observing at 1660MHz, 
θbeam ~ 3 milliarcsecond, for a field of view,  dθ ~ 1 
arcsec  Δν/ν ~ 0.0015.

Observing at 1660 MHz this requires  Δν < 2.4 
MHz. 

For continuum expts with a total bandwidth of say 
256 MHz, that implies that there must be ~ 100 
independent spectral channels.  

[17]
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P

ν

For the Global VLBI 
array the data must 
be correlated so 
that ~100 
frequency channels 
span the  256 MHz 
band. 

ν+Δ ν

To better understand 
bandwidth smearing its 
instructive to take a look at 
what’s happening in the u-v 
plane. Consider a single 
baseline (for clarity): 

v

u
Each independent 
frequency channel 
(see top left) has its 
own u,v tracks.
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v

u

if we average across 
these narrow 
channels (see blue 
arrow above) to 
produce a single 
channel; in the 
image plane this 
leads to radial 
smearing of radio 
sources at the edge 
of the map (see 
blue arrow below).   v

u
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Right: a bandwidth smeared image of 
a source lying at the edge of the 
primary beam of MERLIN antennas - 
courtesy Tom Muxlow.    

The source is smeared in the radial 
direction - towards the phase centre 
of the map (see red arrow) which 
lies tens of arcminutes away. 

To avoid bandwidth smearing, wide-
field continuum interferometry 
observations are correlated so that 
many thousands of independent 
spectral channels are produced (like 
a spectral line data set). This leads to 
very LARGE data sets which are 
difficult to handle and process. Towards the phase centre, 

many tens of arcminutes away.
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Notes:

(i) the effect of bandwidth smearing scales as θbeam (see eqn 17) i.e. it scales as baseline length. 
Bandwidth smearing is a big problem for VLBI arrays when the observer desires to image a large 
field of view. 

(ii) for bandwidth smearing the integrated flux density measured in the map is preserved but the 
surface brightness is reduced: 

No smearing smeared

In the smeared image the peak flux density in the map is very much reduced i.e. the surface 
brightness of the smeared image << the non-smeared image. However, the area of the smeared 
image is much larger. The two effects compensate for each other so that the measured integrated 
flux density of the 2 images is the same (SNS = SS).

SNS

SS
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Notes:

(iii) Note that for a given fixed array/observing bandwidth smearing is independent of the 
observing frequency: 

(Δν/ν) dθ/θbeam = (Δν/ν) dθ/(λ/B) = Δν dθ B/c

This means that if a spectral channel of width 1 MHz produces no significant smearing for MERLIN 
at 1.6 GHz, the same is true for all other MERLIN observing frequncies. 

Time averaging 

Typically correlators accumulate the correlation function for a given baseline for period of a few 
seconds e.g. at the WSRT the integration time (sometime also called the accumulation period) is 
~ 10 seconds. For VLBI arrays its usually shorter (a few seconds).   

The effects of using long correlator integration times when imaging a wide-field of view is best 
understood by looking at data in the uv-plane. Using integration times that are too long, leads to 
sources at the edge of the field being smeared and distorted.

63



In an integration time of δt (t1 - t2), the 
baseline rotates through an angle:

 ωearth δt

where ωearth is the angular rotation rate of 
the Earth.  [Note this is only exactly true for 
a source at declination 90 degrees]

v

u

t1

t2

 ωearth δt

As can be seen from the figure above, in the image plane the effect of time smearing scales with 
baseline length: 

     ωearth δt (u2+v2)1/2   ~ ωearth δt B/λ
e.g.  an integration time of a 10 seconds may not lead to much smearing on a short baseline (see 
figure above), but for a long baseline the effect is significant. 
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A reasonable rule of thumb (see above) is that the (small angle) rotation that occurs during the 
integration time in the image plane, should be much less than the synthesised beam i.e. 

    dθ ωearth δt  << θbeam  or  δt  << (θbeam/dθ)/ωearth

For the global VLBI array, observing at 1660MHz, θbeam ~ 3 milliarcsecond, for a field of view,  dθ ~ 1 
arcsec  => δt << 42 seconds. 

Just like bandwidth smearing the 
effect of time averaging scales 
with the desired field of view 

dθ. 
     

δ

α

dθ

dθ ωearth δt
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A more rigorous treatment (see TMS and SIRA) demonstrates that the bandwidth smearing term 

(Δν/ν) dθ/θbeam  is complementary to the time smearing function δt ωearth dθ/θbeam
  

Thus for more accuracy we can employ the dimensionless parameter β. 
 

    δt ωearth dθ/θbeam  = β
If we take β=0.7 (i.e. we are prepared to see a 10% reduction in the response of a source due to 
time smearing), and if we consider the previous example e.g. a global VLBI array, observing at 1660 
MHz, θbeam ~ 3 milliarcsecond, for a field of view,  dθ ~ 1 arcsec  => δt ~ 30 seconds. 

Note (see first figure in this discussion) that the time averaging effects depend not only on baseline 
length but also frequency: 

    δt ωearth dθ/θbeam = δt ωearth dθ B ν/c

Note that an integration time of a 10 seconds may not lead to much smearing on a short baseline 
(see figure above), but for a long baseline the effect is significant.  Or 10 seconds may be fine at a 
low observing frequency for a given baseline but too large for a much higher frequency. 

The integration time used by the correlator must assume the worst case (e.g the longest baseline 
of the array). After correlation a baseline length dependent averaging of the data can take place 
(helps to reduce the data volume - a little).  

[19]
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Time averaging leads to more complex smearing of the source in the image plane than the radial 
smearing associated with bandwidth smearing (see above). The smearing depends on the uv-
coverage. When the uv-coverage is very fore-shortened i.e. one dimensional (e.g. in the case of the 
WSRT observing a low declination source), then you can expect time smearing to produce 
azimuthal smearing: in the image plane.

For a given array,  time averaging is usually the main limitation to the field of view at HIGH 
frequencies. At low frequencies bandwidth smearing tends to be a bigger problem than time 
averaging. 

v

u

Averaging the data 
(left) leads to 

azimuthal smearing 
around the uv-

ellipses.
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Notes: 

(i) Unlike bandwidth smearing, time averaging is dependent on frequency (an integration time 
thats good for one frequency will not be good enough for another (higher) frequency).

(ii) Time averaging is dependent on baseline length - remember the practical data set ? On long 
baselines the visibility function changes more rapidly than on short baselines (for a given sky model).  

(iii) Unlike bandwidth smearing, time averaging does not preserve the total flux density. 

(iv) finally, the effects of bandwidth smearing and time averaging are additive (cumulative). If you 
employ an integration time that leads to a fall off in the response of 10% at the edge of the desired 
field of view, and you also employ a spectral resolution that also falls off to 10% at the 
edge of the field of view, then when you make the map you will see a 20% reduction 
in the response of a source at the edge of the field of view. 

    

An example of time smearing (again 
courtesy Tom Muxlow) is shown right. 

This should be a point source but is clearly 
very distorted by time smearing. There is no 
obvious relation to the direction of the field 
centre (red arrow). 
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Finally another way of thinking about the effects of averaging data is that by averaging the data 
you mis-label the data as a function of time and frequency. 

As a result, in interferometry, averaging the data always leads to information loss.

The practical effect is that the recovery of the true brightness distribution of off-axis sources 
(i.e. sources that are not located at the centre of the field) is severely compromised. 

Note also that the process of averaging “freezes in” bad data. Once averaged in time and 
frequency there is no way to correct errors that occur on time (or frequency) scales that are 
less that the average time (or averaged-up bandwidth). 

    ==> DON’T AVERAGE THE DATA UNLESS YOU HAVE TO

   (or at least understand that the FoV is heavily reduced after averaging). 
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Primary beam attenuation 

The shape of the antenna power pattern represents the ultimate restriction on the observers field 
of view. 

λ/D
First null 1.22λ/D

e.g. at 18cm, Lovell telescope, dθ ~ 8 arcmin; for a 25-
metre antenna dθ ~ 25 arcmin; for a 6 metre antenna   dθ 
~ 1.8 deg. 
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In VLBI sometimes arrays 
like WSRT and VLA are 
phased-up to look like a 
single large telescope. 

The primary beam is then 
very small (λ/B rather 
than λ/D). For example, 
for the WSRT the FoV is 
reduced to only 10 
arcseconds when the 
phased array is used as an 
element of the EVN. 

The change in the response of the primary beam of antennas in an array can be corrected for, if 
the shape of the primary beam is well measured and if the array is made up of antennas of the 
same type/size (not always the case e.g. MERLIN, Global VLBI). This is called making a primary 
beam correction. If this is not applied, the flux densities you measure at the edge of the fields will 
be less than the true flux density.  

71



The data I showed earlier 
was a wide-field VLBI data 
set. The integration time 
was 0.25 seconds and the 
data were stored as 1024 
channels each 32 kHz in 
width. 

Even so, for sources at 
the edge of the field 
about 2/3 of the data 
must be thrown away 
because of smearing 
effects.  

The size of the data set is 
~ 1 Terabyte. 
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Wide-field imaging is clearly important for the efficiency of large radio surveys. 

The figure of merit of a radio telescope as a survey instrument is given as the number of square 
degrees per second it can image down to a given sensitivity limit.  

Recall (eqn 14)

     ΔI = SEFD/(N(N-1)ΔνΔt)1/2

then the time Δt to reach a given sensitivity limit (for point sources) ΔI is 

     Δt = SEFD/(N(N-1)Δν ΔI2) ~ SEFD2/(N2Δν ΔI2)

The number of square degrees per second that can be surveyed to a sensitivity limit (ΔI) is then 
given by: 

     SS = F Δν (NΔI/SEFD)2 

where F is the field of view (in square degrees). 

Survey - figures of merit (FoM)

[20]
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This leads to some interesting results e.g. imagine we wish to conduct a survey down to 1 mJy. 
let’s see how the following telescopes compare in terms of survey FoM: 

VLA@1400 MHz (SEFD= 300 Jy, N=27, Δν=50MHz). One beam has a field of view of 0.2 sq deg

    => SSVLA = F Δν (NΔI/SEFD)2  ~ 0.08

WSRT@1400 MHz (SEFD= 300 Jy, N=14, Δν=160MHz). One beam also has a field of view of 0.2 sq 
deg:

     => SSWSRT  ~ 0.07

WSRT-APERTIF@1400 MHz (SEFD= 400 Jy, N=14, Δν=300MHz). One beam also has a field of view 
of 0.2 sq deg but there are 25 independent beams:

     => SSWSRT-APERTIF  ~ 1.8

EVLA@5000 MHz (SEFD= 300 Jy, N=27, Δν=2000MHz). One beam has a field of view of 0.02 sq 
deg

    => SSEVLA ~ 0.3        **

74



Data weighting: An important aspect we have not yet covered is data weighting. Every visibility 
has an amplitude and a phase, but in addition it also has a weight W(u,v):

   ID(x,y) = ∫∫W(u,v)V(u,v)e-i2π(ux+vy)dudv

The data can be weighted in many different ways: 

Natural weighting - here we use the statistical weights:  Wi ~ 1/σi2 

- each ith visibility is weighted by the inverse of the variance squared. This kind of weighting 
optimises the r.m.s. noise in the final image and therefore maximises the chance of detecting faint 
point sources. For detection experiments - this is usually the weighting form to use. 

More about imaging

Note that in arrays with telescopes 
of very different sensitivities (e.g. 
VLBI arrays) the effects of natural 
weighting need to be considered 
with care. Right: 300-metre Arecibo 
and a 25-metre VLBA telescope to 
scale!

VLBA

Arecibo
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. e.g. consider a global VLBI array including Arecibo (SEFD ~ 3 Jy telescope) and  the ten 
telescopes of the  VLBA (each 300 Jy telescopes). From eqn[13] baselines that include Arecibo will 
have a weight which is 10 times larger than VLBA-VLBA baselines: 

WARECIBO-VLBA = 1/(3.300)1/2      WVLBA-VLBA = 1/(300.300)1/2  

WARECIBO-VLBA/WVLBA-VLBA ~ 10. 

This means the baselines that include Arecibo will dominate any image that is produced using 
natural weighting. Natural weighting maximises the detection threshold for point sources 
(important for detection observations of faint sources) but it will not produce a good image of a 
source that is well detected on all baselines! Indeed, the 45 baselines of the VLBA will not 
contribute very much to the final image with this kind of weighting scheme. 

Pure uniform weighting - in this case all the data have the same weights (unity) - no matter what. 
This produces a well behaved “nice” dirty beam (e.g. lower side lobes than natural weighting since 
the latter does not make full use of all u-v points) but the noise in the map is higher. 

Uniform weighting - in this case the statistical weights (used in natural weighting) are modified. 

      Wi= Wi / ∑ Wi

here the summation is restricted to some finite region of the u-v plane.  The effect is to weight-up 
areas of the uv-plane where the natural weights are low.  
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Inverse density weighting - here the weights are replaced by the local density of u-v data points:

     Wi = Wi /ρ

- this weights up regions of the u-v plane where data are sparse (e.g. on the longest baselines). The 
result is that the longest baselines are weighted up, the synthesised beam becomes smaller but the 
r.m.s. noise usually increases significantly. 

     

Dirty beams 
for Natural 
and Uniform 
weighting - 
courtesy 
Simon 
Garrington
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Robust weighting - the weights are modified 
according to the Robust parameter. R = +5 
produces something v.close to natural 
weighting, R= -5 produces near pure uniform 
weighting and R=+4.... to ......-4 provides a 
weighting scheme that lies between these two 
extremes. This gives a fine degree of control for 
astronomer in terns of data weighting. Robust 
weighting is widely used (Briggs PhD 
thesis1995). 

     

Robust +5

Robust -5

Robust +5

Robust 0
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Most maps in the literature are 
produced via the CLEAN algorithm (or 
some variant of it). For most 
observations CLEAN does very well.  

However, for very extended sources, the 
fact that CLEAN uses delta functions to 
represent the source leads to artefacts 
in the image.  CLEAN tends to break up 
extended emission into lumps, and 
occasionally introduces ripples 
corresponding to unsampled Fourier 
components in the uv-plane.  

CLEAN has difficulty properly 
represented extended sources like this 
(a Supernova remnant) via delta 
functions. 

More on Deconvolution
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In the past other algorithms were used e.g. the Maximum Entropy Method (MEM). This algorithm 
tries to find the lowest contrast or smoothest positive image which fits the original data within 
the noise - it does not deal well with really compact features in the image however. 

Multi-scale CLEAN algorithms attempt to recognize that the emission in the sky usually comes on 
a variety of scale sizes; it decomposes the image into Gaussians of the specified scale sizes. This 
means it does not spend huge amounts of time CLEANing large extended sources pretending that 
they are really collections of delta functions. 

Image courtesy 
Wim Brouw

- take your pick!

Model PSF Dirty Map

CLEAN MEM MS-CLEAN
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Irrespective of which algorithm you use, the spatial structure of an object can only be mapped 
on scales which are sampled by the projected baselines, or which can be estimated by 
interpolation between baselines.

The shortest projected baseline Bmin determines the largest-scale structure which is not filtered 
out of the synthesis image. 

The largest-scale structure θmax (not to be confused with the field of view!) which can be 
detected is roughly given by 

     θmax  < ~ λ/(2Bmin)

PSF Dirty Map

CLEAN MEM MS-CLEAN
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At low frequencies (e.g. 1.4 GHz) there are always bright sources in the field of view of 
interferometers like the VLA, WSRT and MERLIN.  Sometime it can be difficult to achieve the 
noise level you would expect from thermal noise calculations (i.e. the noise level we would expect 
from eqn[14]). In this case, the image is said to be “Dynamic range limited”. 

The dynamic range (DR) of an image is defined as: 
 
     DR =  peak flux density in map
              off-source r.m.s. noise level

DRs of 10000:1 can be fairly easily achieved. However, for deep field studies this may not be 
enough. 

e.g. if an image is Dynamic range limited at 10000:1 and the brightest source in the field is 1 Jy, this 
implies that the r.m.s. noise level in the map will be limited to 1/100000 = 100 microJy. But the 
sensitivity of the array is much better than this and many deep surveys wish to reach microJy 
noise levels. 

Errors that limit the dynamic range of an image include 

(i) non-closing errors due to baseline (not antenna) based errors (e.g. small changes in telescope 
passbands on short time scale or errors in the correlator etc. ) 
(ii) telescope pointing errors,  
(iii) non-isoplanatic effects. 

CLEAN MEM MS-CLEAN

High Dynamic Range Imaging
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Baseline based corrections can be applied to data to remove the effects of non-closing errors.  
The other errors are more difficult to correct for. 

Pointing errors are problematic because the effect is not unifrom over the full field of view: 

MS-CLEAN

left: 

cartoon representing 
no pointing errors - 
red source is at the 
field centre. But there 
are other sources in 
the field (e.g. the blue 
source). 

What happens if we 
introduce a pointing 
error ? 
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Now we introduce a pointing error: 

MS-CLEAN

The red source sees a small reduction in the 
response of the telescope at its position. 

However, sources at the edge of the beam 
(where the response of the beam is changing 
quickly) see a large reduction of the 
telescope response at their position.

This is difficult for self-cal to cope with - in its 
simplest form it assumes that a single 
telescope-based amplitude correction is a 
good description of the calibration problem.

What tends to happen in practice is that the 
self-cal corrections (solutions) are usually 
biased towards the position of the brightest 
source in the field. 
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There are other cases in which the amplitude and 
phase corrections vary across the field of view 
i.e. they are not only a function of time but also 
position (see eqn[7]): 

gi(t) ==> gi(t,θ)

Radio astronomers talk about the “isoplanatic 
patch” - this is the angular size of a patch of sky 
for which the phase errors due to troposphere 
and/or ionopshere are highly correlated and can 
be considered to be identically the same. 

We usually hope for this simple case (i.e. the one 
that current self-cal algorithms can cope with) 
where the field of view we wish to image is 
smaller than the isoplanatic patch. 

 gi(t1,θ1)

FoV

gi(t1,θ2)

gi(t1,θ1) = gi(t1,θ2)

FoV  (θ1-θ2) << Isoplantatic patch 

**
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The case we wish to avoid: 

 gi(t1,θ1)

FoV

gi(t1,θ2)

gi(t1,θ1) = gi(t1,θ2)

FoV  (θ1-θ2) << Isoplantatic patch 

**

gi(t1,θ1) ≠ gi(t1,θ2)

FoV  (θ1-θ2) >> Isoplantatic patch 
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Reality is different: non-isoplanicity is a problem at low frequency (< few hundred MHz): 

Field of view (telescope primary beam) is larger; 

Ionosphere is far away (100’s of km c.f. the troposphere); 

left: Isoplanatic patch size is < ~10 
km; 

Beam covers more than one patch 
typically; 

Different patch over each antenna - 
even for relatively short baseline 
arrays. 
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Even at higher frequencies small errors 
(due to non-isoplanicity) or pointing 
errors may limit the dynamic range of 
very deep, high dynamic range images.    

Currently a lot of work is going into 
developing new self-calibration algorithms 
for LOFAR and other low frequency 
telescope. These new algorithms attempt  
to solve for the telescope errors across 
the field of view in a consistent way. This 
should work (fingers crossed!) provided 
there are enough bright sources to 
adequately sample the field  (this is work 
in progress!) 

Pathological case (right): M82 and M81 - 
seperated by ~ 40 arcminutes - errors in the 
M82 field ripple into M81 field (N.B. this image 
has been self-cal’d and CLEANed! Observing 
frequency is 1.4 GHz, dynamic range is limited 
to 50:1 ! - image courtesy, Tom Oosterloo. 
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So even at higher frequencies small errors (due to non-isoplanicity) or pointing errors may limit 
the dynamic range of very deep, high dynamic range images.    

A technique that is being used to correct for pointing errors (and other non-isoplanatic effects) 
is called “peeling” (google Tom Oosterloo). 

The basic recipe is as follows: 

1 degree

Self-cal full field subtract “central” sources
à only off-axis source left

Subtract “central” sources - only 
one off-axis source is left
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Apply corrections from off-axis 
source to the data - subtract out 
off-axis source from the data and 
undo corrections from off-axis 
source. 

selfcal on off-axis source gives extra gains
for off-axis patch so off-axis errors disappear

errors due to central sources unchanged !

Self-cal on off-axis source, apply corrections 
and make image. 

N.B. that errors previously associated with 
off-axis source have disappeared. 
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★ off-axis source (+ its errors!!!) gone Self-cal data set, apply corrections 
and make new image

Make a new map - off-axis source is gone and 
its errors. 
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Final map after peeling Original map of the field
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Final map of M81 after peeling - image 
reaches 15 microJy rms noise (~ expected 
thermal noise level).  Original map of M82 and M81

All images courtesy of Tom Oosterloo
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