NVIDIA Project DIGITS With New GB10 Superchip Debuts as World’s Smallest AI Supercomputer Capable of Running 200B-Parameter Models

CES—NVIDIA today unveiled NVIDIA® Project DIGITS, a personal AI supercomputer that provides AI researchers, data scientists and students worldwide with access to the power of the NVIDIA Grace Blackwell platform.

Project DIGITS features the new NVIDIA GB10 Grace Blackwell Superchip, offering a petaflop of AI computing performance for prototyping, fine-tuning and running large AI models.

With Project DIGITS, users can develop and run inference on models using their own desktop system, then seamlessly deploy the models on accelerated cloud or data center infrastructure.

“AI will be mainstream in every application for every industry. With Project DIGITS, the Grace Blackwell Superchip comes to millions of developers,” said Jensen Huang, founder and CEO of NVIDIA. “Placing an AI supercomputer on the desks of every data scientist, AI researcher and student empowers them to engage and shape the age of AI.”

Continue reading “NVIDIA Project DIGITS With New GB10 Superchip Debuts as World’s Smallest AI Supercomputer Capable of Running 200B-Parameter Models”

World’s first “Synthetic Biological Intelligence” runs on living human cells

The world’s first “biological computer” that fuses human brain cells with silicon hardware to form fluid neural networks has been commercially launched, ushering in a new age of AI technology. The CL1, from Australian company Cortical Labs, offers a whole new kind of computing intelligence – one that’s more dynamic, sustainable and energy efficient than any AI that currently exists – and we will start to see its potential when it’s in users’ hands in the coming months.

Body in a box: The CL1 doesn’t require an external computer Cortical Labs

Known as a Synthetic Biological Intelligence (SBI), Cortical’s CL1 system was officially launched in Barcelona on March 2, 2025, and is expected to be a game-changer for science and medical research. The human-cell neural networks that form on the silicon “chip” are essentially an ever-evolving organic computer, and the engineers behind it say it learns so quickly and flexibly that it completely outpaces the silicon-based AI chips used to train existing large language models (LLMs) like ChatGPT.

Continue reading “World’s first “Synthetic Biological Intelligence” runs on living human cells”

World’s first scalable, connected, photonic quantum computer prototype developed

A team of engineers, physicists and computer specialists at Canadian company, Xanadu Quantum Technologies Inc., has unveiled what they describe as the world’s first scalable, connected, photonic quantum computer prototype.

Schematic diagram of the Aurora system and main modules. Credit: Nature (2025).

In their paper published in the journal Nature, the group describes how they designed and built their modularized quantum computer, and how it can be easily scaled to virtually any desired size.

As scientists around the world continue to work toward the development of a truly useful quantum computer, makers of such machines continue to come up with design ideas. In this new effort, the research team built a quantum computer based on a modular design. Their idea was to build a single basic box using just a few qubits for the simplest of applications. As the need arises, another box can be added, then another and another—with all the boxes working together like a network, as a single computer.

Continue reading “World’s first scalable, connected, photonic quantum computer prototype developed”

How to install a Linux desktop on your Android device

Have you ever wished your Android phone or tablet could replace your entire computer? That’s now possible — you can install a Linux or Ubuntu desktop environment on virtually any modern Android device thanks to some clever workarounds. You don’t need to root your phone and you can even use a Bluetooth keyboard and mouse (and maybe an external display) for a powerful desktop-like experience. And even though the experience doesn’t match a real Linux computer, it’s more than usable in a pinch and worth trying out.

QUICK ANSWER

To install a Linux environment on your Android device, you can use the Debian NoRoot or UserLAnd apps. If you choose the latter, you’ll also get to choose between various distributions like Kali Linux, Arch, and Ubuntu. While neither app installs a full operating system, they do offer a complete desktop environment and the ability to run many popular Linux programs.


JUMP TO KEY SECTIONS

Debian NoRoot: One-click Linux desktop

debian noroot android

Calvin Wankhede / Android Authority

Debian NoRoot offers one of the easiest and least complicated ways to access a Linux desktop on Android. It’s a free app that you need to install via the Play Store. If you haven’t heard of Debian, it’s the flavor of Linux that the popular Ubuntu distribution is based upon. This guarantees compatibility with a wide range of Linux apps and the apt package manager.

Debian NoRoot is pretty lightweight and should run on most Android smartphones and tablets. It’s not the complete Debian operating system — instead, its developer describes it as a “compatibility layer, which allows you to run Debian applications.” How is this possible? Well, Android runs a modified Linux kernel, making it somewhat related to our end-goal. Debian NoRoot also includes all of the basics, including a desktop environment and a terminal application. All in all, it’s a perfect starting point for experienced and novice users alike.

Debian NoRoot lets you access a full-fledged Linux desktop with a simple download from the Play Store.

Once you’ve installed the Debian NoRoot app on your Android device and open it for the first time, it will present you with a list of display resolutions and font scales. Select the default options here, and it will eventually bring you to the desktop.

From this point on, you can immediately get to installing additional Linux programs and apps. We’ll explain how you can do this via the terminal in a later section. For now, consider plugging in a keyboard and mouse since the on-screen touch keyboard can take up a big chunk of your screen’s real estate.

Related: What is a kernel and why does it matter on Android and Linux?