AutoML for large scale image classification and object detection

A few months ago, we introduced our AutoML project, an approach that automates the design of machine learning models. While we found that AutoML can design small neural networks that perform on par with neural networks designed by human experts, these results were constrained to small academic datasets like CIFAR-10, and Penn Treebank. We became curious how this method would perform on larger more challenging datasets, such as ImageNet image classification and COCO object detection. Many state-of-the-art machine learning architectures have been invented by humans to tackle these datasets in academic competitions.

In Learning Transferable Architectures for Scalable Image Recognition, we apply AutoML to the ImageNet image classification and COCO object detection dataset — two of the most respected large scale academic datasets in computer vision. These two datasets prove a great challenge for us because they are orders of magnitude larger than CIFAR-10 and Penn Treebank datasets. For instance, naively applying AutoML directly to ImageNet would require many months of training our method.

To be able to apply our method to ImageNet we have altered the AutoML approach to be more tractable to large-scale datasets:

  • We redesigned the search space so that AutoML could find the best layer which can then be stacked many times in a flexible manner to create a final network.
  • We performed architecture search on CIFAR-10 and transferred the best learned architecture to ImageNet image classification and COCO object detection.

With this method, AutoML was able to find the best layers that work well on CIFAR-10 but work well on ImageNet classification and COCO object detection. These two layers are combined to form a novel architecture, which we called “NASNet”.

Our NASNet architecture is composed of two types of layers: Normal Layer (left), and Reduction Layer (right). These two layers are designed by AutoML.

 

source: https://research.googleblog.com/2017/11/automl-for-large-scale-image.html

Lottery prediction using Genetic Alogrithm, Artifical Neural Network and Fuzzy Logic Control.

Predicting is making claims about something that will happen, often based on information from past and from current state.   Everyone solves the problem of prediction every day with various degrees of success.For example weather, harvest, energy consumption, movements of forex (foreign exchange) currency pairs or of shares of stocks, earthquakes, and a lot of other stuff needs to be predicted. …  

Screenshot of "LotteryPrediction"

Predictive Analytics  with classification, deep learning is able to establish correlations between, say, pixels in an image and the name of a person. You might call this a static prediction. By the same token, exposed to enough of the right data, deep learning is able to establish correlations between present events and future events. The future event is like the label in a sense. Deep learning doesn’t necessarily care about time, or the fact that something hasn’t happened yet. Given a time series, deep learning may read a string of number and predict the number most likely to occur next.

Source:
http://yangboz.github.io/LotteryPrediction/
https://github.com/yangboz/LotteryPrediction